Taxonomic notes on the bee genus *Scrapter* LEPELETIER & SERVILLE, 1828, with a checklist to species
(Hymenoptera, Anthophila, Colletidae)

Michael KUHLMANN

Abstract: To facilitate current phylogenetic and pollination studies it has become necessary to formally establish nomenclatural changes in the southern African bee genus *Scrapter* that are resulting from the examination of all available type material. Based on the results of this study an updated checklist of the 77 valid species is given and corrected information is provided on the depositories of the holotypes of ten recently described *Scrapter* species. *Scrapter rufescens* (FRIESE, 1912) is treated as a nomen dubium. *Scrapter merescens* COCKERELL, 1944 was formerly synonymised with *S. leonis* COCKERELL, 1934 but is now recognized as a synonym of *S. capensis* (FRIESE, 1909). A lectotype was designated for *S. merescens* to fix its identity. In addition the following two new synonyms are established: *Scrapter clarissimus* COCKERELL, 1936 = *S. pyretus* DAVIES, 2006 syn.nov. and *S. nitidus* (FRIESE, 1909) = *S. opacus* (FRIESE, 1909) syn.nov..

Key words: *Scrapter*, southern Africa, new synonymy, lectotype, type depository

Introduction

The bee genus *Scrapter* LEPELETIER DE SAINT-FARGEAU & AUDINET-SERVILLE, 1828 is the only genus of the tribe Scapturini (MELO & GONÇALVES 2005, MICHEMER 2007) and was even ranked as a subfamily of its own by ENGEL (2005) and ASCHER & ENGEL (2006). As a genus *Scrapter* is easily identifiable because it is the only hairy colletid bee genus in Africa with two submarginal cells (*Colletes* as the only other genus of hairy colletids on this continent has three submarginal cells) (MICHEMER 2007). *Scrapter* species have an unusually diverse morphology (DAVIES & BROTHERS 2006) and are specialized visitors of a range of flowers (GESS & GESS 2003, 2006, KUHLMANN & EARDLEY 2012, KUHLMANN 2014, KUHLMANN & FRIEHS 2020).

Bees of this genus are largely endemic to southern Africa with the center of species diversity in the Greater Cape Florigistic Region (GCFR) (KUHLMANN 2005, 2009). A single species was recorded from Kenya (DAVIES et al. 2005) but all *Scrapter* "records" and those
of most other bees from Uganda published by MUNYULI (2011: 599-609) were demonstrably fabricated and no reference specimens exist. This data was used by the same author for a number of subsequent publications and at least one of them was retracted based on these concerns (MUNYULI et al. 2013).

Since the first revision of Scrapter by EARDLEY (1996), who recognized 31 species, the genus attracted a lot of attention in subsequent years resulting in the description of 36 additional species and some nomenclatural changes (DAVIES et al. 2005, DAVIES & BROTHERS 2006, KUHLMANN 2014, KUHLMANN & FRIEHS 2020). Most recently BOSSERT & VAN NOORT (in press) demonstrated that even the large and morphologically isolated S. heterodoxus (COCKERELL), seemingly a well defined taxon, consists of two different although closely related species that were synonymized earlier. This underpins the need for a critical reexamination of the current understanding of species delimitations in the genus and all available type material. Given the number of already recognized undescribed species Scrapter could easily turn out to be the most speciose bee genus in the GCFR making it an ideal model for studying bee diversification processes particularly when its morphological diversity and the broad spectrum of flower specialisations are considered.

Since 2002 rich new specimen material has become available for study, particularly from Namaqualand, including a wealth of closely related and often new species from taxonomically difficult species-groups (e.g. euryglossiform Scrapter; KUHLMANN 2014, KUHLMANN & FRIEHS 2020). To enable the description of new species it was necessary to examine all available type material and to reassess earlier synonymisations that were frequently based on few specimens only that were available in those days. This resulted in the recognition of a number of unjustified synonymisations particularly of taxonomically difficult, closely related taxa of the S. nitidus (FRIESE) species-group. These are widely distributed and can be locally abundant flower visitors making them potentially important pollinators. All species of this and the other species-groups will be subject of detailed taxonomic studies, some of them already underway. However, to facilitate current phylogenetic and pollination studies it has become necessary to make names available more rapidly and to formally establish nomenclatural changes in this paper. Based on the results of this study an updated checklist of all described Scrapter species is given. Furthermore a correction is made of holotype depositories of ten recently described Scrapter species.

Materials and methods

Species are treated in alphabetical order of their valid names.

Acronyms for collections from which specimens were examined are as follows:

Taxonomic changes

Scrapter nitidus species-group

The Scrapter nitidus species-group as defined by EARDLEY (1996: 42–43) comprises three species, namely S. nitidus, S. opacus (Friese) and S. ruficornis (Cockerell), including a total of nine synonyms. However, examination of several hundred specimens of this group including all type material revealed that in fact this is a species-rich complex of closely related taxa that often show subtle but clearly distinct morphological (and, in case of sequenced species, genetic) characters. Many species in this group are undescribed and are subject to an ongoing study. Almost all of the published synonyms represent valid taxa and, thus, are reinstated here to make their names available for a phylogenetic study that is currently under way.

Due to the complicated taxonomy in this species-group, that was already recognized by Cockerell (1935), it is almost certain that the record of a female S. nitidus from Kenya (Davies et al. 2005: 177) does not belong to this species. Unfortunately, no reference specimen could be found at SANC so it is impossible to verify the identity of the species as well as this unusual record far outside the known range of the genus.

Scrapter divergens (Friese, 1925) spec. rev.

Polyglossa (Strandiella) divergens Friese, 1925: 515. Holotype ♀ (Willowmore, South Africa) (ZMHB), examined.

Eardley (1996) synonymised this species with S. ruficornis (Cockerell).

Scrapter flavitarsis Cockerell, 1936 spec. rev.

Eardley (1996) synonymised this species with S. opacus (Friese).

Scrapter fuscipennis (Friese, 1912) spec. rev.

Strandiella fuscipennis Friese, 1912: 183. Lectotype ♂ [designated by Eardley 1996] (Kapland, South Africa) (ZMHB), examined.

Eardley (1996) synonymised this species with S. nitidus (Friese).

Scrapter glaberrimus (Friese, 1912) spec. rev.

Eardley (1996) synonymised this species with S. opacus (Friese). He designated a lectotype male of Strandiella glaberrima and gave the label data as ‘Pt. Nolloth, aug. 90, R.M.L., Strandiella glaberrima Fr. ♂, 1910 Friese det., Typus’ (Eardley 1996: 48). However, the specimen is not in ZMHB as mentioned by Eardley (1996) but in SAMC and is (probably erroneously) labelled as paralectotype because no paralectotype was mentioned in the publication.
Scrapter nitidus (FRIESE, 1909)

Polyglossa nitida FRIESE, 1909: 125. Holotype ♂ (Steinkopf, South Africa) (ZMHB), examined.

Polyglossa opaca FRIESE, 1909: 125. Holotype ♂ (Steinkopf, South Africa) (ZMHB), examined.

Syn. nov.

Examination of type specimens revealed that *S. nitidus* and *S. opacus* are synonyms and that the former type specimen is just an unusually small individual. Both males were collected in Steinkopf by Schultz and were described by Friese in the same publication and on the same page (FRIESE, 1909: 125). Following the Principle of the First Reviser I decided to give the name *S. nitidus* priority because the species-group has been named after this species and should be preserved.

Scrapter pallidicinctus COCKERELL, 1933 spec. rev.

Scrapter pallidicincta [sic!] COCKERELL, 1933a: 206-208. Holotype ♂ (Oudtshoorn, South Africa) (NHML), examined.

EARDLEY (1996) synonymised this species with *S. opacus* (FRIESE).

Scrapter perpunctatus COCKERELL, 1933 spec. rev.

Scrapter perpunctata [sic!] COCKERELL, 1933a: 205-206. Holotype ♀ (Knysna, South Africa) (NHML), examined.

EARDLEY (1996) synonymised this species with *S. nitidus* (FRIESE).

Scrapter semirufus COCKERELL, 1932 spec. rev.

Scrapter semirufa [sic!] COCKERELL, 1932a: 452. Lectotype ♀ [designated by EARDLEY 1996] (Port Elizabeth, South Africa) (NHML), examined.

EARDLEY (1996) synonymised this species with *S. nitidus* (FRIESE).

Scrapter sphecodoides (FRIESE, 1912) spec. rev.

Strandiella sphecodoides FRIESE, 1912: 183-184, fig. 3. Lectotype ♀ (Kapstadt, South Africa) [designated by EARDLEY 1996] (SAMC), examined.

EARDLEY (1996) synonymised this species with *S. nitidus* (FRIESE).

Other species-groups

Scrapter braunsianus (FRIESE, 1925) spec. rev.

Based on outer morphology and male genitalia *S. braunsianus* is clearly not conspecific with *S. capensis* (FRIESE 1909) and, thus, its status as a distinct species is here restored. *Scrapter braunsianus* is closely related to *S. leonis* COCKERELL and especially females are very similar. Both sexes of *S. braunsianus* were described by FRIESE (1925) based on specimens collected on the same date at the same locality (15 August 1920, Willowmore) but while the male lectotype was synonymized with *S. capensis* (EARDLEY 1996: 83) the female was erroneously identified as *S. leonis*.
Scrapter capensis (FRIESE, 1909)
Polyglossa capensis FRIESE, 1909: 124-125, fig. 1. Lectotype ♂ [designated by EARDLEY 1996] (Steinkopf, South Africa) (ZMHB), examined.

Scrapter merescens was described by COCKERELL (1944) based on seven females and was later synonymized with S. leonis COCKERELL by DAVIES & BROTHERS (2006). They examined a single female syntype labelled by Cockerell as "Scrapter merescens Ckll. TYPE". According to DALY & ELSE (1988) specimens bearing such a label should be regarded as holotypes or be chosen as lectotype when a description is based on multiple specimens.

Scrapter clarissimus COCKERELL, 1936 spec. rev.
Scrapter clarissima [sic!] COCKERELL, 1936a: 30-31. Holotype ♀ (Seeheim, Namibia) (NHML), examined.

Type examinations showed that S. clarissimus is not conspecific with S. aureiferus COCKERELL (synonymised by EARDLEY 1996: 60) but instead S. pyretus DAVIES is recognized as a junior synonym of the former.

Scrapter ornatipes COCKERELL, 1933 spec. rev.
Scrapter ornatipes COCKERELL, 1933b: 70. Holotype ♀ (Van Reenen, South Africa) (NHML), examined.

Based on outer morphology and male genitalia S. ornatipes is clearly not conspecific with S. pallidipennis (COCKERELL) and, thus, its status as a distinct species is here restored.

Correction of holotype depositories of ten recently described Scrapter species

For the following ten species the depository of holotypes was erroneously mentioned to be in the research collection of the author. Here I take the opportunity to clarify that these holotypes are deposited in the entomology collection of the Iziko South African Museum (SAMC) in Cape Town, South Africa:
Alphabetical checklist of the species of the bee genus *Scrapter*

Scrapter absonus EARDLEY, 1996

Scrapter acanthophorus DAVIES, 2005

Scrapter albitarsis EARDLEY, 1996

Scrapter albitarsis EARDLEY, 1996: 74, figs 70-72, 81. Holotype ♂ (Cornell’s Kop, Richtersveld) (SANC), paratype examined.

Scrapter algoensis (FRIESE, 1909)

Polyglossa algoensis FRIESE, 1909: 124. Holotype ♂ (Steinkopf, South Africa) (ZMHB), examined.

Scrapter algoensis (FRIESE, 1925)

Polyglossa rufofasciata FRIESE, 1925: 518-519. Holotype ♀ (Port Nolloth, South Africa) (ZMHB), examined.

Scrapter sinophilus COCKERELL, 1944: 406. Syntypes ♀ & ♂ (Mossel Bay, South Africa) (NHML), examined.

Scrapter amplispinatus EARDLEY, 1996

Scrapter amplispinatus EARDLEY, 1996: 80-81, figs 81, 88-90. Holotype ♂ (Middlepos, South Africa) (SAMC), not examined.

Scrapter amplitarsus EARDLEY, 1996

Rhinochaetula capensis FRIESE, 1913a (nec *Polyglossa capensis* FRIESE, 1909): 589-590. Holotype ♂ (Kapstadt, South Africa) (type depository unknown), not examined.

Scrapter amplitarsus EARDLEY, 1996: 87-88, figs 98, 104-107 (replacement name for *Rhinochaetula capensis* FRIESE, 1913).

Scrapter armatipes (FRIESE, 1913)

Rhinochaetula armatipes FRIESE, 1913: 589. Holotype ♂ (Klein Namaland, South Africa) (type depository unknown), not examined.

Scrapter aureiferus COCKERELL, 1932

Scrapter aureifera [sic!] COCKERELL, 1932b: 558-559. Holotype ♂ (Nieuwoudtville, South Africa) (NHML), examined.

Scrapter avius EARDELEY, 1996

Scrapter avius EARDELEY, 1996: 57-58, figs 31-34. Holotype ♀ (Klinghardtsberge, Namibia) (SANC), examined.

Scrapter avontuurensis KUHLMANN, 2020

Scrapter avontuurensis KUHLMANN, in KUHLMANN & FRIEHS 2020: 3-5, fig. 1. Holotype ♀ (12 km NW Nieuwoudtville, South Africa) (SAMC), examined.

Scrapter basutorum (COCKERELL, 1915)

Capicola basutorum COCKERELL, 1915: 342-343. Holotype ♂ (Basutoland [Lesotho]) (NHML), examined.

Polyglossa (Strandiella) luteipennis FRIESE, 1925: 516. Holotype ♂ (Rikatla, Mozambique) (ZMHB), examined.

As EARDELEY (1996: 50) already mentioned the holotype in ZMHB is labelled (and catalogued) as *Polyglossa luteipes*, not *P. luteipennis*.

Scrapter bicolor LEPELETIER & SERVILLE, 1828

Scrapter bicolor LEPELETIER & SERVILLE, 1828: 404. Holotype ♂ (Cafrerie, South Africa) (MNHN), examined.

Strandiella rufiventris FRIESE, 1912: 184, fig. 4. Holotype ♀ (Kapstadt, South Africa) (ZMHB), examined.

Scrapter bokkeveldensis KUHLMANN, 2020

Scrapter bokkeveldensis KUHLMANN, in KUHLMANN & FRIEHS 2020: 5-7, fig. 2. Holotype ♀ (12 km NW Nieuwoudtville, South Africa) (SAMC), examined.

Scrapter braunsianus (FRIESE, 1925)

Scrapter caesariatus EARDELEY, 1996

Scrapter calx EARDELEY, 1996

Scrapter capensis (FRIESE, 1909)

Polyglossa capensis FRIESE, 1909: 124-125, fig. 1. Lectotype ♂ [designated by EARDELEY 1996] (Steinkopf, South Africa) (ZMHB), examined.

Scrapter carysomus DAVIES, 2005

Scrapter catoxys DAVIES, 2005

Scrapter chloris EARDLEY, 1996

Scrapter chrysomastes DAVIES, 2005

Scrapter clarissimus COCKERELL, 1936
Scrapter clarissima [sic!] COCKERELL, 1936a: 30-31. Holotype ♀ (Seeheim, Namibia) (NHML), examined.

Scrapter divergens (FRIESE, 1925)
Polyglossa (Strandiella) divergens FRIESE, 1925: 515. Holotype ♀ (Willowmore, South Africa) (ZMHB), examined.

Scrapter eremanthedon DAVIES, 2005

Scrapter erubescens (FRIESE, 1925)
Polyglossa (Strandiella) erubescens FRIESE, 1925: 517. Holotype ♂ (Vanrhynsdorp, South Africa) (ZMHB), examined.
Scrapter turneri COCKERELL, 1933b: 69-70. Holotype ♀ (Montagu, South Africa) (NHML), examined.

Scrapter exiguis KUHLMANN, 2014
Scrapter flavipes (FRIESE, 1925)
Polyglossa (Strandiella) flavipes FRIESE, 1925: 516-517. Lectotype ♀ [designated by EARDLEY 1996] (Mfongosi, South Africa) (ZMHB), examined.

Scrapter flavitarsis COCKERELL, 1936
Scrapter flavitarsis COCKERELL, 1936b: 481. Lectotype ♂ [designated by EARDLEY 1996] (Cape Town, South Africa) (NHML), examined.

Scrapter flavostictus COCKERELL, 1934

Scrapter fuliginatus EARDLEY, 1996

Scrapter fuscipennis (FRIESE, 1912)
Strandiella fuscipennis FRIESE, 1912: 183. Lectotype ♀ [designated by EARDLEY 1996] (Kapland, South Africa) (ZMHB), examined.

Scrapter fynbosensis KUHLMANN, 2020
Scrapter fynbosensis KUHLMANN, in KUHLMANN & FRIEHS 2020: 7-9, fig. 3. Holotype ♀ (15 km NW Nieuwoudtville, South Africa) (SAMC), examined.

Scrapter gessorum KUHLMANN, 2014
Scrapter gessorum KUHLMANN, 2014: 16-18, fig. 8. Holotype ♀ (Willowmore, South Africa) (AMGS), examined.

Scrapter glaberrimus (FRIESE, 1912)

Scrapter glarea DAVIES, 2005

Scrapter hergi KUHLMANN, 2020
Scrapter hergi KUHLMANN, in KUHLMANN & FRIEHS 2020: 9-11, fig. 4. Holotype ♂ (Roggeveld Mts, 2 km SE Farm Allemands, South Africa) (SAMC), examined.

Scrapter heterodoxus (COCKERELL, 1921)
Polyglossa heterodoxa COCKERELL, 1921: 204-205. Lectotype ♂ [designated by EARDLEY 1996] (Cape Town, South Africa) (SAMC), not examined.
Scrapter inexpectatus **KUHLMANN, 2014**

Scrapter inexpectatus KUHLMANN, 2014: 20-22, fig. 10. Holotype ♀ (21 km E Lambert’s Bay, South Africa) (CUIC), examined.

Scrapter keiskiensis **KUHLMANN, 2020**

Scrapter keiskiensis KUHLMANN, in KUHLMANN & FRIEHS 2020: 11-13, fig. 5. Holotype ♀ (Roggeveld Mts, 1.5 km S Farm Allemansdam, South Africa) (SAMC), examined.

Scrapter leonis **COCKERELL, 1934**

Scrapter luridus **EARDLEY, 1996**

Scrapter luridus EARDLEY, 1996: 77-78, figs 77-81. Holotype ♂ (83 km N Grünau, Namibia) (SAMC), examined.

Scrapter luteistigma **KUHLMANN, 2014**

Scrapter luteistigma KUHLMANN, 2014: 22-25, figs 11-12. Holotype ♀ (4.5 km NE Grootdrif, South Africa) (SANC), examined.

Scrapter mellonholgeri **KUHLMANN, 2020**

Scrapter mellonholgeri KUHLMANN, in KUHLMANN & FRIEHS 2020: 14-17, figs 6, 7. Holotype ♂ (Roggeveld Mts, 2 km SE Farm Allemansdam, South Africa) (SAMC), examined.

Scrapter minutissimus **KUHLMANN, 2014**

Scrapter minutissimus KUHLMANN, 2014: 25-27, fig. 13. Holotype ♂ (Leliefontein, South Africa) (SANC), examined.

Scrapter minutuloides **KUHLMANN, 2014**

Scrapter minutus **KUHLMANN, 2014**

Scrapter minutus KUHLMANN, 2014: 29-31, figs 15. Holotype ♀ (30 km N Calvinia, South Africa) (SANC), examined.

Scrapter nanus **KUHLMANN, 2014**

Scrapter niger **LEPELETIER & SERVILLE, 1828**

Scrapter niger LEPELETIER & SERVILLE, 1828: 404. Holotype ♂ (Cafrerie, South Africa) (MNHN), examined.

Strandiella longula FRIESE, 1912: 182, figs 1, 2. Lectotype ♂ (Kapstadt, South Africa) [designated by EARDLEY 1996] (SAMC), examined.

Scrapter subincertus COCKERELL, 1944: 405. Syntypes ♀ (Rapenburg, South Africa) (NHML), examined.

Scrapter nigerrimus KUHLMANN, 2014

Scrapter nigerrimus KUHLMANN, 2014: 35-37, fig. 18. Holotype ♀ (Woodlot, South Africa) (RCMK), examined.

Scrapter nigritarsis KUHLMANN, 2014

Scrapter nitens KUHLMANN, 2020

Scrapter nitens KUHLMANN, in KUHLMANN & FRIEHS 2020: 18-19, fig. 8. Holotype ♀ (7 km NE Steinkopf, South Africa) (SAMC), examined.

Scrapter nitidus (FRIESE, 1909)

Polyglossa nitid a FRIESE, 1909: 125. Holotype ♂ (Steinkopf, South Africa) (ZMHB), examined.

Polyglossa opaca FRIESE, 1909: 125. Holotype ♂ (Steinkopf, South Africa) (ZMHB), examined.

Scrapter ornatipes COCKERELL, 1933

Scrapter ornatipes COCKERELL, 1933b: 70. Holotype ♀ (Van Reenen, South Africa) (NHML), examined.

Scrapter oubergensis KUHLMANN, 2020

Scrapter oubergensis KUHLMANN, in KUHLMANN & FRIEHS 2020: 20-22, fig. 9. Holotype ♀ (Ouberg Pass, 27 km SE Vanrhynsdorp, South Africa) (SAMC), examined.

Scrapter oxyaspis DAVIES, 2005

Scrapter pallidicinctus COCKERELL, 1933

Scrapter pallidicincta [sic!] COCKERELL, 1933a: 206-208. Holotype ♂ (Oudtshoorn, South Africa) (NHML), examined.

Scrapter pallidipennis (COCKERELL, 1920)

Strandiella pallidipennis COCKERELL, 1920: 301-302. Holotype ♂ (Bulwer, South Africa) (NHML), examined.
Scrapter papkuilsi KUHLMANN, 2014

Scrapter peringueyi (COCKERELL, 1921)

Polyglossa peringueyi COCKERELL, 1921: 205-206. Holotype ♀ (Knysna, South Africa) (SAMC), not examined.

Scrapter perpunctatus COCKERELL, 1933

Scrapter perpunctata [sic!] COCKERELL, 1933a: 205-206. Holotype ♀ (Knysna, South Africa) (NHML), examined.

Scrapter pruinosus DAVIES, 2006

Scrapter punctulatus KUHLMANN, 2020

Scrapter punctatus KUHLMANN, 2014 (nec LEPELETIER & AUDINET-SERVILLE, 1828 = *Allodape punctata* [LEPELETIER & AUDINET-SERVILLE 1828]): 45-48, figs 23, 24. Holotype ♀ (Witwater, South Africa) (SANC), examined.

Scrapter pygmaeus KUHLMANN, 2014

Scrapter pygmaeus KUHLMANN, 2014: 48-50, fig. 25. Holotype ♀ (Nieuwoudtville, South Africa) (SANC), examined.

Scrapter roggeveldi KUHLMANN, 2014

Scrapter roggeveldi KUHLMANN, 2014: 50-54, figs 26, 27. Holotype ♂ (20 km W Sutherland, South Africa) (SAMC), examined.

Scrapter ruficornis (COCKERELL, 1916)

Strandiella ruficornis COCKERELL, 1916: 430. Holotype ♂ (Willowmore, South Africa) (NHML), examined.

Polyglossa (Strandiella) caffra FRIESE, 1925: 515. Holotype ♀ (Willowmore, South Africa) (ZMHB), examined.

Scrapter semirufus COCKERELL, 1932

Scrapter semirufa [sic!] COCKERELL, 1932a: 452. Lectotype ♀ [designated by EARDLEY 1996] (Port Elizabeth, South Africa) (NHML), examined.

Scrapter sittybon DAVIES, 2005

Scrapter spheciodoides (FRIESE, 1912)

Strandiella spheciodoides FRIESE, 1912: 183-184, fig. 3. Lectotype ♀ (Kapstadt, South Africa) [designated by EARDLEY 1996] (SAMC), examined.

Scrapter spinipes KUHLMANN, 2014

Scrapter striatus SMITH, 1853

Scrapter striatus SMITH, 1853: 121. Holotype ♀ (Cape, South Africa) (NHML), examined.

Scrapter macrocephala [sic!] Cockerell, 1933a: 204-205. Holotype ♀ (Nieuwoudtville, South Africa) (NHML), examined.

Scrapter thoracicus (FRIESE, 1925)

Polyglossa thoracica FRIESE, 1925: 518. Holotype ♀ (Ookiep, South Africa) (ZMHB), examined.

Scrapter tomentum EARDLEY, 1996

Scrapter ulrikae KUHLMANN, 2014

Scrapter viciniger DAVIES, 2006

Scrapter viciniger DAVIES, in DAVIES & BROTHERS 2006: 174-175, figs 115-118. Holotype ♂ (Nieuwoudtville Flower Reserve, South Africa) (SANC), examined.

Scrapter whiteheadi EARDLEY, 1996

Scrapter whiteheadi EARDLEY, 1996: 66, fig. 50. Holotype ♀ (6 km N Kamieskroon, South Africa) (SANC), examined.

Scrapter willemstrydomi KUHLMANN, 2020

Scrapter willemstrydomi KUHLMANN, in KUHLMANN & FRIEHS 2020: 22-24, fig. 10. Holotype ♂ (Kamiesberg Mts, 5 km SE Leliefontein, South Africa) (SAMC), examined.

Nomen dubium

Scrapter rufescens (FRIESE, 1912)

Strandiella rufescens FRIESE, 1912: 184-185. Holotype ♂ (Kapstadt, South Africa) (type depository unknown), not examined.

Scrapter rufescens is here treated as a nomen dubium. The identity of this species is
unclear because type material could not be located. *Scrapter rufescens* belongs to the taxonomically difficult *S. nitidus*-complex but the description is too unspecific for an identification. According to the description the male was collected in Cape Town and from here in the same publication also *S. sphecodoides* was described but based on female specimens only. Hence, it is not unlikely that *S. rufescens* represents the male of *S. sphecodoides*.

Acknowledgements

All curators of the museum collections listed above are gratefully acknowledged. Without their constant support this publication and the ongoing revision of Afrotropical bees would have been impossible.

Zusammenfassung

References

Anschrift des Verfassers: Dr. Michael KUHLMANN
Zoologisches Museum der Christian-Albrechts-Universität zu Kiel
Hegewischstr. 3, D-24105 Kiel, Germany
E-Mail: mkuhlmann@zoolumen.uni-kiel.de
ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Linzer biologische Beiträge

Jahr/Year: 2021

Band/Volume: 0053_2

Autor(en)/Author(s): Kuhlmann Michael

Artikel/Article: Taxonomic notes on the bee genus Scrapter LEPELETIER & SERVILLE, 1828, with a checklist to species (Hymenoptera, Anthophila, Colletidae) 699-714