MENSCHENAFFEN

(ANTHROPOMORPHAE)

STUDIEN ÜBER ENTWICKELUNG UND SCHÄDELBAU

HERAUSGEGEBEN

VON

EMIL SELENKA.

ZWEITER BAND.

IV. DER UNTERKIEFER DER ANTHROPOMORPHEN UND DES MENSCHEN IN SEINER FUNKTIONELLEN ENTWICKELUNG UND GESTALT. VON DR. OTTO WALKHOFF.

V. ZUR VERGLEICHENDEN KEIMESGESCHICHTE DER PRIMATEN. ALS FRAGMENT HERAUS-GEGEBEN VON DR. FRANZ KEIBEL. EINGELEITET DURCH EIN LEBENSBILD SELENKAS VON DR. A. A. W. HUBRECHT. MIT EINEM PORTRÄT SELENKAS IN HELIOGRAVURE.

VI. DIE DILUVIALEN MENSCHLICHEN KIEFER BELGIENS UND IHRE PITHEKOIDEN EIGENSCHAFTEN. VON DR. OTTO WALKHOFF.

MIT 150 TEXTABBILDUNGEN UND 1 TAFEL.

WIESBADEN.

C. W. KREIDELS VERLAG.

1902—1903.

Alle Rechte vorbehalten.

STUDIEN

ÜBER

ENTWICKELUNGSGESCHICHTE

DER TIERE.

HERAUSGEGEBEN VON

EMIL SELENKA.

AUF GRUND DES NACHLASSES FORTGEFÜHRT von

A. A. W. HUBRECHT, H. STRAHL UND F. KEIBEL GIESSEN FREIBURG.

DRITTER BAND.

MENSCHENAFFEN

(ANTHROPOMORPHAE)

- IV. DER UNTERKIEFER DER ANTHROPOMORPHEN UND DES MENSCHEN IN SEINER FUNKTIONELLEN ENTWICKELUNG UND GESTALT. VON DR. OTTO WALKHOFF.
- V. ZUR VERGLEICHENDEN KEIMESGESCHICHTE DER PRIMATEN. ALS FRAGMENT HER-AUSGEGEBEN VON DR. FRANZ KEIBEL. EINGELEITET DURCH EIN LEBENSBILD SELENKAS VON DR. A. A. W. HUBRECHT. MIT EINEM PORTRÄT SELENKAS IN HELIOGRAVURE.
- VI. DIE DILUVIALEN MENSCHLICHEN KIEFER BELGIENS UND IHRE PITHEKOIDEN EIGENSCHAFTEN. VON DR. OTTO WALKHOFF.

MIT 150 TEXTABBILDUNGEN UND 1 TAFEL.

WIESBADEN

C. W. KREIDELS VERLAG.

1902-1903.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Inhaltsverzeichnis.

Menschenaffen (Anthropomorphae). Studien über Entwickelung und Schädelbau.

	Seite
IX. Heft. Der Unterkiefer der Anthropomorphen und des Menschen in seiner	
funktionellen Entwickelung und Gestalt. Von Dr. Otto Walkhoff. Mit	
59 Abbildungen im Text	209-328
I. Einleitung	209-211
II. Allgemeine Gesetze der Entwickelungsmechanik in bezug auf die Architektur und	
äussere Form der Knochen	212-217
III. Vergleich der äusseren Kieferformen bei den Anthropomorphen und den Menschen	218—227
IV. Die innere Architektur des Unterkiefers	228-256
A. Bildung und Verwendung der Substantia compacta und spongiosa beim Aufbau	
des Kieferknochens	228-240
B. Die grossen Trajektorien des fertigen Kieferknochens und ihre Bedeutung	240—256
I. Trajektorien des Kieferastes	240-252
2 Trajektorien des Kieferkörpers	252-256
V. Der vordere Unterkiefer	257-271
A. Die hintere Kieferplatte in ihrer allgemeinen äusseren Gestalt	258—264
B. Trajektorien im Vorderkiefer des Menschen	264-268
C. Wechselseitiger Einfluss der Wurzelbildung, Zahnstellung und Zahngrösse auf	
den Vorderkiefer	268—271
VI. Vergleich der Unterkieferformen des diluvialen und rezenten Menschen	272—281
VII. Die Kiefer aus der Schipkahöhle, von Prédmost und von Krapina und ihre innere	
Struktur	282—300
VIII. Die funktionelle Gestaltung des Kinnes sowie der Spina mentalis interna und ihre	
Form-Variationen	301-315
IX. Der Einfluss der fortschreitenden Grössenreduktion der menschlichen Zähne auf	
den Vorderkiefer	316—321
X. Rückblick auf die Entstehung der Kieferformen beim Menschen und den Anthro-	
pomorphen. Rückschlüsse auf die gemeinsame Stammesform	322-327
X. Heft. Emil Selenka. Ein Lebensbild. Von Dr. A. A. W. Hubrecht	1-14
Zur vergleichenden Keimesgeschichte der Primaten. Von Dr. Emil	,
Selenka. Als Fragment herausgegeben von Dr. Franz Keibel. Mit 1 Tafel und	
67 Abbildungen im Text	329-372
,	0 / 0/

VI Inhaltsverzeichnis.

	Seite
Vorbemerkung des Herausgebers	
Vorbemerkung des Verfassers	
I. Entwickelung des Primaten-Keimes bis etwa gegen Ende des zweiten Monats	
A. Ei-Furchung des Macacus nemestrinus	00
B. Gastrulation. — Keimblase mit primärer Placenta (Schwanzaffen)	
C. Beschreibung verschiedener jüngerer Embryonen	
1. Cercocebus cynomolgus	
2. Semnopithecus cephalopterus, Wanderu, Wa. von Ceylon	
3. Cercocebus cynomolgus, Cc. (früher Sc.); gemeiner Makak oder Javaaffe	344-353
4. Cercocebus cynomolgus, Cd., Makak	353
5. Cercocebus cynomolgus, Cm., (Pontianak Borneo)	355
6. Semnopithecus mitratus, Surili, Sr., (Java)	355
7 Cercocebus cynomolgus, Nr. 1 (Java)	355-358
8. Semnopithecus mitratus, Surili, H., (Java)	
9. Cercocebus cynomolgus, Nr. 2, Cf	
10. Semnopithecus maurus, Lm. (Ida), Lutung (Java)	
11. Hylobates agilis, Ha	
12. Hylobates Mülleri Hm., Sintang 💍 am Kapuas (Borneo)	
II. Fragmente über ältere Föten von Primaten	363-372
XI. Heft. Die diluvialen menschlichen Kiefer Belgiens und ihre pithekoiden	
Eigenschaften. Von Dr. Otto Walkhoff. Mit 24 Abbildungen im Text	373-416
Einleitung	
I. Der Kiefer von la Naulette	275-285
II. Der Kiefer von la Naulette als Typus der diluvialen Kieferform und seine pithe-	313 303
koiden Eigenschaften	286-200
III. Die Kieferreste von Spy	
IV. Der Kiefer von Goyet	
V. Die Übergänge des diluvialen Kiefertypus zur heutigen Form	
Phylogenetische Schlüsse	
inylogeneusche Semusse	4-4-4-5

MENSCHENAFFEN

(ANTHROPOMORPHAE)

STUDIEN ÜBER ENTWICKELUNG UND SCHÄDELBAU

HERAUSGEGEBEN

VON

DR. EMIL SELENKA

PROFESSOR IN MÜNCHEN.

4

VIERTE LIEFERUNG:

DER UNTERKIEFER DER ANTHROPOMORPHEN UND DES MENSCHEN

IN SEINER

FUNKTIONELLEN ENTWICKELUNG UND GESTALT

VON

DR. OTTO WALKHOFF

HOFZAHNARZT UND LEHRER AM ZAHNÄRZTLICHEN UNIVERSITÄTS-INSTITUT IN MÜNCHEN.

MIT 59 ABBILDUNGEN IM TEXT.

WIESBADEN.

C. W. KREIDEL'S VERLAG.

1902.

Alle Rechte vorbehalten.

Inhaltsverzeichnis zur IV. Lieferung.

	Seite
Einleitung	209
Allgemeine Gesetze der Entwickelungsmechanik in Bezug auf die Architektur und äussere Form	
der Knochen	212
Vergleich der äusseren Kieferformen bei den Anthropomorphen und dem Menschen	218
Die innere Architektur des Unterkiefers	228
I. Bildung und Verwendung der Substantia compacta und spongiosa beim Aufbau des	
Kieferknochens	228
II. Die grossen Trajektorien des fertigen Kieferknochens und ihre Bedeutung	240
A. Trajektorien des Kieferastes	240
B. Trajektorien des Kieferkörpers	252
Der vordere Unterkiefer	257
I. Die hintere Kieferplatte in ihrer allgemeinen äusseren Gestalt	258
II. Die Trajektorien im Vorderkiefer des Menschen	264
III. Wechselseitiger Einfluss der Wurzelbildung, Zahnstellung und Zahngrösse auf den	
Vorderkiefer	268
Vergleich der Unterkiefer-Formen des diluvialen und recenten Menschen	272
Die Kiefer aus der Schipkahöhle, von Prédmost und von Krapina und ihre innere Struktur	282
Die funktionelle Gestaltung des Kinnes sowie der Spina mentalis interna und ihre Form-Variationen	301
Der Einfluss der fortschreitenden Grössenreduktion der menschlichen Zähne auf den Vorderkiefer	316
Rückblick auf die Entstehung der Kieferformen beim Menschen und den Anthropomorphen und	
Rückschlüsse auf die gemeinsame Stammesform	322

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

DER UNTERKIEFER

DER

ANTHROPOMORPHEN UND DES MENSCHEN

IN SEINER

FUNKTIONELLEN ENTWICKELUNG UND GESTALT

VON

DR. OTTO WALKHOFF

HOFZAHNARZT UND LEHRER AM ZAHNÄRZTLICHEN UNIVERSITÄTSINSTITUT IN MÜNCHEN.

WIESBADEN.

C. W. KREIDEL'S VERLAG.

1902.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Einleitung.

In seiner Abhandlung über die Leistungsfähigkeit der Prınzipien der Descendenzlehre zur Erklärung der Zweckmässigkeiten des tierischen Organismus stellte Roux im Jahre 1880 zwei für die Entwickelungsmechanik hochbedeutsame Grundgesetze der funktionellen Anpassung auf. Das morphologische Gesetz sagt folgendes: "Die stärkere Funktion vergrössert das Organ bloss in denjenigen Dimensionen, welche die stärkere Funktion bieten." Rouxs physiologisches Gesetz der funktionellen Anpassung lautet: "Die stärkere Funktion ändert die qualitative Beschaffenheit der Organe, indem sie die spezifische Leistungsfähigkeit derselben erhöht." Ob diese Gesetze auch für die bloss passiv fungierenden Organe, wie Knochen, Knorpel und Bänder Giltigkeit haben würden, überliess Roux damals besonderen Untersuchungen. In seinem bald darauf erschienenen Werke "Der züchtende Kampf der Teile im Organismus" hat dieser Autor alsdann nachgewiesen, dass die durch die stärkere Funktion der Organe entstehende funktionelle Hypertrophie nicht immer Ähnlichkeitswachstum, d. h. Vergrösserung nach allen Durchmessern proportional ihrer Grösse hervorbringt, sondern dass durch eventuelle Beschränkung der Vergrösserung auf eine oder zwei Dimensionen morphologisch neue Charaktere erzeugt werden. Dieselbe Regel sei aber auch unter entsprechender Abänderung für die entgegengesetzte Richtung der funktionellen Anpassung also für verringerte Funktion aufzustellen. Roux hat aus diesem Gesetz die funktionelle Selbstgestaltung der zweckmässigen Struktur hergeleitet, woraus sich dann die äussere Gestalt der Organe, die Richtigkeit des soeben genannten Vorganges vorausgesetzt ergeben muss. Durch diese Arbeiten muss Roux als Begründer der heutigen Lehre von der Entwickelungsmechanik der Organismen angesehen werden.

Für das Knochengewebe hatten bekanntlich schon eine ganze Reihe von Autoren, speziell v. Meyer und J. Wolff, bewiesen, dass die innere Architektur des-

selben in vielen Fällen nach den Regeln der graphischen Statik und Dynamik sich Zwar müssen wir leider noch immer mit jenem fundamentalen, nicht ausbildet. genügend erklärten Prinzip alles Organischen, mit der Vererbung als einer Thatsache rechnen, solange nicht die zweite grosse Frage Darwins nach der Entstehung der Variabilität und zwar der einzelnen Organe einigermassen erklärt ist. Für diese wird die Entwickelungsmechanik hauptsächlich in Betracht zu ziehen sein. Trotz der auftretenden individuellen Variationen der äusseren Form müssen die Grundelemente des Aufbaus eines Organs erkennbar vorhanden sein, denn Verschiedenheit der Form kann nur aus der verschiedenen Beanspruchung durch die Kräfte, welche auf einzelne Teile des Organs wirken, entstehen. Nach den Gesetzen der Entwickelungsmechanik werden sich neue Formen aber nur der veränderten inneren Struktur entsprechend, ausbilden können. Gelingt ein solcher Nachweis, welcher vergleichend in Bezug auf die Konstruktionselemente der Organe bei verschiedenen Tieren durchgeführt ist, so werden sich häufig wichtige Rückschlüsse auf verwandtschaftliche Beziehungen der einzelnen Spezies ziehen lassen. Denn eine vermehrte oder verminderte Funktion einzelner Konstruktionselemente muss nachweislich wiederum die äussere Form eines Organs verändern, so dass eine Variation der letzteren entsteht. Da die unendlich verschiedenen Lebensbedingungen für die Spezies und Individuen einer Tierordnung die Ernährung, besonders aber die zu diesem Zweck vorhandenen Organe wohl im höchsten Grade beeinflussen können, so mussten Untersuchungen der äusseren Form und der Knochenstruktur der Kiefer, vergleichend auf eine Anzahl von Arten angewendet, zu einem sicheren Prüfstein jener Gesetze werden, welche die Grundlage der Lehren von der funktionellen Gestaltung des Knochengewebes unter gewissen Bedingungen bilden sollen.

Wir werden im folgenden nachzuweisen versuchen, dass jene Gesetze Rouxs in der That das Fundament für die Beurteilung der variablen Kieferstruktur und Kieferform der Primaten bilden. Für den menschlichen Organismus geltend habe ich die Lehren der Entwickelungsmechanik teilweise bereits in der Deutschen Monatsschrift für Zahnheilkunde (Dezemberheft 1900 bis Märzheft 1901), allerdings im wesentlichen mehr in Rücksicht auf die Zahnheilkunde, erörtert. Es war für mich von grösstem Interesse, darnach vergleichend die Kieferstruktur der Anthropomorphen zu untersuchen, wie es Herr Professor Selenka mir vorschlug. Einerseits mussten das Problem des nahen verwandtschaftlichen Verhältnisses der Primaten, andererseits die kolossalen Abänderungen der äusseren Kiefergestalt bei den einzelnen Spezies, aber auch die manchmal auffallenden Annäherungen der äusseren Form dazu auffordern. Durch die Güte der Herren Professoren Hertwig, Rückert, J. Ranke und Selenka in München,

Maschka in Teltsch, Waldeyer in Berlin wurde mir ein überreiches Material zur Verfügung gestellt, wofür ich auch an dieser Stelle meinen herzlichsten Dank abstatten möchte.

Für Darstellungen der inneren Struktur der Kiefer habe ich auch für diese Arbeit in ausgiebiger Weise die photographische Wiedergabe der Objekte durch Röntgenstrahlen angewandt. Einerseits durfte das mir zur Verfügung gestellte kostbare Material nicht immer zerschnitten werden, andererseits ist die Radiographie meines Erachtens die sicherste Methode innere Knochenstrukturen in voller Klarheit wiederzugeben. Speziell für den Unterkiefer des Menschen und der Anthropomorphen, auf welchen ich mich in der vorliegenden Lieferung beschränke, eignet sich diese Methode sehr gut, weil der dünnere Knochen nicht mit grösseren Höhlen durchsetzt ist, wie die oberen Gesichtsknochen. Bei guter Ausführung übertrifft eine Röntgenaufnahme des Knochengewebes weitaus diejenige eines Fournierschnittes, welcher auf einer Unterlage von schwarzem Sammt in auffallendem Licht photographiert wird. Einerseits sind die Fournierschnitte technisch nicht immer gleichmässig auszuführen. Die Spongiosa leidet durch den Sägenschnitt, und lose Bälkchen gehen beim Auswaschen des ersteren leicht verloren. Reste von organischer Substanz bleiben häufig zurück und täuschen eine scheinbare Grösse vor. Aufnahmen mit Röntgenstrahlen geben dagegen immer das wahre Bild der Spongiosa und zeigen auch das Bälkchen, welches z. B. in nahezu derselben Richtung hinter dem an der Oberfläche liegenden Bälkchen zieht. Hierdurch wird es ermöglicht, auch von einem ganzen Knochen oft ein vollständigeres Bild der inneren Struktur zu erhalten, als es durch Anlegung zahlreicher Fournierschnitte und eingehende Vergleichung der photographischen Aufnahmen derselben zu erreichen ist. Es kommt hinzu, dass bei den Kieferknochen infolge der in ihnen enthaltenen Zähne es überhaupt häufig unmöglich ist, technisch tadellose Fournierschnitte durch den Kieferkörper auszuführen. Mithin erscheint die Röntgenaufnahme der Kieferknochen für die Ermittelung der inneren Struktur in vielen Fällen als die einzig richtige und brauchbare Methode. Ein gutes Radiogramm zeigt bei einem nicht zu dicken Knochen die Trajektorien der Knochenbälkchen in toto und sichert dadurch ein Übersichtsbild über die gesamte Anordnung der Spongiosa, welches bei Zerlegung des Knochens in einzelne Scheiben nur zu leicht verloren geht. Die grosse Entdeckung Röntgens kann auch auf dem Gebiete der Erforschung der Knochenstruktur als eine bahnbrechende bezeichnet werden, und selbst Serienschnitte lassen sich richtiger wiedergeben, als es durch die Photographie im auffallenden Lichte möglich ist. Die Radiographie wird voraussichtlich bei jeder Untersuchung über den Aufbau eines Knochens immer von unschätzbarem Werte sein.

Allgemeine Gesetze der Entwickelungsmechanik in Bezug auf die Architektur und äussere Form der Knochen.

Einige allgemeine Gesichtspunkte, welche auf die Architektur des hier in Betracht kommenden Knochengewebes Bezug haben und teilweise schon litterarisch niedergelegt sind, mögen hier als Einführung zu der vorliegenden Arbeit Platz haben.

Roux hat seine Theorie der funktionellen Anpassung auf die Annahme gegründet, dass der "funktionelle Reiz" speziell bei den Knochen dadurch entstehe, dass die durch Druck und Zug bewirkte Erschütterung und Spannung einen trophischen Reiz auf die Zellen ausüben, zufolge dessen die Knochen unter vermehrter Nahrungsaufnahme wachsen, eventuell sich verändern, respektive, dass die Osteoblasten an den Stellen stärkeren Reizes mehr Knochen bilden. Umgekehrt sinkt nach Roux bei dauernder Intaktivität durch Fehlen dieser Reize die Ernährung der Zellen, sodass sie das Verbrauchte nicht genügend ersetzen. Es verliert die Knochensubstanz allmählich ihre Widerstandsfähigkeit gegen die infolge der Intaktivität gebildeten Osteoklasten, ohne oder mit Beteiligung von andrängenden anderen Organen. Vielfach ist bei diesen Vorgängen der Kampf der Organe um den Raum, bei Nahrungsmangel auch der Kampf derselben um die Nahrung beteiligt.

Roux erwähnt in seinem Werke "Der züchtende Kampf der Teile im Organismus" ferner, dass bei Röhrenknochen die äusseren Teile durch die Belastung zur Aktivitätshypertrophie angeregt und verdickt, die inneren Partien im Mittelstück aber entlastet werden. Damit wird auch gleichzeitig Atrophie eingeleitet und zur Röhrenbildung Veranlassung gegeben. In gleicher Weise erklärt Roux die Entstehung von Höhlungen, z.B. im Oberkieferbein und Siebbein, "wenn auch die Ursache der schliesslichen äusserlichen Abgrenzung des Prozesses noch unbekannt ist". Es muss also bei trophischer Wirkung des funktionellen Reizes in den Richtungen, in welchen diese Kräfte am stärksten wirken, Begünstigung der Entwickelung, Aktivitätshypertrophie eintreten. In dem Maasse, als die in diesen

Richtungen entwickelten Teile der Funktion mehr und mehr allein genügen, werden die abweichend davon gelegenen Fasern durch Unterliegen in dieser Art eines Wettkampfes der Teile um die Funktion ihrer funktionellen Beanspruchung beraubt, durch Inaktivitätsatrophie allmählich verschwinden. Auf diese Weise müssen schliesslich die in den Richtungen stärkster Beanspruchung gelegenen, also stärkst fungierenden Fasern allein übrig bleiben. (Roux, Funktionelle Gestalt und Struktur der Schwanzflosse des Delphin.) Die äussere Gestalt der Knochen schmiegt sich der erworbenen inneren "funktionellen Struktur" möglichst an und wird deshalb von Roux als "funktionelle Gestalt" bezeichnet. Infolge dieses Vorganges wird nämlich die Oberfläche des Knochens zur Selbstbegrenzung seiner durch die Funktion bedingten Struktur. Sie verläuft also allenthalben den oberflächlichsten Strukturenteilen des Hauptsystems jeder Stelle parallel und damit zugleich "rechtwinkelig" zu dem System der sekundären Beanspruchung, sodass nichts der Funktion Fremdes solchem normalen Knochen angefügt ist. (Roux, Knöcherne Kniegelenksankylose des Menschen.)

Über die Verwendung und den Zweck der Substantia spongiosa und compacta im allgemeinen hat sich Roux in der Abhandlung über Kniegelenksankylose ebenfalls schon geäussert. Die Spongiosa dient demnach zur Verteilung des Widerstandes auf einen grösseren Raum, als für Widerstandsleistung durch ein kompaktes Stück bei reiner Druck- und Zug- oder Reizungs-Beanspruchung nötig wäre, also für grössere statische Flächen, sowie auch gleichzeitig einen mehr elastischen Widerstand zu erzeugen. Die Substantia compacta ist dagegen für Zusammendrängung des festen Materials auf den kleinsten Raum zum Zwecke der Erreichung höchst möglichen Widerstandes an der beschränkten Stelle der relativ stärksten Beanspruchung bestimmt.

Auch über die Bedeutung der verschiedenen Lagerung der Spongiosa hat sich Roux sehr klar in seinem Artikel "Funktionelle Anpassung in der Real-Encyklopädie der gesamten Heilkunde" ausgesprochen. Darnach entsprechen nur an solchen Stellen der Knochen rechtwinkelige Spongiosa-Maschen der Funktion und finden sich dort vor, wo der Druck, respektive Zug, immer genau in ein und derselben Richtung wirkt; während andererseits an Stellen, wo die Druckrichtung wechselt, die indifferente Form der Spongiosa mit rundlichen kleineren Maschen nötig ist, so z. B. allenthalben da, wo der Druck von dem relativ weichen Gelenkknorpel aus auf Knochen übertragen wird. Erst weiter innen, im knöchernen Skelettteile, ist vollkommene Konstanz der Druckrichtung vorhanden; und da findet sich dann auch beim Erwachsenen rein ausgebildet die Struktur der Spongiosa

rectangulata ordinata mit ihren kontinuierlich durch grosse Strecken durchgehenden Balkenzügen (Trajektorien). Diese von Roux aufgestellten allgemeinen Leitsätze der Entwickelungsmechanik kommen, wie sich aus den folgenden Untersuchungen ergeben wird, im wesentlichen auch bei dem Aufbau der Kieferknochen in Betracht.

Auf diesen Mitteilungen Rouxs fussend, gab später Zschokke in seinem Werke "Weitere Untersuchungen über das Verhältnis der Knochenbildung zur Statik und Mechanik des Vertebraten-Skelettes" eine sehr gute Einteilung der Beanspruchung eines Knochens. Zschokke unterscheidet vier Arten der Belastung.

Die gewöhnlichste Beanspruchung ist die rückwirkende Festigkeit, d. h. eine Pressung in longitudinaler Richtung, welche aber keineswegs gleichmässig einwirkt oder gleich verteilt ist, sondern bald auf dieser, bald auf jener Seite stärker oder schwächer wird.

Eine weitere Beanspruchung des Knochens ist die Biegungsfestigkeit, welche namentlich an vorstehenden, dem Muskelzug ausgesetzten Fortsätzen zur Geltung kommt.

Die Torsionsfestigkeit ist nach Zschokke zwar nicht selten, dagegen wohl nicht intensiv.

Blosser Zug kommt endlich nach Zschokke am seltensten und wohl nur an gewissen Fortsätzen als physiologische Beanspruchung vor. Die Zugwirkung muss allerdings senkrecht von der Knochenoberfläche abgehen. Sobald der Zug in mehr centripetaler Richtung auf den Knochen einwirkt, so macht er sich in diesem als Druck geltend.

ZSCHOKKE macht auch mit Recht darauf aufmerksam, dass, im Gegensatz zu Meyer und Wolff, welche den Aufbau des menschlichen Knochengerüstes durch die aufrechte Stellung, also im wesentlichen durch die Statik erklären, beim Tiere die Knochen am meisten durch die Bewegung beansprucht werden, und dass deshalb der Muskeldruck bei der Beurteilung der Architektur der Knochen nicht ignoriert werden darf. "Es giebt Knochen und namentlich Knochenfortsätze, welche dem Belastungsdruck gar nicht ausgesetzt sind und gleichwohl ausgeprägte spezifische Spongiosabildung aufweisen, trotzdem nur Muskelzug auf sie einwirkt." Zschokke kommt demgemäss bei Tieren zu dem Ergebnis, dass bei gewissen Funktionen der Knochen der Muskeldruck häufig wesentlich grösser sei als der Belastungsdruck. Wenn man nun zugäbe, dass die Knochenbildung überhaupt durch die im Körpergewebe mechanisch wirkenden Kräfte beeinflusst werde, so sei man genötigt, einen Teil der Knochenform und auch der inneren Architektur der Muskel-

wirkung zuzuschreiben. Diese Meinung Zschokkes trifft für die Gesichtsknochen meines Erachtens ganz besonders zu.

Der Oberkiefer ist dem statischen Einflusse nur wenig, der Unterkiefer aber überhaupt nicht unterworfen, seine ganze Gestaltung hängt im Gegenteil nur von der Muskelwirkung ab, wie bei keinem zweiten grösseren Knochen des Organismus. Seine innere Struktur und äussere Form müssen deshalb in klarer Weise die Vollziehung der Funktion beweisen, welche die ansetzenden Muskeln ausüben. Die Thätigkeit der Muskeln erfolgt bei den Kiefern in der That in grosser Reinheit, ohne dass statische Belastungsmomente mitspielen, welche das Bild der Muskelkraftbahnen häufig verwischen. Innerhalb derselben Spezies wird die allgemeine Anlage der letzteren streng inne gehalten. Die unendlichen Variationen der äusseren Knochenform beruhen aber auf Ausbildung und Vollendung der vererbten Allgemeinanlage der Knochen und zwar in der Weise, dass die konstruktiven Teile dieser Organe seitens eines jeden Individuums in Rücksicht auf die definitiven äusseren Formen gewissermassen erst wieder neu erworben werden. Eine durchaus gleiche Funktion aller Teile würde ja die ursprüngliche Anlage am leichtesten wieder hervorrufen. Die Neuerwerbung der Form ist aber gewöhnlich ganz individuell von den verschiedensten Lebensbedingungen und Beanspruchung jener Konstruktionsteile abhängig. Jenen passt sich jedes Individuum zwar nach Möglichkeit an. Nun müssen aber doch allmählich Wirkungen auf das Prinzip des organischen Lebens, den Abkömmling möglichst gleich dem Vorfahren zu gestalten, zustande kommen können. Solche Wirkungen werden einerseits durch die variable quantitative und qualitative Ernährung des wachsenden Individuums hervorgebracht, wenn schroffere Gegensätze zu derjenigen der Eltern auftreten. Weit mehr wird noch der vermehrte oder verminderte Gebrauch bestimmter Organe von Einfluss sein und zwar zunächst in Bezug auf die innere Struktur ihrer konstruktiven Teile. Die Abänderung dieser hat sehr bald die Umgestaltung der äusseren Form zur Folge, ein Vorgang, welcher insbesondere durch die erwähnten Arbeiten Rouxs erklärlich scheint. Die Thätigkeit eines aktiven Organs, vor allen Dingen der Muskeln, ist nicht nur bei gleichzeitiger Wirkung des statischen Belastungsdruckes selbstbestimmend für die eigne Form, sondern sie macht ihren Einfluss auch auf die Stützgebilde, speziell das Knochengewebe, geltend. Die Stärke der Funktion bei den aktiven Organen ist aber wiederum abhängig von der Beanspruchung des Stützorgans gegen zu überwindende äussere Kräfte. Als Angriffspunkt für diese spielen in den Kiefern die Zähne als Zwischenglied beim Kauakte die Hauptrolle.

Dementsprechend fasse ich für den Unterkiefer den Fundamentalsatz, welcher

auf den Lehren der Entwickelungsmechanik beruhend den leitenden Faden für die vorliegende Abhandlung bildet, folgendermaassen zusammen: Aus der vererbten Anlage erwächst die spätere Kieferform jedes Individuums allein durch die Funktion der Muskeln, wobei die Zähne die wesentlichsten Vermittler der aufgewandten Kraft sind und durch ihre Grössenentwickelung, ihren Gebrauch und Verlust auf den Kiefer formgestaltend wirken.

Es müssen also nachweislich bei den Kiefern durch Gebrauch oder Nichtgebrauch der Muskeln nicht nur individuell sehr verschiedene Formen entstehen
können, sondern es werden sich infolge neuauftretender aber gleichförmiger Lebensbedingungen und Thätigkeiten für ganze Gruppen von Individuen wieder bestimmte
Merkmale ausprägen. Sie werden dann zu einem wirklichen Stammes- oder RassenTypus Veranlassung geben und den Angehörigen derselben bestimmte neue Charaktere aufdrücken. Das ungelöste Problem der Vererbung schafft hier Schwierigkeiten.

Die Natur macht jedoch jedenfalls bei der typischen Formveränderung eines Organes keinen Sprung. Zunächst wird häufig nur ein einziger konstruktiver Teil desselben beeinflusst werden. Durch eine bestimmte Funktion erworbene Eigenschaften der Organe werden aber, obgleich zunächst individuell, doch vererbbar, wenn der Abkömmling unter gleichen oder vielleicht noch günstigeren Bedingungen die Funktion wiederum aufnehmen kann. Nachkommen können eine neuerworbene Eigenschaft möglichenfalls sogar noch weiter ausbilden und verstärken.

Solche Vorgänge müssen jedoch zunächst obigen allgemeinen Ausführungen entsprechend eine Abänderung der inneren Architektur, insbesondere der durch die Funktion beeinflussten Organe, aufweisen, welche entweder in eine Vermehrung oder im Abbau der histologischen Elemente besteht. Eine solche Abänderung betrifft häufig nur ganz bestimmte Teile eines Organs. Daraus erfolgt erst die äussere Gestalt, welche zu einer Dauerform für die Abkömmlinge solcher Individuen sein kann, so lange gleiche Vorbedingungen der Beanspruchung für die Organe obwalten. Abänderungen dieser Art in grösserem Umfange und an verschiedenen Organen können wieder zur Entstehung vollständig neuer Organ-Formen führen, wobei allerdings auch die Wirkung der veränderten Körperteile auf einander zur Geltung kommt.

Für die Kiefer der Primaten muss, wenn obige allgemeine Sätze Geltung haben sollen, nachzuweisen sein, dass bei ersteren Grundzüge des konstruktiven Aufbaues vorhanden sind, welche sich über alle Mitglieder der Klasse erstrecken. Andererseits müssen einzelne Teile der Kiefer eine besondere, zweckentsprechende innere Architektur je nach Beanspruchung durch die allein wirkende Muskelarbeit aufweisen. Das muss entweder im positiven Sinne durch eine Verstär-

kung der entsprechenden Kraftbahn des einschlägischen Muskels oder im negativen Sinne durch eine möglichste Beschränkung in die Erscheinung treten. Die äussere Kieferform wird diesen Variationen des Grundgesetzes schliesslich folgen, indem die stark beanspruchten Teile verdickt werden, minder belastete dagegen einem teilweisen Schwunde anheimfallen.

Bei einem derartigen Vergleiche des Unterkiefers der Anthropomorphen und des Menschen musste die Erörterung der konstruktiven Teile bei den einzelnen Spezies und die Abänderungen, welche durch die funktionelle Selbstgestaltung hervorgerufen werden, der Hauptzweck dieser Arbeit sein. Es scheint mir eine solche Untersuchung allerdings auch der beste Weg zur Erforschung des Problems einer etwaigen gemeinsamen Stammesform zu sein, von welcher sich vor unendlicher Zeit die einzelnen Spezies den Gesetzen der Entwickelungsmechanik folgend abgezweigt haben und ihren eigenen Weg gegangen sind.

Der Unterkiefer des Menschen und der Affen ist von jeher bei Erörterungen des Abstammungsproblems ein wichtiges Vergleichsobjekt gewesen. Deshalb musste auch die Bedeutung der bisher aufgefundenen ältesten Kiefer des Menschen und ihrer Eigenschaften ausgiebig erörtert werden, um bei dem anzustellenden Vergleiche die weit auseinandergehenden Meinungen durch die gewonnenen Resultate wieder möglichst einander nähern zu können.

Vergleich der äusseren Kieferformen bei den Anthropomorphen und den Menschen.

Da bisher seitens der Anatomen immer die äussere Form der Knochen als Ausgangspunkt für morphologische Untersuchungen gewählt ist, so ist es wohl angezeigt, die Unterkiefergestalt der Anthropomorphen und der Menschen zunächst vergleichend zu schildern. Dann ist in Rücksicht auf die soeben besprochenen allgemeinen Ergebnisse der Entwickelungsmechanik die Funktion und Wirkung derjenigen Muskeln zu erörtern, welche am Unterkiefer der Primaten ansetzend, eine grössere Rolle bei der Gestaltung spielen können. Alle jene Verschiedenheiten in der Entwickelung einzelner äusserer Formen werden, wenn die Lehren der Entwickelungsmechanik zu Recht bestehen, ihre Begründung in der Entwickelung der einzelnen Beanspruchungsbahnen finden.

Ich wähle zunächst zum ausführlichen Vergleich zwei Unterkiefer, welche durch eine sehr verschiedenartige Form sich besonders auszeichnen und für welchen mir das grösste Material zu Gebote steht, nämlich denjenigen des Orangutan und des heutigen Menschen.

Bei einem Vergleiche fällt sofort die mächtige Entwickelung des Kieferastes. die Grösse der Zähne und des gesamten Alveolarfortsatzes beim Orangutan auf. Selenka hat schon in der ersten Lieferung dieses Werkes S. 36 darüber Angaben gemacht. Dann treten der starke Prognathismus des gewaltigen Vorderkiefers und die enorme Ausbildung des äusseren Kieferwinkels in die Erscheinung, während diese Eigenschaften am Kiefer des civilisierten Menschen sehr zurücktreten.

Aber auch in kleineren Kieferabschnitten sind bedeutende Unterschiede vorhanden. Die Gelenkflächen des Capitulums sind beim Orangutan um ein bedeutendes grösser, der ganze Processus condyloideus überhaupt viel stärker entwickelt. Die Linea semilunaris schneidet beim Orangutan in die den Processus condyloideus mit dem Processus coronoideus verbindende Knochenplatte weit weniger ein als beim

Menschen. Deshalb erscheint auch der Processus coronoideus des Menschen viel dünner und länger. Der ganze Kieferast des Orangutan ist selbst unter Berücksichtigung der Kieferlänge doch noch viel breiter angelegt. Speziell betrifft dies die ganze untere Hälfte des Kieferastes, welcher in seiner äusseren Form bei ausgewachsenen Tieren oft nahezu ein Rechteck mit schwach abgerundeten Kanten bildet. Dasselbe steht am Ende des Kieferkörpers fast senkrecht zur Basalfläche. Es nähert sich der äussere und innere Kieferwinkel beim erwachsenen und speziell beim männlichen Orangutan einem rechten.

Die äussere Fläche des Kieferastes ist bei den Anthropomorphen nahezu vollständig glatt. Selbst die Ansatzstelle der M. masseter zeigt kaum eine gewisse Rauhigkeit der Knochenplatte. Nur bei den gewaltigen Kiefern alter Männchen treten auch an der Aussenfläche des Kieferastes Leistenbildungen geringeren Umfanges auf, und zwar als äussere Begrenzungslinien der später zu besprechenden Kraftbahnen, welche die innere Architektur des Knochens durchziehen.

Beim Menschen findet man auf der äusseren Platte des Kieferastes häufiger in der Richtung des M. masseter verlaufende Leistenbildungen. Dieselben sind jedoch nicht für die innere Architektur des Knochens massgebend, sondern beschränken sich in ihrer Anlage auf die Substantia compacta. Sie sind zwar als Versteifungsvorrichtungen beim menschlichen Kiefer anzusehen, leisten jedoch für diesen Zweck durchaus nicht das, was eine innere Verstrebung des Balkensystems vermag, welche wir bei der Besprechung der inneren Struktur des Orangutankiefers kennen lernen werden.

Eine äussere Knochen-Leistenbildung ist demnach selbst bei sehr starker Muskelfunktion nicht unbedingt nötig. Beide stehen noch nicht einmal im proportionalen Verhältnis zu einander.

Der vordere Rand des Kieferastes setzt sich immer in die Linea obliqua externa fort, welche bogenförmig zum Kieferkörper zieht. Beim Menschen tritt sie gewöhnlich anfänglich am Kieferkörper stärker als Leiste hervor als beim Orangutan. Der Kiefer des Affen zeigt dafür ein bedeutend stärkeres Vorspringen der äusseren Kieferplatte im ganzen. Sowohl bei dem Menschen wie den grossen Anthropomorphen kommt es vor, dass die Linea obliqua externa in der Gegend des zweiten Molaren sich teilt und noch zum unteren Kieferrande bis etwa zu der Richtebene des ersten Molaren fortsetzt. Mit dem Hauptzweige läuft sie dann in einem schwach angedeuteten Bogen unter dem Foramen mentale, um sich bei den Anthropomorphen wieder stärker gekrümmt zur Längsaxe des Eckzahnes zu erheben. Beim Menschen fehlt diese letztere Leistenbildung; die Linea obliqua externa zieht hier entsprechend der schrägeren

Stellung des Processus coronoideus vom inneren Winkel mehr geradlinig zum Foramen mentale, um sich nun allmählich zu verlieren oder bis zum Tuberculum mentale vorzudringen. Das Foramen mentale liegt auffallend konstant im Milchgebiss des Menschen und sämtlicher Anthropomorphen in der Ebene des ersten Prämolaren, im bleibenden Gebiss unter dem zweiten Prämolaren. Die ganze vordere Fläche des Mittelstücks am Unterkiefer ist beim Orangutan glatt, während beim Menschen eine starke Konturierung der Fläche immer vorhanden ist.

An dem Unterkiefer der Anthropomorphen und des Menschen kann man sehr gut einen Alveolarfortsatz, einen eigentlichen Kieferkörper und einen Basalteil unterscheiden. Eine horizontale Ebene durch die Grube an der inneren Kieferplatte der Affen und durch die Spina mentalis interna beim Menschen, nach dem äusseren Kieferwinkel hin gelegt, trennt die beiden letztgenannten Teile von einander.

Der Basalteil ist bei sämtlichen Affen von derjenigen des Menschen verschieden. Jener hat besonders im Vorderkiefer eine wirkliche Fläche (Basalfläche) aufzuweisen, während bei den Affen ein stark nach innen gebogener, jedoch schmaler Rand vorhanden ist, welcher eine wahre Basalfläche nur vortäuschen kann. Beim menschlichen Unterkiefer ist zwar auch ein gewisser Rand vorhanden, welcher die Vereinigung der beiden Kieferplatten an der Kieferbasis bildet. Indessen gehen beide Kieferplatten nahezu horizontal von diesem Rande ab, um erst nach einer gewissen Strecke ungefähr vertikal aufzusteigen. Dadurch bekommt der menschliche Unterkiefer neben der Basalfläche einen verhältnismässig stärker hervortretenden Basalteil, als wie ihn die Anthropomorphen besitzen. In Wirklichkeit gehört die nach unten schauende Fläche des äffischen Vorderkiefers nur der vorderen Kieferplatte an. Bei sämtlichen Affen wird jener gebogene Rand allgemein zu einer nach innen vorspringenden starken Leiste, welche die Frontalebene durch die ersten Molaren erreichen kann.

Die innere Kieferplatte zeigt bei beiden Spezies noch grössere Unterschiede als die äussere. Gemeinsam ist, dass erstere am Kieferaste mit grösseren leistenartigen Erhebungen versehen ist; diese bilden die hauptsächlichsten Insertionsstellen des M. pterygoideus internus und ziehen in annähernd centripetaler Richtung zum inneren Kieferwinkel. Am menschlichen Kiefer sind sie gewiss stärker ausgeprägt, als bei den Anthropomorphen. Hier ist der gesamte Knochen am äusseren Kieferwinkel meist gerade, oder sogar nach innen gebogen, während beim Menschen sehr häufig das Umgekehrte der Fall ist. Der M. masseter und pterygoideus internus sind bekanntlich Synergisten, und der aufsteigende Ast wird zwischen ihnen zu einer möglichst geraden Platte formiert, wenn die Muskeln sich bei ihrer Funktion das Gleichgewicht

halten. Am menschlichen Unterkiefer scheint jedoch im späteren Alter der M. masseter dem M. pterygoideus internus gegenüber zu dominieren und den äusseren Kieferwinkel nach aussen zu ziehen. Allein es kommen auch Abweichungen von dieser Regel vor. Nach Parigi soll bei Völkern, welche vorwiegend von Fleisch leben, die Masseter-Temporalisgruppe überwiegen, welche die senkrechte Kaubewegung vermittelt; dagegen sollen diejenigen Stämme, welche von Pflanzenkost leben, und mehr die seitliche Kaubewegung durch das Zermahlen der Nahrung ausführen, stärkere Pterygoidei interni und externi besitzen.

Die Ausbildung des äusseren Kieferwinkels ist sehr variabel und offenbar ganz individuell. Form, Grösse und Dicke dieses Knochenteiles sind bei sämtlichen Anthropomorphen und beim Menschen niemals einander gleich. Beim Orangutan ist sogar der Scheitelpunkt des Winkels oft gar nicht genau zu bestimmen. Der äussere Kieferwinkel kann beim Orangutan wie bei sämtlichen Anthropomorphen nahezu ein rechter werden, wenn man die Stellung der ganzen Basalfläche zur hinteren Seite des aufsteigenden Astes berücksichtigt. Mir erscheint eine solche Bestimmung bei dem häufig fehlenden Scheitelpunkte des Kieferwinkels für den Orangutan genauer, als eine willkürliche Annahme des ersteren. Aber auch beim Menschen finden wir zumal bei den tiefstehenden Rassen äussere Kieferwinkel, welche sich gelegentlich dem rechten Winkel ziemlich nähern. Ich bestimmte z. B. den äusseren Kieferwinkel eines Eskimos auf 110 Grad. Messungen beim Orangutan zeigen durchschnittlich einen Winkel von 100 Grad, welcher bis zu einem solchen von 93 Grad abfallen kann.

Eine Anzahl von starken Knochenleisten sind ferner im oberen inneren Teile des Kieferastes vorhanden. Vom Processus condyloideus zieht eine solche zum inneren Kieferwinkel. Sie differiert in Bezug auf Stärke bei beiden Spezies nicht wesentlich. Noch kräftiger ist beim Orangutan eine Leiste von der Spitze des Processus coronoideus zum inneren Kieferwinkel. Sie setzt sich an der inneren Kieferplatte des Kieferkörpers in Gestalt eines sich stark vorwölbenden, grossen Wulstes bis zur Symphyse der Kieferhälften fort. Dieser Wulst bedingt eine ganz bedeutende typische Abweichung des Affenkiefers gegenüber der menschlichen Kieferform. Beim Menschen läuft an Stelle jenes Wulstes die ursprüngliche Leistenbildung bisweilen deutlich sichtbar vom inneren Kieferwinkel bis zur Spina mentalis interna fort. Diese Leiste, die alte Linea obliqua interna, wird neuerdings, weil sie gleichzeitig die Ansatzstelle für den M. mylohyoideus bildet, Linea mylohyoidea genannt. Immer läuft der Wulst und die Leiste bei allen Primaten in schräger Richtung nach dem vorderen Teile des Kieferkörpers. Die grossen Anthropomorphen haben keine ausge-

sprochene Linea obliqua interna. Der starke Wulst zeigt beim Orangutan sehr sanft verlaufende Formen, sowohl gegen den Alveolarfortsatz als auch gegen die Kieferbasis. Dementsprechend ist der Sulcus mylohyoideus und selbst die Fovea submaxillaris beim Orangutan im Gegensatz zum menschlichen Unterkiefer nur schwach angedeutet.

Der oberhalb der Linea obliqua interna liegende Alveolarfortsatz ist beim Menschen selten konkav, meistens flach, beim Orangutan dagegen konvex. Dasselbe gilt auch von der unter der Linea obliqua interna liegenden Kieferbasis. Sämtliche Übergänge der äusseren Form sind an der inneren Kieferplatte beim Orangutan vollständig ausgeglichen, sodass dadurch eine viel grössere Stärke des Alveolarfortsatzes und der Basis erzielt wird. Wir haben also auch an der inneren Kieferplatte des Orangutan wirklich ein unterscheidendes Merkmal zwischen Menschen- und Affenkiefer. Das Wichtigste ist jedoch das folgende. Sämtliche Affen haben statt jener Spina mentalis interna, welche den Ansatzpunkt für den M. genioglossus beim Menschen bildet, eine mehr oder minder tiefe Grube. Diese Grube galt in früherer Zeit für spezifisch äffisch. Neben den Muskelinsertionsstellen befindet sich beim Orangutan nahezu immer jederseits von der Medianlinie und etwas von ihr entfernt ein Foramen für den Eintritt eines Zweiges der Arteria sublingualis. Beim Menschen ist immer nur ein Foramen vorhanden, welches zwar genau in der Medianlinie, aber nicht an einen bestimmten Punkt in Rücksicht auf die vorhandene Spina mentalis interna gebunden ist. Das Gefässloch kann über und unter der Spina liegen. Letzterer kann sogar geteilt sein, dann liegt das Foramen zwischen beiden Hälften. Selbst die Stärke des eintretenden Gefässes ist sehr wechselnd, häufiger ist sogar ein Foramen beim Menschen makroskopisch gar nicht nachzuweisen.

Vordere und hintere Fläche des vorderen Unterkiefers sind bei dem starken Prognathismus der Affenkiefer also so sehr von denjenigen des Menschen verschieden, dass auch die Gefässbildung durchaus eine andere ist. Auf diese Erscheinungen ist in dem Kapitel über die Kinnbildung noch näher einzugehen. Es sei hier nur noch erwähnt, dass beim Orangutan jederseits nahe der Symphyse am rückwärts gebogenen Kieferrande eine stärkere Insertionsgrube für den M. digastricus vorhanden ist. Beim Menschen liegt dieselbe meist weniger ausgeprägt auf dem inneren Teile der Basalfläche, welche durch eine die beiden Kieferplatten verbindende verhältnismässig breite Knochenplatte ihren Ausdruck findet.

Die Schilderung der Unterkieferform vom erwachsenen Orangutan im Vergleich zum Menschen gilt im allgemeinen auch für die jungen Individuen beider Arten. Alle Leistenbildungen sind bei den jungen Orangutans jedoch noch weniger ausgeprägt. Etwaige Vorsprünge, wie sie besonders an der Innenseite der Kiefer von jungen Orangutans vorkommen, sind durch die Entwickelung der grossen Dauerzähne, also durch die Alveolenbildung bedingt. Sölche Formen sind noch nicht spezifisch, und selbst der Kiefer-Prognathismus ist noch nicht so ausgeprägt, wie bei alten Exemplaren.

Ein Vergleich der Unterkiefer vom Gorilla und Schimpanse mit denjenigen des recenten Menschen ergiebt bezüglich der äusseren Form etwas andere Resultate.

Der Processus condyloideus wird beim Gorilla meist noch stärker entwickelt als beim Orangutan. Speziell die Gelenkfläche ist, gleiche Geschlechter vorausgesetzt, grösser. Auch der Processus coronoideus erscheint beim Gorilla noch kräftiger. Die Linea semilunaris ist allerdings tiefer ausgeschnitten und der Körper des Kieferastes wird bei gleicher Höhe nicht so breit angelegt als beim Orangutan. Am unteren Rande der Symphyse findet sich nicht selten bei jüngeren Gorillas eine zwischen den M. digastrici gelegene Protuberanz, welche im späteren Alter verschwinden kann. Auch beim Gorilla tritt im Gegensatz zum Menschen der untere Kieferrand im vorderen Teile der Basis bedeutend nach innen, trotzdem der ganze Basalteil in Bezug auf Dicke enorm entwickelt ist. Zwischen den Insertionsgruben der M. geniohyoidei sieht man zuweilen eine ziemlich grosse Spina in der Medianlinie. Im übrigen ist jedoch die Grube für den M. genioglossus nahezu ebenso stark ausgeprägt wie beim Orangutan. Selenka erwähnt Seite 143 dieses Werkes die interessante Thatsache, dass junge Gorillas manchmal deutlich ein Kinn aufweisen. Die schon stark entwickelte Basis dominiert hier vorläufig noch über den geringer entwickelten Alveolarfortsatz mit den kleineren Milchzähnen. Indessen ist die äussere Form des vorderen Unterkiefers des Gorillas, mit derjenigen des Menschen verglichen, noch nicht einmal ähnlich zu nennen. Der Kieferprognathismus alter Gorillakiefer, besonders der Männchen, ist sogar nicht selten ebenso stark als beim Orangutan, trotzdem die Kieferbasis dieses Anthropomorphen nicht den Dickendurchmesser derjenigen eines gleichalterigen Gorillas erreicht.

Durch die vorspringende Spina, an welcher jederseits beim Gorilla die M. geniohyoidei ansetzen, wird wenigstens im Vorderkiefer der Anfang einer Basalfläche beim Gorilla erzeugt, auf welcher die M. digastrici inserieren. Der Wulst, welcher wie wir später sehen werden, durch die Wirkung der Zahnwurzeln an der hinteren Kieferplatte entsteht, liegt unmittelbar über der Insertionsstelle des M. genioglossus. Beim Orangutan liegt derselbe weit höher an der inneren Kieferplatte. Die Wurzeln der Schneidezähne sind beim Gorilla nämlich länger und durch ihre Krümmung nach hinten ist der Teil der inneren Kieferplatte, welcher über dem Wulste liegt, mehr konkav gestaltet als beim Orangutan. Die Grube für den M. genioglossus ist häufig in der Medianlinie durch eine Gefässrinne in zwei Hälften geteilt, welche durch zwei

erhöhte Leistchen begrenzt ist. Beim alten Exemplar des Gorilla setzt die Gefässrinne an und zwischen der Spina der M. geniohyoidei ein und zieht sich bis zum tiefsten Punkte der Grube, sich dabei Y-artig teilend. Jeder dieser beiden kleinen Gefässzweige senkt sich, ein kleines Foramen bildend, alsdann in den Knochen. Jene beiden grossen Gefässe in der Grube liegen unmittelbar über ihnen. Rings um jene Spina, welche durch die M. geniohyoidei erzeugt wird, liegen kranzförmig zahlreiche kleine Foramina.

Beim Schimpanse ähnelt die äussere Form des Kieferastes am meisten von allen Anthropomorphen derjenigen von Kiefern, welche wir bei den heutigen tieferstehenden menschlichen Rassen beobachten. Der äussere Kieferwinkel ist, wie es gewöhnlich beim Menschen der Fall ist, deutlich nach aussen gebogen. Beim Schimpanse scheint demnach der M. masseter über den M. pterygoideus internus zu dominieren. Der Kieferkörper, speziell der Vorderkiefer, hat jedoch durchaus den Typus der anderen grossen Anthropomorphen. Der Umbiegungsrand der Basis erreicht hier ebenfalls die Richtebene der ersten Molaren. Die Grube für den M. genioglossus ist durch eine Leiste geteilt, welche sich nach dem unteren Kieferrande bedeutend verstärkt fortsetzt, sodass eine scharfkantige, vorspringende Leiste in der Medianlinie die Basis in zwei Hälften teilt. Seitlich von dieser Crista sind tiefe Insertionsgruben für die M. geniohyoidei, welche besonders stark entwickelt zu sein scheinen, zumal nach aussen von ihren Insertionsgruben ebenfalls kleine Vorsprünge auftreten. Wir werden in einem späteren Abschnitte diese und die Spina zwischen den M. geniohyoidei des Gorilla noch in Bezug auf ihre Entstehung zu erläutern haben. Der obere Teil der hinteren Kieferplatte ist beim Schimpanse ziemlich kräftig, jedoch im Gegensatz zum Gorilla flach oder sogar schwach konkav entwickelt.

Von den Unterkiefern der grossen Anthropomorphen unterscheidet sich derjenige des Gibbons in vieler Hinsicht.

Beim Gibbon liegt der M. pterygoideus internus in einer förmlichen Höhlung, welche durch das Umbiegen des äusseren Kieferwinkels nach innen erzeugt ist. Die Umbiegung ist weit stärker als bei den übrigen Anthropomorphen. Der Kieferast ist verhältnismässig wiederum breit, wenn man die Länge des Kieferkörpers und seine geringere Höhe in Betracht zieht. Die Linea obliqua externa und interna treten auf den Kieferplatten des Gibbons stärker hervor, erstere besonders an dem stark entwickelten Eckzahn. Die Linea obliqua interna zeigt sich als schärfer ausgeprägte Leiste, welche aber dennoch jenem mächtigen Wulst der grossen Anthropomorphen entspricht. Die Symphyse des Gibbonunterkiefers zeigt daher eine etwas andere Konturierung, nämlich eine wenn auch kleine Spina, ähnlich der Spina mentalis interna

des Menschen, und zwar an der Vereinigungsstelle der Linea obliqua interna der beiden Kieferhälften. Wenn auch die Grubenbildung für den M. genioglossus beim Gibbon vorhanden ist, so weicht doch die ganze vordere Unterkieferbasis bedeutend von derjenigen der übrigen Anthropomorphen ab. Durch die geringere Ausbildung der M. digastrici ist nämlich der untere Rand der Kieferbasis beim Gibbon nur sehr wenig nach hinten gezogen, sodass der erstere in der frontalen Richtebene der Vorderzähne abschneidet. Die vordere Kieferplatte bildet auch beim Gibbon einen gleichmässigen, konvexen Bogen nach rückwärts. Obgleich von einer Ähnlichkeit des vorderen Unterkiefers beim Menschen und dem Gibbon nicht gesprochen werden kann, so kann man doch sagen, dass derjenige des Gibbons in der äusseren Form am meisten von denjenigen der übrigen Anthropomorphen und sämtlicher Affen überhaupt entfernt liegt und dem menschlichen Kiefer am nächsten steht. Ihm fehlt jedoch ebenfalls die eigentliche Basalfläche und die Kinnbildung vollständig.

Die grossen Geschlechtsunterschiede der Schädel vom Orangutan, Gorilla und Schimpanse, welche Selenka in der ersten Lieferung dieses Werkes Seite 29 beschrieben hat, wurden auf die enorme Entwickelung des Eckzahnes der Männchen zurückgeführt. Diese vergrössert noch den Prognathismus des vorderen Kieferkörpers, welcher sämtlichen Primaten mit Ausnahme des Menschen eigen ist. Nicht allein die Eckzähne der Männchen haben sich zu einer solchen Grösse entwickelt, sondern der ganze vordere Ober- und Unterkiefer ist durch die Vergrösserung sämtlicher Zähne bei den grossen Anthropomorphen und zwar bei beiden Geschlechtern stark prognath. Durch den sich stark entwickelnden Eckzahn erhält das Gebiss der Anthropomorphen in der Aufsicht die Gestalt eines Rechtecks oder eines U, dessen Biegungswinkel durch die Eckzähne gebildet werden. Der Prognathismus bei den männlichen Individuen ist entsprechend der grösseren Entwickelung der Eckzähne und teilweise auch der Schneidezähne noch überwiegender. Der menschliche Unterkiefer dagegen zeigt dieses Krümmungsmerkmal des Zahnbogens nur selten. Dasselbe ist hier mehr rundlich, einer Parabel ähnelnd.

Die gewaltigen Eckzähne der Anthropomorphen bieten ferner Gelegenheit zur Bildung von Knochenleisten, welche den Wurzeln dieser Zähne entsprechend verlaufen und den Affenschädeln jenes eigentümliche, eckige Aussehen des Gesichtsschädels verleihen, welches dem Menschen durchaus fehlt. Bei diesem sind keine Grössenunterschiede der Eckzähne beider Geschlechter zu konstatieren. Die von Schaaffhausen gemachte Angabe, dass die weiblichen Schneidezähne des Menschen grösser wie die männlichen seien, ist schon von Parreidt widerlegt. Deshalb kommen auch nicht jene Druckleisten in den Kieferknochen des Menschen zustande, welche z. B. selbst bei

den kleineren Eckzähnen des Gibbons im Ober- und Unterkiefer deutlich ausgebildet sind. Die Linea obliqua externa des Orangutanschädels wird dagegen in ihrem vorderen Abschnitt zum Eckzahn aufsteigend zu einer sehr starken Druckleiste. Die Crista capina im Oberkiefer wird als der Ausdruck des an dieser Stelle besonders lastenden Druckes beim Kauakte noch viel stärker ausgebildet. Im Oberkiefer ist eine weitere Druckleiste sowohl den Anthropomorphen als auch dem Menschen eigentümlich. Dieselbe entspringt zwischen dem ersten und zweiten Molaren des Oberkiefers, zieht in einem nach hinten schwach konvexen Bogen bis zum Processus zygomaticus des Stirnbeins und findet im Supraorbitalwulste ihren Stützpunkt gegen die Schädelkapsel, als sogenannte Crista alveolo-zygomatica. Ihre Kraftkomponente ist derjenige Abschnitt der Linea obliqua externa im Unterkiefer, welche an der Basis in der Richtebene des ersten Molaren im Unterkiefer endigt. Beide Leisten im Ober- und Unterkiefer führen zu der Stelle, wo zumeist die stärkste Beanspruchung beim Kauakte stattfindet (die Gegend der ersten Molaren). Da hier auch für den Menschen der stärkste Kaupunkt des Gebisses liegt, so ist jene Crista alveolo-zygomatica bei ihm verhältnismässig ebenso stark ausgebildet, wie bei den Anthropomorphen.

Es sei nun bier noch kurz der Variabilität gedacht, welche der menschliche Unterkiefer in Bezug auf seine äussere Form speziell innerhalb der verschiedenen Rassen aufweist. Während bei den Affen, abgesehen von allgemeinen Grössenverhältnissen, welche besonders den äusseren Kieferwinkel und den Prognathismus betreffen, grössere Abweichungen in der äusseren Form weniger zu konstatieren sind, finden wir beim Menschen in jedem einzelnen Teile des Kiefers ganz bedeutende Variationen. Hier spielt offenbar die mehr oder minder grosse Thätigkeit der Muskulatur, speziell der Kaumuskeln, die grösste Rolle. Von ihrer individuellen Funktion hängt vor allen Dingen die Breite des Kieferastes ab. Aber auch in Bezug auf den Processus coronoideus, den gesamten Alveolarfortsatz und die Entwickelung des Vorderkiefers ist der ungeheure Einfluss zu erkennen, welchen die Stärke der Muskel-Funktion auf die Ausbildung des Kieferknochens nicht nur bei den Anthropomorphen, sondern auch bei den Menschen hat. Im allgemeinen kann man sagen, dass die Betrachtung der Kiefer schon in der äusseren Form beim Menschen ein Sparen mit dem Baumaterial seitens der Natur zum vollsten Ausdruck gebracht wird. Nicht die runden, vollen Formen, welche kraftstrotzende Organismen im ganzen und in ihren einzelnen Teilen aufweisen, sind in den menschlichen Kiefern, besonders der civilisierten Nationen, vorhanden. Nur der notwendigste Aufbau der konstruktiven Teile macht sich, wenn ich den Ausdruck hier gebrauchen darf, skelettartig an ihnen geltend. Wir können am menschlichen Unterkiefer schon

in seiner äusseren Form die Umkehrung jenes obigen morphologischen Gesetzes von Roux sehen, nach welchem eine geringe Funktion das Organ in denjenigen Dimensionen verringert, welche die geringere Funktion leisten. Vergleichend ist leicht zu erkennen, dass bei den tiefstehenden Rassen die Kieferformen noch weit voller sind, während bei den zivilisierten Nationen die Leistenbildungen samt den Knochenvorsprüngen weit mehr zur Geltung kommen. Das Kinn ist meistens bei den Naturvölkern nicht so stark hervortretend, wobei der Prognathismus des Vorderkiefers allerdings eine wesentliche Rolle spielt; der gesamte Alveolarfortsatz ist höher, der aufsteigende Ast breiter, der äussere Kieferwinkel sich mehr einem rechten nähernd und die Gelenkköpfe sind breiter entwickelt. Die Linea obliqua externa kommt bei den tiefstehenden Rassen häufig kaum zur Geltung, und insbesondere in der Gegend der Molaren ist die äussere Kieferplatte viel höher gewölbt als beim Europäer. Die Linea obliqua interna ist gleichfalls nur nach unten hin scharf begrenzt. Der darüber liegende Teil der Alveolarplatte dagegen zum mindesten geradlinig, wenn nicht etwas konyex verlaufend. Der Basalrand des Kieferkörpers erscheint weit dicker, die Muskelansätze sind an den Kiefern stärker ausgeprägt. Alle diese Merkmale tiefstehender Rassen waren am deutlichsten bei Eskimo- und Australierschädeln, aber auch an Schädeln von Indianern, Massais, alten Peruanern und anderer niederer Rassen vorhanden, dagegen bei den Kiefern der zivilisierten Nationen in gleicher Mächtigkeit kaum vorkommend. Bemerkenswert ist, dass in Bezug auf die Höhe der Kieferäste kaum ein Unterschied zwischen denen der zivilisierten Nationen und der tiefstehenden Rassen vorhanden ist. Dagegen ist das Breitenwachstum des eigentlichen Kieferastes durchaus verschieden und ich konnte diesbezüglich z. B. zwischen dem normalen Kiefer eines Europäers und denjenigen eines Eskimos einen Unterschied von 15 mm konstatieren. Ähnliche Unterschiede ergaben sich in der Höhe des ganzen vorderen Kiefers, welcher bei den tiefstehenden Rassen weit mehr durch die energische Verarbeitung der Nahrungsmittel zur Funktion kommt. Dass übrigens innerhalb einer menschlichen Rasse die äussere Kieferform von dem Gebrauch durchaus abhängig ist, zeigt nicht allein die weisse Rasse, sondern auch die übrigen. Bei jenem alten Kulturvolk der Chinesen findet man häufig Kiefer, deren Ausbildung in Bezug auf Masse sich nicht über das Niveau europäischer Kiefer der hochzivilisiertesten Nationen erhebt. Die detaillierte Schilderung der äusseren Form des vorderen Unterkiefers beim Menschen und der Anthropomorphen muss ich nach Erörterung der inneren Architektur der übrigen Teile einem besonderen Kapitel vorbehalten.

Die innere Architektur des Unterkiefers.

I. Bildung und Verwendung der Substantia compacta und spongiosa beim Aufbau des Kieferknochens.

Der Unterkiefer wird wie die übrigen Gesichtsknochen bei der Entwickelung bekanntlich nicht knorpelig vorgebildet, sondern entsteht aus dem häutigen Kieferbogen, in welchem ein Knochenkern den ersten Ausgangspunkt zu einer ausgedehnten Spongiosa mit zartesten Bälkchen bildet. Anfänglich sind die letzteren vollständig zellfrei, später nehmen die angrenzenden Zellen in Gestalt von Osteoblasten Anteil, wodurch eine Verstärkung der Bälkchen eintritt und wirkliche Knochenkörperchen mit eingeschlossen werden. Der Prozess ist derselbe wie bei der periostalen Knochenbildung, doch bleibt auch die Substantia spongiosa des Unterkieferkörpers central oft auf diesem Standpunkte stehen, sodass nur sehr wenige Gefässe in die Balken eingeschlossen werden, und wirkliche Gefässkanäle also zunächst kaum in ihr angetroffen werden. Dagegen liegen reichlich Gefässe im Marke selbst, und hier werden unter später zu besprechenden Bedingungen, welche der Zweckmässigkeit für den Knochenbau im allgemeinen entsprechen, Gefässe in Markzellen, teils auch in primitive Kanälchen umgewandelt. Das Kieferperiost ist dann schon lange in Thätigkeit, das Gefässsystem des Markes tritt mit demjenigen der Knochenhaut in Verbindung, und nun ist die Möglichkeit gegeben, den wachsenden Knochen je nach seiner wechselnden Beanspruchung durch äussere Kräfte in der inneren Architektur, und damit auch in seiner äusseren Form zu verändern. Die Knochenbildung vom Periost aus erfolgt zunächst bekanntlich durch die Osteoblasten in ähnlicher Weise in Form von kleinen Bälkchen, welche jedoch sehr bald ein mehr lamellös geschichtetes Knochengewebe darstellen. Allmählich geht aber der Vorgang hier in der Weise vor sich, dass die Osteoblasten einerseits mehr in einer Lage auf der Oberfläche ihr Produkt bilden. Andererseits wird der Knochen durch ein Hineinbeziehen der Gefässkanäle des Periostes aufgebaut.

Das geschieht um jedes Gefäss in Form von Lamellensystemen. Beide Vorgänge zusammen erzeugen an der Oberfläche des Knochens die Substantia compacta. Um die wechselseitigen Beziehungen der letzteren zur Substantia spongiosa in den verschiedenen Altersperioden des Unterkiefers zu verstehen, müssen wir noch einen kleinen Blick auf das Wachstum desselben werfen. Schon durch frühere Untersuchungen, besonders von Lieberkühn und Koelliker, ist nachgewiesen, dass das Wachstum des Unterkiefers an den Ästen darauf beruht, dass am hinteren Rande des Kieferastes und zwar Processus coronoideus und condyloideus ganz besonders aber am äusseren Kieferwinkel eine starke Apposition von Knochengewebe stattfindet. Andererseits wird der vordere Rand des Processus condyloideus und coronoideus fortdauernd resorbiert. Koelliker erklärt demnach insbesondere das Wachstum des Unterkiefers in der Weise, dass,

während der vordere Rand des Processus coronoideus immer am jeweiligen hintersten Zahn steht, doch nach und nach Raum für alle Alveolen geschaffen wird, und der aufsteigende Ast beim Erwachsenen gerade noch einmal so weit von den vordersten Schneidezähnen absteht als beim neugeborenen Kinde. Diese Vorgänge am Kieferaste folgen nun durchaus jenem Gesetze der Entwickelungsmechanik, nach welchem An-, Um- und Rückbau im Knochengewebe von der Beanspruchung der Teile abhängig ist. Die Transformation der

Fig. 1.

Mensch: Unterkiefer eines Neugeborenen.

Gradliniges Trajektorium des Rückstosses vom Processus condyloideus zu den Zahnanlagen ziehend (späteres trajectorium bifidum).

ursprünglich regellos gelagerten Substantia spongiosa in bestimmte Bahnen, sogenannte Trajektorien, erfolgt im Kieferaste teilweise schon während des Embryonallebens. Zur Zeit der Geburt findet man beim Menschen schon ein Trajektorium vom Processus condyloideus ausgehend und in gerader Richtung im ganzen Kieferkörper verlaufend. Dieses primäre Trajektorium bleibt während des ganzen Lebens erhalten; es ist der Ausdruck des Rückstosses der Mandibula in longitudinaler Richtung, und zwar des indirekten im Gegensatze zu dem direkten Rückstosse, welcher den Kiefer durch die Zähne trifft. Dieser Grundzug bildet somit die Axe auch für die Richtung der rückwirkenden Festigkeit gegen das Gelenk, welche bei der Funktion des Knochens im hohen Grade zur Geltung kommen muss. Sehr bald erfährt nun das ursprünglich geradlinige Trajektorium eine Knickung und zwar unmittelbar hinter dem Alveolarfortsatze. Das Wachstum der Zähne und die Entwickelung des Alveolarfortsatzes bedingen diese Knickung, und da rückwärtig immer neue Zähne zur Funktion kommen,

wird jene immer stärker. Es kommt an der Knickungsstelle somit schon sehr frühzeitig zu einer wirklichen Transformation des primären Knochengewebes.

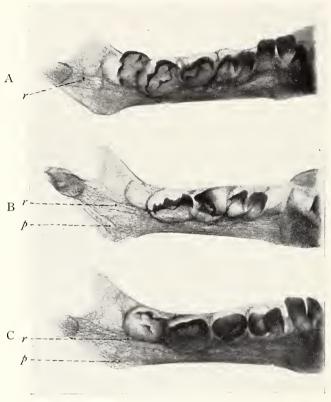


Fig. 2. Entwickelung der Trajektorien beim Menschen im Alter von:

A 2 Monaten. Nur das Druck-Trajektorium r der allgegemein rückwirkenden Festigkeit ist vorhanden.

B 4 Monaten. An der hinteren Seite des Kieferastes bildet sich das Druck-Trajektorium p der rückwirkenden Festigkeit für die grossen am äusseren Kieferwinkel ansetzenden Kaumuskeln aus.

C 6 Monaten. Neben der Verstärkung jener Trajektorien bildet sich dasjenige des M. temporalis als Zug-Trajektorium aus.

Sehr bald nach der Geburt werden im Kieferaste weitere Trajektorien durch die spezifische Funktion der einzelnen Muskeln ausgebildet. Einerseits zieht ein solches von der Spitze des Processuus coronoideus zum inneren Kieferwinkel, ein zweites läuft vom Procesuss condyloideus zum äusseren Kieferwinkel parallel dem hinteren Rande des Kieferastes. Radiogramme jugendlicher Kiefer verschiedenen Alters lehren, dass hier zu dieser Zeit eine gewaltige Apposition stattfindet. Die durch das Periost gelieferte Substantia compacta wird an dieser Stelle sehr schnell zur Spongiosa umgebildet. Am unteren Kieferrande wird durch das Periost ebenfalls eine stärkere Lage Compacta formiert, welche jedoch weniger die Tendenz hat, nach dem Inneren zu sich in Spongiosa umzuwandeln. Durch beide Neubildungen wird der äussere Kieferwinkel bedeutend verstärkt. Der stumpfe Winkel nähert sich mehr einem rechten. Die sich am inneren Kieferwinkel hinter den Milchzähnen

entwickelnden bleibenden Molaren haben ursprünglich ihren Platz mitten in der Spongiosa. Durch den sich vorbereitenden Durchbruch der Molaren wird jenes Trajektorium im Processus coronoideus jedesmal zerstört und überflüssig. Dafür wird ein neues Trajektorium hinter dem durchbrechenden Zahne formiert, jenes alte nun wertlose verfällt dagegen der Resorption. Auf diese Weise wird ein neuer vorderer Rand

am Processus coronoideus formiert und da die Resorption wesentlich am inneren Kieferwinkel vor sich geht, so wird der letztere ebenfalls ein kleinerer Winkel. Die se Vorgänge wiederholen sich jedesmal, wenn ein neuer Molar sich zum Durchbruch anschickt. Auch jenes primäre Trajektorium für den Rückstoss gegen

das Gelenk wird durch die Entwickelung der Zähne in ihm betroffen. Die obere Begrenzungslinie dieses Trajektoriums rückt mit jeder Zahnentwickelung zunächst etwas höher, um nach vollendetem Durchbruch des Zahnes wieder die alte Lage anzunehmen. Dies kann natürlich wieder nur durch zweckentsprechende Umformung des Knochengewebes in seinen inneren Elementarteilchen geschehen.

Die ursprünglich aus zartesten Bälkchen bestehende Spongiosa wird m Verlauf dieser Vorgänge allmählich zu einem gröberen rechtwinkeligen Maschenwerk umgebildet, welches der Funktion entsprechend dem Gesetze der

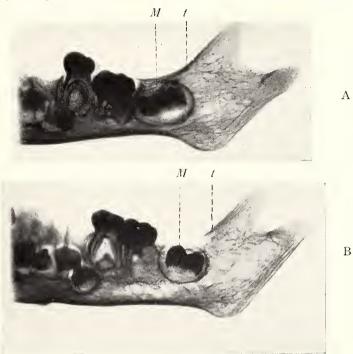


Fig. 3. Umbildung der Trajektorien beim Zahndurchbruch am inneren Kieferwinkel.

A Der erste bleibende Molar M zerstört bei seinem Durchbruch das Trajektorium t des M. temporalis, sodass der Zustand in B erscheint. Das Trajektorium bildet sich hinter dem durchbrochenen Zahn von neuem aus.

Transformation des Knochens durchaus folgt, wenn eine gewisse Konstanz der Beanspruchung nach Vollendung des gesamten Zahnwechsels wieder erreicht werden kann.

In der neutralen Axe des Trajektoriums für den direkten Rückstoss liegt dauernd die Arteria maxillaris interna, welche durch ihren Verlauf gleichzeitig damit die geringste Belastungsstelle im Knochen anzeigt. Seitlich von dieser neutralen Axe können alle konstruktiven Teile der Mandibula nicht allein sehr verschiedene Grössenverhältnisse aufweisen, sondern die Spongiosa kann sämtliche in der Einleitung erwähnten Zwischenstufen je nach Bedürfnis durchlaufen. Ja wir werden sogleich sehen,

dass, wenn die Spongiosa nicht genügt, bei der stärksten Beanspruchung Substantia compacta für erstere eintritt. (Wie gewaltig jener Rückstoss des Kiefers gegen das Gelenk ist, kann man leicht aus Radiogrammen der Schädelkapsel ersehen. In dieser wird proportional der aufgewandten Kraft eine sehr grossmaschige Spongiosa von der verschiedensten Ausdehnung angelegt. Die Balken dieser Spongiosa stehen centrifugal auf der Gelenkpfanne und bilden besonders beim Gorilla ein grossartiges System federnder Streben, welches die heftigen Stösse aufnimmt und die direkte Wirkung dieser auf das Innere der Hirnkapsel verhindert.)

Die Betrachtung der Spongiosa in Querschnitten der Unterkiefer von Menschen und den Anthropomorphen zeigt ferner eine unendlich verschiedene Stärke der Knochenbälkehen und Weite der Maschen. Das ist nicht allein generell, sondern sogar sehr individuell. Wenn nach der Roux schen Anschauung Substantia spongiosa in der Weise aufgebaut wird, dass sie die funktionelle Leistungsfähigkeit eines Knochens unter Verwendung des geringsten Materials ermöglicht, so muss gerade der Unterkiefer des Primaten ein typisches Beispiel dafür sein. Das Gewicht eines Knochens, welcher ganz aus Substantia compacta gebildet wird, ist so gross, dass auch die Muskeln um ein bedeutendes kräftiger sein müssen, um schon das Gewicht der toten Masse zunächst zu überwinden, und dann noch die gewünschte Kraftleistung ausführen zu können. Zum Aufbau eines Knochens, bestehend aus reiner Substantia compacta, wird deshalb die Natur nur in den seltensten Fällen greifen. Für die weitaus meisten Knochen genügt es, dass sie mit einer Schale kompakter Substanz umgeben sind, welche bei der aufzuwendenden Kraft des Knochens vor Durchbiegung und Bruch schützt. Die Knochen müssen bei ihrer Funktion den allgemeinen Hebelgesetzen folgen; der Hebel muss demgemäss im Augenblicke der Funktion eine gewisse Starre besitzen, um seinen Zweck erfüllen zu können. Die äussere Lage von Substantia compacta, welche den Knochen bildet, muss auch in ihrer Stärke sich der geforderten Kraftleistung anpassen.

Bei der meist nach den Lehren der Statik erfolgten Beurteilung des Aufbaues eines Knochens hat man in der neueren Zeit mit den Gesetzen des Hebels weniger gerechnet und die Wichtigkeit desselben ist oftmals in den Hintergrund getreten. Dennoch ist die Hebelwirkung manches Knochens seine wichtigste Funktion und diese muss in der Hauptsache die Substantia compacta des Knochens bewirken. Gleiche Raumteile vorausgesetzt, kann die letztere bei der Hebelwirkung durch eine noch so kunstvoll aufgebaute Spongiosa niemals ganz ersetzt werden. Ein homogener Körper, in welchem alle Moleküle dicht nebeneinander liegen, kann bei einem plötzlich auftretenden, sehr grossen seitlichen Druck mehr Belastung tragen,

als ein noch so exakt ausgeführter Aufbau von Streben, welche den gleichen Raum ausfüllen wie jener solide Körper. Bei letzterem sind die zwischen den Balken der statischen Konstruktion liegenden Partikel wiederum Streben gegen scherende Kräfte. Das Gleiche gilt von einem Hebelarm, welcher im Moment seiner Belastung für die Kraftleistung möglichst starr sein muss, um die auf ihn ausgeübte Energie zu übertragen. Die Substantia compacta giebt somit dem Knochen gegen plötzlich auftretenden Druck seine grösste Festigkeit und sichert seine Starrheit bei der Hebelwirkung.

Die Starrheit des Gewebes ist aber nicht absolut. Selbst die stärkste Substantia compacta ist biegungsfähig und komprimierbar. Ohne die beiden letzteren Eigenschaften des Knochens würde sich die Spongiosa nicht zu bestimmten Zügen umformen und unterstützend bei der Belastung der Compacta eintreten können. Sie würde dann nicht unter dem Einfluss eines funktionellen Reizes stehen, sondern in der ursprünglichen Anlage verharren. Auch sie wird also bei der Funktion des Knochens jedesmal beansprucht.

In der Spongiosa kommt nun zwar das sparende Prinzip der Natur mit dem Baumaterial zur Geltung; sowie sie aber eine Belastung erfährt, ist sofort die Möglichkeit einer Verdichtung für sie vorhanden, ein Vorgang, welcher sich in einer Verstärkung der ursprünglichen Knochenbälkchen, aber auch zu einer Zusammenpressung äussert, somit zu einem dichteren, neuen Maschenwerk führt, und endlich kompakte Substanz an Stelle der Spongiosa auftreten lässt. Selbst zarte Weichteile können zu diesen Vorgängen Veranlassung geben.

Ein gutes Beispiel für diese Verdichtung der Spongiosa ist die Zahnentwickelung. Die Röntgenaufnahmen Fig. 4 und 5 zeigen, dass bei dem Wachstum des Zahnkeims die provisorische weite Alveole sehr bald durch eine Lade gebildet wird, deren Wandung aus Substantia compacta besteht. Die Vergrösserung des Zahnkeimes bei der Erzeugung der Zahnsubstanzen bewirkt also hauptsächlich eine Kompression und nicht eine Resorption der umgebenden Spongiosa. Die neue Compacta bildet dann das Widerlager für den durchbrechenden Zahn, welcher im wesentlichen seinen Durchbruch dadurch bewirkt, dass auf diesem Widerlager der Pulpawulst den schon fertig gebildeten Zahnteil (und zwar sowohl die übrige Zahnpapille als auch dadurch indirekt das sogenannte Zahnscherbehen) und später die Zahnkrone vor sich hertreibt, wenn das Wurzelwachstum fortschreitet. Die Verdichtung der spongiösen Knochensubstanz um den sich entwickelnden Zahnkeim wird damit zu einem der wichtigsten Momente für den Zahndurchbruch überhaupt. Der letztere erfolgt in der Richtung des geringsten Widerstandes, welchen der durch den wuchernden Pulpawulst fortgeschobene

Zahnteil findet. Dieser bringt an seiner Spitze vor dem Durchbruch die Alveole, welche häufig in beträchtlichem Umfange den Zahnkeim umschliesst, wieder zur Resorption. Gleichzeitig wird jedoch auch der wuchern de Pulpawulst eines wachsenden Zahnes durch den Kieferknochen bei seiner Funktion in hohem Grade beeinflusst. Die zunächst durchbrechenden Vorderzähne passen sich bei der weiteren Wurzelbildung möglichst dem Gesetze des geringsten Widerstandes folgend der neutralen Axe des direkten auf sie ausgeübten Rückstosses an. Da sich im Unterkiefer be-

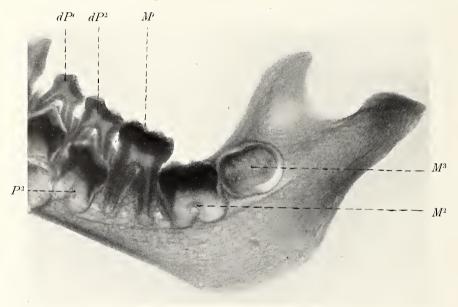


Fig. 4.

Zahnentwickelung im rechten Unterkiefer eines Orangutans, innere Seite zeigend. Die Milch-Prämolaren sind schon teilweise durch die nachfolgenden bleibenden Prämolaren zur Resorption gebracht. Letztere sind wie der zweite bleibende Molar im Stadium der beginnenden Wurzelbildung. Die mesiale Wurzel des ersten Molar ist ganz, die distale bis auf die Spitze fertig gebildet. Die Kronenbildung des Weisheitszahnes hat begonnen. Die Trajektorienbildung besteht aus einer noch sehr kleinmaschigen Spongiosa.

sonders die Backenzähne in jenem schon erwähnten Hauptzuge der Spongiosa, welcher in direkt auf rück wirken de Festigkeit gegen das Gelenk hin beansprucht wird, entwickeln, so dass die Wurzeln zuletzt bis zur neutralen Zone dieses Trajektoriums reichen, erstere aber zu letzterem senkrecht wachsen, so erfolgt hier eine neue Einwirkung auf den wuchernden Pulpawulst. Er passt sich auch jenem in direkten Rückstosse an, welcher besonders durch die vorderen schon funktionierenden Zähne nach dem Gelenk hin erfolgt. Die Wurzeln der Backenzähne sind deshalb im Unterkiefer regelmässig nach hinten gekrümmt, zumal gleichzeitig bei der Wurzelentwickelung der dahinter

Fig. 5. Vier Unterkiefer des Orangutans in der Zahnentwickelung.

A und B Sämtliche Milchzähne stehen noch. Die Kronen der mittleren bleibenden Schneidezähne beginnen zu verkalken, ebenso diejenige des ersten bleibenden Molaren. A ist ein etwas jüngerer Kiefer wie B, neben der Zahnentwickelung zeigt das auch die bei A stärker hervortretende Symphyse.

C zeigt den beginnenden Zahnwechsel. Die Zähne brechen in unregelmässiger Stellung durch. Das Wurzelwachstum ist in fortschreitender Entwickelung und zeigt die Anfänge einer wirklichen Wurzelpulpa. Die bleibenden Incisivi haben drei Spitzen auf der Schneide, die Kronenpulpa hat ebenfalls drei Divertikel, von denen der äussere, wie beim Menschen, der grössere ist.

D Sämtliche Schneidezähne sind gewechselt und durch Zungen- und Lippendruck gerade gestellt. Das Wurzelwachstum nähert sich der Vollendung. Die gewaltigen bleibenden Eckzähne sind noch tief im Kiefer verborgen und nur in der Krone ausgebildet. Die Milcheckzähne sind noch vorhanden. Sämtliche Zähne in der Entwickelung zeigen die stark verdichtete Spongiosa um die Zahnanlage.

sich entwickelnde Zahn das Bestreben hat, die vorderen nach vorn zu drängen. In dessen selbst der untere Weisheitszahn hat zumal beim Menschen oftmals eine stark nach hinten gekrümmte Wurzel; deshalb nehme ich als hauptsächliches Moment weit mehr die Wirkung des indirekten Rückstosses für diese Wurzelkrümmungen in Anspruch. Aus diesen Gründen erklären sich leicht die ganz verschiedenartige Lagerung und Stellung der durchbrechenden Zähne, welche in diesem Augenblick noch unvollendete Wurzeln und ziemlich weite Alveolen haben. Sowie aber die Zähne an die Oberfläche des Kiefers kommen, werden sie Angriffspunkte für funktionierende Teile. Zunge und Lippe wirken auf sie wie Schienen. Nach einer gewissen Zeit beeinflussen sich auch die Antagonisten gegenseitig, und aus der ursprünglich oft höchst unregelmässigen Zahnreihe wird eine durchaus normale mit regelrechtem Krümmungsmerkmal, wenn Kiefer und Zähne eine korrelative Grösse haben.

Ebenso wie der fertige Zahnabschnitt in der Richtung des geringsten Widerstandes durch den wuchernden Pulpawulst vorgeschoben wird, wird der letztere in eine andere Richtung gedrängt, wenn die Krone ein grösseres Hindernis beim Durchbruch findet. Dadurch entsteht eine Krümmung der Wurzel, indem der Pulpawulst nun in der Richtung des für ihn geringsten Widerstandes weiterwuchert; dementsprechend müssen auch die harten Zahnsubstanzen formiert werden. Findet die Zahnkrone vor dem Durchbruch ein starkes Hindernis, stehen z.B. die benachbarten Kronen zu dicht aneinander, so bricht der Zahn entweder ganz schief durch, oder er kommt überhaupt nicht an die Oberfläche. Der Zahn bleibt dann im Kiefer retiniert, sein Wurzelwachstum wird jedoch in jedem Falle, aber entsprechend jenem Gesetze des geringsten Widerstandes, vollendet. Der Pulpawulst schafft sich dann durch reichliche Osteoklastenbildung, welche die umgebende Spongiosa zur Resorption bringt, den nötigen Raum. Der Widerstand, welchen der Pulpawulst bei seinem Wuchern findet, kann sogar zu Odontombildungen Veranlassung geben. Wir sehen somit, welch eine grosse Wichtigkeit die verdichtete spongiöse Substanz für den sich entwickelnden Zahnbeinkeim hat. Die einfache Spongiosa würde weit schneller der Resorption verfallen, die zur Compacta verdichtete widersteht dagegen mehr und erfüllt weit besser ihren Zweck. Ich konnte zwar beim Zahndurchbruch des Menschen auch an dem normal wuchernden Pulpawulste einzelne Osteoklasten nachweisen. Letztere sind offenbar aber ohne Bedeutung für den ersteren und nur der Ausdruck für den bestehenden Druck der Gewebe untereinander. Eine geringe Resorption, unmittelbar an der Berührungsstelle des Pulpawulstes, kann allerdings bei der Vergrösserung des Zahnbeinkeimes zunächst statthaben. Niemals wird jedoch die mechanisch verdichtete Alveolenwand durchbrochen, und erst mit dem Heraustreten des Zahnes aus dem Kiefer schwindet jene kompakte Lade in ihrem oberen Teile durch Resorption. Nun vermindert sich die Spannung der umgebenden Spongiosa des Kiefers, welche durch den sich entwickelnden Zahnkeim verursacht wurde, und das Knochengewebe umschliesst allmählich die fertig gebildeten Wurzeln der Zähne zu dauernden Alveolen. Als Rest der Compacta bleibt die sogenannte Wurzelscheide um jeden Zahn erhalten. Derartige Vorgänge sieht man nicht nur beim gewöhnlichen Zahnwechsel in den jugendlichen Kiefern des Menschen und der Anthropomorphen, sondern selbst bei dem äusserst langsam fortschreitenden Wachstum der permanenten Eckzähne des Orangutan und Gorilla. Eine Röntgenaufnahme konstatiert immer selbst bei nahezu fertig gebildeten Eckzähnen eine starke Verdichtung der Spongiosa um den Pulpawulst (Fig. 8). Ich habe in meinem Lehrbuche der normalen Histologie der menschlichen Zähne (Verlag Arthur Felix, Leipzig 1901) nachgewiesen, dass die wuchernde Zahnbeinpapille in jedem Falle sich über die Epithelialscheide herüber wulstet. Somit muss auch eine gewisse seitliche Kompression der Spongiosa bei der Entwickelung des Zahnbeinkeimes erfolgen, welche ebenfalls durch Röntgenaufnahme immer festgestellt werden kann. Selenka hat in der ersten Lieferung dieses Werkes Seite 42 u. ff. nachgewiesen, dass die männlichen Schädel der grossen Anthropomorphen durch die Ausbildung der gewaltigen Eckzähne ein enormes Breitenwachstum erfahren. Der Pulpawulst wird nun durch sein starkes Wuchern eine Auftreibung der dünnen Facialwand hervorrufen und dadurch die Gaumenplatte die Umgestaltung erfahren, wie sie in Fig. 31 u. ff. so schön illustriert sind. Immer liegt aber um den noch unfertigen Wurzelteil eine stark verdichtete Spongiosa, sodass sich auch die langsam wachsenden Eckzähne der grossen männlichen Anthropomorphen nicht in der Art des Wurzelwachstums sondern nur durch die Dauer desselben von allen übrigen unterscheiden, und durch ihre gewaltige Entwickelung die äussere Kieferform mehr beeinflussen.

Den umgekehrten Vorgang, dass nämlich aus kompakter Substanz spongiöse wird, findet man beim Knochenwachstum noch viel häufiger. Die periostale Anlagerung der Compacta wird zwar, wenn nötig, dauernd erhalten; andererseits sehen wir häufig eine "Aufblätterung" derselben, eine Umwandlung zur Substantia spongiosa, entsprechend der augenblicklichen Beanspruchung der betreffenden Knochenteile. Am Rande des Kieferkörpers, also im Basalteile, wird die fortwährend aufgelagerte Compacta dauernd erhalten, denn sie sichert am besten den Unterkiefer gegen Durchbiegung und Bruch. Die Seitenflächen des Kieferkörpers dagegen und der Kieferast befinden sich beim Wachstum mit ihrer Substantia compacta je nach Bedürfnis in einer fortwährenden Umwandlung zur Substantia spongiosa, bis das grösste Volumen erreicht



Fig. 8.

p

d

c

w

s

sp

Fig. 7.
Fig. 7. Längsschnitt durch Kiefer und Wurzelspitze eines Prämolaren (Mensch). Vergröss. 15.

p Pulpa, d Dentin, c Cement, w Wurzelhaut, s Wurzelscheide, sp Spongiosa.
 Links und rechts in der Figur, die Compacts, der beiden

Links und rechts in der Figur die Compacta der beiden Kieferplatten.

Fig. 6. A Vorderkiefer eines älteren männlichen Orangutans.

Die Zahnentwickelung ist bis auf die Wurzelspitzen der bleibenden Eckzähne c und c' vollendet. Bei diesen ist die noch nicht geschlossene Wurzelspitze von einer stark verdichteten Spongiosa umgeben. Die Entwickelung der Eckzähne beeinflusste das Wurzelwachstum der seitlichen Schneidezähne, sodass deren Wurzelspitzen nahezu diejenigen der mittleren berühren. Die Spongiosa des Kieferkörpers ist rund- und grossmaschig. Der Basalteil b besteht teils aus einer sehr dichten Spongiosa, teils (am äusseren Umschlagsrande) aus kompakter Substanz. Die Symphyse s ist, da das Wachstum noch weiter fortschreitet, angedeutet.

Fig. 8. B Vorderkiefer eines älteren weiblichen Orangutans.

Die grossmaschige Spongiosa erscheint sehr gleichförmig, nur um die Eckzähne herum sind die Bälkchen stärker. Die Symphyse ist nicht mehr sichtbar.

Bei beiden Kiefern ist im Gegensatz zum Menschen keine Andeutung von Trajektorienbildung vorhanden, nur am Umschlagsrande zeigt die Ansatzstelle des M. digastricus eine solche.

ist. Äusserlich wird dabei durch die Osteoblasten fortwährend neue Substantia compacta gebildet. Im Innern wird dagegen die Kieferplatte gewöhnlich derartig deformiert, dass sie nach den Gesetzen der Statik doch noch die grösstmöglichste Belastung, welche die Funktion erfordert, aushalten kann. Einen derartigen Vorgang sehen wir sehr deutlich im Alveolarfortsatz, wenn die Zahnbildung vollendet ist. Krahnartig klammern sich aus den Kieferplatten entspringende Knochenbälkchen an die Wurzelscheide an. Sie entstammen meist kompakter Substanz, welche "aufgeblättert" ist.

Im vorderen Teile des Unterkiefers sind bei den Anthropomorphen die Schneide- und Eckzähne nahezu gleichmässig von der spongiösen Substanz umgeben. Bei dem Menschen fehlt dieselbe im Bereich der Schneide- und Eckzähne beinahe ganz. Die Ursache liegt in der Stellung der Zähne und der damit verbundenen verschiedenartigen Beanspruchung der beiden Kieferplatten. Bei den Anthropomorphen sind die Schneidezahnwurzeln gradlinig oder nach rückwärts gekrümmt, während sie beim Menschen nach vorn, zum Kinn hin gebogen sind. Auch hier kommt wieder das Gesetz des geringsten Widerstandes gleichzeitig mit der Wirkung des direkten Rückstosses beim Wurzelwachstum zur Geltung. Der auf die unteren Schneidezähne des Menschen fallende Druck trifft hauptsächlich die linguale Kieferplatte, und wir sehen, dass hier eine Aufblätterung der Spongiosa nicht erfolgt, sondern die stehenbleibende Compacta einen sehr starken Druck ertragen muss. Bei den Anthropomorphen ist die Belastung des ganzen Vorderkiefers eine weit gleichmässigere und die Aufblätterung der Substantia compacta findet unter Berücksichtigung der Zahnstellung an der lingualen Fläche mindestens in demselben Grade statt wie an der labialen. Die Natur geht auch in diesem Falle nicht von dem Prinzip ab, dass, wenn es sich um grösstmöglichste Festigkeit handelt, eine möglichst homogene Struktur des belasteten Teiles am zweckdienlichsten ist. Die Vermehrung der Belastung an einer Stelle zeigt schon bei der Anbildung sofort eine Verdickung der kompakten Substanz. Es ist aber nicht die notwendige Folge, dass die innere Seite der Knochenplatte sich zur Spongiosa umwandele, sondern der Zustand kann gemäss der Belastung ein dauernder sein.

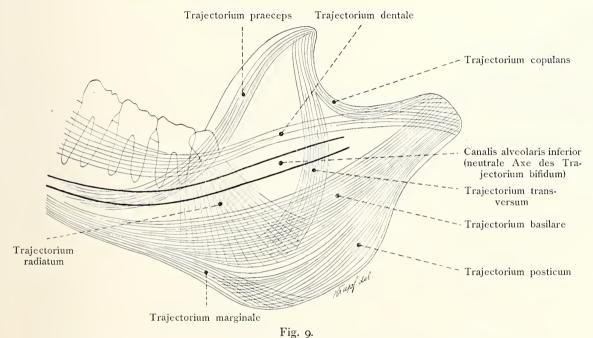
Auf diese Weise sehen wir auch, wie Stützleisten, Knochenvorsprünge etc. formiert werden. Im übrigen zeigt die Substantia compacta bei Tieren, welche ein gröberes Balkensystem von Spongiosa besitzen, wie z. B. beim Orangutan der Fall ist, schon auf der Oberfläche der Compacta die augenblicklich vorhandene Architektur der Spongiosa angedeutet. Die periostale Anlagerung der Substantia compacta erfolgt offenbar in der augenblicklich vorherrschenden Beanspruchung des gesamten Knochens.

Die beiden Lineae obliquae zeigen eine starke Entwickelung aber auch gleich-

zeitig ein deutliches Persistieren der Substantia compacta an besonders beanspruchten Knochenstellen. Die Wirkung des M. temporalis ist es, welche sie auf der Oberfläche des Knochens erzeugt. Indessen sind sie der Ausdruck einer Kraftebene, welche durch den Muskelzug in schräger Richtung zur Längsaxe des Knochens wirkt. Sie stellen "Trajektorienverdichtungen" dar, wie W. Gebhardt in seinem Aufsatz "Über funktionell wichtige Anordnungsweisen der gröberen und feineren Kauelemente des Wirbeltierknochens" (Archiv für Entwickelungsmechanik, Band XII, 1. und 2. Heft) solche Leisten treffend genannt hat. Die beiden Lineae obliquae bieten somit genau wie die übrigen Knochen-Leisten am Kieferaste, an den Molaren und den Eckzähnen die Möglichkeit, grössere Mengen strebfesten Materials auf einem kleinen Raume unterzubringen, um den ungeheuern Druck bei dem Kauakte zu vermitteln, welcher vom M. temporalis aus in der ganzen Länge des Unterkiefers auf die Zähne ausgeübt wird.

Diese Betrachtungen führen uns nun zu der Erörterung der inneren Struktur des Unterkiefers, welche durch die Funktion der Muskeln hervorgerufen wird.

II. Die grossen Trajektorien des fertigen Kieferknochens und ihre Bedeutung.


A. Trajektorien des Kieferastes.

Untersuchungen von Unterkieferquerschnitten, welche von Orangutans mittleren Alters stammen, ergaben speziell im aufsteigenden Aste eine gleiche Anordnung der Knochenzüge, wie ich sie von der Mandibula des Menschen in der "deutschen Monatsschrift für Zahnheilkunde" 1900 Heft 12 und 1901 Heft 1, 2, 3 beschrieben und durch Röntgenaufnahmen illustriert habe. Nur die Stärke der Knochenbälkchen ist beim Orangutan entsprechend der Belastung beim Kauakte eine weit grössere. Noch mehr gilt dieses von der Spongiosa des Gorilla.

Eine weit bessere Anschauung von der allgemeinen Anordnung des Knochengewebes der Anthropomorphen erhält man jedoch bei der Betrachtung von Bildern der Längsaxe des Unterkiefers. Jede Röntgenaufnahme zeigt, dass der Unterkiefer trotz seiner abweichenden Form viele Eigenschaften mit dem gewöhnlichen Röhrenknochen gemeinsam hat.

Die Abweichungen in der Form werden allein durch die seitlich am Unterkiefer wirkenden Muskelkräfte hervorgebracht. Wir müssen uns demgemäss zunächst über die Strukturen orientieren, welche durch die Wirkungen dieser Kräfte im ausgebildeten Knochen hervorgerufen sind. In älteren Unterkiefern, welche die Konstanz der Beanspruchung zeigen, ist jenes schon im vorigen Kapitel erwähnte Trajektorium für den in-

direkten Rückstoss von grosser Breite. Seine Grenze gegen den Processus coronoideus ist meist bestimmter abgesetzt als gegen den äusseren Kieferwinkel. Die
Zahl der Knochenbälckchen überwiegt jedoch weit mehr an der unteren Seite des
Trajektoriums. Dieses verhält sich im übrigen in der Art seiner Belastung wie der
"eingemauerte Kran" Culmanns, welcher von v. Meyer und Wolff vergleichend für
den Aufbau des Femur herangezogen ist. Auch das Gelenkende, welches den bei der
Funktion ausgeübten Druck weiter auf die Schädelkapsel verteilt, zeigt auf Längsschnitten des Kiefers eine rechtwinkelige Kreuzung der gegen das Gelenk ziehenden

Schema der Trajektorien des Kieferastes eines Orangutan. (Vergleiche Fig. 10.)

Knochenbälkchen. In Wirklichkeit bildet jenes Trajektorium des Rückstosses eine plattgedrückte Röhre. Die platten Wände dieser Röhre werden durch die beiden kompakten Kieferplatten, die stark gerundeten durch Teil-Trajektorien spongiöser Substanz gebildet. Das gesamte Trajektorium nenne ich aus diesen Gründen Trajectorium bifidum, das obere Teiltrajektorium Trajectorium dentale und das untere Teiltrajektorium Trajectorium basale. Ich wähle diese Bezeichnungen, um anzudeuten, dass diese Trajektorien des Kieferastes auch in den Kieferkörper, in die Zahnreihe und in die Basis desselben übergehen. Die Knochenbälkchen dieser beiden Teil-Trajektorien sind bis nahe zum Kiefergelenk senkrecht zur Gelenkoberfläche angeordnet. Auf diese Weise wird die stärkste Belastung ermöglicht,

zumal die Knochenbälkchen dieses röhrenförmigen Trajektoriums gegen den Processus condyloideus hier sehr dicht gelagert sind. Die innere Zone des Trajektoriums des indirekten Rückstosses zeigt ein mehr grossmaschiges Gewebe, eine wahre Spongiosa rectangulata ordinata. Diese grosse Kraftbahn geht dann vom Kieferaste bei fertigen

Fig. 10.
Unterkieferast und Teil des Kieferkörpers eines männlichen Orangutans, innere Seite zeigend.

Kiefern in schwach bogenförmiger Anordnung in den Kieferkörper über. Die gerade Verlängerung dieses Trajektoriums in seiner ursprünglichen Richtung würde den unteren Kieferrand etwa in der Richtebene des ersten Molaren erreichen. Das ist derjenige Punkt, an welchem zumeist die stärkste Kraftleistung des Kiefers erfolgt. Ich gebe in Fig. 9 die schematische Anordnung der Trajektorien des Kieferastes und ihre Be-

nennungen. Im wesentlichen entspricht die Zeichnung der Kombination der Figuren 10 und 11, welche von dem Kieferaste eines grossen männlichen Orangutans gewonnen sind. Das Schema passt jedoch auch auf die übrigen Primaten. Im Kieferaste sind dann noch die beiden auf S. 230 schon erwähnten anderen konstruktiven Teile,

Fig. 11. Unterkieferast eines alten männlichen Orangutans, äussere Seite zeigend.

und zwar ein starkes Trajektorium im Processus coronoideus und ein solches im äusseren Kieferwinkel zur grössten Vollendung gebracht. Beim Menschen und beim Gibbon ist das Trajektorium, welches durch die Thätigkeit des M. temporalis hervorgerufen wird, verhältnismässig schwach ausgebildet. Weit kräftiger ist es beim Orangutan und Gorilla entwickelt, und der gewaltige Zug, welchen jener

Muskel auf den Knochen ausübt, zeigt sich besonders durch die Dichtigkeit der Spongiosa am vorderen Rande des Processus coronoideus (vergleiche Figur 10 und 11). Dieses Trajektorium bezeichne ich als Trajectorium praeceps. Nach der Zahnung erscheint es immer sehr stark und konstant. Fick (Vergleichend anatomische Studien

Fig 12.

Unterkiefer eines älteren weiblichen Gorilla, innere Seite zeigend.

Die Trajektorien sind nahezu durch kompakte Substanz gebildet. Nur die neutrale Zone des Trajek-

an einem erwachsenen Orangutang, Archiv für Anatomie und Physiologie 1895) wies nach, dass beim Orangutan das Muskelgewicht einen viel kleineren Teil, nämlich nur etwa 19% des Körpergewichts betrage, als beim Manne, wo es etwa 33% des Körpergewichts ausmacht. Dagegen ist das Verhältnis des Gewichts vom M. masseter

toriums der rückwirkenden Festigkeit gegen das Gelenk besteht aus sehr grossmaschiger Spongiosa.

des Orangutans zum Manne 96:44, also über das Doppelte und vom M. temporalis 300:68, also nahezu das Viereinhalbfache! Bei alten und starken Exemplaren finden wir demgemäss im aufsteigenden Aste beim Orangutan sogar noch ein zweites Trajektorium, welches von der Spitze des Kronenfortsatzes zunächst der Linea seminularis

Fig. 13.
Unterkiefer eines alten männlichen Gorilla, äussere Seite zeigend.
Sehr starke Compacta an Stelle der ursprünglichen Trajektorien.

folgend, in bogenförmiger Anordnung zum äusseren Kieferwinkel und dann zur Kieferbasis zieht. Ich nenne diese Knochenbahn Trajectorium transversum. Beim Gorilla wird der ganze Processus coronoideus zunächst aus einer dichten Spongiosa gebildet, welche aber sehr bald in Substantia compacta umgewandelt wird. Die Entwickelung der inneren Architektur des Processus coronoideus hängt somit deutlich mit der Funktion des M. temporalis zusammen. Die Ausbildung und Stärke dieses Muskels

ist beim Orangutan und dem Gorilla eine ganz gewaltige und findet ihren Ausdruck einerseits in der Sagittal-Crista, welche Selenka auf Seite 37 und ff. beschrieben hat. Anderseits ist das Auftreten eines zweiten Trajektoriums vom Processus coronoideus beim Orangutan und das Eintreten der kompakten Substanz für die Spongiosa beim Gorilla ein Beweis für den gewaltigen Zug, welcher auf den Processus coronoideus und von diesem weiter fortschreitend auf den ganzen Kiefer ausgeübt wird. Beim

Fig. 14.

Rechter Unterkiefer vom Schimpanse, innere Seite zeigend.

Teilweiser Ersatz einer grobmaschigen Spongiosa durch Compacta.

Gorilla konnte selbst der kunstvollste Aufbau der Trajektorien nicht genügen, und es tritt nun die Substantia compacta in dem ganzen Knochenabschnitt dafür ein. Beim Schimpanse findet auch bei alten Männchen nur ein teilweiser Ersatz der hier sehr grobmaschigen Spongiosa durch Compacta statt.

Ganz die gleichen Verhältnisse finden wir in jenem konstruktiven Teile des Unterkieferastes, welcher unter dem Trajectorium bifidum nach dem äussern Kieferwinkel zu liegt. Dieser Teil hat die Form eines Dreiecks, dessen Hypothenuse

durch das Trajektorium basale und dessen Katheten einerseits von der Basis des Kiefers, anderseits vom hinteren Rande des Kieferastes gebildet sind. Die beiden Muskeln, welche an diesem Kraftsystem und zwar von der Spitze des Dreiecks am äusseren Kieferwinkel wirken, ziehen vornehmlich in der Richtung des Perpendikels, welches auf die Hypothenuse des Dreiecks gefällt wird. Dieser Punkt liegt genau am inneren Kieferwinkel. Die Kathete, welche durch die Kieferbasis gebildet wird, besteht bei dem Menschen und den Anthropomorphen, selbst beim Gibbon aus einer starken Schicht periostal angelagerter Substantia compacta. Die andere Kathete wird aus einem

Fig. 15.

Rechter, der Länge nach durchsägter Unterkiefer eines eirea 20 jährigen Europäers,
Weisheitszahn fehlend.

Die Röntgenaufnahme zeigt die Struktur der Spongiosa und die Anordnung dieser zu Trajektorien.

mehr oder weniger starken Zuge von Spongiosa gebildet, welche in nahezu parallel oder schwach bogenförmigen Lagen vom äusseren Kieferwinkel zum Gelenkkopf angeordnet ist. Die Stärke dieser Schicht entspricht offenbar dem auf sie einwirkenden Drucke und ist proportional der geleisteten Arbeit ausgebildet. Dieses vom äusseren Kieferwinkel aufsteigende und je nach der Beanspruchung in der Grösse wechselnde Trajektorium, welches besonders beim erwachsenen männlichen Orangutan ausgeprägt ist, bezeichne ich als Trajectorium posticum. Dasselbe ist die Wirkung des direkten Rückstosses der ansetzenden Muskeln gegen das Kiefergelenk.

Ein zweites etwas kleineres Trajektorium zieht vom äusseren Kieferwinkel an der Basis des Kieferortes entlang und vereinigt sich mit dem Trajectorium basale im Kieferkörper. Ich nenne es Trajectorium marginale. Es ist ebenfalls eine direkte Druckbahn und zwar durch die Wirkung der grossen Kaumuskeln gegen die Basis des Kieferkörpers hervorgerufen. Das Trajectorium posticum und marginale sitzt somit dachförmig auf dem hier konvex gestalteten Trajectorium bifidum. Fasst man das ganze Kraftsystem als einen auf beiden Seiten belasteten Hebel auf, auf dessen

Fig. 16.

Unterkiefer von einem Flathead-Indianer.

Die Röntgenaufnahme zeigt die starke Entwickelung der Trajektorien am äusseren Kieferwinkel durch den M. masseter und pterygoideus internus bei den niederen Menschenrassen.

Mitte ein Druck ausgeübt wird, so hat man die physikalische Anordnung dieses Kieferabschnittes vor sich.

Die Entwickelung des äusseren Kieferwinkels in seiner äusseren Form hängt bei den Anthropomorphen und dem Menschen durchaus von der zuleistenden Arbeit der ansetzenden Muskeln, insbesondere aber vom Trajectorium posticum ab. Am auffallendsten erscheint das bei menschlichen Kiefern. Tiefstehende Rassen, welche mit ihren Zähnen mehr Arbeit verrichten, zeigen einen kräftigeren und reichlicheren Aufbau der Spongiosa im äusseren Kieferwinkel. Da-

durch wird dieser mehr zu einem Rechten, und die innere Knochenarchitektur nähert sich demjenigen der Anthropomorphen ganz bedeutend.

Die Belastung, welche das Kieferwinkeldreieck mit seinen beiden äusseren feststehenden Punkten aushalten muss, würde bei der enormen Kraft, welche die Muskeln des Orangutans und des Gorilla auf die Spitze des Dreiecks ausüben, einen Bruch in der Nähe der letzteren nicht unmöglich machen. Der innere Kieferwinkel ist der "gefähr-

liche Querschnitt" für den Knochen. Beim Orangutan wird infolgedessen ein weiteres System Knochenbälkchen ausgebildet, welches einen Bruch an der Vereinigung der beiden Katheten vollständig verhindert. Vom inneren Kieferwinkel zieht demgemäss centrifugal ein System starker Bälkchen gegen die Katheten. Die Bälkchen sind somit radienförmig angeordnet und dienen als Streben und Stützbalken in der angeführten Konstruktion des Balkensystems gegen den gefährlichen Ouerschnitt. Ich nenne diese Kraftbahn Trajectorium radiatum. Diese wunder-

Fig. 17.

Unterkiefer vom Eskimo, äussere Seite zeigend.

Durch eine starke Entwickelung der Trajektorien des M. masseter, des Pterygoideus internus und besonders des M. temporalis hat der Unterkieferast wie beim männlichen Orangutan eine bedeutende Breitenentwickelung erfahren.

bare Verstärkung des Kieferwinkels beim Orangutan in seiner inneren Struktur schliesst sich eng an die Konstruktionsausführungen von Brücken und Dachstühlen an. Mit möglichst geringem Baumaterial ist hier wieder die höchste funktionelle Leistungsfähigkeit des Kieferwinkeldreiecks garantiert. Es ist eigentümlich, wie die Konstruktion dieses Kieferwinkeldreiecks den an dasselbe gestellten Anforderungen entspricht. Beim Gibbon haben wir keine Andeutung der Streben, beim Menschen sind dieselben nur in der Spitze des Dreiecks und vom inneren Kieferwinkel auslaufend sichtbar. Zunächst

folgt dann eine Verstärkung der äusseren Knochenplatten. Denn nur die Substantia compacta wird beim Menschen manchmal durch Leistenbildungen gegen den inneren Kieferwinkel hin verstärkt. Die Funktion der Kaumuskeln ist bei beiden Gattungen verhältnismässig unbedeutend gegenüber den Kraftleistungen beim Orang und Gorilla. Im Kieferaste des Gorilla hat sich die Natur sowohl im Kieferwinkeldreieck wie im Processus corono-

Fig. 18.

Unterkiefer eines alten männlichen Orangutans.

Sehr weitmaschige Spongiosa in den Trajektorien. Radiale Anordnung der Balken vom inneren Kieferwinkel gegen den äusseren als Verstrebung gegen den gefährlichen Querschnitt.

ideus anderweitig geholfen. Beide Teile werden beim Gorilla in nahezu kompakter Substanz angelegt. Die Röntgenaufnahme älterer Tiere ergiebt abgesehen vom Trajektorium des indirekten Rückstosses, welcher zweckentsprechend immer elastisch bleiben muss, meist nur am äusseren Kieferwinkel und an der Spitze des Processus coronoideus spongiöse Substanz. Diese Erscheinung ist für den Gorilla-Unterkiefer typisch, so dass der Unterkieferast nach einer Röntgenaufnahme ohne weiteres als dem eines Gorilla zugehörig bestimmt werden kann. Der Zustand ist nach vollendetem Zahn-

durchbruch konstant. Beim Orangutan ist ein derartiges Auftreten der Substantia compacta niemals der Fall. Selbst im höchsten Alter sieht man die radiale Anordnung der Streben, den Hauptzug vom Gelenkkopfe zum inneren, ebenso denjenigen zum äusseren Kieferwinkel. Die Kiefer alter Tiere unterscheiden sich von denen jüngerer Orangutans in Bezug auf die innere Architektur nur dadurch, dass die spongiöse Substanz in vereinzelteren, aber stärkeren Balken in der oben geschilderten

Weise angeordnet ist. Eine Ausnahme davon machen im wesentlichen nur die Stellen, wo sich die Muskelansätze befinden. Die dreieckigen Vorsprünge, welche in der Nähe des Kieferwinkels sich am Rande des Knochens befinden, dienen bekanntlich als Ansatzstellen für den M. pterygoideus internus. Der ganze untere Rand des äusseren Kieferwinkels dient als Ansatzstelle des M. masseter. Beide Stellen haben eine durchaus andere Formation der Spongiosa, wie sie im allgemeinen dem Kieferwinkeldreieck zukommt. Es stehen nämlich bei diesen leistenförmigen Vorsprüngen die Spongiosabälkehen deutlich senkrecht zur Kraftlinie und bilden ein System für sich. Selbst beim Gorilla können diese Stellen für die Muskelansätze durch spongiöse Substanz angedeutet sein.

Der Unterkiefer des Menschen im Greisenalter macht bekanntlich eine Umwandlung der äusseren Form durch, welche als Inaktivitätsatrophie infolge des Verlustes der Zähne angesehen wird. Abgesehen von dem gänzlichen

Fig. 19.
Unterkiefer einer 8+jährigen Frau.
Die Aufnahme zeigt den Schwund sämtlicher Trajektorien und dementsprechend der äusseren Form des Kieferastes mit Ausnahme des Trajektoriums für den Rückstoss gegen das Gelenk.

Verluste des Alveolarfortsatzes, welcher die starke Formveränderung des zahntragenden Kieferteils veranlasst, findet speziell an den Ansatzstellen der grossen Kaumuskeln ein starker Abbau des Knochengewebes, dem verringerten Bedürfnis entsprechend statt. Der Processus coronoideus wird sehr schlank, die Incisura semilunaris und der äussere Kieferwinkel wieder grösser. Eine Röntgenaufnahme zeigt den Abbau der Knochensubstanz sehr deutlich, und es bleibt von den ganzen konstruktiven Teilen eigentlich nur das grosse Trajektorium für den Rückstoss im Unterkieferknochen übrig. Selbst die kompakte Substanz der Basalfläche geht teilweise, da sie nicht mehr auf Biegungsfertigkeit bean-

sprucht wird, verloren. In der Gegend des Kinnes wird jedoch der Basalteil des menschlichen Unterkiefers sichtlich infolge der bleibenden Funktionen des M. genioglossus und des M. digastricus auch im Alter am stärksten erhalten. Bei den Anthropomorphen kommen alle diese Alterserscheinungen weniger zum Ausdruck als beim Menschen.

Endlich sei noch eines kleinen Trajektoriums zwischen dem Processus condyloideus und coronoideus gedacht. Der äusseren Form der Incisura semilunaris parallel ist in der Spongiosa ein System von Knochenbälckchen angeordnet, welches offenbar einer Zerreissung des Gewebes zwischen den beiden Enden der Kieferfortsätze entgegenwirkt. Ich bezeichne diese Kraftbahn als Trajectorium copulans.

B. Trajektorien des Kieferkörpers.

Wir kommen zur Architektur des Unterkieferkörpers. Basis und Alveolarfortsatz desselben unterscheiden sich deutlich auch im inneren Aufbau von einander. Die Knochenbälkchen zwischen den Alveolen der einzelnen Zähne laufen bei sämtlichen Primaten horizontal und häufig nahezu ganz parallel. Kleine und viel dünnere Verbindungsstreben zwischen diesen stark entwickelten Knochenbälkchen sichern die Festigkeit.

In einer wichtigen Abhandlung über den funktionellen Bau einiger Zähne von W. Gebhardt (Archiv für Entwickelungsmechanik 10. Band, 1, 2, 3 Heft) hat dieser Autor über die eingekeilten Wurzelzähne der höheren Vertebraten die Art der Beanspruchung des Knochengewebes im Alveolarfortsatze berührt und sie folgendermassen geschildert: "Da sich bei diesen Zähnen die Gestalt der Alveole schon in ihrem knöchernen Teil ziemlich genau der Gestalt der Wurzel anpasst, so muss beim Hineindrücken der letzteren in die Alveole, ganz ähnlich wie beim Eintreiben eines Keiles in einen Körper, auf die Wände der Alveole ein sie nach aussen treibender Druck ausgeübt werden, genau wie beim Keil die ursprüngliche Kraft in seitlich divergierende Komponenten zerfällt. Dabei muss aber infolge der stärkeren Steigung des Keiles in der Kieferlängsrichtung in dieser Richtung der grössere Teil der Krafteinwirkung übertragen werden. Es ist mir aber ausserordentlich zweifelhaft geworden, ob überhaupt jemals eine derartige Wirkung zu stande kommt und nicht vielmehr eine Zugbeanspruchung der Alveolarwände bei Druck auf den Zahn eintritt, denn es dürfte sich noch zwischen Zahn und Knochen das Bindeglied der weichen Gebilde, vor allem des Periosts, insofern dabei bemerklich machen, als es vermöge seiner von Gollaud gefundenen Struktur

geeignet erscheint, sich bei der Übertragung mit eigenen mechanischen Momenten zu beteiligen. Die Wurzelspitze ist aber jedenfalls, und das ist wohl das wichtigste, völlig entlastet, wie sie es dem Gefäss- und Nerveneintritt zu Liebe sein muss, und wie auch die meist sehr dünne Wand dieser Stelle bezeugt".

Nach den Bildern, welche wir vom Alveolarfortsatz durch die Röntgenaufnahme

Fig. 20. Unterkiefer eines älteren Orangutans

Die Aufnahme zeigt im wesentlichen die Struktur der Spongiosa in der Umgebung der Wurzeln Im allgemeinen liegen die Bälkchen wagerecht und im Vergleich zu denen des übrigen Kiefers sehr dicht. An einzelnen Zähnen, besonders am ersten Prämolaren, sind jedoch Bälkchen in der Längsaxe der Wurzeln und von den Spitzen dieser verlaufend angeordnet.

erhalten, ist kein Zweifel, dass die Gebhardtsche Anschauung von einer Keilwirkung des Druckes bei den Wurzeln richtig ist. Die Wurzelscheide als nahezu kompakte Substanz vermittelt und verteilt durch ihre schalenartige Gestalt meiner Meinung nach einen Druck auf die nächstliegenden, zugleich aber auch einen Zug auf die ferner liegenden Bälkchen. Insbesondere muss dies der Fall sein, wenn

ein Zahn eine momentane Belastung beim Kauakt erleidet. Die Beanspruchung der horizont liegenden Knochenbälkchen ist durch die starre Knochenwand der Alveole an den Seitenwänden eine wechselnde, während an der Wurzelspitze nur ein Druck stattfinden kann. Wir sehen deshalb in den stark ausgebildeten Knochenbälkchen bei den Anthropomorphen, dass an der Wurzelspitze die Bälkchen sich schräg, unter Umständen sogar senkrecht zu derselben bilden, so dass sie die Verlängerung der Kraftbahn der Wurzel vorstellen. So wird die Wurzelscheide von allen Seiten auf Druckbelastung durch gerade Streben gestützt, erstere federt auf den letzteren. In

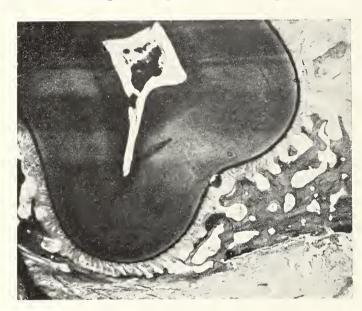


Fig. 21.

Querschnittdurch Kiefer und Wurzeleines Molaren nahe am Zahnhalse (Mensch). Vergröss. 15.

Zahn und Knochen sind durch Bündel periostalen Bindegewebes mit einander verbunden, welche eine federnde Aufhängung des Zahnes bewirken.

hervorragendem Masse werden wir ein direktes ausgeprägtes, von der Wurzelspitze ausgehendes Spongiosasystem, welches nur auf direkten Zahndruck beansprucht wird, noch bei der Betrachtung des Vorderkiefers kennen lernen.

Nach der lingualen und labialen resp. buccalen Seite sind jedoch die Bälkchen der Spongiosa kranartig angeordnet. Sie steigen von der Basis des Kiefers aus auf, und biegen in kurzen Bogen nach der Oberfläche der Wurzel um. Bei dieser Anordnung der Elemente der Spongiosa hängen somit die Zähne gleichsam in einem Korbe (gebildet durch die Wurzelscheide), welcher sich in einem elastischen Netz-

werke befindet. Die Spongiosabälkehen heften sich überall rechtwinkelig an den Korb.

Es wird durch diese Anordnung eine gewisse Elasticität gewährleistet, welche einen plötzlichen und gefährlichen Druck auf die Zähne bis zu einem gewissen Grade aufheben kann. Unterstützt wird diese Elasticität durch die von Partsch entdeckte bündelförmige Anheftung der Bindegewebsfasern des Periostes an mikroskopisch feinen Vorsprüngen der Wurzelscheide, welche sich häufig am oberen Rande derselben gegen den Zahnhals hin befinden (Fig. 21).

Andrerseits sehe ich in der Anordnung der Spongiosa eine zweckmässige Verstrebung der Zähne gegen eine seitliche Verschiebung derselben bei einwirkendem Druck. Die Stärke der Bälkchen im Alveolarfortsatze ist bei sämtlichen Anthropomorphen und den Menschen eine bedeutend grössere als im gesamten übrigen Unterkiefer. Jene elastische Aufhängung der Zähne im Kiefer ist offenbar Be-

Fig. 22.

Orangutan, sehr altes Männchen.

Starke Trajektorienbildung von sehr grobmaschiger Spongiosa. Starke Verdichtung derselben unterhalb der Molaren.

dingung für die Zweckmässigkeit der Funktion. Denn dieser Zustand erhält sich während des ganzen Lebens, während sämtliche übrigen Bestandteile des Kiefers mit Ausnahme des primären Hauptzuges im Kieferaste sich in nahezu kompakte Substanz umwandeln können. Orangutan und Gorilla haben auch hier die weitaus stärksten Knochenbälkchen. An den Hauptbelastungsstellen des Gebisses, also in der Gegend der Molaren und des Eckzahnes, findet man bei älteren Tieren noch eine be-

sonders starke Verdichtung der Knochenbälkchen, welche wieder mit dem gewaltigen Gebrauch dieser Zähne zusammenhängt.

Im eigentlichen Kieferkörper kann man zwei Schichten unterscheiden. Diejenige, welche dem Alveolarfortsatze zunächst liegt, besteht zumeist aus einem grossmaschigen horizontalen Balkennetze, in welchem einzelne Bälkchen jedoch häufig aufwärts gegen den Alveolarfortsatz, nämlich gegen die Wurzeln der Zähne ziehen. Es sind Druckbälkchen gegen die beim Kauakte durch die Zähne auf den Kiefer ausgeübte aber schon mehr verteilte Kraft. Solche Streben sieht man besonders beim Orangutan und Gorilla in der Richtung der Wurzel, fast die ganze Kieferbasis durchsetzend und dem unteren Teil der letzteren aufsitzend. Im übrigen bildet dieser Teil des Unterkiefers mehr die neutrale Zone bei einer Beanspruchung. Er enthält die grosse Arterie, Vene und den Nervenstamm. Schon Zschokke hat nachgewiesen, dass die Gefässe der Spongiosa im allgemeinen in der Richtung des Druckes (hier beim Unterkiefer in der Richtung der rückwirkenden Festigkeit) verlaufen, und die Knochenmasse sich möglichst parallel des Gefässes lagert.

Die Kieferbasis wird durch eine besonders starke Schicht von Substantia compacta gebildet, welche auch in geringerer Stärke die gesamte Spongiosa des Unterkiefers umschliesst. Für die Kieferbasis kommt im wesentlichen die Wirkung der Funktion von der M. masseter und pterygoideus internus in Betracht. Die Stärke der kompakten Substanz an der Basalfläche des Unterkiefers entwickelt sich bei den verschiedenen Spezies durchaus der Beanspruchung des Kiefers auf Biegungsfestigkeit entsprechend. Am grössten ist sie beim Gorilla, dann kommen Orangutan, Schimpanse; sehr viel geringer ist sie beim Menschen und Gibbon. Sie wächst mit der vergrösserten Hebelwirkung vom äusseren Kieferwinkel zur Symphyse. Gerade beim Menschen kommen in ihrer Stärke sehr grosse individuelle Unterschiede vor.

Die Symphyse ist in den Röntgenaufnahmen bei jüngeren Kiefern der Anthropomorphen und des Menschen während der Zahnung immer, bei älteren Individuen dagegen seltener angedeutet. Sie erscheint dann als dunklere Linie, von welcher die Spongiosa nach beiden Seiten in horizontaler Anordnung gelagert ist. Im späteren Alter verschwindet die Linie in der Richtung vom Alveolarfortsatze zur Kieferbasis. Im übrigen ist sowohl die äussere Form wie die innere Architektur des vorderen Unterkiefers bei dem Menschen und Anthropomorphen so verschieden, dass dieselben einer eingehenden Besprechung bedürfen.

Der vordere Unterkiefer.

Der vordere Unterkiefer des Menschen und der Anthropomorphen war seit langen Zeiten, zumal in Rücksicht auf die Darwin'sche Lehre, von äusserster Wichtigkeit und höchstem anthropologischen Interesse. Das Kinn des Menschen wurde, als ihm speziell zukommend, für ein wirkliches Unterscheidungsmerkmal den Affen gegenüber erklärt.

Das Auffinden vorgeschichtlicher menschlicher Kiefer, (z. B. des Kiefers von la Naulette und der Schipkahöhle), welche nur wenig oder gar kein Kinn zeigten, brachte diese Lehre ins Wanken. Indessen war die Zahl jener diluvialen Kiefer vorläufig noch eine zu geringe, als dass man nach der äusseren Verschiedenheit des vorderen Unterkiefers bei dem Menschen und Anthropomorphen unzweifelhafte Schlüsse machen konnte. Es kam hinzu, dass von ganz hervorragenden Anthropologen, z. B. Virchow, jene diluvialen menschlichen Kiefer gar nicht als Eigentümlichkeit des damaligen menschlichen Geschlechtes, sondern als pathologische Produkte bei einzelnen Individuen aufgefasst wurden. Dann mussten ja allerdings jene vorgeschichtlichen Kiefer überhaupt zum Vergleich mit denjenigen der Anthropomorphen unbrauchbar sein. Eine pathologische oder eine Excessbildung, welche unzweifelhaft an ihnen vorhanden wäre, hätte dieses sonst so kostbare Material für meine Untersuchung illusorisch gemacht.

Wenn ich die Variationen der äusseren Form des Unterkiefers in seinem vorderen Abschnitte in ein System bringen und womöglich mit der Descendenzlehre speziell aber mit der Entwickelungsmechanik in Einklang bringen wollte, so war zunächst wieder eine Vergleichung der äusseren Formen aller Kiefer der Primaten nötig. Weiter musste in diesen eine Abänderung der Struktur durch funktionelle Selbstgestaltung im Sinne Roux's konstatiert und die Bedingungen erörtert werden, unter welchen die Erzeugung neuer Charaktere auch für den vorderen Unterkiefer wohl vorhanden sein kann.

Der menschliche Unterkiefer muss bei den Untersuchungen in dieser Richtung ganz besonders in den Vordergrund treten. Dazu war es wünschenswert, jene ältesten bisher vorhandenen menschlichen Unterkiefer nochmals einer eingehenden Prüfung zu unterziehen, ob sie überhaupt bei diesen Erörterungen als allerdings sehr wichtiges Beweismaterial in Betracht kommen, wenn deren Formen physiologischer Natur sind.

I. Die hintere Kieferplatte in ihrer allgemeinen äusseren Gestalt.

Die von mir aufzunehmenden Untersuchungen über Formvariationen des Vorderkiefers bei den Primaten konnten nach den geschilderten Ergebnissen am Kieferkörper und Kieferaste ein schon einigermassen vorher zu bestimmendes Resultat ergeben. Nur die Kraftbahnen werden sich beim Vorderkiefer des Menschen noch im wesentlichen erhalten haben, im übrigen aber muss der Knochen skelettartig auf die geringsten Entwickelungsdimensionen beschränkt sein. Wie die übrigen Leisten und Knochenvorsprünge, gleiche Kiefergrössen vorausgesetzt, beim Menschen weit stärker hervortreten, als bei den grossen Anthropomorphen, so konnte es sich auch mit dem Kinn verhalten. Diese Deduktionen, aus den Untersuchungsergebnissen des übrigen Unterkiefers hervorgegangen, erwiesen sich den Lehren der Entwickelungsmechanik entsprechend zwar als richtig, waren aber nicht allein massgebend.

Zunächst haben gewisse Kraftbahnen des übrigen Kiefers auf den vordern Unterkiefer noch einen gewissen Einfluss. Ich schilderte auf S. 239, dass die Linea obliqua interna und externa sich als Ausdruck der Kraftbahnen des M. temporalis erweisen, welche sich vom Kieferaste über den Kieferkörper erstrecken. Verfolgen wir bei den Primaten diese Bahnen bis zum Vorderkiefer, so finden sich bei den einzelnen Spezies bestimmte Unterschiede. Beim Gibbon und einzelnen anderen niederen Affen sind, ähnlich wie beim Menschen, die Zug- und Druckbahnen äusserlich weit stärker. Man kann nicht annehmen, dass diese Lineae obliquae bei diesen Primaten der Ausdruck einer stärkeren Kraftübertragung von Muskeln sind. Denn die Stärke und Grösse der Muskeln steht hier gerade mit der Entwickelung der Lineae im umgekehrten Verhältnis. Weit passender ist, wie ich glaube, die Annahme, dass sie nur deshalb stärker hervortreten, weil der übrige Kieferkörper eine geringere Ausbildung erhält. Die Linea obliqua externa geht beim Gibbon im grossen Bogen, dessen tiefster Punkt nahe an der Basalfläche unter dem ersten Molaren liegt, wieder aufwärts steigend zu dem verhältnismässig grossen Eckzahn. Die Linea obliqua interna ist auf der ganzen inneren Fläche des Kiefers deutlich ausgeprägt. Schon Lactet hat darauf aufmerksam gemacht, dass

der Gibbon ein senkrechteres Kinn als die übrigen Anthropomorphen besitzt. Auch die innere Seite des Vorderkiefers ist menschenähnlicher beim Gibbon, trotzdem dieser im übrigen am menschenunähnlichsten erscheint. Wir haben beim Gibbon nicht den zurücktretenden Rand des vorderen Unterkiefers, dafür aber einen wenn auch kleinen Vorsprung (Spina) an der inneren Seite des vorderen Unterkiefers, welcher durch die Linea obliqua interna an der Symphyse erzeugt wird. Derselbe liegt an der Grenze des Basalteiles wie die Spina interna mentalis des Menschen. Der kleine Herabzieher des Unterkiefers entspricht beim Gibbon genau den geringeren Hebern desselben.

Auffallend muss es erscheinen, dass bei allen Affen, unmittelbar unter diesem soeben erwähnten Vorsprunge, gewöhnlich grössere Gefässe in die Kieferplatte eintreten. Bei den grossen Anthropomorphen ist jene Andeutung einer Spina mentalis interna wie beim Gibbon nicht vorhanden. Die Gefässe liegen bei jenen in einer tiefen Grube. Unmittelbar über den ersteren hat die hintere Kieferplatte beim Orang-<mark>utan und Schimpanse immer zunächst eine stark konvexe Form, die bis zum oberen</mark> Alveolarrande ausläuft. Der vorspringende Wulst tritt hier an die Stelle der Linea obliqua interna und giebt zu einer Grubenbildung unter ihm Veranlassung. Nur beim Gorilla erscheint der Alveolarfortsatz oberhalb dieses Wulstes wiederum konkav. Die Zahl der eintretenden Gefässe ist verschieden. Gewöhnlich liegt bei den Anthropomorphen jederseits von der Medianlinie in der Grube, welche die Rückseite des Vorderkiefers bei den Affen auszeichnet, ein grösseres Foramen. Gelegentlich finden sich unter diesen noch einzelne, jedoch sehr viel kleinere Foramina, oder auch ein grösseres genau in der Medianlinie. Dieses bildet dann mit den darüberliegenden die Spitzen eines angenommenen gleichseitigen Dreiecks. Die Richtung der erstgenannten oberen Gefässbahn ist bei den Affen sehr wechseind, während das Lager der Foramina in der Grube nahezu feststehend ist. Bei den grossen Anthropomorphen steigen die beiden oberen, konstant vorkommenden Gefässbahnen den Knochen durchbohrend, und etwa den Winkel von 45 Grad zur Längsaxe des Knochens bildend, nach der vorderen Fläche des Unterkiefers auf. Die Austrittsöffnung an der letzteren ist individuell verschieden. Teils läuft das Gefäss in nahezu vertikaler Richtung durch den Knochen, teils wendet es sich im Bogen nach aussen und kann hier zwischen Eckzahn und äusserem Schneidezahn an der vorderen Fläche austreten. niederen Affen läuft die Hauptgefässbahn gewöhnlich in nahezu gerader Linie von der inneren zur äusseren Fläche des Unterkiefers. Beim Menschen geht ein Gefäss, wenn es überhaupt in grösserem Umfange angelegt ist und den Knochen sichtbar durchbohrt, über der Spina mentalis interna eintretend schräg nach unten, tritt aber selten an der Protuberantia mentalis externa aus dem Knochen. Ich sah ferner das Durchtreten eines Gefässes von der inneren zur äusseren Fläche gelegentlich bei den niederern Rassen, speziell der mongolischen (Eskimos), welches unter der Insertionsstelle des M. geniohyoideus in den Basalteil eindrang, und kurz umbiegend vorn austrat.

Virchow hat in seiner Abhandlung "der Kiefer aus der Schipkahöhle und der Kiefer von La Naulette" (Zeitschrift für Ethnologie 1882) darauf aufmerksam gemacht, dass über der Spina mentalis interna des Menschen normalerweise jenes Gefässloch vorhanden ist, welches schräg von oben nach unten in den Knochen Virchow sagt dort, dass das Gefässloch selbst an erwachsenen Schädeln von sehr verschiedener Grösse sei, bald stelle es eine ganz feine Öffnung dar, bald erreiche es einen Durchmesser von einem Millimeter und darüber. In der Regel befinde es sich nicht einfach in der Fläche des Knochens, sondern im Grunde einer kleinen Grube, welche Virchow Fossula supraspinata nennt. — Passt ein Vergleich dieses Gefässes mit denjenigen der Pitheci? - Bei den niederen Affen ist die Lage der zur Symphyse zutretenden Kraftbahnen an der Rückseite des Vorderkiefers weit höher. Oberhalb jener Grube mit dem schon erwähnten grossen Gefässloche erhebt sich ein sehr starker Wulst mit einem Vorsprunge, welcher im Querschnitt der Kiefer deutlich sichtbar ist. Ober halb des äussersten Vorsprunges tritt in den Wulst zwar häufig ein zweites grösseres Gefäss, welches aber nicht etwa zur Vorderfläche des Kiefers vordringt, sondern parallel der letzteren zieht und nur den Wulst durchsetzt. (Siehe Fig. 25 g1.) Wer eine grössere Anzahl von Durchschnitten des vorderen Unterkiefers der Affen gemacht hat, wird bald erkennen, dass der Verlauf und die Anordnung dieser an der hinteren Fläche eintretenden Gefässe nicht allein für jede Art, sondern sogar für jedes Individuum verschieden ist. Nur die Eintrittsstelle jenes grössern Gefässpaares kann man als fest ansehen. Dieselbe liegt an dem Übergange des Kieferkörpers zum Basalteile. Als Basalteil des Vorderkiefers bezeichne ich den Abschnitt von der Grube zum äussersten umgebogenen Rande, wie ihn die Anthropomorphen aufweisen. Beim Menschen entspricht diesem Abschnitt der Kieferteil von der Spitze der Spina mentalis interna bis zum unteren Kieferrande. Aber bei der Spina mentalis interna tritt nun entweder oberhalb oder unterhalb derselben ein Gefäss ein.

Virchow bemerkte, dass unter Umständen eine eigentliche Spina beim Menschen gar nicht zustande kommt, ohne dass die Fossula supraspinata eine besondere Grösse erreicht. Er fand sogar an der Stelle der Spina eine flache Rauhigkeit. Ja, es kann vorkommen, dass diese rauhe Stelle vertieft ist. Virchow sagt darüber wörtlich folgendes: "Es ergiebt sich, dass es zwei Arten von Vertiefungen giebt, welche

leicht miteinander verwechselt werden können: eine obere, im wesentlichen glatte, welche der Fossula supraspinata entspricht, und eine untere, wahrscheinlich immer oder doch in der Regel rauhe, welche die Stelle der Spina mentalis interna (Apophysis geni) einnimmt. Von letzterer möchte ich nach einzelnen Beispielen annehmen, dass sie auch in zwei laterale, durch eine vertikale Leiste getrennte Hälften geteilt sein kann. Im konkreten Fall wird also jedesmal zu entscheiden sein, welche Art von Grube man vor sich hat. Das blose Fehlen des Spina ment. int. kann diese Entscheidung nicht bringen. Meiner Meinung nach entspricht die Grube bei den Affen, welche in der Regel gross, tief, glattwandig und im Grunde von Gefässlöchern durchbohrt ist, der Fossula supraspinata des Menschen, welche also in einem gewissen Sinne pithekoid genannt werden kann, aber nicht mehr als die Orbita und die Nasenhöhle. Im technischen Sinne pithekoid würde erst die Kombination einer grossen Fossa supraspinata mit Mangel der Spina ment. int. sein."

Diese Virchowsche Anschauung lässt jedoch häufig im Stiche. Am deutlichsten sieht man das beim Gibbon. Hier tritt je ein grösseres Gefäss beiderseits von der Symphyse im mer unter der deutlich vorhandenen Spina in aufsteigender Richtung wie bei den übrigen Anthropomorphen ein. Ein Gefäss über der Spina habe ich beim Gibbon nicht auffinden können. Wir müssen die Eintrittsstelle dieser grösseren Gefässe nicht allein als durch die äussere Kieferform bedingt annehmen, sondern ich definiere die Lage ihrer Foramina dahin, dass die Gefässe zwischen dem Basalteile und dem eigentlichen Körper des Affenkiefers und zwar unmittelbar unter dem Kieferkörper eintreten. Nur dieses ist der einzig festlegbare Punkt. Die verschiedene Art des Durchtritts in Bezug auf Richtung und Grösse ist in der Form des Knochens zu suchen, und diese ist, wie ich sogleich zeigen werde, <mark>wiederum abhängig von den Kraftbahnen, welche durch die Beanspruchung des-</mark> selben infolge der Muskelwirkung und der Stellung der Zähne geschaffen werden. Die fraglichen Gefässe werden dabei in ihrem Verlaufe möglichst einer neutralen Zone angepasst, welche zwischen oder neben den zu versorgenden Trajektorien liegt. Das von Virchow in der Fossula supraspinata nachgewiesene Gefäss des Menschen hat eine wichtige Bedeutung, auf welche ich noch ausführlich zurückkomme.

Bei den Anthropomorphen hält die Wurzelrichtung sich fast an dem Verlauf der Längsaxe eines Kieferquerschnitts. Die nahezu rechtwinkelige Stellung der Ober- und Unterkieferzähne beim Zusammenbiss und der gleichzeitige starke Prognathismus bedingen jedoch eine Verstärkung des Querschnittes nach innen, gleichzeitig sehen wir in den Querschnitten eine starke Verdichtung der inneren Spongiosa

um die Wurzel herum und zumal an der Wurzelspitze. Einerseits zieht ein wirkliches Trajektorium und zwar im wesentlichen von der Wurzelspitze als

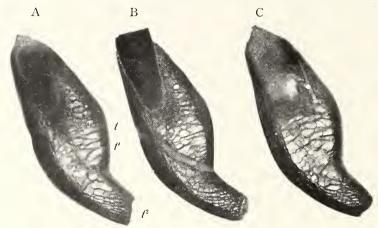


Fig. 23.

Serien-Querschnitte vom Unterkiefer eines Orangutans an der Symphyse. Gleichmässige, die Kieferplatten verbindende, horizontal laufende Bälkchen. In A bei t Trajektorium des direkten Zahndruckes in seitlicher Richtung als Folge der prognathen Stellung der Zähne. Dies bedingt die konvexe Hervorwulstung der hinteren Kieferplatte. that Trajektorium des direkten Zahndruckes in der Richtung der Axe des Zahnes. that starkes Trajektorium des M. digastricus. In B Durchtritt des Gefässes in schräger Richtung durch den Knochen nach oben.

starkes Balkenwerk zum sogenannten Lingualwulst, jener höchsten Erhebung der inneren Kieferplatte, welche in ihrer äusseren Form direkt durch ersteres beein-

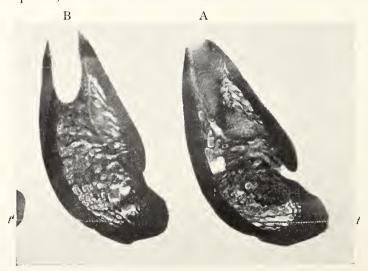


Fig. 24.

Serien-Querschnitte vom Unterkiefer des Gorilla an der Symphyse. A Schnitt nahe der Medianlinie, B der folgende Serienschnitt. Sehr starke Balken in der Spongiosa. tund t' Schwaches Trajektorium des M. digastricus. Dafür ist die Compacta äusserst stark angelegt. In A Gefässdurchtritt von der Grube nach oben zur oberen Kieferplatte, in B nach oben zur hinteren Kieferplatte abzweigend. flusst ist. Es findet hier eine Projektion der von der Wurzelspitze seitlich beim Kaudruck ausgeübten Kraft infolge des Prognathismus statt. Je winkeliger der eingepflanzte Zahn zu der vorderen Kieferplatte steht, um so mehr muss der Lingualwulst verstärkt werden. Jene grossen Gefässe, welche bei

den Anthropomorphen in der grossen Grube eintreten, werden durch Schräglagerung vor stärkerem Zusammendruck geschützt. Bei vielen niederen Affen stehen die Zähne hart an der äusseren Substantia compacta mehr geradlinig auf dieselbe ansetzend. Die Schneidzahnwurzel steht im Gegensatz zu derjenigen der Anthropomorphen nahezu an der äusseren Fläche des Kiefers (siehe Fig. 25). Das Gefäss würde in der Anlage wie z. B. beim Orangutan (Fig. 23) gerade an der Wurzelspitze austreten, und so einen gewaltigen Druck an seiner Austrittsstelle erhalten. Wir beobachten deshalb bei den niederen Affen einen mehr geradlinigen Durchtritt, und sehen den Zahndruck einerseits nun auf die äussere Fläche des Kiefers, also auf die äussere Compacta verlegt. Anderseits wird der durch die Stellung der Zähne bedingte Seitendruck von der Wurzelspitze nach der Innenseite zu durch ein Stützsystem der Spongiosa aufgefangen. Dieses zieht im Gegensatz zu den Anthropomorphen in schräger Richtung von der inneren Wurzelfläche nach der inneren Kieferplatte, sodass der Wulst äusserlich im Querschnitt zu einer förmlichen Leiste wird. Wir haben hier ein Beispiel der indirekten Erzeugung eines Trajektoriums im Innern des Knochengewebes vor uns, welche durch den seitlich erfolgenden funktionellen Druck der Zähne beim Kauakte erfolgt.

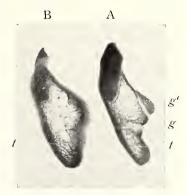


Fig. 25. Querschnitt vom Unterkiefer an der Symphyse eines Schwanzaffen. Die Stellung der Schneidezähne an der Kieferplatte bedingt eine sehr starke Entwickelung der hinteren Kieferplatte durch die Beanspruchung auf Druck seitens der Wurzelspitze infolge der prognathen Stellung der Zähne. Bei t Trajektorium des M. digastricus, bei g Gefässe durch den Knochen von der Grube in gerader Richtung zur vorderen Kieferplatte tretend, g' Gefäss oberhalb der Grube in der hinteren Kieferplatte verbleibend.

Ausserdem entsteht häufig noch ein wirkliches Drucktrajektorium von der Wurzelspitze aus in der Längsrichtung des Zahnes. Gerade der Orangutan zeigt infolge der wunderbaren Entwickelung der Spongiosa ein reines Trajektorium, welches von der Spitze jedes Vorderzahnes zunächst geradlinig, dann bogenförmig zu jener grossen Furche zieht, welche den Übergang vom eigentlichen Kieferkörper zum Basalteile bildet. Da beide Kieferteile funktionellverschieden beansprucht werden, der eine indirekt durch den Zahndruck, der andere durch unmittelbare Muskelwirkung, so muss die Einlagerung und speziell die Eintrittsstelle jedes Gefässes zwischen

den beiden Kieferabschnitten als eine vorzügliche funktionelle Anpassung für dasselbe angesehen werden.

Aus den beigegebenen Abbildungen der Affenkiefer geht hervor, dass die äussere Form der hinteren Vorderkieferplatte vom oberen Alveolarrande bis zur Grube neben der Fernwirkung des M. temporalis ein Produkt des indirekten funktionellen Druckes ist, welchen die Zähne infolge des Prognathismus ausüben. Beim Menschen zeigt deshalb die hintere Kieferplatte, der mehr orthognathen Stellung der Zähne entsprechend, nur eine sehr geringe Vorwölbung, im Gegensatz zu den Affen dagegen eine Verstärkung der Corticalis, weil der Zahndruck nahezu geradlinig mit und in ihr verläuft.

Wenn die Lehren der Entwickelungsmechanik zu Recht bestehen, so musste die innere Struktur des vorderen Kieferknochens beim Menschen ganz wesentliche Verschiedenheiten von denjenigen der Affen zeigen. Zum Studium zerlegte ich eine Anzahl von Unterkiefern in sagittale Längsschnitte. Es zeigte sich, dass entsprechend der äusseren Form auch die innere Struktur individuell verschieden war und wenn auch die Anordnung der Spongiosa bei jeder Spezies dieselbe blieb, so war doch die Stärke und Zahl der durch die Röntgenaufnahmen zur Erscheinung kommenden Bälkchen sehr variabel.

Immerhin fanden sich in allen menschlichen Kiefern prinzipielle, wichtige Abweichungen von der Struktur der Vorderkiefer sämtlicher übrigen Primaten.

II. Trajektorien im Vorderkiefer des Menschen.

Wir müssen uns jetzt jenen Trajektorien zuwenden, welche durch die direkte Funktion der Zungen- und Kiefermuskeln geschaffen wurden. Ich bespreche zunächst diejenigen des heutigen Menschen. Von der Ansatzstelle des M. genioglossus, oberhalb der Spina mentalis interna, entspringt ein starker ausgeprägter Knochenbalkenzug, der in schräger Richtung nach unten zum Kinne verläuft. Ein anderes Trajektorium geht von der Ansatzstelle des M. digastricus vom inneren unteren Rande des Kiefers in schräger Richtung nach oben gegen die äussere Fläche. Beide Trajektorien durchkreuzen sich nahe der Symphyse mitten in der Spongiosa. Der Zug des Genioglossus bildet mit Trajektorien des M. geniohyoidei nach jeder Seite von der Symphyse eine abfallende Ebene, sodass auf die vordere Kieferplatte ein Dreieck projiziert wird, dessen Spitze den höchsten Punkt des Kinnes bildet, und dessen Basis jederseits etwa unterhalb des Eckzahnes die Basalfläche des Unterkiefers erreicht. Durch diese Knochenzüge wird

das etwa unter der Spina mentalis interna eintretende Gefäss beim Menschen verhindert aufzusteigen und wird zu einem Verlauf nach der vorderen unteren Basalfläche gezwungen.

Das vom M. digastricus formierte starke Trajektorium, welches von der Ansatzfläche schräg nach oben und aussen durch den Basalteil ziehend die vordere Kieferplatte erreicht, zeigt häufig eine ganz scharfe konturierte Gestalt nahe der Symphyse.

Nach den Seiten hin fällt es zur Basalfläche des Kiefers ab und trägt auf diese Weise ebenfalls zu der dreieckigen Form des Kinnes bei. Endlich sieht

man noch gelegentlich unmittelbar unter der Spina mentalis interna des Menschen das nahezu horizontale Trajektorium des M. geniohyoideus zur vorderen Kieferplatte ziehen, welches hier etwa den höchsten Punkt des Kinnvorsprunges erreicht. Auch seine Ausbildung ist individuell sehr verschieden.

Diese genannten drei Trajektorien bestimmen und erhalten die Form der vorderen Kieferbasis beim Menschen und ich schreibe der Thätigkeit jener Muskeln, welche bei der Sprache des Menschen unumgänglich nötig sind, auch die Kinnbildung durchaus zu. Wir beobachten bei keinem Affen derartige, starke Trajektorien der genannten Muskeln in dieser Lage zu einander und wenn auch im übrigen der ganze übrige Unterkiefer des Menschen nachweislich durch seinen geringeren Verbrauch sich in einer Grössenreduktion befindet, so sind gerade die starken Kraftbahnen dieser Muskeln ein äusserst wertvolles Beispiel dafür, dass ein an Grösse verkümmerndes Organ durch Aufnahme einer verstärkten Funktion einzelner Muskeln eine neue, scharf ausgeprägte Form lokal entfalten kann. Bei den Affen

Fig. 26.
Starke Trajektorieninder Medianlinie eines menschlichen Unterkiefers.

Hervorgerufen durch die Wirkung des M. genioglossus g, g und des M. digastricus d, d¹. s Spina mentalis interna.

ohne Unterschied ist die Thätigkeit des M. genioglossus überhaupt noch nicht einmal als selbständiger Knochenzug zu erkennen. Die Umgebung der Grube, in welche der Genioglossus entspringt, zeigt z. B. beim Orangutan in der Spongiosa zwar eine geringe halbkreisförmige Anordnung der Spongiosa, welche das Gefäss umgiebt. Diese Anordnung erscheint jedoch nur als eine Verstrebung gegen verschiedenartige Kräfte, welche auf das eintretende Gefäss sonst einwirken könnten. Beim Orangutan ist das Balkensystem der Spongiosa, welches die beiden Kieferplatten nahezu horizontal miteinander verbindet, an der Ansatzstelle des M. genioglossus sogar zarter und grobmaschiger als im übrigen Kieferkörper. Beim Gorilla wird das gesamte Balken-

werk des Kieferkörpers ungeheuer stark und unregelmässig. Es dient offenbar einerseits zur Verbindung der beiden Kieferplatten, anderseits zur Verstrebung gegen den gewaltigen Zahndruck. Auch hier sehen wir keine Trajektorienbildung des M. genioglossus. (Fig. 23 und 24.)

Eine Verdichtung der Spongiosa zu Trajektorien durch Muskelwirkung findet im vorderen Unterkiefer sämtlicher Affen überhaupt nur an einer einzigen Stelle statt. Der untere Kieferrand ist bei allen Affen mehr oder weniger stark zurückgebogen, so dass die Medianlinie unter Umständen bis zu einer frontalen Ebene reicht, welche vor dem Molaren durch den Kiefer gedacht ist. Dieser umgebogene Rand ist hier auf die alleinige Thätigkeit des M. digastricus zurückzuführen, welcher jederseits nahe der Medianlinie entspringt und im Winkel von etwa 45 Grad ansetzt. Quer-

Fig. 27.

Starke Trajektorienbildung seitens des M. digastricus d und M. genioglossus beim Menschen. Die Serienschnitte bilden die seitliche Fortsetzung von dem Kiefer, welchem Fig. 27 (aus der Medianlinie herausgeschnitten) entstammt. schnitte durch den Kiefer eines Affen zeigen an dieser Stelle gewöhnlich ein starkes Trajektorium, welches von dem hinteren unteren Rande in schräger Richtung und etwas bogenförmig gegen die vordere Kieferwand aufsteigt. Die Bälkchen dieses Knochenzuges vereinigen sich alsdann mit denjenigen der Substantia compacta der äusseren Kieferplatte. Beim Orangutan erfüllt dieses Trajektorium den ganzen unteren Umschlagsrand des Unter-

kiefers, welcher sich von der Grube des M. genioglossus bis zur Ansatzstelle des M. digastricus erstreckt. Der Wirkung des letzteren und zumal der Konstanz ist somit allein die Entstehung jenes Umschlagrandes des Unterkiefers zuzuschreiben. Trotzdem der Unterkiefer des Affen kinnlos ist, entsteht durch den zurückspringenden unteren Rand eine gewisse Basalfläche, welche allerdings auch schon äusserlich sehr verschieden von derjenigen des Menschen ist.

Selbst beim Gorilla mit seiner gewaltigen Corticalis und seinem starken Strebenwerk der Spongiosa macht sich die Thätigkeit des M. digastricus, wenn auch nicht in jenem Masse wie beim Orangutan geltend. Der Gorilla zeigt wenigstens eine entfernte Ähnlichkeit in der Basalfläche des Unterkiefers mit derjenigen des Menschen. Nahe der Symphyse macht sich zwar die Wirkung des M. digastricus trotz der starken Kieferplatten in Form eines kleinen Trajektoriums geltend. Aber schon der zweite

Fournierschnitt (siehe Fig. 24 B) zeigt, dass die Wirkung des M. digastricus mehr in der Längsrichtung zum Kieferkörper und damit zu den Zähnen erfolgt. Es entsteht dadurch allerdings eine gewisse Basalfläche, welche infolge der gewaltigen Entwickelung des Kieferkörpers zu einer gewissen Breite gelangt.

Beim Menschen entsteht die Basalfläche einerseits durch die dreieckige Projektion der Knochenzüge des M. genioglossus und geniohyoideus auf die vordere Kieferplatte; ersterer steht oft in nahezu rechtwinkeliger Stellung zu demjenigen des M. digastricus. Diese Kreuzung der Knochenzüge ermöglicht analog der Form von Gelenken, als rundlichen Stützknochen, welche rechtwinklig sich schneidende Trajektorien aufweisen, erst jene rundliche Bildung des Kinnes und damit auch einer gewissen Breite der Basalfläche. Der M. digastricus ist ausserdem beim Menschen durch die Verlängerung des Halses, durch Vortreibung des Zungenbeins, durch Anheftung des Muskels an das letztere, durch Vergrösserung des Kehlkopfes und durch den aufrechten Gang in eine steilere Stellung hineingeraten. Durch die Thätigkeit des M. digastricus wird deshalb der hintere Rand des Unterkiefers des Menschen mehr nach unten gezogen. Die innere Kieferplatte hat nun gleichfalls Gelegenheit zur Bildung einer Basalfläche, während bei den Affen jener Umschlagsrand nach hinten allein durch die Thätigkeit des Digastricus entstanden und als besonderer, scharf abgegrenzter konstruktiver Teil des Affenunterkiefers angesehen werden muss. Durch die innere Architektonik, welche auf der weitaus überwiegenden Thätigkeit nur dieses einen Muskels beruht, wird der nunmehr plattenartige Kieferrand allerdings auch zu einer gewissen Basalfläche, welche aber im Gegensatz zu derjenigen des Menschen allein von der vorderen Kieferplatte gebildet wird. Es kommt hinzu, dass nach dem Zeugnis von Bischoff und besonders von Fick (Vergleichend anatomische Studien an einem erwachsenen Orangutan im Archiv für Anatomie und Physiologie 1895) "der M. digastricus beim Orang nur einen Bauch hat, welcher sich am Angulus mandibulae mit kräftiger Sehne ansetzt. Die Insertion befindet sich gerade hinter der der M. pterygoideus internus". Dadurch muss beim Affen der M. digastricus in eine wagerechtere Stellung kommen und demgemäss mehr in der Richtung der unteren Kieferränder wirken als beim Menschen. Wir sehen den Effekt seiner Thätigkeit deutlich. Die starke Thätigkeit des M. digastricus bei den grossen Anthropomorphen erzeugt mit zunehmendem Alter des Tieres einen immer grösseren Umschlagsrand der Unterkieferbasis. Dass dieser in seiner Grösse nur von der Muskelarbeit abhängig ist, zeigt der zierliche Kiefer des Gibbon, bei welchem der Umschlagsrand auch nur gering ausgebildet ist. Für die Kinnbildung des Menschen muss es als zweckentsprechend angesehen werden, dass mit der abgeänderten Lagerung eines Muskels

die ursprüngliche Gestalt eine vollkommene Umformung erfahren kann, welche mit früheren nur entfernte Ähnlichkeit hat.

Die verschiedene Bildung des Kinnes und der Spina mentalis interna beim Menschen behalte ich einem besonderen Kapitel vor.

III. Wechselseitiger Einfluss der Wurzelbildung, Zahnstellung und Zahngrösse auf den Vorderkiefer.

Im Zusammenhange mit der Kinnbildung steht jedenfalls die Stellung der unteren Schneidezähne beim Menschen im Gegensatz zu den Affen. Baume hat in seiner Abhandlung den Satz aufgestellt, dass die Affen sich im Wurzelteil der Vorderzähne dadurch unterscheiden, dass die Wurzeln nach hinten gekrümmt sind. Er erwähnt diese Thatsache auch vom Schipkakiefer und sagt, dass die Spitzen der Wurzeln im Kiefer von La Naulette, einem jener aufgefundenen menschlichen Kiefer aus der Diluvialzeit, sicher nicht labialwärts umgebogen waren, wie beim heutigen Menschen. Eine derartige Krümmung der Wurzeln nach hinten kommt nach BAUME nur als Anomalie beim Menschen vor. Jedenfalls ist es höchst auffallend, dass die noch später zu beschreibenden Unterkiefer, der Krapina- und der Prédmost-Kiefer ebenfalls nach rückwärts gebogene Schneidezahnwurzeln haben; davon zeugen die Zähne selbst oder wenigstens die teilweise noch erhaltenen Alveolen. Hier scheint denn doch bei den diluvialen Kiefern keine blosse Anomalie, sondern ein wichtiges Rassenmerkmal Allerdings ist auch jener erste Satz Baumes nur bedingungsweise richtig. In jugendlichen Kiefern der Anthropomorphen sind die unteren Milchschneidezähne teils geradlinig teils wie beim Menschen nach vorn gekrümmt. Letzteres scheint besonders beim jugendlichen Schimpanse der Fall zu sein, wie ich mich häufiger überzeugen konnte. Spezifisch äffisch ist somit die Krümmung der Schneidezahnwurzeln der Anthropomorphen nach innen ebenso wenig, wie die Krümmung der Wurzeln nach aussen spezifisch menschlich ist. Es scheint daraus hervorzugehen, dass nach den Begriffen der Descendenzlehre eine gemeinsame Stammesform für den Menschen und die Anthropomorphen ursprünglich geradeingepflanzte Zähne besass, die verschiedenartige Stellung und Wurzelkrümmung der Vorderzähne aber von den einzelnen Arten erst erworben wurde, und die Wurzelkrümmung sich sogar noch heutzutage jener oben entwickelten Durchbruchstheorie der Zähne gemäss individuell anpasst.

Die Wurzeln der Schneidezähne wachsen bei dem heutigen Menschen in den weitaus meisten Fällen nach vorn, weil sie, ganz an die hintere Kieferplatte gelehnt, beim Wachstum nach jenem von mir auf Seite 233 entwickelten Gesetze ihre Rich-

tung zum Kinn nehmen müssen, wo sie den geringsten Widerstand finden. Ausserdem zeigen die unter den menschlichen Schneidezähnen von der hinteren zur vorderen Kieferplatte schräg verlaufenden Spongiosabälkehen die Beanspruchung des Kieferkörpers beim Kauakte. Dieser Beanspruchung des Knochens werden die sich entwickelnden Zahnwurzeln nach Möglichkeit folgen müssen. Die orthognathe Zahnstellung des Menschen ist dafür kein Hindernis. Bei den Affen schliessen sich die Wurzeln nach jenem Gesetze der Zahnentwickelung ebenfalls möglichst der neutralen Zone an, welche bei ihnen zwischen den gekrümmten Kieferplatten liegt. Je stärker der Prognathismus hier ist, umsomehr müssen die Wurzeln nach hinten gekrümmt sein, umsomehr wird aber auch der linguale Wulst als Verstärkung gegen den Seitendruck beim Kauakt auftreten.

Ein durch die fertigen Wurzeln ausgeübter Seitendruck wirkt innerlich verstärkend und äusserlich dadurch formgestaltend auf diejenige Kieferplatte, nach welcher der Druck von der Wurzelspitze aus erfolgt. Der Orangutan hat demgemäss einen gewaltigen Lingualwulst, während der am wenigsten prognathe Anthropomorphe, nämlich der Gibbon, den Wulst nur in sehr geringem Massstabe besitzt. Anderseits ist die beginnende Wurzelkrümmung der Zähne abhängig von ihrer Entwickelung in einer neutralen Zone, welche vor dem Durchbruch durch die Richtung des geringsten Widerstandes im Knochen bestimmt wird. Am einfachsten liegen die diesbezüglichen Verhältnisse im vorderen Unterkiefer des Gibbon. Die Wurzeln entwickeln sich im gleichen Abstande von den Kieferknochen und erscheinen deshalb vollkommen gerade. Der wahrscheinlich der Stammform des Anthropomorphen eigne ursprüngliche Prognathismus ist hier nicht durch den übermässigen Gebrauch der Zähne wie bei den übrigen vermehrt. Beim Schimpanse und besonders beim Gorilla und Orangutan wurde der Kiefer mit der wachsenden Benutzung und Vergrösserung der Zähne immer stärker prognath (in der Species verstärkter Prognathismus). Bei diesen Anthropomorphen macht beim weiteren Wurzelwachstum auch die Beanspruchung des die Zähne umgebenden Knochengewebes durch die Funktion ihren Einfluss immer mehr auf die Krümmung geltend. Da das Wurzelwachstum der Richtung der den Zahn umgebenden Spongiosa, welche schon vorher durch funktionelle Anpassung in ihrer Lage bestimmt ist, folgt, so ist für die bleibenden Zähne bei den grossen Anthropomorphen eine Wurzelkrümmung der Vorderzähne stets rückwärts.

Beim Menschen müssten die Vorderzähne in Bezug auf Grösse bei Annahme einer gemeinsamen Stammform mit den übrigen Primaten allmählich reduziert sein. An der Reduktion seiner Eckzähne zweifelt eigentlich kein Anhänger der Descendenzlehre; die Schneidezähne sind bisher weniger beachtet. Und doch ist die Reduktion dieser Zähne in gewisser Weise massgebend für die Bildung des Kinnes. Darwin sagt schon in seiner Abstammung des Menschen, dass "die frühen männlichen Vorfahren des Menschen wahrscheinlich mit grossen Eckzähnen versehen waren; in dem Masse aber, als sie allmählich die Festigkeit erlangten. Steine, Keulen oder andere Waffen im Kampfe mit ihren Feinden zu gebrauchen, werden sie auch ihre Kinnladen und Zähne immer weniger und weniger gebraucht haben. In diesem Falle werden die Kinnladen in Verbindung mit den Zähnen an Grösse reduziert worden sein, wie wir nach zahllosen analogen Fällen wohl ganz sicher annehmen können." In ähnlicher Weise äussert sich späterhin Darwin noch einmal bei der Erläuterung des Gesetzes des Kampfes. Darwins Erörterungen mögen für den Eckzahn als Waffe des Männchens zutreffen, obgleich man meines Erachtens die starken Eckzähne der Affen ebenso gut als eine Neuerwerbung auffassen könnte; die Grösse der Schneidezähne bei den Anthropomorphen sowohl im Ober- wie im Unterkiefer wird gegenüber derjenigen beim Menschen nicht damit erklärt. Ein wirklicher Beweis war keinesfalls für die Annahme Darwins gebracht.

Man könnte wohl in dieser Richtung mehr die Anforderungen an die Kauwerkzeuge beim Ergreifen und Abbeissen der Nahrung mit in Betracht ziehen und folgende Schlüsse ziehen. Der Affe benutzt die Vorderzähne zur Zerkleinerung der mit den Händen festgehaltenen Nahrungsmittel in ausgiebigem Masse. Der Mensch lernte allmählich den Gebrauch der Hände zum vorherigen Zerkleinern der Speisen, bevor er den Bissen in den Mund brachte, noch weit mehr als der Affe. Die aufgeschlagenen Knochen von Tieren, um das Mark zu erlangen, zeugen davon, dass die diluvialen Menschenrassen schon frühzeitig diesen Brauch übten, ebenso wie sie allmählich die Eckzähne durch ihre Waffen zu ersetzen lernten. Die Schneidezähne bekamen so ganz verschiedene Funktionen. Die grösseren Arten der Anthropomorphen erhielten durch den vermehrten Gebrauch auch stärkere Vorderkiefer, und die Zähne schlossen sich der Beanspruchung auch in Bezug auf Grössenwachstum an. Roux hat schon 1880 gelehrt, dass die "korrelative Variabilität" beim Wechsel der Grösse eines Organes oft Zweckmässiges direkt hervorbringt, indem auch Nachbarorgane sich entsprechend in der Grösse verändern. Durch die gleichmässige, grössere Beanspruchung der Zähne in horizontaler Richtung nach vorn, welche beim Abreissen des Bissens erfolgt, wurden bei den Affen beide Kiefer deshalb stärker prognath. Diese Eigenschaft wurde allmählich vererbbare Rasseneigentümlichkeit, wird aber noch heute durch das einzelne Individuum infolge der gleichen Beanspruchung während seines Lebens für sich erworben und womöglich vermehrt. Ältere Affenkiefer zeigen dementsprechend vor jungen immer noch ausser der angeborenen eine individuell erworbene Prognathie. Sie nähern sich damit der Kieferform

der Pflanzenfresser überhaupt. Die Härte der Nahrungsmittel bedingte auch eine Vergrösserung der Schneidezähne bei den Affen, um jede vordere Zahnreihe zu einem fortlaufenden Meissel zu gestalten. Wir haben nun den Fall, dass, wie Roux treffend sagt, die Organe — Kiefer und Zähne — sich so gross entwickeln, als es der zugeführten Reizgrösse, also dem Bedürfnis des Organismus entspricht.

Die korrelative Variabilität liess dann aber noch einen anderen direkten Vorteil entstehen. Die enormen Schmelzfalten auf den Zähnen des Orangutan ebenso wie die Vergrösserung der Höcker auf den Backzähnen des Gorilla sind für das Festhalten der Speisen als zweckdienliche Abänderungen der ursprünglichen Form anzusehen. Mit der zunehmenden Prognathie und dem dadurch entstehenden grösseren Raum im Munde könnte man wohl auch die von Selenka gemachte Beobachtung in Zusammenhang bringen, wonach der Orangutan und Gorilla noch neue vierte Molaren erwerben. Sie würden damit immer mehr von der gemeinsamen Stammform abweichen und "tierischer" werden.

Beim Menschen trat das Umgekehrte ein. Durch die Erfindung von Werkzeugen, welche die Nahrungsmittel zerkleinerten, und durch den Gebrauch des Feuers für die Zubereitung der Speisen haben die Schneidezähne und damit auch die Kiefer im vorderen Teile ihre frühere Thätigkeit zum grossen Teil verloren. Die Folge war eine Reduktion dieser Organe an Grösse, welche für den Menschen in Rücksicht auf die erworbene Funktion der Sprache und Erhaltung einer geschlossenen vorderen Zahnreihe sogar von Wert wurde. Der Eckzahn schloss sich dem an. Seine frühere eventuelle Thätigkeit als natürliche Waffe kam jedenfalls durch die Erfindung künstlicher nicht mehr in Betracht. Aus der prognathen Form des Kiefers wurde durch die Grössenverminderung der Zähne und des davon abhängigen Alveolarprozesses eine orthognathe. Die Basis des Unterkiefers folgte beim Menschen jedoch der Reduktion der Zähne und des damit engververbundenen Alveolarfortsatzes nicht. Die Zunge wurde für den Menschen zu einem noch wichtigeren Organ. Die Stammform dieser Organe, ursprünglich nur als Hülfsmittel für den Kauakt dienend, übernahm allmählich eine neue Funktion, — nämlich die Unterstützung der Sprachbildung. Der Raum für die Kiefer- und Zungenmuskulatur musste schon aus letzterem Grunde erhalten, wenn nicht vergrössert werden.

So würde man sich ungefähr den Einfluss der Zahnreduktion und der veränderten Stellung nach den Lehren der Descendenzlehre vorzustellen haben; indessen sind solche Schlüsse so lange verfrüht und angreifbar, bis wirklich sichere Beweise dafür erbracht werden können.

Sind diese Beweise durch Vergleich und Beobachtungen an dem heute uns zur Verfügung stehenden Material zu liefern?

Vergleich der Unterkiefer-Formen des diluvialen und recenten Menschen.

Den bisherigen Resultaten der vorliegenden Arbeit entsprechend musste eine erneute Untersuchung jener erwähnten menschlichen Unterkiefer aus der Diluvialzeit von höchstem Interesse sein, welche schon wiederholt der Gegenstand lebhaftester Diskussion gewesen sind. Speziell der in der Schipkahöhle von Professor Maschka aufgefundene Unterkiefer und ein solcher aus den Höhlen von la Naulette zeigten so besondere Eigenschaften der äusseren Form, dass zunächst grosse Zweifel darüber auftauchten, ob man hier nicht zum mindesten Übergangsformen vom Menschen zum Affen vor sich habe. Eine Anzahl von Autoren haben die Kiefer direkt für pithekoid erklärt, während andere sie für pathologische Erscheinungen hielten. Es war nun im hohen Grade wünschenswert über die innere Struktur dieser Kiefer Aufschluss zu erlangen. Man muss auf diesem Wege weit eher zu Erklärungen dieser merkwürdigen äusseren Formen, welche von denjenigen der heutigen Menschen so bedeutend abweichen, kommen und Rückschlüsse auf die Entstehung derselben machen können.

Der Streit, welcher sich über die eigentümlichen, vom recenten Menschen abweichenden äusseren Formen der diluvialen Kiefer und speziell über den Schipkakiefer vor zwei Jahrzehnten erhoben hatte, konnte infolge der geringen Ausdehnung der Objekte und der alleinigen Untersuchung der äusseren Form nicht zu Gunsten der einen oder anderen Partei definitiv entschieden werden. Durch die neue Untersuchungsmethode der inneren Knochenstruktur mittelst Röntgenstrahlen musste meines Erachtens zum mindesten ein sicherer und damit sehr wichtiger Schluss auf das Alter des Individuums, welchem der Schipkakiefer angehörte, gewonnen werden können.

Es konnte früher noch nicht einmal unwiderlegbar festgestellt werden, ob z. B. der Schipkakiefer einem Kinde oder einem Erwachsenen angehörte. Die enorme Grösse desselben sprach für die letztere Ansicht. In keiner anatomischen Sammlung fand sich ein kindlicher Kiefer von solcher Grösse. Die Eigenschaften der Zähne scheinen dagegen für einen kindlichen Kiefer zu sprechen.

Herr Professor Maschka stellte mir den Schipkakiefer für eine erneute Untersuchung in liebenswürdigster Weise zur Verfügung. Das Kieferstück befindet sich noch in demselben Zustand, wie es von den Professoren Schaaffhausen, Virchow u. a. beschrieben und durch mehr oder weniger gelungene Holzschnitte abgebildet ist. Da noch keine genauen photographischen Reproduktionen des Schipkakiefers vorhanden sind und die nachfolgenden Röntgenaufnahmen besser verständlich sind, so gebe ich in Figur 28—32 das hochinteressante Objekt in verschiedenen Ansichten und in natürlicher Grösse wieder.

Hervorragende Abweichungen von der heutigen menschlichen Kieferform sind beim Schipkakiefer die Entwickelung des Knochens in der Höhe und Dicke, die Breite der Basalfläche, das mangelnde Kinn, das Vorhandensein einer Grube an Stelle der Spina, das Eintreten eines Gefässes in dieser Grube, die Grösse der Zähne und Wurzeln, und die Wurzelkrümmung.

Sehen wir zunächst von den abnormen Grössenverhältnissen des Kiefers und der Zähne ab, so kommen im wesentlichen nur jene Abweichungen der äusseren Form in Betracht, welche durch die im vorigen Kapitel geschilderten Faktoren für die Entstehung der inneren Struktur im Basalteile des Kiefers beeinflusst werden können. Hier finden sich in der That am Schipkakiefer, aber auch in anderen vielen Kiefern äussere Formen, welche denen der Affenkiefer zum mindesten in hohem Grade ähnlich sind. Maschka, Wankel und Schaaffhausen haben deshalb den Schipkakiefer für "pithekoid" erklärt.

Hauptsächlich stützen sich die Verteidiger dieser Anschauung auf die Grube, welche an Stelle der Spina mentalis interna des heutigen Menschen am Schipkakiefer vorhanden ist.

Allgemein wird als Zweck der Spina mentalis interna eine bessere Anheftung des M. genioglossus an die hintere Kieferplatte angesehen. Nach Virchow erhebt sich die Spina mentalis interna des Menschen von den beiden Rändern der verknöcherten Symphyse gewöhnlich in zwei, seltener in vier Spitzen. Später verschmelzen dieselben meist zu einer einzigen. Oberhalb dieser Spina befindet sich nach Virchow konstant jenes von ihm geschilderte, in einer Fossula supraspinata gelegene Gefässloch, welches von oben nach unten in den Knochen dringt.

Ein einziges Gefässloch in der Medianlinie kommt nun sowohl bei dem Kiefer von La Naulette als auch beim Schipkakiefer, ebenso bei dem noch zu beschreibenden Kiefer von Prédmost und bei anderen diluvialen Kiefern konstant und zwar in einer Grube vor. Da nun bei den Affen in der Grube, welche zum Ansatz des M. genioglossus dient, ebenfalls Gefässe eintreten, so schloss man, dass die Gruben einander gleich seien, mithin dieselbe beim Schipkakiefer pithekoid sei.

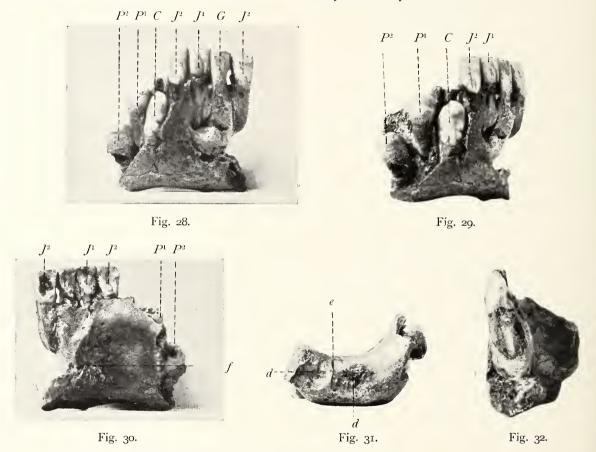


Fig. 28. Schipkakiefer, Vorderseite, natürliche Grösse.

 J^2 J^1 J^2 Incisivi. G Durch Gips ersetzter Incisivus. C Caninus. P^1 P^2 Prämolaren.

Fig. 29. Schipkakiefer, Seitenansicht von rechts, natürliche Grösse.

Fig. 30. Schipkakiefer, Rückfläche, natürliche Grösse.

Dieselben Bezeichnungen der Zähne. f Foramen, in einer Grube liegend, von Virchow als Fossula supraspinata bezeichnet.

Fig. 31. Schipkakiefer, Basalfläche, in natürlicher Grösse.

d, d Gruben des M. digastricus. e feine Knochenleiste.

Fig. 32. Schipkakiefer, Seitenansicht von links, natürliche Grösse.

Der linke zweite Incisivus zeigt eine gewaltige Wurzelentwickelung in der Sagittalebene. Die Wurzel ist wie die der übrigen Incisivi der Kiefer nach rückwärts gebogen.

Die Definition einer "pithekoiden" Grube nach Virchow, welche ich auf Seite 261 dieser Abhandlung wiederholte, trifft für den Schipkakiefer bis auf die "Grösse" der Grube, welche in der That bei demselben gering ist, wörtlich zu.

Vom Kiefer von La Naulette behauptet allerdings Virchow direkt, dass die an ihm vorhandene Vertiefung der Fossula supraspinata nicht entspricht. Es läuft mitten durch dieselbe eine vertikale Leiste und zu jeder Seite derselben liegt eine rundliche Grube. Es sei also ein Fall von Mangel der Spina mentalis interna mit grubiger Vertiefung der Ansatzstellen der Muskeln. Demnach wäre die Grube nicht pithekoid. Schaaffhausen hat in seiner zweiten Schrift (Verhandlungen des naturhistorischen Vereins der preussischen Rheinlande und Westfalens 1883) die Virchowsche Anschauung

heftig angegriffen. Schaaffhausen liess den Kiefer von La Naulette im Original nochmals untersuchen und teilt das Ergebnis in folgenden Worten mit: "Statt der Apophyses genioglossi finden sich zwei durch eine mediane Leiste getrennte Gruben, von denen jede 3 mm breit und 5 mm lang ist. Die Leiste teilt sich in ihrem oberen Teil wie ein Ypsilon in zwei Schenkel, zwischen welchen sich ein Gefässloch befindet. Die Apophyses geniohyoidei sind flache Rauhigkeiten auf dem unteren Rande jener Grube, sie sind 8 mm lang und 10 mm breit. Diese flachen Höcker reichen an jeder Seite bis zu dem Punkte, wo sich die Linea maxillaris interna mit dem unteren Rande des Sulcus mylohyoideus verbindet." Nach dieser Darstellung, welche man wohl als kompetent erachten muss, weil sie von den Professoren Albrecht und Dollo in Brüssel selbst angestellt wurde, wäre also ein Unterschied von dem Schipkakiefer nicht vorhanden. Auch dieser hat unter dem Gefässloch eine mediane Leiste, welche sich auf halber Höhe Yartig teilt. Die Schenkel umschliessen sanft verlaufend noch den untersten Teil der Grube, in welcher das Gefässloch liegt. Ich gebe in Fig. 33 die strittige Partie des

Fig. 33.
Schipkakiefer, Rückfläche, von der Basis bis zur halben Höhe. 3½ mal vergrössert.
F Foramen, von Virchow als Fossula supraspinata bezeichnet.
R Gefässrinne.

L L' Leisten sich nach unten vereinigend (Y-Form).

Schipkakiefers in 3¹/2 facher Vergrösserung wieder. Man sieht, dass zwischen den Schenkeln des Y eine median verlaufende Gefässrinne von der Grube zur Gabelung des Y führt und erst dann die Leiste beginnt. Die Höcker unter der mit einem Gefässloch versehenen Grube entsprechen (nach Schaaffhausen) der Spina. Nach Virchow fehlt beim Schipkakiefer die Spina mentalis interna überhaupt, ohne dass sie durch eine Vertiefung ersetzt würde. Vielmehr "sei die Stelle der Spina unterhalb der Fossula halbwegs zwischen ihr und der hinteren Basalfläche zu suchen, wo ein niederer Querwulst mit einigen Vertikalleistchen zu sehen ist". Virchow sagt in diesem Falle

sei das Gefässloch des Schipkakiefers unzweifelhaft nicht pithekoid. Schaaffhausen behauptete dagegen gerade das Gegenteil. Man ersieht aus dieser kurzen Rekapitulation der Ansichten der beiden grossen Forscher auf diesem Gebiete, dass sie teilweise zu direkt entgegengesetzten Resultaten gekommen sind. Wie ich glaube, ist hier das unbedingte Suchen nach fehlenden Spina mentalis interna ganz unnötig. Eine Grube bietet an sich für den in ihr inserierenden Muskel denselben Halt, wie eine Spina, wenn nur die noch zu besprechende Bedingung erfüllt wird, dass die Grube zum mindesten auf einer ebenen Fläche liegt. Das Gefäss tritt beim Schipkakiefer im tiefsten Punkte der Grube ein und um dasselbe herum sassen die einzelnen Sehnenbündel des M. genioglossus, welche kleine Erhabenheiten des Knochens für sich hervorriefen, und sogar zwischen sich noch Platz für kleinere auf der Oberfläche des Knochens verlaufende Gefässe lassen. Die Annahme Virchows, dass die Spina beim Schipkakiefer seitlich von der Gabelung des Y auf dem Querwulst zu suchen sei, kann keinenfalls als für die Insertionsstelle des M. genioglossus zu Recht bestehend angesehen werden. Diese Erhabenheiten sind die Ansatzstellen des M. geniohyoidei (in Fig. 33 in Höhe der Hinweisungsstriche LL'). Es lag offenbar als Abzweigung von dem Hauptgefäss, welches durch das Foramen F in den Knochen eindrang, ein kleineres Gefäss auf dem Knochen in der Rinne R. Die Grube, in welcher das Foramen F liegt, ist beim Schipkakiefer nicht sehr gross. An ihren Rändern sind jene wallartigen Vorsprünge für die Ansätze des M. genioglossus. Das Foramen bildet aber nahezu den Mittelpunkt nicht allein der Grube, sondern auch der Umwallung, welche somit allein durch den M. genioglossus gebildet wird. Die hier fehlende Spina mentalis interna des Menschen könnte also höchstens mit dem M. genioglossus in Zusammenhang gebracht werden und nicht mit dem M. geniohvoideus.

Baume hat die Kiefer von La Naulette und der Schipkahöhle und zwar in einer eingehenden Untersuchung geschildert und wendet sich auch gegen die Virchow sche Ansicht, dass die Spina bei diesen Kiefern fehle, ohne dass sie durch eine Vertiefung ersetzt wäre. Dieser Autor bezeichnet jene Vertiefung, in welcher bei den Affen die M. genioglossi liegen, als sublinguale Exkavation und bildet eine solche Grube im Gegensatz zu Virchow auf beiden Seiten ab. Baume hält dagegen die Fossula supraspinata beim Menschen für eine zufällige Formation, "weil das Gefässloch einen sehr variablen Sitz hat und in der Regel eine Vertiefung, also eine Fossula, in welcher das Foramen liegen soll, selbst bei starker Lupenvergrösserung nicht zu erkennen ist."

Bei der Wichtigkeit einer genauen Erklärung der betreffenden Kieferpartien in der äusseren Form, wie sie Baume gab, möchte ich dieselbe hier wiederholen. Derselbe sagt folgendes:

"Zugegeben, es bestände eine solche Fossula supraspinata beim Menschen, so würden ja die Ansatzpunkte der Mm. genioglossi unter ihr, also unter der Exkavation auf der als Spina mentalis interna bekannten Knochenerhebung liegen. Bei den Affen liegen jedoch die Insertionsstellen der Genioglossi samt einem oder mehreren Foramina zum Durchtritt grösserer Blutgefässe in die sublinguale Region unter einem Knochenwulst in der Exkavation, wie bei den beiden diluvialen Kiefern."

"Demnach ist die Sublingualexkavation von einer Fossula supraspinata, wenn dergleichen wirklich vorkommt, was ich überhaupt bestreite, grundverschieden. Es ist beim Menschen nichts vorhanden, was der grossen Sublingualexkavation beim Affen entspricht. Diese in Rede stehende Exkavation ist bei beiden diluvialen Kiefern wohl vorhanden, findet aber kein Analogon beim Menschen und erinnert lebhafter als jeder andere Teil der Fläche des Mittelstückes an den äffischen Typus. Wir haben demnach die grubig vertieften Mm. genioglossi ohne Spina in einer Exkavation, wie sie Professor Virchow als pithekoid verlangt, vor uns. Schon bei der genaueren Betrachtung der etwas abgeänderten Richtung der ganzen Kinngegend können wir uns der Vorstellung nicht erwehren, dass mit der mangelnden Protusion auch die innere Oberfläche im ganzen eine andere Richtung nehmen und im einzelnen anders modelliert sein muss. Beim Kind ist die Protusion des Kiefers nicht in dem Masse ausgesprochen wie beim Erwachsenen. Die Spina mentalis interna ist bei Kindern, wie schon gesagt, gewöhnlich schwach ausgebildet. Dagegen finden wir die Insertionsgruben der Mm. genioglossi nicht zu selten. Erst mit der vorschreitenden Protusion hebt sich die Spina deutlicher hervor und sitzt immer an der Stelle, wo der Knochen nach vorn umbiegt. Beim jungen Anthropoiden ist ferner die sublinguale Exkavation noch nicht so scharf wie beim erwachsenen Individuum ausgeprägt und könnte in diesem Stadium eher mit den beiden in Rede stehenden diluvialen Kiefern verglichen werden, als mit demjenigen erwachsener Affen. Erst wenn der Kiefer seine volle Grösse erreicht hat und unten scharfkantig nach hinten retrahiert ist, dann tritt die schärfste Ausprägung der sublingualen Exkavation in typischer Form ein. Diese Thatsachen weisen darauf hin, dass die Modellierung der Innenfläche von der Gesamtrichtung abhängig ist."

Dass eine Fossula supraspinata über der Spina häufig vorkommt, was Baume verneint, und dass diese Grube sogar ein grösseres Foramen im Grunde zeigt, kann ich nach zahlreichen Untersuchungen menschlicher Kiefer bestätigen. In dem letzten Ausspruch Baumes liegt dagegen offenbar sehr viel richtiges, der Zweck eines Foramen supraspinatum respektive auch derjenige eines eintretenden Gefässes über der Spina mentalis interna des heutigen Menschen ist jedoch nicht damit erklärt. Hier konnten nur wieder Kieferquerschnitte entscheiden. In der That fand sich, dass bei Kiefern, in

denen das Trajektorium des M. genioglossus oberhalb der Spina stärker ausgebildet war, ein Gefäss auch oberhalb der Spina mentalis interna häufig und zwar parallel jenem Trajektorium in die Spongiosa eindrang. Dasselbe verläuft jedoch immer unter oder zwischen jenem Trajektorium des M. genioglossus, noch genauer definiert, in der neutralen Axe jenes. Denn auch unterhalb des Hauptzuges der Knochenbalken ist noch deutlich eine wenn auch schwächere Knochenbälkchenverdichtung vorhanden. (Siehe Fig. 34 a und b.) Das Trajektorium des Genioglossus hat also etwa die Gestalt eines Hohlcylinders. Offenbar hat dieses Gefäss den Zweck, für die

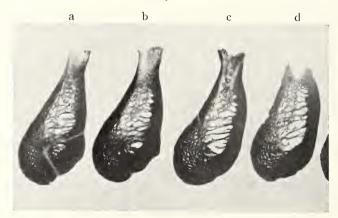


Fig. 34. Menschlicher Unterkiefer, Querschnitte von der Medianlinie bis zum Eckzahn.

Starke Entwickelung des Trajektoriums des M. digastricus und des M. genioglossus oberhalb der schwachen Spina. Gefässverteilung im Knochen, speziell Eintritt des Gefässes in eine Fossula supraspinata bei a. Das Kinn ist auch seitlich von der Medianlinie stärker ausgebildet, und erscheint hoch

Ernährung des Trajektoriums zu sorgen. Fig. 34 zeigt die Lagerung der anatomischen Bestandteile. Das fragliche Gefäss kommuniziert hier einerseits mit einem solchen, welches in der Richtung des Zuges des M. digastricus verläuft und für das Trajektorium dieses Muskels sorgt. Anderseits steigt eine weitere Abzweigung von der Vereinigungsstelle jener Gefässe aufwärts zum Alveolarfortsatz. Es durchbohrt aber nicht die vordere Kieferplatte am Kinn, wo das starke Trajektorium des M. digastricus in diesem Präparat den Durchtritt verhindert. Wie überall lagern sich grössere Gefässe mög-

lichst in neutrale Zonen ein und versorgen dann durch kleine seitliche Abzweigungen die benachbarten Trajektorien, während erstere letzteren möglichst parallel laufen.

Wer die Trajektorienbildungen durch die Funktion der Kiefer- und Zungenmuskeln beachtet, wird sich nicht mehr der Anschauung hingeben, dass ein Foramen an der Rückseite des Kiefers ein bestimmtes anatomisches Merkmal ist, sondern wird die Ausbildung eines solchen Gefässes, der individuellen Anpassung gemäss, nur als ein Hilfsmittel für die notwendige grössere Ernährung eines Teiles der Spongiosa ansehen, welches durch die Muskelfunktionen zu einer grösseren Thätigkeit gezwungen ist. Folgt man dieser Auffassung der Gefässentwickelung im Knochen, so wird auch leicht der Eintritt der Gefässe in denselben erklärlich. Jene beiden grossen Foramina,

welche in der Grube des Affenunterkiefers eintreten, sind durchaus verschieden von einem Gefässe, welches in einer "Fossula supraspinata" des Menschen eintritt. Dieses ist allein für das Trajektorium des M. genioglossus bestimmt, jene ernähren durch zahlreiche Verzweigungen jederseits den eigentlichen Kieferkörper und dringen häufig an der inneren Kieferplatte mit besonderen Verzweigungen bis zum Alveolarfortsatz vor. Der starke Lingualwulst der hinteren Kieferplatte bei den grossen Anthropomorphen erfordert einen weit grösseren Zufluss des Ernährungsmaterials als die ziemlich gerade Kieferplatte des Menschen und des Gibbon. Deshalb steht die se Gefässentwickelung bei den grossen Anthropomorphen offenbar im direkten Verhältnis zur Beanspruchung des Kieferkörpers, speziell jenes Teiles derselben, welcher durch die Zähne beim Kauakte mehr oder minder stark beansprucht wird. Die Entstehung und Lage einer Spina mentalis interna des Menschen ist von der Entwickelung der grösseren Gefässe, welche in die hintere Kieferplatte bei sämtlichen Primaten eintreten können, unabhängig. Die Spina mentalis interna findet sich nun nach meinen Beobachtungen nahezu immer an dem Punkte der Medianlinie, wo beim Menschen der Kieferkörper an den Basalteil grenzt. Hier stossen häufig die beiden Kraftbahnen, welche durch die Wirkung der M. temporales hervorgerufen werden, in der Medianlinie zusammen. Zugleich setzt an dieser Stelle beim Menschen der M. genioglossus an. Die Spina mentalis interna entsteht somit an dem Punkte, wo die Beanspruchung des Knochens eine sehr starke und wechselnde ist. Beim menschlichen Kiefer ist deshalb die Corticalis, abgesehen infolge der Zahnstellung, auch aus diesem Grunde an der Innenseite weit stärker als bei den Affen, und an der Ansatzstelle der Spina beim Kiefer des Menschen besonders ausgebildet. Die nahezu gleichartige Richtung des Zuges vom M. genioglossus bei den Anthropomorphen mit derjenigen des M. digastricus und zugleich die unregelmässige, geringe Thätigkeit des M. genioglossus geben Veranlassung, dass bei den Affen die Grube vollauf zur Insertion des M. genioglossus genügt.

ZSCHOKKE (Weitere Untersuchungen über das Verhältnis der Knochenbildung 1892) hat im allgemeinen nachgewiesen, dass, wo reiner Zug besteht, d. h. wo die Ränder nicht auf knöcherne Unterlagen drücken, sondern wo sie z. B. senkrecht zur Knochenfläche sich inserieren, sozusagen niemals ein Fortsatz, sondern vielmehr eine Grube sich vorfindet. Er erinnert an den M. flexor digitorum pedis brevis und zahlreicher anderer Gruben, welche zur Aufnahme von Rändern dienen.

Die Bildung einer Spina mentalis macht von dieser Regel keine Ausnahme. Bedingung für eine Grubenbildung beim Muskelansatz ist, dass die Ansatzstelle mindestens auf einer geraden Fläche sich befindet. Noch günstiger ist, wie es bei den Affen in der That der Fall ist, wenn der Muskel in einem Winkel ansetzt, welcher unter 180° beträgt. Der bei den Affen durch die Thätigkeit des M. digastricus umgebogene Rand schuf in der That einen solchen Winkel an der inneren Kieferplatte. Beim heutigen Menschen sind die anatomischen Verhältnisse gerade die umgekehrten. Kieferkörper und Basalteil bilden in ihrer Stellung einen weit grösseren äusseren Winkel als 180°. Und gerade am Scheitelpunkte dieses Winkels befindet sich die Ansatzstelle des M. genioglossus. Es giebt kaum eine günstigere Stelle für die Bildung einer Spina!

Ich schreibe die ungleichmässige Ausbildung dieser Kieferform beim Menschen und Affen der verschiedenartigen Stellung des Kopfes zum Rumpfskelett zu. Mit der steileren Lage des M. digastricus, welche eine Folge des aufrechten Ganges des Menschen ist, muss sich die hintere Kieferplatte in ihrer Form stark gegen den Typus der übrigen Primaten verändern. Eine mehr oder minder starke Beteiligung des M. digastricus bei der Funktion des Unterkiefers muss die Gestalt der Basalfläche unterhalb des Genioglossus schon unbedingt beeinflussen. Eine Umbiegung des Unterkieferrandes nach hinten, wie es bei den grossen Anthropomorphen der Fall ist, ist beim Kiefer des Menschen bei seiner Kopfstellung überhaupt nicht möglich. Dagegen muss mit der Steilstellung des M. digastricus bei einem sehr starken Gebrauche des letzteren eine breitere Basalfläche die notwendige Folge sein. Es können alsdann Kieferformen vorkommen, bei welchen, wie Virchow vom Kiefer von La Naulette sagt, "ein Teil der hinteren Fläche gleichsam nach vorn gewendet ist und mit dem unteren Rande eine verhältnismässig breite Basalfläche bildet. Die vordere Fläche dieses Kiefers stellt eine breitgerundete Wölbung dar, an der freilich nur eine schwache mentale Hervorragung zu bemerken ist, die aber keineswegs nach rückwärts gerichtet Mit der steileren Stellung des M. digastricus durch den aufrechten Gang des Menschen konnte es bei bestehendem Prognathismus zur Ausbildung eines Kinnes weit weniger kommen, weil sich das Trajektorium des M. digastricus mehr dem Verlaufe der vorderen Kieferplatte anschliesst. Jene schwache mentale Hervorragung an diesem Kiefer ist meines Erachtens nur auf die Thätigkeit des M. genioglossus zurückzuführen, dessen Trajektorium aber allein niemals zur vollendeten Kinnbildung führen kann. Dazu gehört unbedingt die noch zu besprechende Reduktion der Zähne und des Alveolarfortsatzes, des ursprünglich prognathen Kiefers an Grösse. Erstere ist bei dem Kiefer von La Naulette und der Schipkahöhle keinesfalls so ausgeprägt, wie bei dem heutigen Menschen. Mit jener Verbreiterung der Basalfläche eines menschlichen Kiefers muss aber auch die innere Kieferplatte eine geradere

werden. Dadurch erhält der M. genioglossus eine ähnliche Möglichkeit, zu inserieren, wie bei den Affen. Letzteres ist bei den bisher aufgefundenen diluvialen Kiefern der Fall. Die Ausbildung einer Spina mentalis interna kann bei den heutigen Menschen, wie schon Topinard berichtet hat, im höchsten Grade variieren. Ja, es kommt vor, dass der M. genioglossus in gerader Anheftung ohne sichtbare Erhöhung oder Vertiefung, aber auch sogar unter Umständen in einer Grube anheftet. Nach meiner Darlegung glaube ich auf das Bestehen oder Nichtbestehen einer Spina mentalis interna beim Menschen in Rücksicht auf die Stammesgeschichte keinen so grossen Wert legen zu dürfen. Sie ist weder spezifisch menschlich, noch ist ihr Fehlen spezifisch äffisch. Ihr Entstehen ist jedoch an die Form der inneren Kieferplatte gebunden. Bedingung für sie ist, dass die innere Kieferplatte an der Ansatzstelle des M. genioglossus nicht zu einer geraden Linie wird, oder dass gar, wie es bei den Affen der Fall ist, der Winkel weniger als 180° beträgt. Alsdann kommt es jedesmal für die Insertion des M. genioglossus zur Grubenbildung.

Die Ursache für die Bildung der Spina mentalis interna beim Menschen, sowie die Grubenbildung bei den Affen ist nur in der Abänderung der Kieferform durch die besondere Funktion der Muskeln zu suchen. Für die Gestaltung des Basalteiles des Vorderkiefers kommt zwar auch die Stellung und Beanspruchung des M. digastricus in Betracht. Der M. genioglossus des Menschen hat jedoch ebenfalls einen sehr wichtigen Einfluss, welcher am besten erörtert wird, nachdem die folgenden Resultate meiner Untersuchung über die innere Struktur der diluvialen Kiefer erläutert sind.

Die Kiefer aus der Schipkahöhle, von Prédmost und von Krapina und ihre innere Struktur.

Der interessanteste aber auch viel umstrittenste aller bisher aufgefundenen diluvialen menschlichen Kiefer ist unbedingt derjenige aus der Schipkahöhle. Ich habe eine grosse Anzahl von Aufnahmen mit Röntgenstrahlen von demselben angefertigt. Einige derselben gebe ich in den Figuren 35, 36 und 37 wieder. Die erhaltenen Resultate waren in hohem Grade befriedigend, weil vieles bisher Zweifelhafte durch diese Aufnahmen mit Sicherheit entschieden werden kann.

Die Ergebnisse waren folgende:

Die drei Schneidezähne sind, wie auch schon Virchow betont hat, bis auf das Dentin abgekaut. Die Wurzeln derselben sind vollständig ausgebildet, nur der rechte äussere Schneidezahn steht genau in seiner Alveole, während die beiden anderen nicht absolut der Alveolenwand anliegen. Jedoch ist die Abweichung von der normalen Stellung so gering, dass sie bei den allgemeinen Schlussfolgerungen nicht in Betracht kommen kann. Geradezu auffallend ist die grosse Weite der Wurzelkanäle in den Schneidezähnen und sie betrachte ich als absolutes und sicherstes Zeichen dafür, dass der Kiefer nur einem Kinde angehören kann, dessen Alter ich nach dem Bilde auf zehn Jahre annehme. Bei genauer Betrachtung der Wurzelspitzen erkennt man, dass dieselben gerade eben erst vollendet sein können. Die Wurzeln stehen, abgesehen von ihrer schon äusserlich sichtbaren Krümmung nach hinten, genau so in dem stark ausgebildeten Alveolarfortsatze wie bei den heute lebenden Menschen im Alter von zehn Jahren. Vergleichende Röntgenaufnahmen ergaben bei Kinderzähnen proportional dieselbe Weite der Pulpenkanäle. Den Schneidezähnen entspricht die Ausbildung der übrigen im Kiefer enthaltenen drei Zähne vollkommen. Bei den Radiogrammen ist das Verhalten des

Eckzahnes von höchster Bedeutung, welcher bei der äusseren Betrachtung des Präparates nicht wie die beiden Prämolaren zu Tage liegt, sondern von der erhaltenen vorderen Kieferplatte grösstenteils verdeckt ist. Die Röntgenaufnahme zeigt den Eckzahn in einer gewaltigen Anlage, obgleich die Wurzelbildung noch nicht einmal soweit fortgeschritten ist, dass es zur Verengerung des Pulpakanales kam. Der Eckzahn hätte nach seiner Entwickelung jedenfalls eine ganz enorme Grösse erreichen müssen. Die Pulpahöhle ist so weit, dass ein 4-5 mm langer Draht, welchen offenbar

ein früherer Untersucher am augenblicklichen Wurzelende eingeführt hat, noch nicht einmal den Raum der Pulpahöhle in der Breite ausfüllt. Man sieht an dem Wurzelende dieses Eckzahnes noch deutlich die verdichtete Spongiosa als Widerlager für den wuchernden Pulpawulst. Dasselbe schliesst sich in seiner Form genau den Dichtigkeitsverhältnissen der umgebenden Knochensubstanz an. Der Eckzahn steht mit seiner mesialen und distalen Seite nahezu auf der für dieses Alter normal dicken Substantia compacta der Basalfläche, und der trennende Pulpawulst hatte ein durchaus normales Aussehen. Damit wird die von Virchow ausgesprochene Meinung, dass es "ziemlich wahrscheinlich sei, dass die Wurzel des Eckzahnes ausgebildet ist, obwohl derselbe noch nicht durchgebrochen ist", durchaus unhaltbar. Es ist beim Eckzahn sogar noch nicht einmal die eigentliche Wurzelbildung so weit fortgeschritten, dass eine Verengerung des Pulpakanales die erstere auch im Inneren des Zahnes anzeigt.

Fig. 35. Schipkakiefer, Röntgenaufnahme von vorn.

Die Aufnahme zeigt die weiten Pulpakanäle der eben fertig entwickelten Schneidezähne und des noch wurzellosen Eckzahnes. Trajektorien des M. digastricus ist ziemlich schwach, dasjenige des genioglossus (g) nur andeutungsweise vorhanden. Die Substantia compacta an der Basalfläche ist stark entwickelt.

Die beiden Prämolaren stehen entwickelungsgeschichtlich auf demselben Standpunkte wie der Eckzahn und die Schneidezähne für das oben angegebene Alter. Die Wurzelenden sind etwas verletzt, aber die Weite der Wurzelkanäle entspricht durchaus derjenigen eines Kindes. Ich erwähnte schon die für dieses Alter normale Substantia compacta der Basalfläche. Die gesamte Spongiosa weicht nicht von derjenigen eines normalen zehnjährigen Unterkiefers des heutigen Menschen ab.

Durch diese Röntgenaufnahmen werden eine grosse Anzahl strittiger Punkte über dieses Kieferstück definitiv erledigt. Der Kiefer ist zunächst, wie schon erwähnt, in Bezug auf das Alter des Individuums als von einem zehnjährigen Kind Stammend (ganz im Gegensatz zu Virchow) festgelegt. Das beweist der augenblickStand der Entwickelung sämtlicher Zähne. Die Stellung der letzteren ist von
Schaaffhausen bei der Restauration des Kiefers nahezu vollständig richtig wiederhergestellt worden. Die Virchowsche Meinung, dass vielleicht auch die Wurzel des Eckzahnes vollständig ausgebildet sei, während die Wurzeln der beiden Prämolaren
eine ganz unentwickelte Beschaffenheit hätten, wird durch die Röntgenaufnahme direkt
widerlegt. Der Zweifel Virchows, dass die Kronenform, die Grösse der Zähne, die
Neigung zur Vermehrung der Cuspidation an den Prämolaren bei den heutigen Menschen
nicht vorkomme, und dass somit eine durchgreifende Bildungsanomalie und zwar eine
Excessbildung von allen Zähnen erkennbar sei, ist schon durch Baume in seiner Ab-

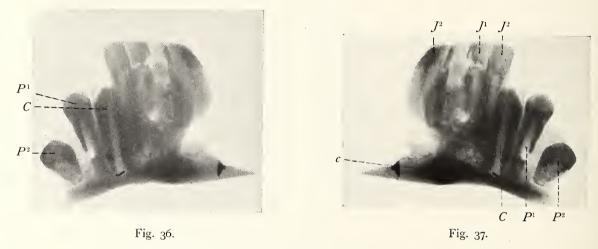


Fig. 36. Schipkakiefer, Röntgenaufnahme, von der rechten Seite.

Die Aufnahme zeigt die unfertigen Prämolaren und den Caninus.

Fig. 37. Schipkakiefer, Röntgenaufnahme, etwas schräg von der Rückseite (mit Film).

Bei c Verstärkung der Compacta an der Symphyse.

handlung bestritten. Die vorliegenden Röntgenaufnahmen entscheiden hier zu Gunsten Baumes. Ich werde noch am Prédmoster und Krapina-Kiefer nachweisen, dass eine Vermehrung der Cuspidation bei den diluvialen Menschen eine Rasseneigentüm-lichkeit war. Wer übrigens die höchst variablen Formen der Kronen und Wurzeln bei den heutigen Menschen beobachtet hat, kann sich nur der Meinung Baumes anschliessen, dass bedeutende Differenzen der Grösse und Form der Kronen sowie der Wurzelstellung, Krümmung und Teilung vorkommen. Immerhin ist es bemerkenswert, dass die Grösse der Zähne beim Schipkakiefer eine gewaltige ist. Eine durchgreifende Bildungsanomalie, wie Virchow annimmt, besteht aber darum durchaus nicht. Im Gegenteil, die Aufnahmen zeigen vergleichend nicht allein eine ge-

waltige Kieferentwickelung, sondern der letzteren entsprechend eine ganz harmonische Zahnentwickelung. Zwar haben die Wurzeln der Incisivi einen abnormen Durchmesser in der Sagittalebene, aber sie passen, obwohl sehr gross, doch sehr guten, zu dem sich entwickelnden Eckzahn, welcher vielleicht nur noch massiger und nicht etwa klein, wie bei dem heutigen Menschen zur Vollendung gekommen wäre. Die Röntgenaufnahmen beweisen ausserdem, dass auch die Prämolaren den vorderen Zähnen durchaus entsprechen. Die Abnutzung der Schneidezähne, welche Virchow als besonders bemerkenswert hinstellt, kann gegenüber den Röntgenbildern mit Bezug auf das kindliche Alter nicht in Betracht kommen. Schaaffhausen hat schon erwähnt, dass an jugendlichen, prähistorischen Schädeln die Zähne infolge roher Nahrung oft in auffallender Weise abgeschliffen sind. Am Prédmoster Kiefer sind selbst die Milchzähne bis auf das Zahnbein abgekaut! Das liegt doch wohl nur an der damaligen Nahrung, respektive Zubereitung derselben, welche von derjenigen des heutigen Menschen total verschieden war. Indessen haben noch heutige Völkerstämme, z. B. nordamerikanische Indianer, schon in der frühesten Jugend sehr stark abgeschliffene Zähne.

Auffallend ist nun die Grösse des Unterkiefers selbst, sodass Virchow ihn "als einen erwachsenen Kiefer ansieht, der sogar sehr gross ist". Virchow sagt ferner: "Bei den meisten Stücken, die wir messen, ist der Kiefer nicht so dick. Einen Kiefer in der Dicke der Basis des Schipkakiefers kenne ich überhaupt nicht. Der Schipkakiefer hat, um es mit einem Worte zu sagen, statt des unteren Randes eine breite Fläche." Virchow erklärte diesen Anschauungen gemäss auch den Kiefer selbst als eine ganz anomale Bildung, welche durch das Liegenbleiben der Zähne innerhalb desselben, also durch eine Retention der Zähne ent-Schaaffhausen hat nun schon mit Recht betont, dass drei Zähne in normaler Form und in der regelrechten Stellung der kindlichen Zahnung retiniert, noch nicht beobachtet sind. Zwar ist von Zuckerkandl ein solcher Fall beschrieben worden. Es handelte sich um den Eckzahn und die beiden Prämolaren des Oberkiefers. Doch ist dieser Fall mit dem Schipkakiefer gar nicht zu vergleichen. Die Wurzeln jenes Oberkiefers waren vollständig ausgebildet, teilweise jedoch schon wieder durch Resorption vernichtet, wie es bei retinierten Zähnen nicht ganz selten vorkommt. Dafür tritt dann nach Bildung von Howshipschen Lakunen etc. Knoch engewebe an Stelle des Zahnbeins. Es kommt endlich zu einer wirklichen Verwachsung des Knochens mit dem Zahn. Derartige Vorgänge sind am Schipkakiefer absolut nicht zu konstatieren. Virchow glaubt nun, dass das Wurzelwachstum bei retinierten Zähnen längere Zeit unterbrochen, und erst später wieder aufgenommen wird. "Ist diese Vermutung richtig, so müsste man den Zahn in der Zwischenzeit im Kiefer verborgen und zwar mit unvollendeter Wurzel antreffen können, demnach in einem Zustande, wie die Prämolaren des Schipkakiefers ihn darbieten. Würde er dagegen schon in seiner retinierten Lage ganz entwickelt, ohne dass es ihm gelingt durchzubrechen, so müsste man ihn zu jeder Zeit von da ab auch ganz vollendet im Innern des Kiefers antreffen, wie es vielleicht mit dem Eckzahn des Schipkakiefers der Fall ist." Auch gegen diese Meinung Virchows sprechen die beigegebenen Bilder

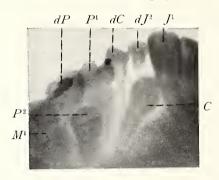


Fig. 38. Radiogramm vom Oberkiefer eines 12 jährigen Mädchens mit retinierten Zähnen.

Es fehlten bei der Okularinspektion J^2 , C, P^2 , die Röntgenaufnahme ergab das Fehlen des J^2 , die Retention des C und P^2 . Die Wurzeln dieser beiden Zähne sind vollendet (normale Beendigung des Wurzelwachstums ebenfalls im Alter von 12 Jahren), trotzdem C ein grosses Hindernis in dJ^2 fand, dessen Wurzelzwar resorbiert wurde, dessen Krone jedoch den Durchbruch des C verhinderte.

des Schipkakiefers. Das Röntgenbild zeigt eine durchaus nicht ausgebildete Wurzel und sogar der wuchernde Pulpawulst des Eckzahnes ist noch genau erkennbar. Zahnärzte haben öfters Gelegenheit, retinierte und später zum Durchbruch kommende Zähne, insbesondere Eckzähne, zu extrahieren. Es ist mir kein Fall bekannt, wo ein solcher Zahn im Gebiss eines Erwachsenen ohne fertig gebildete Wurzel war. Eine Nachfrage auf der Versammlung des Centralvereins deutscher Zahnärzte 1901, ob jemandem schon im Kiefer eines Erwachsenen derartiges vorgekommen sei, wurde von mehreren hundert Zahnärzten verneint. Dagegen sind in der zahnärztlichen Litteratur eine ganze Reihe von Fällen bekannt, in welchen retinierte Zähne von 30-70 jährigen Individuen durchbrachen. Niemals ist in solchen Berichten von einem noch nicht vollendeten Wurzelwachstum, sondern meist von einem wohl ausgebildeten mit einer Wurzelkrümmung versehenen Zahne oder von jener erwähnten Resorption die Rede. Meine Schilderung des Wurzelwachstums der Zähne auf Seite 236 wird

durch das Verhalten retinierter Zähne nur bestätigt. Die von Virchow für den Schipkakiefer angenommene Zahnretention zumal dreier Zähne nebeneinander ist auch aus diesen Gründen im höchsten Grade unwahrscheinlich. Ich gebe in Figur 38 einen Fall von Zahnretention wieder, welcher beweist, dass schon bei jugendlichen Individuen die Wurzeln retinierter Zähne ebenso schnell vollendet werden, als beim normalen Durchbruch. Es ist eine der zahlreichen Röntgenaufnahmen, welche ich an Lebenden von Zahnanomalien gemacht habe. Man kann sich eigentlich nur vorstellen, dass eine Retention ohne Wurzelvollendung vorkommen könnte, wenn nämlich die Zahnkeime durch

eine Krankheit oder eine Basis vorher zerstört wären. Dann fehlt aber die treibende Kraft für den Zahndurchbruch, und gegen eine solche Annahme beim Schipkakiefer spricht eben die verdichtete Spongiosa an dem noch nicht vollendeten Eckzahn des Schipkakiefers. Auch jener Fall von einem 56 jährigen Kretin, welchen Virchow in seiner Abhandlung erwähnt, ergab nach seinen eigenen Angaben, dass die drei im Unterkiefer retinierten Zähne (beide Eckzähne und rechter Schneidezahn) ihr Wachstum vollendet hatten. Vırcнow sagt selbst über den Fall: "Die Wurzeln sind ungemein kompakt und dick, ihre Spitze ist umgebogen und unvollkommen geteilt." Vircнow hat nun ferner geschlossen, dass durch die von ihm angenommene Retention der drei Zähne im Schipkakiefer eine kräftige Reizung in diesem Abschnitte des Knochens, nämlich insbesondere an der Basalfläche, erfolgt sei. Er erklärt letztere in der Folge als eine Hyperostose des Knochens. Die Röntgenaufnahmen zeigen nur das Fehlen einer solchen, speziell gerade in dem Bezirk der drei retinierten Zähne. Die Substantia compacta ist nicht dicker, die Lage der Spongiosa ebenso regelmässig, wie bei einem Kindskiefer im Alter von zehn Jahren. Nicht an jener Stelle des grossen Reizes also findet sich eine Hyperostose. Im Gegenteil, die ursprüngliche Substantia compacta an der Basalfläche unterhalb des Eckzahnes ist durch den wuchernden Pulpawulst sogar etwas zum Schwinden gebracht, wie man es auch sonst bei der ursprünglichen, tiefen Lagerung der unteren Eckzähne nicht selten findet.

Stärker ist nur die Substantia compacta beiderseits von der Symphyse im Bereich der beiden Gruben, welche als Insertionsstellen des M. digastricus dienen. Ich erkenne hier wieder die Wirkung dieses Muskels auf den Knochen, welcher auf der Stelle der vermehrten Beanspruchung mit einer Verdichtung der Spongiosa antwortet. Den erhaltenen Röntgenbildern gemäss kann man somit auch die von Virchow angenommene Hyperostose des Schipkakiefers nicht als bestehend anerkennen. In seiner Abhandlung über den Schipka-Kiefer und den Kiefer von La Naulette hat Virchow en dlich als einzige genetische Übereinstimmung beider Kiefer die eigentümliche und "in dieser Vollständigkeit in der That unerhörte Entwickelung der Basalfläche" zugegeben. Er findet diese Beschaffenheit aber nichts weniger als pithekoid und sieht sie als excessive Ausbildung eines an sich menschlichen Verhältnisses an.

Virchow wirft die Frage auf, ob es nicht vielleicht möglich wäre, in den geschilderten Merkmalen einen Rassen-Charakter zu sehen. Jedoch sagt er sofort, dass in Bezug auf die Basalfläche kein dritter Unterkiefer in Frage komme. Virchow kommt zu dem Schlusse, dass ein Grund deswegen auf Rassen-Eigentümlichkeiten

zurückzugehen, nicht vorläge. "Der Umstand, dass sich unter ähnlichen Verhältnissen an einem entfernten Orte noch ein zweiter Kiefer gefunden hat, der trotz kleiner Zähne und ohne Retention doch eine ähnliche Basalfläche hat, kann uns stutzig machen, aber er darf uns doch nicht ohne weiteres über das Bedenken hinwegführen, dass die Übereinstimmung beider Kiefer nur eine partielle ist, und dass ungleich mehr unterscheidende, als übereinstimmende Merkmale daran nachgewiesen sind."

Schon Schaaffhausen hat sich dahin ausgesprochen, dass die Virchowsche Meinung, wonach die ungewöhnliche Anschwellung und Form des Mittelstückes vom Schipkakiefer durch die Retention von drei ungewöhnlich grossen Zähnen erklärt wird, den Umstand unterschätze, dass dieselbe ungewöhnliche Form auch da vorkommt, wo von einer solchen Retention gar keine Rede sein kann. "Das Zurücktreten des Kiefers unter Mangel des Kinns, sowie die hintere schiefe Fläche und das Fehlen der Spina mentalis interna sind viel seltenere Eigenschaften als die breite Basis mit starken Muskeleindrücken. Virchow hat sich endlich im Jahre 1886 (Zeitschrift für Ethnologie, Band 18) nochmals über den Schipkakiefer geäussert. Wenn man diesen Kiefer für den eines Kindes von 8-9 Jahren erkläre, so würde man mit zwingender Notwendigkeit folgern, dass das betreffende Kind ein Riesenkind gewesen sei. Aus dem Riesenkiefer müsse man auf den Riesenwuchs des Kindes überhaupt schliessen müssen. "Diese Schlussfolgerung hat etwas sehr Verführerisches, denn man gelangt dadurch zu der Möglichkeit, dass zur Mammutzeit in Mähren nicht nur dies eine Riesenkind, sondern vielleicht eine ganze Riesenfamılie, wenn nicht ein Riesenstamm, existiert habe." Virchow gesteht hier noch viel weniger zu, dass es, wie Schaaffhausen schon gesagt hatte, einfacher sei, einen kindlichen Kiefer von seltener Grösse anzuerkennen. Ein solcher Kiefer sei gleichfalls noch nie beobachtet worden; es wäre also ein kindlicher Kiefer nicht von seltener, sondern von unerhörter Grösse.

Das Beweismaterial, welches Virchow im wesentlichen aus der Betrachtung von Kiefern der heute lebenden Rassen entnimmt, und gegen die Schaaffhausensche Ansicht anführt, konnte bei der Verschiedenartigkeit der Objekte nicht entscheidend sein. Virchow meint, dass die Hypothese von Schaaffhausen höchstens nach Auffindung von neuem Material weiter verfolgt werden könne. Auch diese Diskussion schliesst Virchow mit dem Satze: "Der Schipkakiefer ist und bleibt also nur eine isolierte Erscheinung" und hält im übrigen an einem pathologischen Gebilde fest.

Herr Professor Maschka hatte nun die Güte, mir dieses neue wünschenswert erscheinende Material in Gestalt jenes nahezu vollständig erhaltenen Unterkieters der Diluvial-Zeit zum Studium zu überlassen, welches bei Prédmost gefunden wurde.

Es wurden gleichzeitig die beiden Oberkieferbeine desselben Individuums im Löss von Prédmost aufgefunden. Die Kiefer stammen, wie ich später noch ausführlicher dar-

Fig. 39. Fig. 40.

Fig. 39. Unterkiefer von Prédmost mit beiden Oberkieferhälften in natürlicher Stellung und Grösse vereinigt. Vorderansicht.

Fig. 40. Ober- und Unterkiefer von Prédmost mit beiden Oberkieferhälften in natürlicher Stellung und Grösse vereinigt.

Rechte Seitenansicht (der Kieferast ein wenig vorgenommen).

legen werde, von einem circa 7 jährigen Kinde, und da bisher noch keine nähere Beschreibung der äusseren Form dieser Kiefer gegeben wurde, bringe ich in den bei-

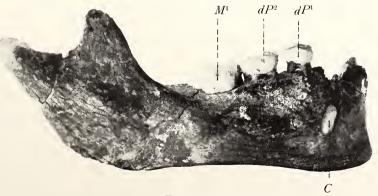


Fig. 41.

Unterkiefer von Prédmost. Rechte Seitenansicht. Natürliche Grösse.

Selenka, Entwickelungsgeschichte IX.

stehenden Figuren die Abbildungen derselben in natürlicher Grösse. Der rechte Oberkiefer enthält den Milcheckzahn, die beiden Milch-Prämolaren und den ersten bleibenden Molaren. Die Milchzähne sind teilweise sehr stark abgenutzt, sodass das

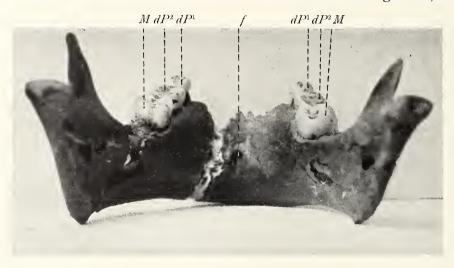


Fig. 42.
Unterkiefer von Prédmost, Rückseite, natürliche Grösse.
f die Insertionsgrube für den M. genioglossus mit einem grösseren Gefässloch und ringförmiger Umwallung.

Zahnbein an den Spitzen der Höcker frei liegt. Der erste bleibende Molar, wie alle übrigen Zähne von enormer Grösse, auf welche ich noch zurückkomme, zeigt dagegen gar keine Abnutzung der Spitzen; die Höcker sind sehr gross und stark ausge-

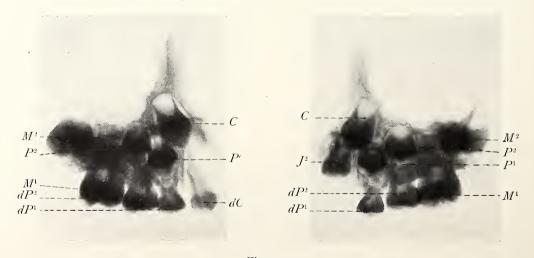


Fig. 43.

Die beiden Oberkieferhälften von Prédmost.

Die Röntgenaufnahme zeigt eine ganz normale Entwickelung der Zähne.

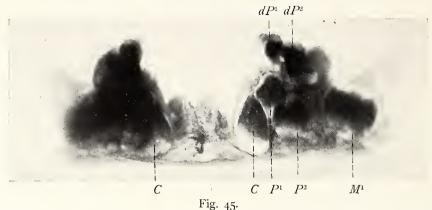
prägt, die Kauflächen derselben zeigen Neigung zur vermehrten Schmelzleistenbildung. Der zweite Molar, durch Abbrechen der Tuberositas freigelegt, hat noch keine Wurzelbildung. Der linke Oberkiefer zeigt nahezu dieselben Verhältnisse, nur fehlt der Milcheckzahn und ausserdem fehlen in beiden Oberkieferhälften sämtliche temporären und permanenten Schneidezähne samt dem dazu gehörigen Alveolarfortsatze, bis auf den linken permanenten kleinen Schneidezahn, welcher noch nicht durchgebrochen ist, aber nahezu die Höhe des übrigen Alveolarfortsatzes erreicht hat. Die beifolgenden Röntgenaufnahmen der beiden Oberkiefer beweisen eine sehr starke Abnutzung der Milchzähne. Der in dem einen Oberkiefer noch erhaltene Milcheckzahn ist bis auf die ursprüngliche Pulpahöhle abgenutzt. Ersatzdentin hat allerdings der Eröffnung des Weiteren vorgebeugt. Die im Kiefer noch verborgenen bleibenden Zähne haben eine enorme Kronen-Grösse.

Der Unterkiefer ist zwar ursprünglich in sechs Stücke zerbrochen, da jedoch kaum etwas von der Kieferbasis und den aufsteigenden Ästen verloren ging, so liess sich eine gute Vereinigung der Bruchstücke durchaus bewerkstelligen. Es fehlt nur ein Stück des Alveolarfortsatzes vom rechten zum linken Eckzahn samt den in ihm enthalten gewesenen Zähnen. Die Alveolen der Milcheckzähne sind nahezu ganz vorhanden. Die bleibenden Eckzähne liegen noch tief im Kieferkörper. Die Alveolen der vier bleibenden unteren Schneidezähne sind nur teilweise erhalten, am besten noch diejenige des linken seitlichen Schneidezahnes, welche auf grosse Dimensionen der Wurzeln und auf eine Rückwärtsbiegung der Wurzeln, wie beim Kiefer von La Naulette und der Schipkahöhle hindeutet. Wie bei diesem erscheint auch die Wurzel der Schneidezähne seitlich zusammengedrückt. Ihr Durchmesser von der labialen nach der lingualen Seite muss gross, der seitliche dagegen schmal gewesen sein.

Es finden sich aber noch weit wichtigere Ähnlichkeiten dieses jugendlichen Kiefers von Prédmost mit demjenigen aus der Schipka-Höhle. Die Höhe des Vorderstückes beträgt mindestens 35—36 mm. Sie ist in diesem Falle trotz der fehlenden Schneidezähne leicht zu bestimmen durch die vorhandene Kauflächenebene der Backzähne. Die Höhe des Kiefers in der Medianlinie ohne die Kronenhöhe der Zähne muss auf wenigstens 26 mm angenommen werden, da sie an der Rückfläche in der Gegend des rechten Milcheckzahnes, wo dieselbe ganz erhalten ist, eine Alveolenhöhe von 29 mm zeigt. Der Kiefer ist in allen übrigen Teilen für ein Individuum, dessen erster Molar soeben vollendet ist, sehr stark entwickelt. Die Höhe der aufsteigenden Äste beträgt 50 mm. vom äusseren Kieferwinkel zur Spitze des Processus coronoideus und Processus condyloideus gerechnet. Die Breite des aufsteigenden Astes ist zum

mindesten 31 mm. Die Linea obliqua interna und externa sind stark entwickelt. Das sind wieder ganz gewaltige, für die heutige Zeit "unerhörte" Verhältnisse in einem solchen kindlichen Kiefer und nur mit dem älteren Schipkakiefer zu vergleichen.

Das Foramen mentale externum liegt im Prédmoster Unterkierer verhältnismässig hoch über der Basis zwischen ersten und zweiten Milch-Prämolaren. Die Zähne des Kiefers verhalten sich in Bezug auf Grösse und Abschleifung, wie ich es schon beim Oberkiefer erwähnt habe. Der Alveolarfortsatz ist entsprechend kräftig entwickelt.



Unterkiefer von Prédmost, Basalfläche, natürliche Grösse. Die Aufnahme zeigt die grosse Kieferdicke und die starken Ansatzgruben des M. digastricus bei d, d'.

Von höchster Bedeutung ist nun der vordere Unterkiefer. Die labiale Fläche desselben zeigt eine geringe aber deutliche Kinnbildung in Formeines dreieckigen Vorsprunges. Sie unterscheidet sich weniger von den Kieferbildungen der heutigen Menschen, als der kinnlose Schipkakiefer. Dagegen entsprechen Rückseite und grösstenteils auch die Basalfläche dieses Kiefers dem Schipkakiefer vollständig. In der Mittellinie ist der Kiefer von Prédmost beinahe ebenso dick wie der Schipkakiefer und der Kiefer von La Naulette. Seine Dicke erreicht in der Medianlinie nämlich 14 mm. Seitlich von der Medianlinie befinden sich zwei

sehr starke Gruben für die M. digastrici. Sie sind allerdings nicht ganz so scharf ausgeprägt wie beim Schipkakiefer, haben jedoch eine beträchtliche Breite und geben der Basalfläche an der Medianlinie einen gewissen, abweichenden Charakter, genau wie beim Schipkakiefer. In ihrer vollen Breite erstreckt sich die Basalfläche des Schipkakiefers allerdings noch weiter nach hinten als bei demjenigen von Prédmost. Im Schipkakiefer ist offenbar der sich schon stärker, speziell im äusseren Wurzelumfang entwickelnde mächtige Eckzahn daran schuld, dass sich die Basalfläche in seiner Umgebung sogar auf 15 mm verbreitert. Beim Unterkiefer von Prédmost hat dagegen die Wurzelbildung des Eckzahnes noch nicht einmal begonnen. Immerhin macht sich auch hier sein Einfluss schon geltend. Die Basalfläche wird wieder etwas stärker und zwar etwa um einen mm gegenüber demjenigen Abschnitte der Basalfläche, welche unter dem seitlichen Schneidezahne liegt. Hier beträgt sie 10 mm. Weiter nach hinten geht der Kiefer von Prédmost an der Basalfläche in einen Rand über, wie er sich auch bei den heutigen menschlichen Kiefern findet. Also auch an diesem Kiefer ist an seinem vorderen Abschnitt eine wirkliche Basalfläche mit zwei Rändern vorhanden, welche Virchow beim Schipkakiefer als geine ganz anormale Bildung" ansieht. Zwischen den M. digastrici liegt beim Schipkakiefer in der Medianlinie eine ziemlich stark ausgeprägte Leiste, welche sich in halber Höhe zwischen Basalfläche und Foramen Y artig teilt (siehe Fig. 33 und 34) Im Kiefer von Prédmost ist dieselbe weniger stark vorhanden und zunächst mehr als Hügel erkennbar. Von diesem zieht sich in der Medianlinie auf der Rückseite, wie beim Schipkakiefer, wiederum ein feines Leistchen hin, welches sich sogar bis zu der noch näher zu besprechenden Grube erstreckt. Seitlich von der in der Medianlinie befindlichen Leiste liegen im Schipkakiefer nach Virchow höchst geringfügige Unebenheiten, welche Schaaffhausen als starke Rauhigkeiten bezeichnet. Virchow glaubt, dass dieselben den Ansätzen der Genioglossi entsprächen. Ich finde sie zwar mit Virchow nicht stark im Schipkakiefer ausgebildet. Sie liegen ungefähr in halber Höhe zwischen Basalfläche und der Grube. Ähnliche kleine dreieckige Flächenbildungen, offenbar noch der Typus des jugendlichern Prédmosterkiefers, sind, wie schon früher erwähnt, auch an diesem nicht die Ansätze des M. genioglossus, sondern diejenigen des M. geniohyoideus. Dieser Muskel war im Schipkakiefer verhältnismässig stärker entwickelt und deshalb finden wir schon geringe Rauhigkeiten an der Insertionsstelle.

Die Ansatzstelle für den M. genioglossus ist jene Grube selbst, welche diesen beiden Kiefern eigen ist, respektive die Ränder derselben, an welchen die Sehnenbündel inserieren. Beim Prédmosterkiefer zeigt die ovale Grube sogar ringsherum eine deutliche Umwallung (siehe Fig. 42). Der Schipkakiefer hat, wie die Fig. 33 lehrt, auch oberhalb der Grube links und rechts am Rande Rauhigkeiten für die Insertion des M. genioglossus.

Unterkiefer von Prédmost. Röntgenaufnahme des vorderen Teiles, Vorderansicht.

Gewaltige Entwickelung der Eckzähne und das Trajektorium des M. genioglossus zeigend. Ein Trajektorium des M. digastricus ist nur wenig angedeutet.

Das Foramen inmitten der Grube war somit auch der ungefähre Mittelpunkt für die Insertionsgrube des M. genioglossus. Die oben erwähnte Leiste in der Medianlinie umschliesst nach ihrer Y artigen Teilung mit den beiden Schenkeln teilweise diese Grube.

Die Schenkel verlaufen in die unteren Insertionsstellen des M. genioglossus.

Fig. 46.
Unterkiefervon Prédmost. Röntgenaufnahme von der Rückseite mit Film.
C, C sind die bleibenden Eckzähne, t das Trajektorium des Genioglossus.

Schon Schaaffhausen hatte nach jener Beschreibung des Unterkiefers von La Naulette, welche von Albrecht und Dollo herrührt (siehe Seite 275) keinen Unterschied dieses Kiefers von dem Schipkakiefer in Bezug auf die Formation der Rückfläche konstatiert. Auf den Unterkiefer von Prédmost passt jene Beschreibung des Kiefers von La Naulette wörtlich. Beim Kiefer von Prédmost ist die von der Grube zur Basalfläche ziehende Leiste in der Medianlinie unter der Grube schärfer ausgeprägt wie beim Schipkakiefer, bei welchem die Grube auch unten zunächst in eine Gefässrinne und dann erst in eine Leiste übergeht. Im übrigen haben die Gruben im Schipkakiefer und dem

jenigen von Prédmost nahezu gleiche Grösse, das eintretende Gefäss scheint beim letzteren allerdings stärker gewesen zu sein.

Auffallend könnte es bei einer Vergleichung der beiden Kiefer erscheinen, dass die Grube mit dem Gefässloch beim Prédmoster Kiefer näher dem Basalrande liegt,

als beim Schipkakiefer. Über diese Verschiedenheit klärte aber die Aufnahme der Kiefer von der Vorder- und Rückseite mit Röntgenstrahlen sofort auf. Dem Kiefer von Prédmost fehlt infolge seines jüngeren Alters noch grösstenteils die Entwickelung der Substantia compacta des Basalteiles. Das Alter des Individuums, welches diesen Kiefer besass, ist nach dem Stande der Zahnentwickelung auf 7 Jahre zu schätzen. Im Alter zwischen 7 und 10 Jahren findet auch bei dem heutigen Menschen, wohl nach dem Durchbruch und stärkerem Gebrauche der permanenten Schneidezähne, eine starke Vermehrung der Spongiosa und Compacta im Basalteile durch die grössere Beanspruchung statt. Die noch später zu besprechende gewaltige Grösse aller Zähne in dem Prédmoster Kiefer, welche die beigegebenen Röntgenaufnahmen deutlich illustrieren, stehen dennoch im Verhältnis zu der enormen Grösse des Knochens. Eine excessive oder pathologische Bildung in der Lage der Zähne ist auch in diesem Kiefer durchaus nicht vorhanden, gerade so wie der Knochen keine pathologischen Erscheinungen irgend welcher Art aufweist. Alle Unterschiede liegen nur in dem verschiedenen Alter der beiden Individuen, welchen diese Kiefer angehörten.

Während der Drucklegung der vorliegenden Arbeit erhielt ich durch die Güte des Herrn Professor Dr. Kramberger in Agram Gelegenheit, diluviale menschliche Kieferfragmente, welche am Berge "Husnajakowo" in Krapina gefunden wurden, zu untersuchen. Eine kurze Beschreibung des Unterkiefers, welche Herr Professor Kramberger in seiner Abhandlung "Der Paläolithische Mensch und seine Zeitgenossen aus dem Diluvium von Krapina in Kroatien" gegeben hat, möchte ich hier wörtlich folgen lassen.

"Das Kieferstück stellt die Partie von der Symphysis bis zur zerbrochenen Alveole des zweiten Molaris vor. Von den Zähnen sehen wir eine zusammenhängende Reihe, und zwar vom zweiten J bis zum zweiten M, im ganzen also fünf Zähne. Dieselben sind nur mässig abgekaut und kräftig und dürften etwa einem Individuum von etwa 30 Jahren angehört haben. Die Höhe des Unterkiefers fällt nach rückwärts zu ab; vorne und zwar gleich hinter dem zweiten J. gleicht sie 30,5 mm (gemessen von innen, weil der äussere Alveolenrand nicht ganz ist); beim 1. M aber beträgt dieselbe 27,2 mm. Die grösste Dicke der Mandibula beträgt vorne 13,6 mm, hinten 14,5 mm.

Das Kieferstück besitzt kein Kinn, sondern ist etwas nach vorne gezogen, so zwar, dass die Symphysis mit der Basis des Kiefers einen Winkel von circa 94,6° einschliesst (gemessen mit dem Török schen Goniometer).

Falls wir uns über die Zahnreihe eine Ebene gelegt denken, so tangiert dieselbe bloss die zwei entstehenden Zähne, nämlich den I₂ und M₁; die Zahnreihe ist nämlich leicht konkay.

An der äusseren Kieferseite ist besonders bemerkenswert das Foramen mentale, und zwar nicht nur wegen seiner Grösse, sondern insbesondere seiner Lage halber. Dasselbe liegt nämlich 3—4 cm hinter der Symphyse oder unter dem 1. M. An der

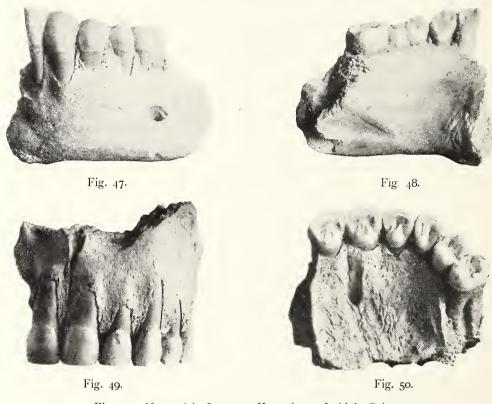


Fig. 47. Unterkiefer von Krapina. Labiale Seite.

Fig. 48. Unterkiefer von Krapina. Linguale Seite.

Fig. 49. Oberkiefer von Krapina. Labiale Seite.

Fig. 50. Oberkiefer von Krapina. Palatinale Seite.

inneren Kieferseite wäre hervorzuheben die tiefe, scharf eingeprägte Fovea submaxilaris, welche nahe dem unteren Kieferrand liegt und sich nach vorne verschmälernd bis zum 2. P. hinzieht. Die Spina mentalis fehlt; an ihre Stelle sind bloss starke Rauhheiten für den Musculus genioglossus und Musculus geniohyoideus und eine Gefässöffnung. Ferner wäre zu erwähnen die sehr flache Fovea sublingualis, die markante Fossa digastrica und neben ihr (nach aussen) ein scharfer Kiel, welcher sich nach rückwärts zu verliert."

Ich schliesse an diese Beschreibung des Unterkiefers noch einige Bemerkungen an, welche bei der Erörterung der diluvialen Kiefer für die vorliegende Arbeit in Betracht kommen. An der Innenseite ist für den Ansatz des M. genioglossus dieselbe starke Grubenbildung mit einem grösseren Foramen vorhanden, wie bei den soeben besprochenen diluvialen Kiefern. Wiederum teilt sich eine Knochenleiste unter dieser Grube Yartig und reicht mit den Schenkeln bis in letztere hinein. Verhältnismässig stark sind die Ansätze der M. geniohyoidei entwickelt, welche seitlich von der Vereinigungsstelle jener Schenkel Erhabenheiten in Form kleiner Knochenkämme aufweisen. Am Fusse nahe den Insertionsgruben der M. digastrici bildet die Knochenleiste wie beim Prédmosterkiefer einen kleinen Hügel. Der ganze Basalteil ist besonders kräftig angelegt, und die Dicke des Knochenstückes hier eine ganz bedeutende.

Beide Kiefer haben in Bezug auf die Gestaltung der Rückfläche und der Basis des Vorderkiefers, sowie auf die Grössenverhältnisse und die Zahnbildung ganz ausserordentlich ähnliche Eigenschaften. Diese können meines Erachtens nur darauf hindeuten, dass die vorliegenden Kieferformen eine typische Gestalt des menschlichen Unterkiefers in der Diluvialzeit sind, da alle Befunde an demselben auf durchaus physiologischer Basis beruhen.

Die vordere und hintere Kieferplatte des Unterkiefers von Krapina bilden in ihrer äusseren Form überhaupt eine Mittelform zwischen dem Prédmoster und dem Schipkakiefer. Dieser hat überhaupt kein Kinn, jener eine allerdings ganz geringe Andeutung eines solchen in Form einer schwachen, kaum sichtbaren ovalen Vorwölbung des Knochens auf der vorderen Kieferplatte. Das Kinn des Kiefers von Prédmost ist jedenfalls ausgeprägter als beim Krapinakiefer und als eigentliches, wenn auch kleines Kinn zu bezeichnen.

Die stark entwickelten Zähne haben wie alle diese Kiefer nach rückwärts gekrümmte Wurzeln. Die hintere Kieferplatte zeigt deshalb einen gewissen Zungenwulst, oberhalb der allen diesen Kiefern eigentümlichen Grube. Der Kiefer von Krapina war jedenfalls stark prognath, und zwar zeigt er eine echte Kiefer prognathie. Die Grube für den Ansatz der Genioglossus entspricht an Grösse etwa derjenigen am Prédmoster Kiefer. Die Insertionsstellen der M. digastrici sind beim Krapinakiefer schwächer ausgeprägt als beim Schipkakiefer. Der Krapinakiefer ähnelt in dem Basalteile, besonders in der Basalfläche, überhaupt mehr dem Prédmoster Kiefer. Auch beim Krapinakiefer liegen die Insertionsstellen der M. digastrici schon schräg zu den beiden Kieferplatten. Auffallend ist die Leistenbildung, welche unterhalb des ersten Molaren sehr steil abfallend zwischen ihm und dem zweiten Prämolaren die Basis erreicht. Die Leiste begrenzt sehr scharf die darunter liegende Fovea submaxillaris. Ich schilderte bei der äusseren Kiefer-

form des Menschen, dass sich die Linea obliqua interna teilt, und teils zum Vorderkiefer, teils zur Basis unterhalb des ersten Molaren verläuft. Letzteres ist hier der Fall, der obere Zweig bildet bei den grossen Anthropomorphen und den diluvialen Kiefern den Lingualwulst. Der vordere Basalteil ist ebenso stark entwickelt wie beim Schipkakiefer, nur die Basalfläche ist nicht so breit infolge der Schrägstellung der M. digastrici. An den Zähnen des Krapinakiefers tritt neben ihrer Grösse die Neigung zu vermehrter Cuspidation und vermehrter Schmelzfaltenbildung noch mehr hervor als beim Prédmoster Kiefer. Ich komme darauf noch zurück. Hervorzuheben ist noch, dass vom Professor Kramberger sehr grosse Processus condyloidei, wenn auch leider von dem soeben besprochenen Kiefer getrennt, aufgefunden wurden. Wir können daraus wiederum die Thatsache erkennen, dass kräftig entwickelte Kiefer auch immer stärkere Gelenkköpfe besitzen.

Neben diesen äusseren Formen musste beim Krapinakiefer auch die innere Struktur in Betracht gezogen werden. Die Röntgenaufnahmen ergaben, dass die Knochenbälkchen in diesem Kiefer von einer ganz bedeutenden Dichtigkeit und Stärke sind. Das ist zu verstehen, wenn man bedenkt, dass dieser Kiefer im Gegensatz zu den kindlichen Schipka- und Prédmoster Kiefern von einem Erwachsenen herrührt, welcher schon auf der Höhe seiner funktionellen Leistung stand.

Beim Vergleich von Fig. 15 und Fig. 20 mit den Röntgenbildern Fig. 56 wird man finden, dass die ganze Konfiguration des Knochengewebes und der Zahnwurzeln beim Krapinakiefer weit mehr z. B. demjenigen des weiblichen Orangutans ähnelt als der Kieferstruktur des heutigen civilisierten Menschen. Selbst die strebenartigen Bälkchen unter den Wurzelspitzen des zweiten Prämolaren und des ersten Molaren sind vorhanden. Man beachte vor allen Dingen die starke Krümmung der mächtigen Wurzeln nach hinten, ein deutlicher Beweis, dass auch hier nahe der neutralen Axe ein starker Rückstoss nach dem Gelenk zu gewirkt hat, welcher die Wurzelentwickelung in ihrer Richtung stark beeinflusste.

Der zweite obere Prämolar hat im Krapinakiefer zwei Wurzeln. Die Wurzelkanäle aller Zähne sind noch sehr weit. Da die Abnutzung der Kronen noch nicht stark vorgeschritten ist, so glaube ich berechtigt zu sein, das Alter des Individuums, welchem jener Kiefer angehört hat, auf ca. 16—18 Jahre zu schätzen.

Auch der Kiefer von Krapina passt sich nach den geschilderten Eigenschaften dem Typus der schon früher bekannt gewordenen diluvialen Kiefer vollkommen an.

Zwischen dem Schipkakieter und demjenigen von Prédmost steht, wie der Kiefer von Krapina, als verbindendes Glied der mir allerdings leider nur aus Abbildungen und einem Gipsabguss bekannte Kiefer von La Naulette. Die Formation der hinteren Vorderkieferplatte deckt sich in Bezug auf die Grubenbildung mit jenen dreien. Die Basalfläche ist auch bei dem Kiefer von La Naulette eine gewaltige und zeigt sehr starke Insertionsgruben für die M. digastrici. Nach Virchow selbst liegen die letzteren jedoch "mehr schräg, indem der vordere Rand der Basalfläche tiefer herabtritt, der hintere dagegen früher endigt als beim Schipkakiefer." Dasselbe Verhalten der Basalfläche zeigt jener Kiefer von Prédmost, und wenn von diesem feststeht, dass es der normale ausgebildete Kiefer eines 7—8 jährigen Kindes ist, kann man mit Recht annehmen, dass der Prédmoster Kiefer in einem Alter, wo das betreffende Individuum erwachsen gewesen wäre, wie beim Kiefer von La Naulette, sich wohl zu einer ähnlichen Mächtigkeit entwickelt haben würde. Virchow glaubt aus dem verschiedenen Verhalten der Basal- und Vorderfläche vom Schipkakiefer und demjenigen von La Naulette wichtige Unterschiede machen zu dürfen.

Ich muss Virchows Meinung gegenüber Schaaffhausen beitreten, wenn ersterer den Schipkakiefer für den mehr abweichenden hält. Virchow erklärt aber auch den Kiefer von La Naulette für stärker prognath, die Zahnstellung des Schipkakiefers "zum mindesten für orthognath." Leider wurde hier gar nicht zwischen einer allgemeinen Kieferprognathie und einer Zahnprognathie, welche immer mit einer Alveolarprognathie gemeinsam einhergeht, unterschieden. Erstere ist für alle Primaten mit Ausnahme des heutigen Menschen typisch, Zahnund Alveolarprognathie bei letzterem nur individuell oder höchstens generell. Zahnstellung und Kieferkörper brauchen beim Menschen jedoch durchaus nicht gleichgerichtet zu sein. Wenn Virchow mit obiger Erklärung den Kiefer von La Naulette für stärker prognath als den Schipkakiefer hält, weil die Zahnstellung des letzteren orthognath sei, so trifft diese Annahme als solche für das vordere Kieferstück allein betrachtet wohl zu. Letztere ist dagegen absolut unmassgeblich für die Stellung des Vorderkiefers zu den übrigen Kieferteilen und zu ihrer allgemeinen Konfiguration der Schädelknochen überhaupt. Die Kieferprognathie des Schipkakiefers war entschieden grösser als bei sämtlichen bekannten diluvialen Kiefern. Für meine Ansicht spricht die Stellung der Zähne, ihre Wurzelkrümmung und ihre Abnutzung, vor allen Dingen aber die Stellung der Insertionsgruben der M. digastrici, indem dieselben besonders beim Schipkakiefer zu den beiden Kieferplatten recht winkelig liegen und dadurch im wesentlichen die breite Basalfläche erzeugen. Der Schipkakiefer musste sogar sehr stark prognath werden, sonst ist man gezwungen, eine vollständig andere topographische Lage des M. digastricus, ja eine ganz andere Kopfstellung als beim heutigen Menschen gegenüber der Diluvialzeit anzunehmen. Durch die Kieterprognathie war auch die Stellung der Zähne im Schipkakiefer prognath, obgleich

sie zum Vorderkiefer als solchem orthognath stehen. Mit demselben Rechte könnte man dann auch die Zähne aller übrigen Primaten als orthognath bezeichnen.

Leider werden die Begriffe über "Orthognathie und Prognathie" sehr verschieden angewendet. Wurde doch erst neuerdings von Klaatsch ausgesprochen, dass auch der Kiefer von La Naulette orthognath sei. Es wird nun aber niemand leugnen, dass die Stellung der Schneidezähne samt dem zugehörigen Alveolarfortsatz zur Basalfläche aller diluvialen Kiefer eine stumpfwinkelige ist. Eine Zahn-Prognathie konnte sich bei diesen Kiefern infolge der allgemeinen Kieferprognathie gar nicht zu nennenswerter Grösse entwickeln. Eine solche Unterscheidung des Allgemeinbegriffes Prognathie in Kiefer- und Zahnprognathie sollte in Zukunft immer durchgeführt werden.

Allerdings sind auch die diluvialen Kiefer in Bezug auf die Grösse des Zahnprognathismus bei dem ganz verschiedenen Alter nicht absolut zu vergleichen.
Selbst beim heutigen Menschen sehen wir häufig eine Prognathie der Zähne und des
Alveolarfortsatzes, welche z. B. im Alter von etwa 9 Jahren eben beginnt, nach wenigen
Jahren zu einer ganz bedeutenden werden. Konnte nicht beim Kiefer von Prédmost
und der Schipkahöhle der Kiefer-Prognathismus mit der Entwickelung der gewaltigen Zähne und dem starken Gebrauch derselben und der Beanspruchung ebenso
gut noch zunehmen? Eine solche Frage kann man nach den Erfahrungen der zahnärztlichen Praxis nur bejahend beantworten.

Die funktionelle Gestaltung des Kinnes sowie der Spina mentalis interna und ihre Form-Variationen.

Schon Linné gründete bei der Erörterung seines Systems der Einteilung der Primaten die Trennung von Homo sapiens und Homo silvestris teilweise auf das Vorhandensein des Kinnes beim recenten Menschen.

Es hat im vorigen Jahrhundert nicht an Versuchen gefehlt, die Bildung des Kinns zu erklären und es stehen sich bisher zwei Ansichten gegenüber.

Hauptsächlich hat man zur Entstehung des Kinns mimische Faktoren herangezogen. Der M. triangularis und Quadratus menti, auf deren starke Thätigkeit bei den Anthropomorphen Darwin besonders aufmerksam gemacht hat, können aber gerade aus diesem Grunde bei der Kinnbildung des Menschen nicht in Betracht kommen, weil die Muskeln bei ihnen schwach sind. Bei den Affen finden wir im Gegenteil an der vorderen Kieferplatte weder einen Vorsprung, noch eine Grube für diese entscheidenden Muskeln.

Topinard hat in seiner grösseren Abhandlung über den Kiefer von La Naulette 1886 die Entstehung des Kinnes in anderer Weise geschildert. Nach Topinard haben sehr hohe Kiefer ein niedriges, niedrige Kiefer ein verhältnismässig hohes Kinn. Aber dieser Autor erklärt darauf sogleich, dass "eine Kinnmessung in der That unmöglich ist". Topinard hat, da auch die Gegenwart der Schneidezähne für eine solche hindernd im Wege steht, an zahnlosen Kiefern den Kinnwinkel gemessen. Dieser ist durch eine Linie bestimmt, welche, von Topinard als Linea alveolo-mentalis bezeichnet, einen bestimmbaren Winkel zur vorderen Ebene des Unterkieferrandes bildet. Seine Messungen ergaben, dass der Winkel z. B. bei Neukaledoniern 84°, bei Afrikanegern 82°, bei Europäern aber bloss 71° betrug und Topinard hält diese Zähne für absolut klassenbestimmend. Als Maxima werden Kiefer aus Australien mit Kinnwinkel von 93°, also über einem Rechten bestimmt. Für den Kiefer von La Naulette fand Topinard den Kinnwinkel an der Symphyse sogar von 94° Grösse. Messungen an den Unterkiefern

der Anthropomorphen in dieser Weise ausgeführt, würden, wie Topinard sehr richtig bemerkt, nicht unter denselben Bedingungen möglich sein, weil jene überhaupt kein Kinn haben. Topinard giebt deshalb in einer Abhandlung von den Anthropomorphen und dem Menschen nur eine Anzahl von Kieferdurchschnitten, welche die Symphyse betreffen, legt aber hohen Wert darauf, dass die Alveolen der Schneidezähne des Kiefers von La Naulette vertikal, also orthognath seien. Wenn sie prognath gewesen wären, wie z. B. australische Kiefer, so hätte der Winkel 100° erreichen können. Dieser Kiefer sei damit einzig in seiner Art.

Auch diese Annahme Topinards muss stark mit dem Bestehen einer etwaigen Aleolarprognathie rechnen, welcher nachgewiesenermassen derjenigen der Zähne unbedingt folgt. Einer Zahnprognathie bedurften jedoch die menschlichen Kiefer der Diluvialzeit für ihre Funktion meines Erachtens durchaus nicht. Bei ihnen konnten die Zähne, zumal diese nach rückwärts gekrümmte Wurzeln aufweisen, orthognath zum Kieferkörper sein, denn schon der letztere hat ja eine Prognathie. Das trifft auch für den Kiefer von La Naulette zu. Für den Kauakt ist ja die Anordnung der Zähne, des Alveolarfortsatzes, des Kieferkörpers und des Basalteiles in eine Ebene, wie sie bei den Kiefern der Anthropomorphen und den diluvialen menschlichen Kiefern vorhanden ist, weit vorteilhafter, wie beim heutigen Menschen. Diese Ebene stellt günstigsten Falls den Abschnitt eines Kreises dar, dessen Mittelpunkt das Kiefergelenk bildet. Bei sämtlichen übrigen Primaten, mit Ausnahme des Menschen, sehen wir diesen Bogen für die Funktion des Kauaktes möglichst inne ge-Sicherlich wird selbst das Wurzelwachstum besonders der Vorderzähne dadurch beeinflusst. Die Wurzeln krümmen sich nach hinten, wenn die Beanspruchung des Kiefers allein für den Kauakt erfolgt. Jede Abweichung von dieser Anordnung der konstruktiven Teile und ihrer Stellung zu einander musste grosse Veränderungen der äusseren Kiefer-Form verursachen.

Topinard bezeichnet in seiner Abhandlung den Kiefer von La Naulette als eine Art von Übergangsform des Kinnes des Menschen auf den Affen. Dennoch sei derselbe vollständig menschlich und die geringe Entwickelung des Kinns erkläre den Winkel von 94°. Das unterscheidende Merkmal vom Affen sei der Umstand, dass die vordere Fläche des Kiefers nicht um ein Bedeutendes sich zurück biege. Alles beschränke sich beinahe auf eine Verringerung des Kiefervorsprunges. Immerhin nimmt Topinard für diesen Kiefer die Bezeichnung "affenähnlich" an.

Die alleinigen Betrachtungen der äusseren Form des Vorderkiefers, wie sie Topinard zwar mit der grössten Sorgfalt anstellte, führten dennoch nicht zu einer ausreichenden Erklärung für die allmähliche Entstehung des Kinns im Laufe

der Diluvialzeit und für das stärkere Hervortreten desselben beim heutigen Menschen. Gemäss den für die vorliegende Arbeit zu berücksichtigenden Grundgesetzen der Entwickelungsmechanik ist nun die Wirkung jener Trajektorien des Vorderkiefers beim Menschen und den Affen zu erläutern. Zunächst ist es die Stellung des M. digastricus zu der Kieferbasis, welche die äussere Form jenes Vorsprunges, welchen wir als Kinn bezeichnen, hervorrufen könnte. Eine Insertion dieses Muskels als Basalfläche möglichst rechtwinklig zu beiden Kiefer-<mark>platten kann natürlich keine Vorwölbung des Kiefers nach innen oder aussen, also</mark> auch keine Kinnbildung hervorrufen. Der M. digastricus, wenn auch noch so stark funktionierend, wird in diesem Falle zwar die Dicke des Basalteiles stark beeinflussen können und ich nehme in der That für die diluvialen Kiefer, insbesondere für denjenigen aus der Schipkahöhle eine solche Wirkung, welche sich in der Verbreiterung des Basalteiles äussert, an. Die Compacta der Kieferplatte übernimmt aber dann im wesentlichen die Beanspruchung auf Zug, und es findet eine nur sehr geringe Trajektorienbildung in der Längsaxe der Schneidezähne ohne äussere Formveränderung statt. Je mehr sich die Insertionsstelle von ihrer rechtwinkligen Stellung zu beiden Kieferplatten entfernt, und sich in schräger Richtung der hinteren Kieferplatte anpasst, um so weniger wird der M. digastricus zur Entwickelung einer starken Basalfläche beitragen, um so mehr aber kann es zur Kinnbildung kommen, wenn die Muskelfunktion gleich kräftig bleibt. Wir finden demgemäss die Ausbildung eines stärkeren Trajektoriums in der Spongiosa des Knochens, während bei einer rechtwinkligen Stellung der Insertionsgruben zu beiden Kieferplatten letztere schon genügende Zugkraft zu vermitteln vermögen. In diesem Falle wird die Spongiosa des Kieferkörpers bedeutend entlastet und zeigt ein dünnes, weitmaschiges Balkensystem. Nicht ausser Acht zu lassen ist aber, dass bei der Schrägstellung der Insertionsgruben des M. digastricus das Trajektorium des letzteren mit dem noch ausführlich zu besprechenden Trajektorium des M. genioglossus sich nicht mehr rechtwinklig, sondern spitzwinklig kreuzt. Da beides Zugmuskeln sind, so treten gegenseitig scherende Kräfte auf, welche eine Verstärkung des Berührungspunktes beider Trajektorien bedingen. So erklärt sich die grosse Entwickelung der Basalfläche und die geringe Kinnausbildung bei den diluvialen Kiefern nach den Gesetzen der Entwickelungsmechanik sehr einfach. Der Schipkakiefer zeigt entsprechend der rechtwinkligen Lage der Insertionsgruben für den M. digastricus zu beiden Kieferplatten überhaupt keine Kinnbildung und stärkste Basalflächenentwickelung. Am Kiefer von La Naulette ist obigen Gedanken entsprechend schon eine Andeutung von Kinnbildung vorhanden und die Basalfläche, selbst für einen Erwachsenen, sehr stark;

am Prédmosterkiefer tritt jene noch etwas mehr hervor und die Basalfläche in Bezug auf Breite zurück. Bei einer Vorwölbung des Knochens dürfen die wirkenden Kräfte

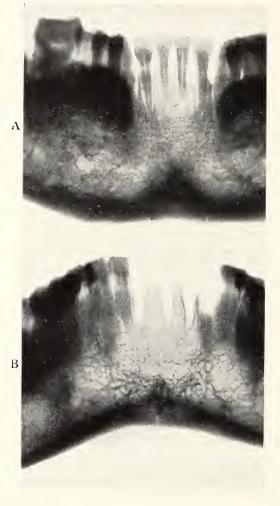


Fig. 51.

Vordere Unterkiefer vom Menschen.
A Starke, B geringe Trajektorienbildung des M. genioglossus und des M. digastricus. Bei A auch seitlich vorspringendes hohes Kinn, bei B ist dasselbe flacher, die Ausbildung des Trajektoriums des M. genioglossus stark, des Trajektoriums des M. digastricus sehr gering.

natürlich nicht in einer einzigen Kraftebene verteilt sein. Schliesst sich selbst bei einer Schrägstellung des M. digastricus der Kieferkörper in einer wahren Kieferprognathie ersterem an, so kann die Kinnbildung auch eine nur sehr geringe werden. Beim jungen Gorilla fand Selenka wenigstens eine Andeutung des Kinnes wahrscheinlich infolge der noch geringen Thätigkeit des M. digastricus. Mit zunehmendem Alter verschwindet dasselbe bei dem zunehmenden Prognathismus der Zähne und des Kieferkörpers sowie der fortschreitenden Entwickelung des Basalteiles nach rückwärts. Beim Orangutan und den meisten übrigen Affen liegen Zähne, Kieferkörper und Basalteil in einer Kraftebene. Hier kann keine Kinnbildung entstehen. Eine orthognathe Stellung der Zähne bei dem heutigen Menschen muss die Kinnbildung dagegen stark begünstigen, weil Schrägstellung des M. digastricus auch zum Kieferkörper vorhanden ist. Die Basalfläche muss allerdings dabei zu einem einfachen Rande werden. Aber auch die besprochene Schrägstellung des M. digastricus kann zur Entstehung des Kinns beim Menschen nicht als allein bestimmend erachtet werden. Das gleichzeitig beim Menschen vorhandene Trajektorium des M. genioglossus ist augenscheinlich ein noch wichtigerer Faktor.

Röntgenaufnahmen menschlicher Vorderkiefer mit starkem Kinn zeigen eine sehr grosse Verschiedenheit der Dichtigkeit der Spongiosa

in dem Basalteile des Vorderkiefers. Immer spricht dabei nach den gewönnenen Bildern die Ausbildung der Trajektorien jener beiden Muskeln bedeutend mit. Obgleich eine grosse Stärke beider Muskeltrajektorien für die Kinnbildung die günstigste Vorbedingung ist (siehe Fig. 51 A), so kann der Einfluss des M. digastricus auf die all-

gemeine Spongiosa des Kiefers ein ziemlich geringer sein. (S. Fig. 51 B.) Die Querschnitte dieser beiden Kiefer gebe ich von A in Fig. 34, von B in Fig. 52. In Fig. 52 ist das Trajektorium des M. digastricus sehr gering. Auch der M. genioh yoideus scheintsehr schwach gewesen zu sein. Jedenfalls ist dieser Muskel nicht allein an den diluvialen Kiefern, sondern

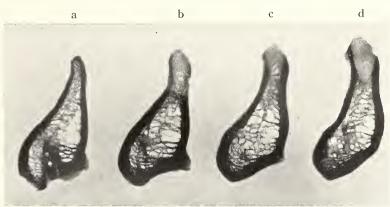


Fig. 52.

Menschlicher Unterkiefer. Querschnitte von der Medianlinie bis zum Eckzahn.

Geringe Trajektorienbildung des M. digastricus, stärkeres Trajektorium des M. genioglossus. In der Mitte tritt das Kinn stark hervor, seitlich flacht es sich schnell ab. Starke Ausbildung der Spina bei b.

auch an manchen recenten stärker entwickelt und dadurch ebenfalls formgestaltend. Bei starker Ausbildung desselben wird der untere Teil der Kieferplatte sich

mehr in gerader Richtung anschliessen und erstere fehlt hier offenbar. Durch beide Umstände wird die hintere Kieferplatte an der Basalfläche enorm in der Gestalt beeinflusst. Wir sehen dieselbe unmittelbar unter der starken Spina nach vorn sich vorwölben, so dass eine starke Schräglage der Basalfläche zum oberen Teile der Kieferplatte entsteht. Dagegen ist das Trajektorium des M. genioglossus durch sehr starke Bälkchen ausgezeichnet, und diese muss man in diesem Falle allein für die verhältnismässig grosse Kinnbildung verantwortlich machen. Ein Vergleich der Durchschnitte von Fig. 34 und Fig. 52 zeigt die Abänderung des Basalteiles

Fig 53.

Unterkiefer vom Massai, welchem frühzeitig die mittleren Schneidezähne extrahiert werden. Starke Ausbildung des Kinns und der Trajektorien des M. digastricus und genioglossus.

in seiner äusseren Form durch die verschiedenartige Entwickelung des Trajektoriums des M. digastricus so deutlich, dass ein weiterer Kommentar überflüssig erscheint.

Ein solcher Kiefer, wie ihn die Figur 52 a-d zeigt, erscheint in Bezug auf die Entwickelung des Basalteiles als gerader Gegensatz zu den diluvialen Kiefern, insbesondere zum Schipkakiefer. Hier stark entwickelte Insertionsstellen des M. digastricus

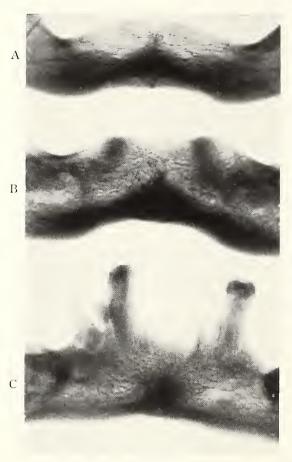


Fig. 54. Röntgenaufnahme von dem unteren Vorderkiefer.

A Einer 84 jährigen Frau, B einer 92 jährigen Frau, C einer 84 jährigen Frau.

Die Trajektorien des M. genioglossus (besonders C) und des M. digastricus sind gut erhalten. Die Kiefer haben jeder einen stark hervortretenden Basalteil bei geschwundenem Kieferkörper. und geniohyoideus, aber geringste Ausbildung des Trajektoriums des genioglossus, keine Kinnbildung, dort die umgekehrten Verhältnisse.

Bei den Massais ist es Sitte, die unteren mittleren Schneidezähne im jugendlichen Alter zu entfernen. Es tritt dadurch eine Reduktion des Alveolarfortsatzes ein, das Kinn tritt dagegen spitzer hervor. Das Radiogramm eines solchen Kiefers zeigt Fig. 53. Ein starkes Trajektorium des M. genioglossus und des M. digastricus er hält in diesem Kiefer den Basalteil, obgleich der Kieferteil über demselben eine sehr weitmaschige Spongiosa als Zeichen einer sehr geringen Beanspruchung aufweist.

Noch auffälliger ist die Bedeutung der beiden Trajektorien für die Kiefer von Leuten, welche schon seit langer Zeit sämtliche Zähne des Mundes verloren haben. Die Kiefer verfallen damit dem Knochenschwunde, der Inaktivitätsatrophie, denn die Beanspruchung beim Kauakt ist eine sehr geringe. Auffallend ist es nun, dass der vordere Unterkiefer dem allgemeinen Schwunde nicht so anheimfällt. Allerdings geht der Alveolarfortsatz und ein Teil des Kieferkörpers bei sehr alten Leuten verloren, der Basalteil wird jedoch nahezu vollständig bis in das höchste

Alter hinein erhalten und springt nun ganz bedeutend hervor. Radiogramme von solchen Kiefern zeigen das Vorhandensein der Trajektorien der M. genioglossus und digastricus in dem selben Masse wie in Kiefern, welche Zähne besitzen, und ihnen ist es zuzuschreiben, dass das meist spitz hervortretende Kinn der Greise erhalten bleibt. Im übrigen erstreckt sich Inaktivitätsatrophie auf sämtliche übrigen Partien der Kiefer. Die Annahme, dass etwa der Kauakt, welcher, wie ich in der vorliegenden Arbeit nachwies, die allgemeine Kieferform schafft und erhält, hier von Einfluss sei, muss bei näherer Betrachtung für diese Erscheinung als vollständig hinfällig bezeichnet werden. Denn wir sahen, dass selbst an den Insertionsstellen der grossen Kaumuskeln, welche doch gewiss noch am meisten bei dem naturgemäss nun sehr mangelhaften Kauakte beansprucht werden, ein enormer Abbau stattfindet. (Siehe Fig. 19.)

Hier kommt eine ganz andere Beanspruchung des Vorderkiefers in Betracht, welche die eine stärkere Entwickelung respektive Erhaltung der Trajektorien des M. digastricus, des geniohyoideus und besonders des M. genioglossus und damit die Erhaltung der äusseren Form des Basalteiles des Unterkiefers nach sich zieht, nämlich die Funktionen jener Muskeln bei der Sprache des Menschen.

Mortillet hat schon früher angenommen, dass das Fehlen der Spina mentalis interna den Mangel einer artikulierten Sprache beweise. Schaaffhausen bemerkte dazu, dass die M. genioglossi als Hervorbringer der Zahnlaute hier allein in Betracht kommen könnten. Ich citiere seine Worte: "Ihr stärkerer Gebrauch mag beim Sprechen mit der Bildung einer Spina mentalis interna zusammenhängen. Doch fand Vrolik beim Schimpanse keine Verschiedenheit in Betreff des Genioglossus, nur seien die Geniohyoidei verhältnismässig stärker und die Mylohyoidei schwächer als beim Menschen. Wiewohl die Sprache im Lallen des Kindes mit Zahn- und Lippenlauten beginnt, so erscheinen in der Sprachentwickelung doch vielfach die gutturalen Laute als die älteren, denen die leichter zu sprechenden Zahn- und Lippenlaute gefolgt sind. Die Spina mentalis interna kann nicht mit dem Sprachvermögen überhaupt in einen Zusammenhang gebracht werden, wohl aber mit der Sprachentwickelung". Die Angaben Schaaff-HAUSENS waren mehr Vermutungen, ohne dass ein Beweis dafür erbracht werden konnte. In hohem Grade auffallend ist nun, dass bei keinem Affen auch nur eine Andeutung von einem Trajektorium des Genioglossus, wie es beim Menschen vorhanden ist, vorkommt. Ich erwähnte, dass beim Orangutan der Knochen an der Insertionsstelle jenes Muskels auf Kieferquerschnitten nur eine etwas dichte halbkreisförmig angeordnete Spongiosa aufweise. Ein wirkliches Trajektorium, wie es beim Orangutan z. B. der M. digastricus so schön hervorbringt, ist an der Ansatzstelle des M. genioglossus niemals vorhanden. Zahlreiche Aufnahmen der Vorderkiefer vom Orangutan mittelst Röntgenstrahlen zeigten eine ganz gleichmässige Anordnung der Spongiosa im Vorderkiefer. Beim Gorilla weist der Knochen oberhalb der Insertionsstelle des M. genioglossus auf Kieferquerschnitten eine etwas stärkere Spongiosa auf, welche zwar zur vorderen Kieferplatte zieht, aber eine sehr unregelmässige Form hat und keinenfalls wahre Knochenbälkchen — ähnlich dem Trajektorium des M. digastricus, wie sie auch der Gorilla hat — bildet. Nicht die körperliche Stärke eines Muskels ist für die Entstehung eines Trajektoriums im Knochen allein massgebend, sondern weit mehr die oft wiederholte Konstanz einer bestimmten Druck- oder Zugrichtung.

Eine Konstanz der Zugrichtung, wie man sie nach den Gesetzen der Entwickelungsmechanik erwarten muss, ist beim Genioglossus der sprachlosen Tiere nicht vorhanden. Die Funktion des Muskels ist hier nur eine Unterstützung der allseitig und regellos erfolgenden Zungenfunktion, welche sich zur Unterstützung des Kauaktes immer zufälligen Momenten anpassen muss. Die Spongiosa an der Insertionsstelle unterscheidet sich kaum von der übrigen des Kieferkörpers, welche den Zweck hat, die beiden Kieferplatten gegen den Kaudruck zu verstreben. Das ausgesprochene Trajektorium des M. genioglossus ist dagegen spezifisch menschlich und deshalb erscheint es mir einerseits gleichzeitig mit dem M. digastricus bestimmend für die Entstehung des menschlichen Kinnes. Es ist aber auch anderseits meines Erachtens der Ausdruck für eine gänzlich neue Funktion, nämlich für einen Teil der Sprachbildung, welche eine bedeutend vermehrte Beanspruchung des M. genioglossus unbedingt nach sich zieht. Vielleicht sind es nach Schaafhausen die Zahnlaute, welche die Entstehung dieses Trajektoriums besonders bedingen.

Häufig sieht man nämlich das Trajektorium beim heutigen Menschen über der Spina mentalis beginnend zum Kinnhöcker abfallen. Es durchsetzt dabei auch in schräger Richtung die die Kieferplatten verbindende Spongiosa, ist also nicht eine einfache Verstärkung dieser Bälkchen. Diese Lage würde auf die Beanspruchung bei der Bildung der Zahnlaute infolge Hebens der Zunge durch den M. genioglossus direkt hindeuten. Anderseits scheint jedoch auch die verschiedenartige Ausbildung und Stellung des Basalteiles zum Kieferkörper dabei in Betracht zu kommen. Bei geringer Ausbildung des Trajektoriums des M. digastricus liegt dasjenige des M. genioglossus mehr rechtwinkelig zur hinteren Kieferplatte. Also nicht allein die Schrägstellung des M. digastricus ist für die äussere Form des Basalteiles von Bedeutung, sondern seine Stärke beeinflusst die Lage des Trajektoriums des M. genioglossus.

Von Interesse werden nun die ganz allgemein gehaltenen Angaben Torniers (Archiv für Entwickelungsmechanik 1895), woher es kommt, dass Muskelsehnen in Knochengruben und nicht an Knochenfortsätzen inserieren. Tornier sagt darüber:

"Nicht jede an einem Knochen inserierende Sehne bildet auf ihre Kosten einen Knochenvorsprung aus, sondern nur die, welche bei Vorwiegen einer speziellen Organfunktion zu besonders energischer Arbeitsleistung gezwungen werden. Inserieren ganze Muskelgruppen auf ein und derselben, mehr oder weniger umschriebenen Knochenstelle, und verknöchern davon nur die Sehnen, welche die oberflächlichsten sind, von ihren Insertionspunkten aus, dann werden die tiefer liegenden Sehnen von den neu entstandenen Knochengräten zum Teil überdeckt und die Knochen selbst bilden mit dem Knochenschaft grubenartige Vertiefungen, denen entsprechend, die unter dem Einfluss analoger Entwickelungsvorgänge um die Gelenkflächen herum dadurch entstehen, dass von den Kapselbändern die oberflächlichsten und längsten Fasern zuerst verknöchern. Ja dieses Beispiel zeigt sogar, dass es gar nicht unwahrscheinlich ist, dass in manchen Fällen schon ein alleinstehender Muskel, dessen Sehnenfasern in mehreren Lagen fächerförmig ausgebreitet inserieren, zur Entstehung einer Knochengrube Veranlassung geben kann, wenn seine oberflächlichen Sehnenfasern vom Knochenkörper aus zuerst ossifizieren".

Diese Sätze Torniers passen auch für die Funktion des M. genioglossus. Ich möchte speziell die Gruben- oder Spinabildung durch den M. genioglossus dahin festlegen, dass der erstere Fall eintritt, wenn die Thätigkeit des Muskels inkonstant und weniger kräftig ist und der Basalteil mit dem Kieferkörper keinen grösseren Winkel als 180° bildet. Es kommt zur Bildung einer Spina, wenn die geschilderten Bedingungen zu positiven werden. Es genügt die oberflächliche Verknöcherung der Sehne und Bildung einer Grube für die Insertion des M. genioglossus. Durch die vermehrte und bestimmte Beanspruchung wird der Muskel besonders central in seiner Sehne verknöchern. Daneben bedingt aber auch seine Anheftung auf dem Scheitel des Winkels die Ausbildung einer Spina.

Neuerdings hat W. Gebhardt (Archiv für Entwickelungsmechanik der Organismen XII. Band I. u. 2. Heft) in einem Aufsatz "Über funktionell richtige Anordnungsweisen der gröberen und feineren Bauelemente des Wirbeltierknochens" weitere wertvolle Mitteilungen über die Ansätze der Zugorgane an den Knochen gemacht, welche auch in unseren speziellen Betrachtungen eine wichtige Rolle spielen. Gebhardt sagt darüber folgendes: "Die Starrheit des dem Knochen nächstgelegenen Sehnenabschnittes als letzten kurzen Zwischenstückes ist von mechanischer Bedeutung, indem gerade durch sie beim Wechsel des Winkels zwischen Sehne und Knochen für den letzteren ein Teil der Zugbeanspruchung in anderweitige Beanspruchung umgewandelt wird. Von noch grösserer Bedeutung gerade in dieser Beziehung ist das Einsenken der Sehnenansätze in Vertiefungen des Knochens, wobei die seitlich an- und überliegenden

Fig. 55.

A Unterkiefer vom Gorilla. An der Ansatzstelle des M. genioglossus zwischen den Wurzeln des Canini C, C ist eine halbkreisförmige hell erscheinende Zone in der Spongiosa, darunter eine runde von der gleichen Beschaffenheit. Dies ist die Ansatzstelle für den M. geniohyoideus. Der Knochen wird hier also im Gegensatz zum Menschen sehr gering beansprucht.

B Unterkiefer vom Schimpanse. Hier erscheint nur die eine helle Zone an der Ansatzstelle des M. genioglossus. In beiden Kiefern wird der an den Insertionsgruben ausgeübte Zug in Druck umgewandelt, welchen die Compacta aufnimmt. Teile auf Biegung, Druck und in alle möglichen anderen Weisen beansprucht werden. In dieser Beanspruchung mag dann für diese Teile ein ihrer Ausbildung förderliches Moment gegeben sein, woraus sich die vielfachen "Überwallungen" der Sehnenansätze erklären könnten, die in Ringwällen, Leisten und Zipfeln bestehen, die stets zwischen oder über oder unter den Sehnenbündeln liegen, ihnen aber nicht selbst zum Ansatz dienen".

Meine Resultate stimmen mit diesen Sätzen vollständig überein. Ich konnte durch Röntgenaufnahmen der Vorderkiefer der grossen Anthropomorphen nachweisen, dass das Knochengewebe unter den Insertionsstellen der Zugmuskeln infolge der Umwandlung des Zuges in Druck entlastet wird und im Radiogramm hell erscheint. Die Anthropomorphen verhalten sich dabei wieder verschieden. BeimOrangutan ist jener Zustand nicht nachzuweisen. Beim Schimpanse befindet sich ein heller Kreis an der Insertionsstelle des M.geniohyoideus, bei dem Gorilla auch am M. genioglossus. Diese Verschiedenheit bei den Anthropomorphen hängt offenbar mit

der Stärke der Compacta der hinteren Kieferplatte zusammen, welche beim Orangutan am schwächsten, beim Gorilla am stärksten ist. Trotzdem bei letzterem der M. geniohyoideus oft sogar eine Spina bildet, ist das darunterliegende Knochengewebe aufgelockert, ein Beweis, dass die Compacta den ausgeübten Zug vollständig in Druck umwandelt, und die Spongiosa unbeeinflusst ist.

Was die Überwallungen anbetrifft, so haben wir besonders zwischen den M. geniohyoidei des Schimpanses häufig eine sehr scharfkantige, stark vorspringende Leiste, welche nicht zum Ansatz der paarigen Muskeln dient. Ebenso erklärt sich auch wohl z. B. jenes feine Knochenleistchen in der Medianlinie mancher menschlicher Unterkiefer, wie wir es auch am Schipkakiefer beobachten. Zwischen den M. geniohyoidei sich erstreckend, zieht es zur Basalfläche des Kiefers, indem es hier noch teilweise die starken Gruben des M. digastricus trennt.

Man könnte meiner Annahme, dass das Trajektorium des M. genioglossus beim Menschen im wesentlichen durch die Sprachfunktion bedingt sei, entgegenhalten, dass es durch die Grubenbildung beim Affen und der von mir nachgewiesenen Entlastung des Knochengewebes an der Insertionsstelle zur Bildung eines Trajektoriums gar nicht zu kommen brauche. Dem ist aber entgegenzuhalten, dass der Prédmoster Kiefer trotz starker Grubenbildung ein ausgeprägtes Trajektorium des M. genioglossus besitzt. (Siehe Fig. 45 und 46.) Dieser Umstand spricht für eine weit grössere, bestimmte Beanspruchung der Insertionsstelle dieses Muskels, und dieses kann man nach Lage der Dinge nur der vermehrten Funktion des Muskels durch die Sprache zuschreiben.

Nach diesen Ergebnissen der Entwickelungsmechanik wird nun auch das Verhalten der inneren Kieferplatten an den Insertionsstellen des M. genioglossus und M. geniohyoideus bei dem heutigen Menschen in ein helleres Licht gerückt. Topinard hat in seiner Abhandlung die Variationen der Spina mentalis interna mit grösster Genauigkeit erörtert und kommt zu dem Schlusse, dass er keine anatomische Sonderheit kenne, welche so proteusähnlich wäre. Man kann das leicht an einer Anzahl von menschlichen Kiefern bestätigen

Topinard erklärt als Grundform der Spina mentalis interna je zwei kleine Knochenkämme; die oberen entsprechen den Insertionsstellen des M. genioglossus, die beiden unteren denjenigen des M. geniohyoideus. Die grössere oder geringere Ausbildung, das Zusammenfliessen der paarigen Knochenkämme, eventuell die Entstehung einer Fläche, wie die Verschmelzung der "Apophysis superior und inferior" zu einem Höcker, einer wirklichen Spina, wie es nach Topinard bei allen heutigen Menschenrassen vorkommt, und unzählige andere Variationen haben nach meinen obigen Aus-

führungen verschiedene Ursachen. Sie werden direkt Überwallungen infolge der Einwirkung der seitlich wirksamen Muskeln, und indirekt teils durch die Stärke einer konstanten Beanspruchung des Knochens auf Zug durch die einzelnen beteiligten Muskeln, teils durch die Lage der Insertionsstellen jener Muskeln zu einander hervorgerufen, welche wiederum durch die allgemeine Knochenform bedingt ist.

TOPINARD hatte somit Recht, wenn er in seiner Abhandlung die Annahme Mortillets zurückwies, das Fehlen der Spina mentalis interna sei ein Zeichen dafür, dass das Individuum von La Naulette nicht oder nur sehr schwer sprechen konnte. Die Spina mentalis interna konnte dafür nicht beweiskräftig sein.

Auch am Unterkiefer von Krapina lässt sich durch Radiogramme der Einfluss der Muskelfunktion, wenn auch geringer wie beim Prédmoster Kiefer, feststellen. An

Fig. 56. A Unterkiefer, B Oberkiefer von Krapina.

den Insertionsstellen der M. digastrici ist die oberhalb einer sehr starken Rindensubstanz liegende Spongiosa verdichtet, ein Beweis, dass hier, trotz der geringen Schrägstellung jeder Insertionsgrube zum Kieferkörper eine starke Beanspruchung des inneren Knochens auf Zug stattfand. Diese hier verdichtete Spongiosa erreichte jedoch nicht die Höhe der Grube an der hinteren Kieferplatte. Die Röntgenaufnahmen zeigen, dass von jener Grube durch den Knochen wiederum ein Trajektorium zieht, welches durch den M. genioglossus hervorgerufen wird. Dasselbe ist allerdings geringer, als beim Prédmoster Kiefer. Eine Röntgenaufnahme von der hinteren Kieferplatte zeigte sogar deutlich eine Verdichtung der Spongiosa um diese Grube herum, von welcher strahlenförmig kleine Bälkchen in die Umgebung ziehen. Während an der inneren Kieferplatte diese Verdichtung der Spongiosa

deutlich sichtbar ist, breitet sich das Trajektorium des M. genioglossus mehr aus und macht auf der vorderen Kieferplatte kaum einen Eindruck. Infolge dessen sieht man nur bei ganz genauer Betrachtung am Krapinakiefer eine sehr schwache, ovale Erhabenheit, welche den ersten Anfang einer Kinnanlage darstellt.

In der Medianlinie liegt beim Krapinakiefer eine geringe "Apophysis genii inferior" in Form einer spindelförmigen Erhöhung. Auch diese markiert sich nicht in der Röntgenaufnahme als Verdichtung der Spongiosa, etwa als Trajektorium des M. geniohyoideus, sondern ist vielmehr als eine Überwallung zu betrachten, welche durch die gemeinsame Wirkung der seitlich liegenden M. geniohyoidei hervorgebracht wird.

Nach diesen Befunden muss man den Krapinakiefer in Bezug auf die Ent-

wickelung des diluvialen Menschen hinter den Schipkakiefer aber vielleicht gleichzeitig mit dem Kiefer von La Naulette und vor den Kiefer von Prédmost setzen. Eine solche Reihenfolge stimmt auch mit den geologischen Schichten überein, in welchen die einzelnen Kiefer gefunden wurden.

Der Vergleich der Röntgenaufnahmen dieser Kiefer zeigt aber auch eine fortschreitende Entwickelung jenes Trajektoriums des für die Sprache wichtigsten Zungenmuskels.

Fig. 57.
Unterkiefervon
Krapina.
Röntgenaufnahme
von der Rückseite
(Film). t Trajektorium des M.
genioglossus.

41

dem heutigen Menschen dasselbe bedeutend verstärkt ist, während der Kauakt ein viel geringerer geworden ist, so kann man diesen bei der Beurteilung der Entstehung jenes Trajektoriums des M. genioglossus vollständig ausser Acht lassen.

Dagegen kommt man durch die Untersuchungen unbedingt zu der logischen Folgerung, dass das Trajektorium durch den Erwerb der Sprach-Funktion allmählich geschaffen wurde, für welche die Existenz und eine möglichst ausgiebige Funktionsfähigkeit des M. genioglossus conditio sine qua non ist. Jene diluvialen Kiefer aber weisen darauf hin, dass der Mensch in jener Zeitperiode zum mindesten den Gebrauch einer artikulierten Sprache in grösserem Umfange sich zu eigen machte.

Der Beweis für diese Ansicht, jene Trajektorienbildung, welche kein Anthro-Selenka, Entwickelungsgeschiehte IX. pomorphe besitzt, wurde in anderer Weise geführt, als von Mortillet. Sprach gegen dessen Ansicht, wie Topinard hervorhob, das Verhalten heutiger Kiefer, so bestätigen sowohl diese als auch die diluvialen Kiefer meine Ansicht. Der Prédmoster Kiefer hat Gruben-, Trajektorien- und Kinnbildung ohne Spina.

Die Entstehung der Spina mentalis interna ist von der Thätigkeit des M. genioglossus noch nicht einmal allein abhängig. Das in jener Grube des Prédmoster Kiefers eintretende Gefäss dient zur Versorgung des vom M. genioglossus gebildeten Trajektoriums, welches röhrenförmig um dasselbe angeordnet ist. Die Spina des heutigen Menschen ist nicht etwa allein der Ausdruck der höchsten direkten Muskelleistung an dieser Knochenstelle durch ausgeübten Zug des M. genioglossus, sondern sie erscheint gleichzeitig als eine Verstärkung des Punktes der hinteren Kieferplatte, an welchem die beiden Abschnitte derselben in verschiedener Richtung beansprucht werden. Zieht man jene auf S. 239 geschilderte Richtung der Linea obliqua interna in Betracht, welche als Fernwirkung einer Muskelarbeit am Knochen aufzufassen ist, und häufig hier an der Symphyse endet, bedenkt man, dass der oberhalb dieses Punktes ansetzende M. genioglossus nach oben und hinten, der darunter und seitlich liegende M. geniohyoideus nach hinten und der M. digastricus nach unten und hinten zieht, so wird dieser Punkt eine besondere Belastung erfahren, zumal bei der orthognathen Zahnstellung auch der Kaudruck an dieser Stelle zur stärksten Geltung kommt. Die Röntgenaufnahmen ergaben, dass die Spina mentalis durchaus nicht etwa zu jenen Knochenvorsprüngen gehört, welche der Ausdruck höchster Belastung durch Zug sind. Sie schliesst sich in ihrem ganzen Verhalten zu den betheiligten Trajektorien vielmehr im wesentlichen den besprochenen "Überwallungen" an. Wenn auch der M. genioglossus teilweise an der Spina selbst ansetzt und vielleicht auf die Form derselben einigen Einfluss hat, so muss man nach den Bildern von Kieferquerschnitten durchaus annehmen, dass die Spina mentalis interna der Ausdruck einer kombinierten direkten und indirekten Muskelwirkung an der Stelle ist, wo Kieferkörper und Basalstück ineinander übergehen. Die einzelnen Elemente dieser Kombination sind bestimmend für die Gestaltung der Kieferplatten an dieser Stelle, wobei das Überwiegen des einen oder anderen Faktors die innere Struktur und äussere Form verändert, so dass jene Spina mentalis interna in allen möglichen Variationen ensteht.

Sämtliche Formveränderungen des Vorderkiefers der Primaten folgen somit ebenfalls dem von Roux aufgestellten Gesetze, wonach durch den funktionellen Reiz eine Begünstigung der Entwickelung in der Richtung hervorgerufen wird, in welcher die Kräfte wirken. Hervorragend sehen wir das noch am Basalteile des Vorderkiefers bei den Affen, wo der M. digastricus durch seine kräftige Funktion den Kieferrand auszieht. Unterstützt wird diese Knochengestaltung seitens des M. digastricus durch den bei den Affen stark ausgebildeten Subcutaneus colli, welche nach dem Zeugnis von Bischhoff u. A. namentlich in seinem frontalen Abschnitte sehr stark entwickelt ist. Die Insertionsstelle dieses Muskels ist an dieser Stelle bei älteren Anthropomorphen häufig sehr deutlich als breite flache Grube ausgeprägt. Beim Orangutan ist vielleicht auch noch der Umstand für den sehr stark zurücktretenden Unterkieferrand von Bedeutung, dass der M. digastricus nur einen Bauch hat. Die Anheftung am Zungenbein fehlt, und dadurch muss der M. digastricus beim Orangutan den Kieferrand mehr horizontal ziehen.

Aber selbst schwächere Muskeln, welche nicht am Rande des Knochens inserieren, gestalten die äussere Form. Der neue Charakter, welchen der heutige menschliche Unterkiefer durch das Hervortreten des Kinnes erhielt, beruht im wesentlichen auf der gestaltenden Thätigkeit des M. genioglossus, welcher unter den erörterten Bedingungen durch die Ausbildung eines Trajektoriums in bestimmter Richtung zum mindesten an der Erhaltung des Basalteiles und zwar im wesentlichen der vorderen Fläche, wenn nicht an einer Vortreibung der letzteren durch die Aktivitätshypertrophie stark beteiligt ist. Durch die Neubildung dieses Trajektoriums, respektive durch seinen Einfluss wurde auch die Stellung der Insertionsgrube des M. digastricus zum Kiefer direkt beeinflusst. Im Schipkakiefer ist das Trajektorium des M. genioglossus nur in sehr geringem Umfange zu konstatieren, während es am Krapinakiefer, noch mehr aber am Prédmosterkiefer schon stärker hervortritt. Dementsprechend haben sich die Insertionsgruben der M. digastrici in ihrer Stellung zum Kieferkörper geändert.

Nach den Ergebnissen meiner Untersuchungen der funktionellen Zug- und Druckwirkungen der Muskeln auf das Knochengewebe, möchte ich hier für die Bildung von Trajektorien im Knochengewebe der Meinung Raum geben, dass die Trajektorien durch eine oscillatorische Beanspruchung der Elemente der Spongiosa entstehen, welche durch Vermittelung eines periodisch erfolgenden Druckes oder Zuges auf die elastische Compacta an der Insertionsstelle des Muskels indirekt erzeugt wird.

Der Einfluss der fortschreitenden Grössenreduktion der menschlichen Zähne auf den Vorderkiefer.

Neben der formgestaltenden Thätigkeit der Muskeln an der hinteren Seite des Vorderkiefers nehme ich, wie schon öfters angedeutet, für die Entstehung des Kinns gleichzeitig und gleichwertig noch eine fortschreitende Reduktion der Kiefer und Zähne an Grösse bei dem Menschen an.

Die Verkleinerung der Kiefer und der Zähne beim Menschen muss dabei konsequenterweise zu einem Kampfe der letzteren um den gegebenen Raum führen, wenn sich die Grössenverhältnisse der beiden Faktoren nicht genau anpassen. Dieses ist in den menschlichen Kiefern aber sehr häufig der Fall und die Folge sind Unregelmässigkeiten in der Stellung der Zähne, wie wir sie so häufig besonders bei den civilisierten Völkern zu beobachten Gelegenheit haben. Oft spielen nachweislich von den Vorfahren erworbene Kiefereigentümlichkeiten eine grosse Rolle und man sieht in einer Familie z. B. dieselbe prägnante Stellungsanomalie irgend einer Art bei allen Mitgliedern derselben. Weit häufiger werden die Kiefer der Mutter und die Zähne des Vaters vererbt, wenngleich auch das Umgekehrte vorkommt. Der Kampf um den gegebenen Raum wird nun nach zwei Prinzipien unter den Zähnen ausgefochten, nämlich nach der vererbten Grösse und der ebenfalls vererbten zeitlichen Entwickelung. Letztere ist gleichbedeutend mit dem Begriff der Verkalkung und dem Durchbruch der Zähne.

Dass die Kieter des Menschen sich verkleinern, ist eine Thatsache, die bei den civilisierten Rassen so unzweifelhaft feststellt, dass hierüber nicht mehr zu streiten ist. Wir Zahnärzte haben oft genug Gelegenheit, Schiefstellungen der Zähne in einem für die Zähne zu kleinen Kiefer zu beobachten. Jene Angabe von Bonwill, dass bei den heutigen Menschen der Abstand der beiden Gelenkköpfe des Unterkiefers gleich sei der Entfernung der Gelenkköpfe bis zu den Berührungspunkten der mitt-

leren Schneidezähne, nämlich 100 mm, gilt nur für die civilisierten Völker. An den prognathen Kiefern von Negern wies Branco nach, dass der Abstand der Gelenkköpfe von den Schneidezähnen bis zu 120 und mehr Millimeter betrug. Ein derartiger Prognathismus als Stammesmerkmal deutet auf den ursprünglichen der Stammesform hin. Zähne und Kiefer stehen dabei nahezu immer noch in einem harmonischen Grössenverhältnis. Wenn bei civilisierten Völkern prognathe Kiefer vorkommen, so betrifft der Prognathismus nicht so die Allgemeinheit eines Volksstammes, sondern einzelne Individuen. Ein individuell erworbener, alveolarer Prognathismus beruht bei ihnen entweder auf einer das gewöhnliche Mass überschreitenden funktionellen Beanspruchung der vorderen Zähne nach dem Durchbruche oder er ist vererbt, indem der Kieferkörper für die Zähne überhaupt zu klein ist. Dabei erhielt der Zahnbogen trotz der Reduktion des Kieferkörpers ein regelmässiges Krümmungsmerkmal. Wird jedoch aus diesem ein Zahn im Kampfe um den Raum, welcher während der Entwickelungsperiode wie beim Durchbruch selbst stattfindet, herausgedrängt, so entsteht eine Stellungsanomalie ohne regelmässiges Krümmungsmerkmal. Die Zähne sind gegenüber dem Kieferkörper in Bezug auf die fortschreitende Reduktion meistens im Rückstande. Bei niederen Rassen findet man unregelmässige Zahnstellungen höchst selten, und zwar nur in den Fällen, wo die Rasse durch schlechte Ernährung und veränderte Lebensbedingungen degenerierend beeinflusst wird.

Dass also bei den civilisierten Rassen gegenüber den tiefstehenden eine Verkleinerung des Kieferkörpers stattgefunden hat, ist mit Sicherheit nachzuweisen. Die Unregelmässigkeiten der Zahnstellung scheinen sogar in den letzten Jahrhunderten ähnlich wie die Zahncaries und wohl eng mit dieser im ursächlichen Zusammenhange stehend enorm zuzunehmen.

Dass die Zähne des Menschen dagegen an Grösse abnehmen, war eine bisher unbewiesene Annahme. Ein ausgezeichneter Kenner menschlicher Zähne Charles Tomes fasst in seiner Anatomie der Zähne des Menschen und der Wirbeltiere seine Ansichten in folgendem Satze zusammen: "Im ganzen muss man zugestehen, dass zwischen den verschiedenen Menschenrassen weniger konstante Verschiedenheiten vorhanden sind, als man a priori erwarten würde; und man kann sagen, dass man die Zähne eines Wilden im Munde eines Europäers nur für ein vollkommen gut entwickeltes Gebiss halten würde."

Wirklich in die Augen springende Unterschiede sind zwischen den Zähnen heutiger hochstehender und niederer menschlicher Rassen in der That nicht vorhanden. Menschliche Zähne haben in Bezug auf Formen im Gegensatz zu vielen Tieren eine grössere Konstanz. Immerhin ist das Fehlen des einen fünften Höckers beim

zweiten unteren Molaren der hochstehenden Rassen als Zeichen von Reduktion der Form aufzufassen. Intensiver erscheint die Reduktion der Gesamtgrösse. Vom dritten Molaren ist dieselbe seit langem bekannt. Indessen zeigt auch der obere kleine Schneidezahn und der obere zweite Prämolar diese Erscheinung. Insbesonders haben Baume in seinen Odontologischen Forschungen und neuerdings Branco über Reduktion der Schneidezähne und der letzten Molaren bei Tieren und Menschen zahlreiche Beobachtungen veröffentlicht. Gleichzeitig finden sich an diesen Zähnen die meisten Unregelmässigkeiten in Bezug auf Stellung. Der zweite obere Prämolar des Menschen ist noch gar nicht darauf hin geprüft. Im Gegensatz zum ersten besitzt derselbe nahezu mmer nur eine Wurzel. Der Weisheitszahn, zweiter oberer Prämolar und kleiner Schneidezahn zeigen die meisten Stellungsanomalien; sie erscheinen häufiger zwerghaft, sind nicht ganz selten retiniert oder werden sogar nicht angelegt.

Das sind alles Momente, welche auf eine Reduktion der Grösse wenigstens einzelner Zähne bei den hochstehenden menschlichen Rassen hindeuten. Es musste nun im hohen Grade interessant sein, die erwähnten diluvialen menschlichen Kiefer auf Grössenverhältnisse der in ihnen enthaltenen Zähne vergleichend zu prüfen.

Die Zähne des Schipkakiefers veranlassten Virchow zu dem Ausspruche, dass sie von einer unerhörten Grösse seien. Mit Recht kann man aus den vorhandenen Zähnen auch auf eine unerhörte Grösse der fehlenden schliessen. Schaaffhausen hat schon besonders darauf aufmerksam gemacht, dass der noch nicht durchgebrochene Eckzahn des Schipkakiefers eine ganz auffallende Grösse besitze. Er bestimmt die Kronenlänge auf 13,5 mm Länge, während Virchow nur 13 mm annimmt. Letzterer findet nicht, dass die Grösse des Eckzahnes mehr auffallend sei als die der übrigen Zähne. Indirekt bestätigt hier auch Virchow die Harmonie aller Zähne in Bezug auf ihre Grösse. Ich kann dem nur zustimmen, denn die Röntgenaufnahmen zeigen, dass der Eckzahn sich noch lange nicht vollständig in seiner Wurzel entwickelt hat. Der Eckzahn hätte nach seiner Vollendung selbst den heutigen grössten Eckzähnen gegenüber eine stärkere Entwickelung gezeigt. Dasselbe möchte ich vom ersten Prämolaren behaupten, dessen Wurzel nach der Röntgenaufnahme mesial vollständig erhalten ist, während die distale Seite durch Bruch zerstört wurde. Die Wurzel desselben ist noch nicht fertig gebildet. Ihre Länge beträgt mindestens 23 mm, ein Mass, welches Mühlreiter als das äusserste für heutige Prämolaren bezeichnet. Über die Krümmung der Schneidezahnwurzeln nach hinten geht Virchow nahezu ganz hinweg. Er erwähnt nur die unerhörte Grösse und ihre beginnende Teilung, bringt aber die vermehrte Cuspidation der Prämolaren zur Geltung und meint, dass letztere nach dem Typus der Molaren gebildet wären, und man es also auch mit einer Exzessbildung zu thun hätte.

Wenngleich alle Beobachter darauf hinweisen, dass die Zähne des Schipkakiefers sehr gross sind, so konnten dieselben doch nicht als ein Rassenmerkmal der damaligen Menschen angesehen werden, sondern erschienen mehr individuell, weil in der That nur eine einzige derartige Zahngrösse bekannt war. Hier tritt nun der Kiefer von Prédmost in hohem Masse ergänzend ein. Auffallend ist vor allen Dingen bei demselben die starke Entwickelung des durchgebrochenen ersten bleibenden Molaren, welcher noch ganzintaktist. Mühlreiter giebt die mittlere Entfernung zwischen den beiden Berührungsflächen, an der Kaufläche gemessen, auf 8-9 mm an. Beim Unterkiefer von Prédmost beträgt sie nahezu 13 mm. Die Höhe der Wangenfläche von ihrem Schmelzrande bis zur Spitze des vorderen Wangenhügels beträgt

nach Mühlreiter 7—8 mm. Bei dem ersten Molaren des Kiefers von Prédmost ist diese Zahl noch etwas grösser. Die Entfernung der Spitzen der Zungenhöcker von jenen der Wangenhöcker giebt Mühlreiter auf 5—6 mm an.

Die letztere Zahl wird bei den vorderen Höckern um ¹/₂ mm überschritten. Der Abstand des mittleren Wangenhöckers zum hinteren Zungenhöcker beträgt am Prédmoster ersten Molaren sogar 7 mm. Die vorhandenen Milch-Molaren zeigen ebenfalls eine

Fig. 58. Unterkiefer von Prédmost, die Kauflächen der Zähne zeigend, natürliche Grösse.

respektable Grösse. Der Abstand der mesialen zur distalen Fläche beträgt bei dem unteren zweiten Milch-Backzahn 11 mm, beim ersten Milchbackzahn 8 mm. Den vorderen linken Milchbackenzahn hat schon Nehring in den Sitzungsberichten der Berliner Anthropologischen Gesellschaft 1895 mit dem bei Taubach gefundenen Milchbackenzahn vergleichend beschrieben. Nehring erklärt denselben für einen "echten Diluvialzahn". Auftallend ist eine starke Querleiste, welche am zweiten Milchbackenzahn vom inneren vorderen Zungenhöcker zwischen den ersten und zweiten Wangenhöcker zieht. Die Kaufläche des ersten bleibenden Molaren zeigt jederseits eine ausgezeichnete Bildung der fünf Haupthöcker. Andererseits ist aber auch eine entschiedene Vermehrung der Runzelbildung und der damit verbundenen Furchenbildung vorhanden. Vollkommen übereinstimmend mit den Verhältnissen im Schipka-

kiefer ist die durch die Röntgenaufnahme festgestellte "vermehrte Cuspidation" Virchows an den Kauflächen der Prämolaren. Auch hier erscheint die obere Partie der äusseren Fläche dreispitzig. Diese Prämolaren im Kiefer von Prédmost haben mindestens dieselbe Spitzenzahl, wie diejenigen im Schipkakiefer. Endlich zeigt die Röntgenaufnahme, dass auch der zweite Molar eine enorme Krone erhalten hätte, welche derjenigen des ersten an Grösse wohl gleichgekommen wäre. Ganz dieselben Grössen und Formbildungen, wie ich sie soeben von dem Unterkiefer von Prédmost geschildert habe, finden sich in derselben Weise in beiden Oberkieferhälften. Ich verzichte auf eine Wiederholung; beide Zahnreihen bilden den

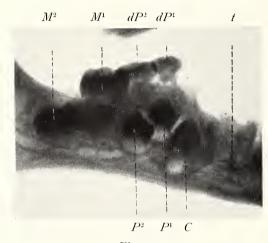


Fig. 59. Unterkiefer von Prédmost. Röntgenaufnahme von der Symphyse bis zum zweiten Molaren.

Vermehrte Cuspidation der bleibenden Prämolaren. Sehr starke Kronenentwickelung sämtlicher Zähne. t Trajektorium des M. genioglossus. Beweis, dass wir es auch hier, wie im Schipkakiefer mit sehr grossen Zähnen zu thun haben, welche sich durch ihre Form und Grösse wesentlich von den heutigen, normalen Zähnen des Menschen unterscheiden.

Endlich möchte ich auch die neu aufgefundenen Kiefer von Krapina für die Bestimmung der Zahngrösse heranziehen. Die Figuren 47—50 und 56 zeigen in diesen Kieferfragmenten sehr stark entwickelte Zähne, und zwar gilt das für alle Zähne sowohl für die Kronen als auch für die Wurzeln. Die Schneidezähne sind gleich denen des Schipkakiefers nach rückwärts gebogen. Diese Rückwärtsbiegung ist somit Rasseneigentümlichkeitdes diluvialen Menschengeschlechtes gewesen, genau so wie die Insertion des M. genioglossus in einer Grube.

Auffallend ist auch beim Kiefer von Krapina die Vermehrung der Zahl der Höcker, eine Thatsache, welche sich sogar auf die lingualen Flächen der Schneidezähne erstreckt. Zwischen den starken Wülsten, in welche die Approximalflächen dieser Zähne nach der lingualen Seite zu übergehen, tritt vom Zahnhalse dieser Seite ein weiterer, sehr starker Wulst zwischen jene beiden. Dieser Wulst ist durch kleinere Längsrinnen häufig nochmals in kleinere Talons geteilt (Verstärkungsleisten). Auch die übrigen Zähne zeigen grosse Neigung zur Vermehrung der Schmelzfalten. Gelegentlich kommen solche noch an einzelnen Zähnen des heutigen Menschen vor.

Über diese Bildungen hat Kramberger in seiner Abhandlung ausführlich und genau berichtet und verweise ich auf dieselbe hiermit. Eine wertvolle Tabelle dieses Autors über die Kronenmaasse der Zähne von Krapina beweist deutlich, dass die Zähne des diluvialen Menschen aus Krapina im allgemeinen grösser als die entsprechenden des recenten Menschen gewesen sind. Wichtig ist, dass es sich hier nicht um einzelne Kiefer, sondern um eine grössere Anzahl von Individuen (mindestens 10) handelt, bei welchen sowohl die bedeutendere Grösse als auch Schmelzfaltung der Zähne mehr oder weniger zu konstatieren ist.

Es liegen durch die aufgefundenen diluvialen Kiefer und Zähne meines Erachtens direkte Beweise für die Grössenreduktion sämtlicher Zähne des heutigen Menschen gegenüber den Vorfahren der Diluvialzeit vor. Man wird jedenfalls schwerlich wiederum von der "Duplicität" pathologischer Fälle oder von Excessbildungen reden können, da diese Kiefer, wie wir gesehen haben, normal und in sämtlichen Teilen nach den Gesetzen der Entwickelungsmechanik aufgebaut sind. Kiefer und Zähne stehen dabei in Bezug auf Grössenverhältnisse in vollster Harmonie mit einander und zwar weit besser, als wir es in den Kiefern der heutigen Menschenrassen gewöhnlich finden. Diese erneute Untersuchung jener ältesten Kiefer ergab, dass sie Rasseneigentümlichkeiten des damaligen Menschen zeigen, welche den heutigen Menschen nicht mehr zukommen.

Die Reduktion der Zähne an Grösse betraf im wesentlichen die Dimensionen in der Sagittalebene und zunächst die Wurzeln. Erstere wurde wiederum veranlasst durch die Verkleinerung der Kieferknochen infolge des geringeren Gebrauches, wobei die Reduktion des Knochens derjenigen der Zähne immer voraus war. Da auch die Kieferknochen vornehmlich in der Sagittalebene an Grösse reduziert wurden, so wurde aus dem alterblichen und ursprünglichen Prognathismus der Kiefer und Zähne eine Orthognathie derselben, welche für die meisten heutigen Rassen zur neuen Rasseneigentümlichkeit wurde. Die Korrelation zwischen beiden Faktoren ist für den heutigen Menschen noch nicht in allen Fällen eine vollständige geworden, zumal jene Reduktion der Kiefer an Grösse noch immer fortschreitet, während der Basalteil durch die Funktion der Sprache erhalten bleibt.

Rückblick auf die Entstehung der Kieferformen beim Menschen und den Anthropomorphen. Rückschlüsse auf die gemeinsame Stammesform.

Die gewaltige, uns zunächst ganz fremdartig erscheinende Entwickelung jener diluvialen menschlichen Kiefer und Zähne ist bei näherer Betrachtung eine notwendige Folge der Entwickelungsmechanik. Die funktionelle Anpassung schuf bei unseren Ahnen äussere Formen, deren damaliger Bestand auf den hervorragenden Gebrauch jener Teile zurückzuführen ist, genau wie zu unserer Zeit die geringere Benutzung jene für heutige menschliche Begriffe gewaltigen Kauwerkzeuge verkümmern, aber auch dadurch neue Formen entstehen liess, welche lange Zeit für spezifisch menschlich galten.

Alle jene Variationen der äusseren Kieferform der Menschen beruhen aber auf die Ausbildung einer gewissen inneren Struktur, welche direkt durch die Funktion der ansetzenden Muskeln und indirekt durch die in dem Knochen eingepflanzten Zähne bedingt ist. Jene ursprünglichen, in der Anlage übereinstimmenden konstruktiven Teile des Kiefers, werden durch den Gebrauch oder Nichtgebrauch der beiden genannten Faktoren verstärkt oder zurückgebildet. Diesem Vorgange schmiegt sich die äussere Kieferform auf das genaueste an. Und nicht allein die gewaltige Wirkung der grossen Kaumuskeln kommt dabei in Betracht. Auch kleine und unscheinbare Trajektorien sind von Einfluss auf die äussere Form. Jene spezifische Muskelthätigkeit des Menschen, welche ihm neben dem Gehirne die Herrschaft über alles übrige auf Erden sicherte, die Sprache, schuf ein kleines Trajektorium, welches die Veranlassung wurde, dass sich der Mensch auch äusserlich von den übrigen Primaten unterscheidet. Es verursachte neben der eigenartigen Stellung des an Grösse geringer werdenden M. digastricus zum Kieferkörper die Kinnbildung. Die Konstanz der Muskelwirkung war die Veranlassung, dass bei der Reduktion

des übrigen Unterkiefers an Grösse dieser im Vorderteile durch den M. genioglossus zugleich mit dem M. digastricus zum mindesten erhalten blieb. Wahrscheinlich trat sogar eine Vorwölbung durch die Muskelwirkung ein, welche zur Bildung des Kinns noch beitrug.

Die Kieferformation der übrigen Primaten wandelte in anderen Bahnen. Mag man bei ihnen nun eine gemeinsame Stammform mit dem Menschen annehmen, so ging die Entwickelung der Kieferformen jedenfalls immer nur in Rücksicht auf günstige Gestaltung des Kauaktes vor sich. Wir finden bei den Anthropomorphen sämtliche Kraftbahnen, mit Ausnahme jenes Sprachentrajektoriums, wie beim Menschen wieder. "Es sind die mächtigen Dauerzähne, es ist die Funktion des Fressens, dem die Form des Gesichtsschädels sich anzupassen hat", sagte Selenka auf S. 148 dieses Werkes. Nun, dieser Ausspruch gilt speziell vom Unterkiefer und nicht nur von seiner äusseren Form, sondern ganz besonders von seinem inneren Aufbau. Auch dieser ist allerdings nur für das Fressen berechnet und tritt dem Forscher in grösster Vollendung und Zweckmässigkeit entgegen. Das ist speziell bei den grossen Anthropomorphen, dem Orangutan und Gorilla der Fall. Die innere Struktur in ihren Elementen wird sehr stark beeinflusst und zweckmässig aufgebaut nicht allein generell, sondern sogar oft sichtlich individuell.

Nicht die Betrachtungen über die äussere Form der Organismen allein kann zu dem Ideal einer Erkenntnis der Stammform führen, sondern die Aufdeckung und Erkenntnis der Zweckmässigkeit der Struktur der Organismen ist eine eben so wichtige Vorbedingung für jenes Problem. Es erscheint mir die ausgeführte Vergleichung des Unterkiefers der Menschen und der Anthropomorphen als eine Bestätigung jener Lehre Rouxs, nach welcher eine funktionelle Selbstgestaltung des Knochens durch trophische Reize die innere Struktur und die äussere Form hervorruft, und dass somit nach dem Prinzip der Vererbung, entsprechend der funktionellen Thätigkeit, auch bei den Nachkommen jener Stammesform morphologisch neue Charaktere der Kieferform erzeugt wurden, welche in den einzelnen Spezies der heutigen Primaten zum Ausdruck kommen.

Für den Menschen sind, wie ich glaube, derartige morphologische Abänderungen der äusseren Kieferform durch die vorliegende Arbeit nachgewiesen. Der Schipkakiefer als nunmehr unzweifelhaft physiologische Erscheinung für den Menschen in jener Zeit ist vorläufig das älteste aufgefundene Beweisstück für die fortschreitende funktionelle Gestaltung des Unterkiefers. Nach einer brieflichen Mitteilung von Professor Maschka gehört der Schipkakiefer mindestens der Interglacialzeit an. Seine gewaltige und dennoch in allen seinen Teilen durchaus harmonische Entwickelung deutet un-

weigerlich darauf hin, dass seine Funktion sich dem "anthropomorphen" Typus nähe te, indem sich seine konstruktiven Elemente der Beanspruchung gemäss gestalteten. Der Schipkakiefer ist zwar unverkennbar menschlich, aber unter Berücksichtigung des jugendlichen Alters jedoch muss der Besitzer jenes Kiefers mittelst desselben den Kauakt weit mehr einer Funktion ähnlich gestaltet haben, welche wir heute mit dem Ausdruck des "Fressens" den Tieren zuschreiben, um zu bezeichnen, dass nur die Kiefer die Zerkleinerung der Speisen übernehmen. Davon zeugt neben der Entwickelung der konstruktiven Elemente schon die gewaltige Abnützung der Schneidezähne jenes zehnjährigen Kiefers. Dass diese auf prädisponierende Ursachen zurückzuführen sind, wie es in den heutigen menschlichen Kiefern häufiger vorkommt, wird niemand behaupten. Nur eine ganz intensive mechanische Beanspruchung konnte diese Zähne so kürzen.

Die Harmonie der Teile im Schipkakiefer weist ferner darauf hin, dass, wenn man nicht überhaupt jedes Prinzip der Vererbung leugnen will, ein Satz zu Recht besteht, welcher lautet: Der Schipkakiefer war für seine Zeit nicht individuell sondern generell. Ich erachte es durchaus nicht für notwendig, mit Virchow aus der Kiefergrösse dieses zehnjährigen Kindes zu schliessen, dass es ein Riesenkind aus einem Riesenstamme gewesen sei. Nur die Grösse des Kiefers und der in ihm enthaltenen Zähne und nicht die übrige Körpergrösse kommt in Betracht. Dass letztere nicht immer zur Kiefergrösse in demselben Verhältnis steht, kann man selbst aus den heutigen menschlichen Rassen (z. B. Eskimos) noch erkennen. Wohl aber ist meines Erachtens zum mindesten der Rückschluss notwendig, dass die "unerhörte" Grösse der Zähne im Schipkakiefer vererbt war, denn sie kann nicht plötzlich individuell erworben werden. Der Schipkakiefer zeigt weiter auf das Vollendeste das Prinzip der gegenseitigen funktionellen Anpassung von Kiefer und Zähnen und für das Individuum war offenbar Gelegenheit da, die vererbten Faktoren durch eine geeignete Funktion des Kieferknochens zu erhalten.

Der Unterkiefer von Prédmost stammt aus einer jüngeren Periode, nach Maschka wahrscheinlich aus der kleinen Eiszeit (dritte Eiszeit in den Alpen). Dazwischen stehen die etwa gleichalterigen Kiefer von La Naulette, von Krapina und endlich derjenige von Spy, welchen ich ebenfalls nur nach einem Gipsabguss kenne. Diese Kiefer gleichen in ihren Dimensionen und ihren äusseren Formen weit mehr demjenigen aus der Schipkahöhle, als den Kiefern der heutigen Menschen. Mit letzteren haben sie eine allerdings geringe Kinnbildung gemeinsam. Die allmähliche Trajektorienbildung des M. genioglossus, auf welche das Entstehen des Kinns zurückzuführen ist, bedingte eine zweite Ähnlichkeit mit den Kiefern recenter Menschen, nämlich die Schrägstellung des inneren Abschnittes der Basalfläche im Vorderkiefer. Später trug dann auch das bei der Schräg-

stellung der Basis nun deutlicher hervortretende Trajektorium des M. digastricus zur stärkeren Kinnbildung bei, während eine Reduktion der Zahngrösse und damit des Alveolarfortsatzes allmählich eintrat. Die Folge war gleichzeitig eine auftretende Neigung zur Orthognathie, zumal die stärker werdende Lippenmuskulatur die Zahnreihen dauernd nach innen drückte. Auch hier dürfte die Sprache des Menschen von Einfluss gewesen sein. Denn bei den Affen sind nach dem Urteile aller Präparatoren die mimischen Muskeln schwächer als beim Menschen entwickelt. Ehlers und A. haben speziell den sphincter oris, welcher doch sicherlich die wichtigste Lippenmuskel für die Sprache ist, beim Gorilla und Schimpanse schwächer als beim Menschen gefunden. Während die Kinnbildung beim späteren diluvialen Menschen das Aussehen der vorderen Kieferplatte allmählich wesentlich veränderte, blieb die Gestalt der hinteren Kieferplatte vorläufig noch längere Zeit im grossen und ganzen dieselbe.

Nach den vergleichenden Studien über die Entstehung und die Form der Gruben und Vorsprünge bei den Anthropomorphen und den Menschen erscheint auch die Grubenbildung bei den Diluvialkiefern pithekoid. Der Nachweis, dass das eintretende Gefäss (im Foramen supraspinatum) bei den heutigen Kiefern in der neutralen Axe des M. genioglossus liegt, legte zunächst die Stelle für die Beanspruchung des Knochens durch diesen Muskel beim Menschen fest. Der Prédmoster Kiefer bewies direkt, dass das Foramen der diluvialen Kiefer identisch mit der Fossula supraspinata des heutigen Menschen ist. Die Grösse der Grube änderte sich gemäss der Abänderung der Beanspruchung des menschlichen Vorderkiefers. Bei den diluvialen Kietern war sie grösser, weil der indirekte Zahndruck bei der prognathen Kieferstellung durch die rückwärts gekrümmten Wurzeln den Zungenwulst erhielt, und weil der gewaltige Basalteil die hintere Kieferplatte zu einer annähernd geraden Fläche gestaltete, an welcher die Insertion des M. genioglossus in einer flachen Grube genügte. Bei der fortschreitenden Reduktion der Zähne an Grösse verringerte sich auch die Grösse der Kiefer im Alveolarfortsatz und indirekt auch im Kieferkörper. Wesentlich betraf das die Dimension in der Sagittalebene. Der Beweis für diese Ansicht wird durch einen Vergleich der Dimensionen der Zahnwurzeln, welche im Schipka- und den Krapinakiefern enthalten sind, mit den heutigen Zähnen und Zahnwurzeln leicht geliefert.

Der Basalteil der Kiefer späterer Generationen wurde durch die sich verstärkende Funktion der ansetzenden Muskeln erhalten, respektive umgeformt. Das geschah im wesentlichen durch die vermehrten und konstanten Bewegungen der bei der Sprache thätigen Muskeln, wobei die beschriebenen Trajektorien des M. genioglossus und digastricus, welche in den diluvialen Kiefern nur gering vorhanden sind, bedeutend verstärkt und für den Basalteil formbestimmend wurden. Die ursprüngliche funktionelle

Thätigkeit der Zähne des Alveolarfortsatzes und des Kieferkörpers trat immer mehr in den Hintergrund.

Durch beide Ursachen in wechselseitiger Wirkung wurde die heutige Unterkiefergestalt mit ihren unendlichen Varietäten der äusseren Formen geschaffen, welche im wesentlichen die Insertionsstellen jener Muskeln und die Projektionswirkung ihrer Trajektorien betreffen und nach den Gesetzen der Entwickelungsmechanik sich richten.

Aussprüche früherer Anthropologen, wie z. B. derjenige Kollmanns: "Der Mensch ist ein Dauertypus, er hat sich seit dem Diluvium körperlich nicht verändert," können nach den vorausgegangenen Ausführungen für die Kiefer und Zähne des Menschen nicht mehr aufrecht erhalten werden.

Alle Eigenschaften des diluvialen Kiefers schwanden allmählich durch die veränderte Funktion der konstruktiven Elemente. Die Orthognathie wuchs dementsprechend.

Die Möglichkeit, so sichere Rückschlüsse über den Schipkakiefer hinaus rein paläontologisch zur Feststellung verwandtschaftlicher Formen zwischen dem Menschen und dem heutigen Anthropomorphen zu machen, ist in Rücksicht auf das bisher vorhandene geringe Material noch nicht vorhanden. Wo indessen jetzt für den Menschen die Formabänderung der Spezies wenigstens für den Unterkiefer nachgewiesen ist, kann man einen indirekten Rückschluss auf die übrigen Primaten nicht ganz von der Hand weisen, wenn auch grösstenteils im umgekehrten Sinne. Ein teilweise zunehmender Kieferprognathismus in engster Beziehung mit einer immer mehr zunehmenden Zahngrösse bringt hier eine ganz andere Korrelation der Grösse und Form dieser Organe hervor.

Für die übrigen Primaten beschränkte sich die zweckmässige Selbstgestaltung also alle in auf die Wirkung der Muskeln beim Kauakt. Die progressive Ausbildung des Kieferknochens in dieser Richtung betrifft nicht allein Zähne und Alveolarfortsatz des Vorderkiefers, sondern auch am Kieferaste finden wir der vermehrten Beanspruchung durch die ansetzenden Muskeln entsprechend einen Ausbau der allen Primaten gemeinsamen Konstruktionselemente nach den Gesetzen der Zweckmässigkeitslehre und damit ebenfalls ein Schaffen neuer, generell spezifischer Formen.

In aufsteigender Richtung werden die Untersuchungen vorgeschichtlicher Affenkiefer nach den Lehren der Entwickelungsmechanik vielleicht später weitere Zwischenformen ergeben. Einfache Konvergenzerscheinungen für die beschriebenen pithekoiden Eigenschaften der diluvialen menschlichen Kiefer anzunehmen, hiesse ja jedes verwandschaftliche Verhältnis der heutigen Anthropomorphen und des Menschen leugnen, und gegen die ersteren sprechen sämtliche paläontologischen Funde, wenn sie mit den heutigen Formen verglichen werden. Die innere Struktur und die äussere Gestalt der Kiefer zeigt vielmehr im Gegenteil immer mehr divergierende Formen bei den einzelnen Arten, hervorgebracht durch den gesteigerten oder verminderten Gebrauch der einzelnen konstruktiven Elemente, aus welchen die Kiefer zusammengesetzt sind.

Die Verstärkung sowohl als auch die Verkümmerung der alten Funktionen ihrer Teile, aber auch die Ausbildung neuer Funktionen, schuf die Variabilität der geschilderten Kieferformen und Kieferstrukturen. Gerade der Unterkiefer des Menschen zeigt sich als ein klassisches Beispiel der Umwandlung eines Organs in der Stammesgeschichte einer bestimmten Spezies.

Ich glaube, dass die Embryologie, die allgemeine vergleichende Anatomie und Paläontologie für das Problem der gemeinsamen Stammesform der Primaten nicht allein entscheidend sein werden, sondern dass auch die neuen Lehren der Entwickelungsmechanik hervorragend berücksichtigt werden müssen. In der vorliegenden Arbeit konnte ich nachweisen, dass der Unterkiefer der Anthropomorphen und des Menschen zwar aus ursprünglich durchaus gleichen Konstruktionselementen zusammengesetzt ist, welche jedoch funktionell sehr verschieden beansprucht werden und dadurch eine sehr verschiedene äussere Gestalt und innere Struktur erlangen.

Eine vergleichende Entwickelungsmechanik auf die übrigen Organe ausgedehnt, wird also für weitere Forschungen auf diesem Gebiete eine zwingende Notwendigkeit sein. Nicht allein die äusseren Übergangsformen sind für die Abstammungslehre massgebend. Ihnen ging die Umformung der inneren Struktur voraus. Nur bei gleicher Berücksichtigung dieser beiden Faktoren wird man sich auf richtigen Wegen zur Lösung jenes Problems befinden.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

MENSCHENAFFEN

(ANTHROPOMORPHAE)

STUDIEN ÜBER ENTWICKELUNG UND SCHÄDELBAU

HERAUSGEGEBEN

VON

DR. EMIL SELENKA

PROFESSOR IN MÜNCHEN.

5

FÜNFTE LIEFERUNG:

ZUR VERGLEICHENDEN KEIMESGESCHICHTE DER PRIMATEN

VON

DR. EMIL SELENKA

ALS FRAGMENT HERAUSGEGEBEN

VON

DR. FRANZ KEIBEL

PROFESSOR E. O. IN FREIBURG IM BREISGAU.

MIT 67 ABBILDUNGEN IM TEXT UND EINER TAFEL.

EINGELEITET DURCH EIN LEBENSBILD SELENKA'S VON PROF. A. A. W. HUBRECHT IN UTRECHT.

MIT EINEM PORTRAIT SELENKA'S.

WIESBADEN.

C. W. KREIDEL'S VERLAG.

1903.

Alle Rechte vorbehalten.

Inhaltsverzeichnis der I. bis V. Lieferung.

	Seit
Rassen, Schädel und Bezahnung des Orangutan. Von E. Selenka	Seit
The Rassell des Orangutan .	
3. desententsunterschiede des Schadels .	. 14
4. Artabilitat Chilger Schadelkhochen	
5. Die Bezannung	. 46
A. Die Schmeizrunzeln .	• 57
D. Die flocker der Molaren	. 57
C. Das Wildigebiss	. 63
E. Der Zahnwechsel	. 78
F. Überzählige Zähne	. 83
Schädel des Corillo und Sahim W. D. C.	. 88
Schädel des Gorilla und Schimpanse. Von E. Selenka	. 93
1. Kapazität der Hirnkapsel	. 99
2. Das debiss	. 108
3. Charakteristik der Schädel der Anthropomorphen	. 142
Entwickeling des Gibbon (Hylobates und Siamange) Von E Crypus	· ·
1. Coci bilek ubei dell Entwickelingsgang	. 163
= 11ylobates Emolyo A	. 165
G J Bates Mill yo M.D.	. 170
The state of the s	
Vergleichung der Keime des Hylobates mit denjenigen anderer Deciduaten	. 188
Der Unterkiefer der Anthropomorphon und des Mr.	. 201
Der Unterkiefer der Anthropomorphen und des Menschen in seiner funktionellen Entwicke lung und Gestalt. Von O WALKHOFF.	-
	209
Allgemeine Gesetze der Entwickelungsmechanik in Bezug auf die Architektur und äussere	<u>.</u>
Form der Knochen	. 212
Section del dusselli Miciello III Del den Anthropomouph en 1 1 17	
Die innere Architektur des Unterkiefers	228
and verweinding der Silbstantia compacte und an : 1 : 1 : 1	
Trefer knochens , , ,	
5 observation and in the Date of the Date	
Tajektorien des Kielerasies	240
B. Trajektorien des Kieferkörpers .	252
	232

IV

	Seite
Der vordere Unterkiefer	257
	258
II. Die Trajektorien im Vorderkiefer des Menschen	264
III. Wechselseitiger Einfluss der Wurzelbildung, Zahnstellung und Zahngrösse auf den	
Vorderkiefer	268
Vergleich der Unterkiefer-Formen des diluvialen und recenten Menschen	272
Die Kiefer aus der Schipkahöhle, von Prédmost und von Krapina und ihre innere Struktur	282
Die funktionelle Gestaltung des Kinns sowie der Spina mentalis interna und ihre Form-	
Variationen	301
Der Einfluss der fortschreitenden Grössenreduktion der menschlichen Zähne auf den Vorderkiefer	316
Rückblick auf die Entstehung der Kieferformen beim Menschen und den Anthropomorphen	
und Rückschlüsse auf die gemeinsame Stammesform	322
Emil Selenka. Ein Lebensbild. Von A. A. W. Hubrecht	I
Zur vergleichenden Keimesgeschichte der Primaten. Von Emil Selenka, als Fragment heraus-	
gegeben von Franz Keibel	320
	331
	262

EMIL SELENKA

27. FEBRUAR 1842 — 21. JANUAR 1902.

EIN LEBENSBILD

VON

DR. A. A. W. HUBRECHT.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Cmil Selenker

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Emil Selenka

27. Februar 1842 — 21. Januar 1902

Wenn der Freund dem Freunde einen Nachruf widmet, so erwartet man ein von der Freundschaft verschönertes Bild; wenn ein Schüler die wissenschaftliche Bedeutung seines geliebten Lehrers zu schildern sucht, so vermutet man eine von der Dankbarkeit beeinflusste und nicht ganz objektiv gehaltene Darstellung.

Wenn aber, wie in dem vorliegenden Falle, Schüler und Freund in einer Person vereint sind und dreissig Jahre der Freundschaft diese und die Dankbarkeit gestärkt und vertieft haben, so muss schon die grössere Besonnenheit des reiferen Alters die Feder desjenigen lenken helfen, welcher aus der Fülle innerer Empfindungen und schöner Erinnerungen ein getreues Bild des lieben Verstorbenen zu entwerfen sucht, ein Bild, welches einem weiteren Kreise nicht nur die wissenschaftliche Bedeutung, sondern auch die Persönlichkeit des Dahingeschiedenen vor Augen führen soll.

In früher Jugend, mächtig angeregt durch seinen Vater, den in Braunschweig hochangesehenen Hofbuchbinder Jakob Selenka, der keine Gelegenheit versäumte, in ihm den Sinn für die Schönheiten der Natur zu wecken und zu pflegen, zeigte Emil schon als Knabe lebhaftes Interesse für die Natur und deren Erscheinungen; selbstangelegte Sammlungen von Käfern, Schmetterlingen und Gesteinen zierten sein Zimmer. Bald befreundete er sich mit dem Mikroskope, das ihm eine Wunderwelt erschloss, und fertigte selbständig die schönsten Präparate.

Auch die Mutter muss grossen Einfluss auf die Entwickelung des Sohnes gehabt haben. Ein Jugendfreund schreibt: Mit inniger Liebe hing er an ihr und wusste in seiner sinnigen Weise ihr Herz stets zu beglücken, sodass sie noch in spätem Alter wiederholt den Ausspruch that: "Mein Jüngster hat mir nie Kummer gemacht." Ein feinsinniger, geistesanregender Zug ging durch's Selenka'sche Haus und das gemüt- und charaktervolle Familienleben, in dem der Knabe heranwuchs, giebt

uns wohl den Schlüssel dazu, wie noch der gereifte Mann sich so grosse Weichheit des Gemütes und so feines Zartgefühl bewahren konnte, das seine Freunde ihm nur enger verband, ihn selbst aber auch wohl mancher Enttäuschung aussetzte.

Selenka besuchte zuerst die städtische Bürgerschule, später das Gymnasium und das Collegium Carolinum zu Braunschweig, den Vorläufer der jetzigen technischen Hochschule Carolo Wilhelmina. Nach bestandener Reifeprüfung bezog er als stud. rer. nat. die Universität Göttingen. Im 24. Lebensjahre promovierte er mit einer philosophischen Dissertation: "Beiträge zur Anatomie und Systematik der Holothurien." — Die Dissertation war unter Leitung Keferstein's zustande gekommen, welcher des jungen Studenten reiche Begabung und frische Arbeitskraft gleich gewürdigt und ihn zu seinem Assistenten, sowie im Jahre 1867 zu seinem Begleiter auf einer wissenschaftlichen Reise an die atlantische Meeresküste, nach St. Malo, gewählt hatte.

Jene Wertschätzung von seiten Keferstein's war bestimmend für die weitere Laufbahn Selenka's; die Untersuchungen von Meerestieren der französischen Küste wurden massgebend für seine Geistesthätigkeit in der jetzt folgenden Periode seines Lebens.

Dieser zweite Abschnitt nimmt seinen Anfang mit jenem Tage, an welchem der jugendliche Forscher und bisherige Göttinger Assistent das Wohnzimmer im Elternhause zu Braunschweig mit dem Ausrufe betrat: "Mutter, Dein Sohn ist Professor geworden!" Sowohl ihm selbst, der unmittelbar vorher, den Wunsch seines Vaters erfüllend, das Oberlehrerexamen abgelegt hatte, als seinen hochbeglückten Eltern kam diese Ernennung zum Professor an der Leidener Hochschule ganz unerwartet.

Selenka war sich wohl bewusst, dass keine leichte Aufgabe seiner harrte, indem er, der junge Mann und Anfänger, an Stelle des bekannten Zoologen van der Hoeven die volle Vertretung des so umfangreichen Faches zu übernehmen und nebenbei noch Geologie zu lesen hatte; dies alles in einem fremden Lande und baldthunlichst in einer fremden Sprache. Vielleicht ahnte er auch, dass die in Leiden massgebende ältere Schule, besonders der damalige Direktor des Reichsmuseums, H. Schlegel, von ihm erhofften, dass er (als Schüler Keferstein's) sich als bestimmter Gegner der damals eben unter Darwin's Führung sich allgemein geltend machenden Evolutionstheorie bewähren würde.

Selenka hat während der sechs Jahre (1868–1874), in welchen er den Leidener Lehrstuhl inne hatte, die Erwartungen, die man von ihm als Forscher und als Dozent gehegt, weit übertroffen. Als Gegner der Evolutionslehre hat er sich aber nicht entpuppt, im Gegenteil in seinen Schülern warmes Interesse für die neue Anschauung zu wecken gewusst. Wenn dies auch für seinen Gönner Schlegel wohl eine Enttäuschung

gewesen sein mag, ist Selenka dennoch mit diesem in engem, freundschaftlichen Verkehr geblieben, was sowohl seinem fesselnd liebenswürdigen Wesen, wie seiner dem älteren Landsmann imponierenden, rastlosen Energie zuzuschreiben ist.

Zu den Schülern Selenka's aus jener Zeit gehörten A. Vrolik, Hugo de Vries, M. Treub, Hoek u. A. Als ich mich 1873 als Utrechter Student der Naturwissenschaften ihm vorstellte, rief der Eindruck, den diese Begegnung auf mich machte, sofort den Entschluss hervor, Utrecht mit Leiden zu vertauschen.

Noch ganz erfüllt von seinem Aufenthalt am Meere hatte Selenka in Leiden die Nachbarschaft der Nordseeküste sofort auszunutzen gewusst. Er hatte sich da gegenüber dem Reichsmuseum ein sehr einfaches, improvisiertes Laboratorium aus drei Zimmern, darunter eines als Aquarium, eingerichtet, wo durchluftete Seewasserbehälter den verschiedensten Seetieren einige Tage das Leben sicherten.

Selenka, der bereits als Knabe sich durch technische Fertigkeit und Erfindungssinn ausgezeichnet und der später auch die Anregung zur Plattenmodelliermethode gegeben hat, welche es uns ermöglicht, die Serienschnitte körperlich zu rekonstruieren (wie es nachher Born und andere so vortrefflich weitergeführt), wusste hier in seinem provisorischen Aquarium allerlei Sinnreiches zu erdenken; es war eine Lust, als Student da unter seiner Leitung zu arbeiten, in einer Richtung, die erst einige Jahre später, nach der Eröffnung der zoologischen Station zu Neapel, Gemeingut aller Zoologen geworden ist.

Während er hier seinen Schülern täglich neue Probleme aus der Histologie, Anatomie und Entwickelungsgeschichte vorlegte, je nachdem frisches Material von der Seeküste eingebracht wurde, hatte er selbst einige Themata zur eigenen Bearbeitung ins Auge gefasst (Bau des Gefässsystems von Aphrodite aculeata, früheste Entwickelungserscheinungen von Tergipes claviger und Purpura lapillus), mit welchen er sich an einem Tische im gemeinschaftlichen Arbeitsraum eifrigst beschäftigte.

Sein Zeichentalent fesselte schon damals unsere Aufmerksamkeit ganz besonders. Charakteristisch für seine über alles Kleinliche erhabene Denkungsart ist, dass er uns Laboranten, wenn wir seine Vorlesungen zu hören wünschten, davon abhielt mit der Begründung, dass die eigene Arbeit, das fortgesetzte eigene Mikroskopieren und Sezieren eine viel nutzbringendere Beschäftigung sei als das Kolleg hören. Und wenn später die Examenstunde schlug, wussten wir, dass er nie von uns auswendig gelernte Vielwisserei verlangte, sondern uns über das prüfte, was uns aus eigener Anschauung und persönlicher Bearbeitung bekannt und vertraut geworden war. Selenka hat durch seine frische, energische Weise und den Enthusiasmus für seine Wissenschaft seine Schüler wirklich zu begeistern gewusst. Sein fröhliches: "Nur zu!" hat uns oft, wenn

die Schwierigkeiten sich zu häufen drohten, neuen Mut zu ihrer Bewältigung und neue Freude an der Arbeit eingeflösst.

Nicht nur durch die Einführung anregender Lehrmethoden, wie z. B. in der vorhin erwähnten Herbeischaffung bis dahin in Laboratorien kaum gesehenen, frischen Arbeitsmateriales, sondern auch durch Gründung einer wissenschaftlichen Zeitschrift (Niederländisches Archiv für Zoologie) und durch die Vorarbeiten zur Errichtung eines vom Reichsmuseum unabhängigen Instituts hat der damals bereits durch Malaria stark Heimgesuchte mit unermüdlichem Eifer die Interessen des von ihm vertretenen Faches im höchsten Grade gefördert.

Die Durchsetzung des Baues eines zoologischen Institutes war um so schwieriger, als Leiden eben durch den Besitz jenes reichhaltigen zoologischen Staatsmuseums sich weiterer Raumanforderungen für zoologische Zwecke überhoben glaubte. Obwohl Selenka daher die ausschlaggebenden Autoritäten durchaus nicht immer auf seiner Seite hatte, wusste der fremde und junge Professor es durchzusetzen, dass die Kuratoren der Universität sowie der Minister den Plan verwirklichen halfen.

Es ist unleugbar, dass Selenka die Entwickelung zoologischen Forschens in den Niederlanden im letzten Drittel des 19. Jahrhunderts in ganz neue Bahnen gelenkt hat und dass bei der Gründung der "Nederlandsche Dierkundige Vereeniging" (1872) und von deren zoologischer Station (1876), wenn er auch bei letzterer persönlich nicht mehr beteiligt war, der von ihm geweckte Geist kräftigst mitwirkte.

Als Selenka im Jahre 1874 dem an ihn ergangenen Rufe in die deutsche Heimat, nach Erlangen, Folge leistete, erleichterte ihm wohl der Umstand, dass er auf holländischem Boden ständig an Malaria litt, den Abschied von dem ihm lieb gewordenen Wirkungskreise.

In den zwanzig Jahren seiner Erlanger Thätigkeit hat Selenka neben einem reichausgefüllten Forscherleben seine geniale Veranlagung als akademischer Lehrer zu voller Höhe entwickelt. Döderlein, Disse, de Man, Bülow, Vigelius, C. Kauser, Kurt Lampert, Th. Walther, R. Kraushaar, L. Hiltner, A. Fleischmann, F. Will, M. von Kowalevsky rechnen sich zu seinen Schülern. Die fesselnde Wirkung seiner durch Grösse der Auffassung und lebendige Anschaulichkeit der Darstellung sich auszeichnenden Vorlesungen führten ihm dort Hörer aller Fakultäten zu und stets hat er es verstanden, auf seine Schüler nicht nur als anfeuernder und begeisternder Lehrer, sondern als Mensch und Persönlichkeit einzuwirken.

Auch in Erlangen hatte Selenka ungenügende Arbeitsräume vorgefunden, und es ist seinem Antriebe mit zu danken, dass auch dort ein neues, ganz nach seinen Plänen angelegtes zoologisches Institut entstand. Freilich verging eine Reihe von

Jahren, bis er die zwar poetisch gelegenen, aber baufälligen und für Mikroskoparbeiten wenig geeigneten Arbeitsräume in der alten Schlossorangerie mit dem stattlichen Neubau vertauschen durfte. Auch hier waren es zunächst Seetiere und deren Anatomie und Entwickelungsgeschichte, welche ihn fesselten 1). Zwar hatte er jetzt die Seeküste nicht mehr so nahe wie in Leiden, aber die zoologische Station zu Neapel war soeben eröffnet und wurde, so wie jene von Triest und Villafranca, zu wiederholten Malen von ihm besucht. Dort entstanden seine wundervollen Zeichnungen über Echinodermen-Entwickelung, welche den 27. und 33. Band der Zeitschrift für wissenschaftliche Zoologie zieren, sowie seine in den "Zoologische Studien" erschienene Entwickelungsgeschichte der Seeplanarien u. s. w. Was er auf diesem Gebiete geleistet hat, können wir jedem Handbuch der Entwickelungsgeschichte entnehmen. Niemand hat versäumt, sich seine schöne Abbildungen zu Nutze zu machen. Nebenbei wurden Gephyreen sowohl für das Semper'sche Sammelwerk, wie für die Challenger-Bände bearbeitet.

Somit umfasst die zweite Periode im wissenschaftlichen Leben Selenka's, welche sich von 1868—1882 erstreckt, einen Zeitraum, in welchem er sich vorwiegend mit wirbellosen Seetieren beschäftigte und unsere Kenntnisse über dieselben bedeutend förderte.

Die letzten zwanzig Jahre seines Lebens, welche ich als die dritte Periode zusammenfassen möchte, waren anderen Aufgaben gewidmet.

Durch seine Arbeiten über Echinodermen und Planarien war er in die verwickelten Probleme vergleichender Embryologie hineingezogen worden (die übrigens schon im Anfang seiner wissenschaftlichen Laufbahn grosse Anziehungskraft für ihn besassen), und es konnte nicht ausbleiben, dass versucht wurde, die Tragweite der Befunde, welche bei Wirbellosen konstatiert worden, nun auch auf dem Gebiete der Wirbeltiere festzustellen. Lehrreiche Verallgemeinerungen waren zu erwarten und jene Probleme dann wohl leichter der Lösung entgegenzuführen.

Es ist ein Glück, dass Selenka bei diesem Sprunge ins Wirbeltiergebiet gleich auf die Säugetiere gekommen ist, denn seiner Ausdauer und seinem meisterhaften Pinsel verdanken wir eine Reihe von Untersuchungen und Abbildungen, welche sich an Bedeutung den älteren Bischoff'schen noch am ehesten anschliessen und für die Säugetier-Ontogenese eine neue Aera eröffnet haben.

Schon bei der im Jahre 1877 in Begleitung seiner ersten Frau unternommenen Reise nach Brasilien hatte Selenka neben Untersuchungen der Meeresfauna die Zusammentragung von Entwickelungsreihen von Embryonen dortiger Säugetiere, womöglich auch von platyrrhinen Affen, ins Auge gefasst. Letzteres erwies sich zwar der

¹⁾ Diese Neigung blieb ihm bis zuletzt treu; er plante noch in den letzten Lebensjahren, an einige bedeutsame Seefauna-Probleme heranzutreten.

gemessenen Zeit wegen als nicht ausführbar; doch fesselten ihn alsbald die dort durch die Opossumfamilie vertretenen Beuteltiere, die durch ihre kurze, nur eine bis zwei Wochen währende Schwangerschaft zu einer Erforschung ihrer so gut wie unbekannten Ontogenese förmlich aufforderten.

Leider konnte er während seines Aufenthaltes in Brasilien (zur dortigen Winterzeit) zu seiner Enttäuschung keiner geschlechtsreifen Beutelratten habhaft werden. Doch war er nunmehr ins Geleise geraten und nach seiner Heimkehr wurden eifrig die klassischen Arbeiten Bischoff's über Säugetier-Entwickelung studiert und zunächst Versuche an Mäusen vorgenommen, um gewisse Punkte durch eigene Anschauung aufzuklären.

Das war in den Jahren 1882 und 1883 und bald erfolgte die Publikation über "Keimblätter und Primitivorgane der Maus". Das Opossum wurde dabei aber nicht aus den Augen verloren und durch Vermittlung Hagenbeck's in Hamburg gelangte eine Sendung nordamerikanischer Opossums, Männchen und Weibchen, nach Erlangen, wo dieselben in einem eigens dazu hergerichteten, gut ventilierten Stall überwinterten und im Frühjahr eine Ernte von über hundert Embryonen in den verschiedensten Entwickelungsphasen lieferten.

An anderen Beuteltieren, sowie an Nagern verschiedener Gattungen (Meerschweinchen, Ratte, Waldmaus, Hausmaus, Feldmaus) wurde nun die wichtige Reihe dieser embryologischen Forschungen fortgesetzt und unter anderem das so ungemein schwierige Problem der sogenannten "Umkehrung der Keimblätter" bei gewissen Nagetieren von einer neuen Seite beleuchtet. Dabei wurde festgestellt, dass bei allen den genannten Tieren die freie Keimblase den typischen Bau der Keimblase anderer Placentarsäugetiere besitzt, dass die Blätterumkehrung erst nach erfolgter Verwachsung der Keimblase mit der Uteruswand — wie Selenka annimmt durch eine frühzeitige Verwachsung bedingt — sich vollzieht, und dass, trotz der gewaltigen Revolution, welche die Keimblätter durch die Inversion erfahren, stets die Integrität und Individualität derselben vollständig gewahrt bleibt.

Nachdem Selenka so tief in die Entwickelungsgeschichte der Säuger eingedrungen war, trat immer dringender der Wunsch in den Vordergrund, die noch so isoliert dastehende Ontogenese des Menschen mit den gefundenen Thatsachen bei niederen Säugetieren in Verbindung und in Vergleich zu bringen. Da war es in erster Linie erwünscht, ein leichter zu beschaffendes Material als menschliches in den Untersuchungskreis zu ziehen, wofür natürlich nur das an sich auch noch recht schwer erreichbare Primatenmaterial in Frage kommen konnte. Damit nahm der schon gehegte Wunsch einer neuen Tropenreise allmählich die Gestalt einer unumgänglichen Notwendigkeit an.

Im Jahre 1889 kam dieser Plan zur ersten Ausführung in einer Reise nach Ostindien, speziell nach Java. Eine zweite Tropenreise wurde 1892, diesmal in Begleitung
seiner zweiten Frau, der Schwester der in jugendlichem Alter verstorbenen ersten Gattin,
unternommen. Das Ziel dieser Reise war insbesondere Ceylon, Borneo und Sumatra.
Auf diesen beiden Reisen wurde allmählich das gewünschte Material an Affenembryonen
und Keimlingen zusammengebracht; auch von den seltenen und wegen ihrer Menschenähnlichkeit ihn in erster Linie interessierenden Anthropomorphen, Gibbon und OrangUtan (letzterer nur an gewissen Stellen des Borneanischen Binnenlandes in Waldestiefe
erlegbar), wurde eine wertvolle Ausbeute erzielt.

Gegen das Ende dieser zweiten, anderthalbjährigen Reise traf den unermüdlichen Forscher ein beklagenswerter Unfall. Ein bedeutender Teil seiner wertvollen Sammlung ging durch Kollision eines kleinen chinesischen Handelsdampfers mit dem Kahne, in welchem das in den letzten Monaten erbeutete, kostbare Material unter Aufsicht zuverlässiger Jäger aus den Urwaldbereichen zur ersten Dampferstation überführt wurde, auf dem Kapuasflusse zu Grunde.

Diese Nachricht erreichte Selenka erst zwei Monate später in Japan, wohin ihn neben der Rätlichkeit eines Klimawechsels, auch die Absicht, japanisches Affenmaterial zu erwerben, geführt hatte. Sie wirkte zuerst niederschmetternd; doch Selenka's elastischer Geist plante sofort, um den Verlust zu ersetzen, eine erneute Jagdexpedition nach Borneo. Er hoffte diese, da sie der Regenzeit halber erst in einigen Monaten ausführbar war, — sein Urlaub sich aber schon dem Ende näherte — mit Hülfe teils schon erprobter und eingeschulter, teils neu anzustellender Jäger durchzuführen.

Der Aufenthalt in Japan wurde abgebrochen und der Weg wieder südwärts genommen, um von Singapore und Batavia aus Vorbereitungen zu diesem erneuten Vordringen zu treffen und auch noch an der Nordküste der sumatranischen Insel, die Selenka bereits ein Halbjahr früher in Verfolg seiner Forschungszwecke durchquert hatte, neuerdings Schritte zur Wiederergänzung des Gibbonmaterials zu thun.

In den sumpfigen Fiebergegenden Delis aber holte Selenka sich einen so heftigen Malariaanfall, dass ein unmittelbarer Klimawechsel zur Notwendigkeit wurde. Ein kurzer Aufenthalt im Himalayagebirge brachte zwar Besserung, doch nicht die Möglichkeit eines längeren, anstrengenden Verweilens im Tropenklima; und so entschloss sich Selenka endlich der Bitte seiner Frau nachzugeben und diese allein nach Borneo zurückkehren zu lassen, da eingetretene Zwischenfälle eine persönliche Leitung der dortigen Expedition unerlässlich erscheinen liessen.

Frau Selenka führte denn auch aus dem Dunkel der borneanischen Binnenwälder, in denen sie noch mehrere Monate verweilte, manches wertvolle Anthropomorphenmaterial dem Skalpell und Mikroskope ihres Gatten zu.

Hatten die Resultate der ersten östlichen Tropenreise als ein Kapitel seiner "Studien zur Entwickelungsgeschichte" unter dem Titel: "Die Affen Ostindiens" bereits eine teilweise Veröffentlichung gefunden, so beschloss Selenka nunmehr, das mit so vielen Opfern und Mühen zusammengebrachte Orang- und Gibbonmaterial unter dem Titel: "Menschen-Affen" zu bearbeiten und in dieser Publikation nicht nur die embryologische, sondern auch die osteologische Ausbeute zu verwerten¹).

Die bereits davon erschienenen Hefte haben gezeigt, wie wundervoll er seine Orangschädel zur Darstellung zu bringen wusste. Die zierlichen, meisterhaft gezeichneten Figuren der Gibbon-Keimblasen haben aufs neue erwiesen, wie Selenka auf dem Gebiete der Ontogenese seinen Forschungsdrang zu erfüllen und unsere Kenntnisse zu erweitern vermocht hat.

Inmitten der Arbeit an den Menschenaffen hat sich diese dritte Lebensperiode geschlossen und ist er in seinem sechzigsten Lebensjahre von uns auf immer geschieden.

In die eben geschilderte dritte Lebensperiode fällt Selenka's Übersiedelung von Erlangen nach München. Die ruhige vollständige Ausarbeitung seines umfangreichen Materials erheischte einen ganzen Menschen und konnte in Erlangen neben umfangreicher Lehrthätigkeit und sonstigen auntlichen Verpflichtungen schwer durchgeführt werden. Somit entschloss Selenka sich 1895 zu dem Opfer, seine Professur in Erlangen aufzugeben. Er siedelte nach München über. Dort konnte er sich in einem Raume der alten Akademie, der ihm zur Verfügung gestellt wurde, in ungestörter Musse seinen wissenschaftlichen Arbeiten widmen. Aber auch die ihm so lieb gewordene Lehrthätigkeit brauchte er in München nicht zu entbehren. Auf Vorschlag der Münchener philosophischen Fakultät wurden ihm Stellung und Titel eines Honorarprofessors der Universität München verliehen. Auch zum ausserordentlichen Mitglied der Kgl. Bayerischen Akademie wurde er im folgenden Jahre ernannt²).

¹⁾ Die Schädelstudien sind gewissermassen als Nebenarbeit in seinem Arbeitsprogramm aufgetaucht. Selbstverständlich musste für die embryologischen Zwecke eine umfangreiche Anzahl dieser hochstehenden und interessanten Tiere geopfert werden, eine Notwendigkeit, die dem weichen Herzen des Forschers vielfach Kummer machte; insbesondere betrübte ihn jedes ohne Nutzen geopferte Leben, das trotz ernstester Vorsichtsmassregeln nicht immer geschont werden konnte. Das diesermassen zusammen gekommene reiche osteologische Material sollte nun begreiflicherweise so vollständig wie möglich ausgenutzt werden.

²) Bereits in seiner Leidener Zeit war er zum Mitgliede der Königl. Akademie der Wissenschaften zu Amsterdam erwählt worden. Am 29. Oktober 1899 verlieh ihm die Göttinger Universität das Ehrendoktorat der Medizin.

Seine wiederholten Reisen brachten es mit sich, dass sich bei Selenka ein lebhaftes Interesse für Ethnographie herausbildete. An der Hand einer wundervollen, zum grossen Teil nach eigenen Aufnahmen gefertigten Sammlung von Photographien und Lichtbildern, hielt er, von den verschiedensten Seiten dazu aufgefordert, öffentliche Vorträge, in denen er durch den Schwung seiner formvollendeten Rede, bei der ihn sein klangvolles, weiches Organ mächtig unterstützte, ebensowie durch die Feinsinnigkeit und Originalität seiner Auffassung die Hörer mit fortriss und dauernd anregte.

In dieser Zeit entstand sein geistvolles Büchlein über den "Schmuck des Menschen"), in dem er auf Grund seiner Beobachtungen bei den Naturvölkern in künstlerischer, naturwissenschaftlicher, wie philosophischer Richtung seinem Thema neue, eigenartige Seiten abgewinnt.

Kurz vor seinem Tode hat ein bereits länger geplantes Werk über die "Entstehung des Menschen", das zwei Bände umfassen sollte, in seinem Geiste festere Formen angenommen und zu wiederholten Besprechungen Anlass gegeben. Es ist gewiss in doppelter Beziehung zu beklagen, dass Selenka dieses Werk, in welchem er zugleich seine Weltanschauung niederzulegen dachte, nicht vollenden konnte.

Seine sechzig Jahre würde ihm wohl niemand angesehen haben; war auch sein volles dunkles Haar bereits stark ergraut, — der Blick in die Welt war noch so froh und energisch, sein Geist noch so schwungvoll und dabei voll frischen Humors, der Gang noch so leicht, der Händedruck noch so kräftig und so jugendlich bewegt, wenn er nach einer mehrjährigen Trennung wieder einmal mit einem alten Freunde zusammenkam!

Die Bilder, welche in den Neunziger Jahren von Selenka angefertigt sind, zeigen so recht deutlich, wie noch gegen Ende seines Lebens die bereits in seiner Jugend so scharf in ihm hervortretende Doppelnatur, die eines ernsten wissenschaftlichen Forschers und die eines frohen Adepten der Kunst, sich gleich äusserlich verriet. Es war das keine Pose, es war eben sein wahrhaftes, inneres Wesen. Ist doch von namhaften Künstlern wiederholt über ihn geäussert worden, es sei schade, dass ein Mann von seinen eminenten künstlerischen Anlagen Zoologie-Professor und nicht Maler geworden sei.

Dieses, wenn auch nicht voll entwickelte, künstlerische Talent, hat zur Bereicherung seines Lebens viel beigetragen und seine Porträtskizzen, Kopien nach alten Meistern und besonders seine Aquarelle erhoben sich weit über das Dilettantenhafte. Dagegen blieb seinegrosse Begabung für Musik sein Leben lang latent und ward ihm nur zur Quelle tiefinnerlicher Beglückung in seinem hohen Verständnis und seiner Begeisterung für die edelsten Schöpfungen dieser Kunst. Der tiefkünstlerische Zug seines Wesens offenbarte sich auch in der Art und Weise, wie er es liebte seine Wohn- und Arbeitsräume aus-

¹⁾ Der Schmuck des Menschen von Emil Selenka. Vita, deutsches Verlagshaus. Berlin 1900.

zustatten und zu schmücken. Das Auge weidete sich in jeder Richtung an Schönem und Behaglichem und die verschiedenen Effekte waren nie mühsam erstrebt oder nachgeahmt: sie kamen von selbst.

Wer das von ihm und seiner Frau gemeinschaftlich verfasste, durch Form und Inhalt gleich fesselnde Reisewerk: "Sonnige Welten" 1) in die Hände nimmt, spürt auch hier das Auge und den Pinsel des Künstlers fast auf jeder Seite.

Seinen wissenschaftlichen Arbeiten verleihen die schönen und zarten, oft farbigen Zeichnungen nicht nur einen grossen Reiz, sondern sie tragen recht wesentlich dazu bei, das im Texte Besprochene zu einer seltenen Anschaulichkeit zu bringen. Ich denke hier z. B. an seine Bilder, von der Opossum-Keimblase, welche mit ihrer flockigen Oberfläche in der reich gefalteten inneren Uteruswandung eingebettet liegt; ferner an seine Holothurienlarven, mit eben sich entwickelndem Cölom, sowie an die schwierig verständlichen Verhältnisse bei der Amnionbildung und der Allantoisentwickelung der Didelphys. Seinen Schülern hielt er immer vor, welch grosse Bedeutung ein flotter Pinsel für den Biologen besitzt. In den achtziger Jahren gab er regelmässig seinen Erlanger Schülern und Freunden am Sonntag Vormittag Malunterricht und, wie einer von ihnen schreibt, "werden diese Stunden für jeden Teilnehmer zu den köstlichsten Erinnerungen gehören".

Dass diese Künstlerseele ab und zu mit den Anforderungen, welche ihm von wissenschaftlichen Aufgaben gestellt wurden, in Konflikt gekommen sein mag, ist leicht verständlich. Das Werk des Künstlers erfordert Inspiration, dasjenige des Forschers kann diese ebenfalls nicht entbehren, sobald er nicht nur beschreibend, sondern auch belebend vorgehen will. Aber nebenbei erheischt letzteres in den meisten Fällen eine unerschöpfliche Geduld. Diese hatte das für Eindrücke so empfindliche Künstlergemüt Selenka's nicht immer in genügendem Vorrat. Warten war für ihn, auch im alltäglichen Leben, stets etwas Unerträgliches und diese Art mögen seine Freunde wohl mal etwas launisch geheissen haben. Thatsächlich war nur der kräftige Schaffensdrang, der keine Minute des Lebens ungenützt lassen wollte, der Grund eines zeitweiligen Versagens bei starken Geduldproben, welches ihn auch wohl einmal zum Aufgeben eines vorgesteckten Zieles bringen konnte, wenn er dachte, dass seine Zeit anderweitig bessere Verwendung finden könne²); während in vielen Fällen gerade diese ge-

¹⁾ Sonnige Welten. Ostasiatische Reiseskizzen von E. u. L. Selenka. Wiesbaden. C. W. Kreidel's Verlag 1896. (Die erste Auflage ist vergriffen, die zweite in Vorbereitung.)

²) In seinem Nachlasse fand sich eine sehr charakteristische, hierauf bezügliche Bleistiftnotiz folgenden Inhalts: "Keine Arbeit koste dem haushälterischen Denker mehr Zeit als ihr gebührt, nach dem Masse ihrer Bedeutung und dem der übrigen wissenschaftlichen Pläne mit denen er sich noch trägt." Es lässt sich schwer feststellen, ob wir es hier mit einem Citat oder mit einer eigenen Formulierung zu thun haben.

wisse Ungeduld in seiner Natur seine Energie steigerte und manchen Erfolg rascher herbeiführte.

Zur Charakterisierung von Selenka's Gemütsleben wäre noch sehr vieles hinzuzufügen. Warmes, allem Hohen zugängliches Empfinden — vornehme Gesinnung, echtes, edles Menschentum waren Grundzüge seines Wesens. Seines Lieblingsdichters, von ihm mit Vorliebe citiertes Wort:

"Drum eint zu Eurem schönsten Glück Mit Schwärmers Ernst des Weltmanns Blick,"

traf auf ihn selbst im besten Sinne zu.

Das Viele, was Selenka im Leben erreichte, dankt er in erster Linie gewiss seiner ungewöhnlichen Begabung; daneben aber einer hervorragenden Geschicklichkeit sich mit "all sorts and conditions of men" zurechtfinden. Seinen Kollegen war er stets ein treuer, entgegenkommender Berater. Allen denen, welche ihm wirklich nahe standen, ein warmer, opferwilliger Freund.

Ersteht sein Bild in ihrem Geiste, so werden sie immer zuerst des reinen, gross gesinnten Charakters, des gemütvollen Schwärmers, des liebenswürdigen, sonnigen Menschen und erst nachher des hervorragenden Zoologen gedenken.

Selenka ist eine jener seltenen Naturen gewesen, welche sowohl auf die Vernunft als auch auf das Herz der ihnen Nahestehenden kräftigst eingewirkt haben. In der Zukunft wird er als ein Pionier in der Entwickelungsgeschichte niederer und höherer Tierformen hervorragen; in der Gegenwart wird in einem engeren Kreise die Erinnerung an seine fesselnde Persönlichkeit gleich kräftig mit jener an seine wissenschaftliche Bedeutung fortleben.

Hubrecht.

I. Von Selenka wurde herausgegeben:

- 1868-1871. Das niederländische Archiv für Zoologie. Bd. I-III.
- 1878—1881. Zoologische Studien. 4°; mit 10 Tafeln. Leipzig. W. Engelmann.
 - I. Befruchtung des Eies von Toxopneustes. 1878.
- II. Zur Entwickelungsgeschichte der Seeplanarien, ein Beitrag zur Keimblätterlehre und Descendenztheorie. 1881.
- Seit 1881. Das biologische Centralblatt gemeinsam mit Prof. Dr. Reess und Professor Dr. Rosenthal.
- Seit 1883. Studien zur Entwickelungsgeschichte der Tiere, seit 1898 fortgeführt als Menschenaffen.

Wiesbaden. C. W. Kreidel's Verlag.

2. Als Arbeiten Selenka's sind zu nennen:

- 1865. Zwei neue Nacktschnecken aus Australien (Limax pectinatus und L. bicolor). Malakozoolog. Blätter, XII, p. 105-110, 173-174.
- 1866. Beitrag zur Entwickelungsgeschichte der Luftsäcke des Huhnes. Zeitschr. f. wissensch. Zool. Bd. XVI, p. 178-182, Taf. VIII.
- 1866. Beiträge zur Anatomie und Systematik der Holothurien. Philos. Doktordissertation. Göttingen 1866. Zugleich in: Zeitschr. f. wissensch. Zoologie, XVIII, 1867, p. 291—374. Nachtrag hiezu; ebenda XVIII, 1868, p. 109—119.
- 1867. Über die Stellung von Tragocerus amaltheus Roth & Wagner, in Bezug auf die n\u00e4chstverwandten Formen. Zeitschr. f. wissensch. Zool., XVII., 1867, p. 572-576.
- 1867. Die fossilen Crocodilinen des Kimmeridge von Hannover. In: Palaeontographica, XVI, 1866-69, p. 137-144.
- 1867. Über einige neue Schwämme aus der Südsee. Zeitschr. f. wissensch. Zoologie. XVII. Bd., 4. Heft, p. 565-571.
- 1868. Zur Anatomie von Trigonia margaritacea, Lam. Malakozool. Blätter, XV, 1868, p. 66-72.
- 1868. Aves, Vögel in: Bronn's Klassen und Ordnungen des Tierreichs. Bogen 1-9, Tafel I-XXIV, 1868-1871.
- 1870. Sur la morphologie des muscles de l'épaule chez les oiseaux. Archives Neérlandaises. T. V, p. 48-54.
- 1873. Entwickelung von Tergipes claviger. Niederländisches Archiv für Zoologie. Bd. I, p. 1-10.
- 1873. Die Anlage der Keimblätter bei Purpura lapillus. Ebenda I, p. 211-218.
- 1873. Das Gefässsystem der Aphrodite aculeata. Niederländisches Archiv für Zoologie, II.
- 1873. Entwickelungsgeschichte der Holothurien. Zeitschr. f wissensch. Zool. Bd. XXVII.
- 1875. Eifurchung und Larvenbildung von Phascolosoma elongatum. Zeitschr. f. wissensch. Zool. 25, 1875, p. 442 bis 450; Archives Zool. Expér. 4, 1875, p. LV-LVII.
- 1875. Embryologie von Cucumaria doliolum, zugleich ein Beitrag zur Keimblättertheorie. Erlangen. Phys.-med. Soc. Sitz.-Ber., 7, 1875, p. 85—92.
- 1875. Taschenbuch für Zoologie. 1875. Verlag von Ed. Besold in Erlangen. Später unter dem Titel: Zoologisches Taschenbuch. 3. Aufl. 1885. 4. Aufl. Verlag von Arthur Georgi. 1897. 2 Teile. Ins Französische übersetzt von Etienne de Rouville unter dem Titel "Manuel Zoologique," 1898, Paris. Ins Englische von J. R. Ainsworth-Davis unter dem Titel: A Zoological Pocket-Book. 1890.
- 1876. Zur Entwickelung von Holothuria tubulosa, ein Beitrag zur Keimblättertheorie. Erlangen. Phys.-med. Soc. Sitz.-Ber. 8, 1876, p. 47-51.
- 1876. Zur Entwickelung der Holothurien (Holothuria tubulosa und Cucumaria doliolum). Ein Beitrag zur Keimblättertheorie. (Ausführliche Mitteilung) Zeitschr f. wissensch. Zoologie, 27, 1876, p. 155—178.

 Archives Zool. Expér. 5, 1876, p. XXVI—XXXI.
- 1878. Beobachtungen über die Befruchtung und Teilung des Eies von Toxopneustes variegatus. Vorläufige Mitteilung. Erlangen. Phys.-med. Soc Sitzber. 10, 1878, p. 1-7.
- 1878. Das Männchen der Bonellia. Zoologischer Anzeiger, I, 1878, p. 120-121.
- 1878. Befruchtung des Eies von Toxopneustes. 1878. Zoologische Studien I. Leipzig. W. Engelmann.
- 1878. Hühnereiweiss als Einbettungsmasse. Zoolog. Anzeiger Nr. 6, p. 130-131.
- 1879. Keimblätter und Organanlage der Echiniden. Erlangen. Phys.-med. Soc. Sitzber. 11, 1879, p. 100-108.
- 1880. Keimblätter und Organanlage der Echiniden. Zeitschr. f. wissensch. Zoologie, XXXIII, p. 40-54, Taf. V-VII.
- 1880. Über einen Kieselschwamm von achtstrahligem Bau und über die Entwickelung der Schwammknospen. Zeitschrift f. wissensch. Zoologie, XXXIII, p. 467—476, Taf. XXVII—XXVIII.
- 1881. Zur Entwickelungsgeschichte der Seeplanarien, ein Beitrag zur Keimblätterlehre und Descendenztheorie. Zoologische Studien II. Leipzig. W. Engelmann.

- 1881. Zur Entwickelungsgeschichte der Seeplanarien. Biolog. Centralblatt, I, p. 229-239. (Auszug in: Journ. R. Microscop. Soc. Vol. 2, p. 509-510.)
- 1881. Über eine eigentümliche Art der Kernmetamorphose. Biolog. Centralbl. I, p. 492-497.
- 1881. Die Keimblätter der Planarien. Erlangen. Phys. med. Soc. Sitzber. 15, p. 37-40. (Auszüge in: Journ. R. Microscop. Soc. (2). Vol. 1, p. 743 und Bull scientif. dépt. du Nord. 4 Ann., Nr. 5, p. 165-169.)
- 1882. Der embryonale Exkretionsapparat des kiemenlosen Hylodes Martinicensis. Sitz.-Ber. d. k. Akad. d. Wiss. zu Berlin. VIII, p. 117—124, Taf. II.
- 1882. Dasselbe. Math. naturwiss. Mitt.: Akad. Berlin 1. Heft, p. 71-78.
- 1882. Zur Aufstellung von Spirituspräparaten. Zoolog. Anzeiger Nr. 107, p. 169-172.
- 1882. Keimblätter und Gastrulaform der Maus. Biolog. Centralblatt II, Nr. 18, p. 550-558. (Auszug: Journ. R. Microscop. Soc., vol. 3, S. 488'489.)
- 1883. Über die Sipunculaceen. Erlangen. Phys. med. Soc. Sitzber. 15, 1883, p. 1-5.
- Die Sipunculiden. Eine systematische Monographie; unter Mitwirkung von Dr. J. G. de Man und Dr. C. Bülow bearbeitet von Emil Selenka. In: Semper's Reisen im Archipel der Philippinen. Zweiter Teil. IV. Band. I. 1883. Wiesbaden. C. W. Kreidel's Verlag. Gr. 4° mit 14 Tafeln
- 1883. Keimblätter und Primitivorgane der Maus. Mit 4 Tafeln. p. 1—24. Studien über Entwickelungsgeschichte der Tiere. 1. Heft.
- 1883. Schlüssel zur Bestimmung der Sipunculaceen-Gattungen. Erlanger Sitzber., 13. November.
- 1883. Die Keimblätter der Echinodermen. Mit 6 Tafeln. p. 25-61. Studien über Entwickelungsgeschichte der Tiere. 2. Heft. (Auszug in: Journ. R. Microscop. Soc., Vol. 4, S. 573/74.
- 1884. Die Blätterumkehrung im Ei der Nagetiere. Mit 6 Tafeln. p. 62-69. Studien über Entwickelungsgeschichte der Tiere. 3. Heft.
- 1884. Über die Inversion der Keimblätter im Ei des Meerschweinchens, der Ratten und der Mäuse. Vortrag. Sitz.-Ber d. Gesellsch. naturforschender Freunde zu Berlin v. 18. III. 1884. p. 51-52.
- 1884. Das Mesenchym der Echiniden. Zoolog. Anzeig. VII, p. 100-102.
- 1885. Report on the Gephyrea. Voyage of H. M. S. Challenger. XIII. Part XXXVI. Gr. 4 0 mit 4 Tafeln.
- 1885. Zur Befruchtung des tierischen Eies. Biolog. Centralbl. V, p. 8-10.
- 1885. Über die Entwickelung des Opossum. Ebenda, p. 294-295.
- 1885. Zur Paraffineinbettung. Zoolog. Anzeiger 1885, Nr. 99, p. 419-420.
- 1886. Über die Embryologie des Opossum und die Abstammung der Säugetiere. Biolog. Centralblatt. VI. Bd. Nr. 9. p. 283-284.
- 1886. Metallmodelle nach mikroskopischen Präparaten. Erlangen. Sitzber. Phys.-med. Soc. (3 Seiten.)
- 1887. Das Opossum. Studien über Entwickelungsgeschichte der Tiere. 4. Heft. Mit 14 Tafeln. p. 101-172.
- 1887. Das Stirnorgan der Wirbeltiere. Biolog. Centralblatt X, 1887, p. 323-326.
- 1887. Die elektrische Projektionslampe. Erlangen. Phys.-med. Soc. Sitzber. 19. Heft.
- 1886. Über die Gastrulation der Knochenfische. Tagebl. 59. Vers. deutsch. Naturf. p. 270.
- 1887. Über Gastrulation der Knochenfische. Biolog. Centralbl VI. Bd. Nr. 22. p. 696-697.
- 1888. Die Gaumentasche der Wirbeltiere. Biolog. Centralbl. VII, Nr. 22, p. 679-683.
- 1888. On the Gephyreans of the Mergui Archipelago, collected for the Trustees of the Indian Museum, Calcutta, by J. Anderson. Journ. Linn. Soc. London, Zool., Vol. 21, Nr. 130, p. 220—222.
- 1890. Zur Entwickelung der Affen. Sitzungsber. d. Berl. Akad. XLVIII. p. 1257-1262.
- 1890. Zur Entstehung der Placenta des Menschen. Biolog. Centralbl.
- 1890. Ein Streifzug durch Indien. Mit 29 Textabbildungen. C. W. Kreidel's Verlag. Wiesbaden.
- 1892. 1. Beutelfuchs und Känguruhratte (Phalangista et Hypsiprymnus).
 - 2. Zur Entstehungsgeschichte des Amnion.
 - 3. Das Kantjil (Tragulus javanicus).
 - 4. Affen Ostindiens.
 - 5. Keimbildung des Kalong (Pteropus edulis).
 - Studien über Entwickelungsgeschichte der Tiere. 5. Heft. p. 173-233. 12 Tafeln.
- 1896. Die Rassen und der Zahnwechsel des Orang-Utan. Sitzber. d. k. preuss. Akad. d. Wissensch. zu Berlin. XVI. p. 381-392.
- 1896. Sonnige Welten. Ostasiatische Reiseskizzen gemeinschaftlich mit Lenore Selenka. (Die erste Auflage ist vergriffen, die zweite in Vorbereitung.) C. W. Kreidel's Verlag. Wiesbaden.

- 1897. Die Sipunculiden-Gattung Phymosoma. Archiv für Naturgeschichte. 63. Jahrg. S. 460.
- 1898. Blattumkehr im Ei der Affen. Biolog. Centralblatt. Bd. XVIII. Nr. 15.
- 1898. Dasselbe. 2. Mitteilung. Ebenda. Bd. XVIII. Nr. 22.
- 1898. Atypische Placentation eines altweltlichen Schwanzaffen. Annales du Jardin Botanique de Buitenzorg. Suppl. II.
- 1898. Menschenaffen (Anthropomorphae), Studien über Entwickelung und Schädelbau. 1. Lieferung: Rassen, Schädel und Bezahnung des Orang-Utan. p. 1-91. Mit 108 Abbildungen im Text.
- 1899. Menschenaffen (Anthropomorphae). Studien über Entwickelung und Schädelbau. 2. Lieferung. II. Kapitel. Schädel des Gorilla und Schimpanse. III. Kapitel. Entwickelung des Gibbon (Hylobates und Siamanga). Mit 10 Tafeln und 70 Textfiguren. p. 95—172.
- 1899. Junges Entwickelungsstadium des Hylobates Rafflesii. Sitzber, der Gesellschaft für Morphologie und Physiologie in München. 15. Bd.
- 1900. Menschenaffen (Anthropomorphae). Biolog. Centralbl. Bd. XX. Nr. 23/24.
- 1900. Menschenaffen (Anthropomorphae). Studien über Entwickelung und Schädelbau. 3. Lieferung. III. Kapitel. Entwickelung des Gibbon (Hylobates und Siamanga), Fortsetzung. Mit 1 Tafel und 38 Textfiguren. p. 173—208.
- 1900. Der Schmuck des Menschen. Mit Abbildungen. Vita, Deutsches Verlagshaus, Berlin.
- 1901. Placentaranlage des Lutung (Semnopithecus pruinosus, von Borneo). Sitzber. d. math.-phys. Kl. d. k. b. Akad. d. Wissensch. Heft 1. p. 3-14 mit 2 Tafeln.
- 1901. Die Gleichartigkeit der Embryonalformen bei Primaten. Biolog. Centralblatt. Bd. XXI. Nr. 15. p. 484-490.

ZUR

VERGLEICHENDEN KEIMESGESCHICHTE DER PRIMATEN.

VON

Dr. EMIL SELENKA.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Vorbemerkungen des Herausgebers.

Im August 1901 schrieb Selenka an seinen Verleger Bergmann: "Ich habe jetzt eine fast vollständige Serie von Affenembryonen zum Teil schon fertig bearbeitet, und es ist die Frage, soll ich das fünfte Heft nur mit den jüngeren Stadien der Entwickelung abschliessen — das kann bis Weihnachten fertig sein —, oder die "Entwickelung der Leibesform der Primaten" sogleich ganz durchführen und erst zu Ostern das Manuskript einliefern." Selenka hat sich dann entschlossen, die jüngeren Stadien der Entwickelung gesondert herauszugeben, und zwar wählte er für dieses Kapitel den Titel: "Vergleichende Keimesgeschichte der Primaten." Es war ihm nicht mehr vergönnt diese Arbeit zu vollenden. In seinem Nachlasse fand sich nur der Beginn des fünften Heftes der Menschenaffen, zugleich des zehnten Heftes der Studien über Entwickelungsgeschichte der Tiere vor. Das Manuskript ist überschrieben "Fünftes Kapitel". "Vergleichende Keimesgeschichte der Primaten"; es ist auch, soweit es im Zusammenhange vorliegt, nicht fertig. Es fehlt nicht nur die letzte Feile, sondern gleich in der Einleitung findet sich eine grössere Lücke, welche offenbar später ausgefüllt werden sollte. Immerhin dürfte der Text bis zu der auf der S. 338 mitgeteilten Tabelle als in der Hauptsache vollendet anzusehen sein. Die Erklärung aber zu der Tabelle und die weiterhin mitgeteilten Beschreibungen der einzelnen Embryonen würde Selenka gewiss noch sehr gründlich umgearbeitet haben. Schon jetzt liegen für einzelne Teile des Manuskriptes der erste Entwurf und mehrfache Umarbeitungen vor. Stets ist es leicht zu erkennen, welches die letzte Bearbeitung ist, nicht aber, ob diese Selenka schon genügt haben würde. So leicht sich nämlich Selenka's Schriften lesen, so zeigt doch das Manuskript, dass er oft mit der Form gerungen hat. Dasselbe Problem findet sich von verschiedenen Seiten in Angriff genommen und dargestellt, und deutlich zu Tage liegt das Streben nicht nur nach wissenschaftlich klarer, sondern auch nach ästhetisch abgerundeter Darstellung. — Die Abbildungen zum fünften Heft lagen im Gegensatz zum Manuskript bis auf eine Zeichnung (Fig. 16) vollendet, zum grössten Teil schon autotypiert, vor. Die Fig. 16 habe ich nach einem Wachsmodelle von Selenka zeichnen lassen, weil aus dem Manuskript hervorging, dass diese Zeichnung

beabsichtigt war. — Für das sechste Heft, welches die älteren Stadien der Menschenaffen offenbar auch mit ausgiebiger Berücksichtigung der Schwanzaffen behandeln sollte, lagen ausser reichlichen Skizzen eine Anzahl schön ausgeführter Zeichnungen vor, vom Manuskript kaum Andeutungen, doch liess sich erkennen, dass eine Reihe von Hylobatesembryonen den Mittelpunkt bilden sollten; daneben wurden bis dahin der "rote Affe") und Inuus speciosus aus Japan besonders berücksichtigt. In einem Briefe an Bergmann vom Dec. 1900 spricht Selenka davon, dass er noch eine besondere Arbeit über die niederen Affen (Schwanzaffen) den Menschenaffen anschliessen wollte. Ob er an diesem Plan festgehalten hat, ist zweifelhaft.

Bei dieser Sachlage erschien es mir das Richtigste, den Nachlass als Fragment herauszugeben. Nur offenbare Versehen sind, und zwar ohne dass ich das besonders bemerkt habe, verbessert. Einschiebungen, die mir für das Verständnis nötig schienen, sind in [] gesetzt. Nie gebe ich meine Ansichten, sondern ich gebe die von Selenka. Dass dem Werke die letzte Hand gefehlt hat, ist natürlich überall zu merken, aber mir schien es pietätvoller, die unfertigen Stellen offen zu Tage treten zu lassen, als durch Überarbeitung den Charakter des Werkes zu gefährden. Die Zeichnungen, für welche kein Text vorlag, sind von mir nur ganz kurz erläutert, und diese Erläuterungen sind, wie die wenigen sonst gemachten Einschiebungen, in [] gesetzt. Dass ich auch die Zeichnungen Selenka's veröffentlicht habe, zu denen der Text noch nicht vorlag, brauche ich wohl kaum zu rechtfertigen. Die Bilder sind es, welche durch ihre künstlerische Ausführung Selenka's Werken einen ganz besonderen Reiz verleihen, und Selenka hat den Abbildungen auch stets besondere Sorgfalt und Liebe gewidmet. Ein Zeugnis davon geben die vielen Skizzen und mehr oder weniger ausgeführten Entwürfe, welche sich in seinem Nachlasse vorfanden. Eine Würdigung des wissenschaftlichen Wirkens Selenka's ist von berufener Feder gegeben worden, hier nur soviel, dass das Werk, welches seine Lebensarbeit krönen sollte, die Entwickelungsgeschichte der Affen, wenn auch nicht als im einzelnen ausgearbeitet, so doch als im wesentlichen vollendet betrachtet werden kann. Gewiss wird über die Entwickelungsgeschichte der Affen noch viel gearbeitet werden, und mancher schöne Fund wird solche Arbeit lohnen; die grundlegenden Thatsachen aber gefunden und ans Licht gestellt zu haben, wird Selenka's Verdienst bleiben.

Freiburg i/Brsg., den 10. Januar 1903.

Franz Keibel.

¹⁾ Dieser "rote Affe" dürfte nach einer gütigen Auskunft Herrn Dr. Jentink's in Leyden Semnopithecus rubicundus Müll. sein, vielleicht kommt aber auch S. cruciger Thomas in Frage.

Vergleichende Keimesgeschichte der Primaten.

Den Entwickelungsgang der Primatenkeime im Zusammenhange darzulegen, ist die Aufgabe dieser Untersuchung.

Menschliche Keime spielt der Zufall dem Glücklichen ohne Opfer an Zeit und Gesundheit in die Hände; Affenkeime der verschiedensten Entwickelungsgrade zu erhalten, erforderte dagegen bisher eigene anstrengende Bethätigung und bringt, trotz aller Bemühungen stets der Enttäuschungen viele. Der Versuch junge Affenembryonen auf dem Wege der Züchtung zu erzielen, gelang mir überhaupt nicht, und so beziehen sich meine Studien über die Entwickelung der Vierhänder lediglich auf das in den Wäldern von Ceylon, Malakka, Borneo, Sumatra, Java und Japan auf der Jagd erbeutete Material. Dieses ist leider lückenhaft geblieben. Nur ein einziges Furchungsstadium kam mir vor Augen, und über die Anheftung des Eies oder die Art der Keimschildbildung habe ich keine Beobachtungen machen können. Dagegen geben zahlreiche Präparate erwünschte Aufschlüsse zumal über die Umgestaltung der Keimscheibe zum Embryo, so wie über die Anlage der primitiven und [der] Hilfsorgane.

Keimanlagen und Embryonen folgender Affenarten kamen in meinen Besitz:

Cercocebus cynomolgus von Java, Borneo, Malakka, Banda? Macacus nemestrinus.

Semnopithecus maurus, Cuvier, Java.

- ,, pruinosus, Desmarest, Borneo.
- " mitratus, Eschholtz, Java.
- nasicus, Schreber, Borneo.
- ,, cruciger, Thomas, Borneo.
 ,, cephalopterus, Ceylon.

Inuus speciosus, Japan.

Selenka, Entwickelungsgeschichte X.

Hylobates concolor, Borneo.

- " Mülleri, Borneo.
- ,, agilis, Sumatra.
- , Rafflesi? Sumatra.

Simia satyrus Linné, Borneo.

Vergleichsmaterial bieten mir sowohl meine früheren Publikationen über die Entwickelung der Affen, als auch die weiter unten angefügten Beschreibungen und Abbildungen. Auch menschliche Keime sind in die Betrachtung hineingezogen.

Als eines der wichtigsten Resultate hat sich ergeben, dass die Entwickelung des Keimes und des Embryo bei den östlichen Schwanzaffen und Menschenaffen sowie dem Menschen in übereinstimmender Weise vor sich geht, aber stark abweicht von der Entwickelung aller übrigen Säugetiere. Das Primatenei erfährt alsbald nach seiner, sehr frühzeitig erfolgenden Verwachsung mit dem Uterusepithel eine auffallend reichliche Ernährung durch das transsudierende Serum des Mutterblutes, und wenn es auch noch nicht gelingt, die phyletische Entstehung dieser, für die Primaten charakterischen Ernährungsvorrichtungen darzulegen, so ist doch der Erfolg und die Bedeutung derselben klar:

Der hoch entwickelte Organismus schuf sich zu seiner embryonalen Ausbildung auch einen vollkommeneren Ernährungsmechanismus, als die auf der niederen Stufe stehen gebliebenen Verwandten ihn besitzen. Progressive Anpassungsphänomene kommen offenbar hier zur Erscheinung, deren Werdegang freilich vorläufig noch nicht zu erraten ist. Die Plastizität der embryonalen Organanlagen der mütterlichen Nährund Polstergewebe ist zweifellos caenogenetischen Umformungen der typischen Organanlagen günstig, aber sie allein erklärt die beispiellose Revolution nicht, welche die Bildung der Keimanlage der Primaten während der ersten Wochen ihrer Entwickelung erfährt. "Im ausgebildeten Organismus mit seinen mannigfaltigen Beziehungen zur Aussenwelt und durch die Rückwirkung derselben auf die Organisation, die daraus ihre Anpassung gewinnt, treffen wir die Pforten zu Veränderungen geöffnet." (Gegenbaur.)

[Hier war eine Lücke im Manuskript; es fehlten die Seiten 4-7, welche wahrscheinlich in definitiver Fassung überhaupt noch nicht niedergeschrieben waren.]

¹) 1. Studien über Entwickelungsgeschichte der Tiere. Wiesbaden. C. W. Kreidels Verlag. Fünftes Heft. 1892.

^{2.} Menschenaffen. Wiesbaden. C. W. Kreidels Verlag. II. und III. Lieferung. 1899-1900.

^{3.} Placentaranlage des Lutung (Semnopithecus pruinosus, von Borneo). In: Sitzungsberichte der mathemat. physikal. Klasse der königl. bayer. Akademie der Wissenschaften. 1901. Erstes Heft.

Ich werde diese drei Publikationen in der Folge citieren unter der Bezeichnung: Studien Menschenaffen und Lutung.

A. Entwickelung des Primaten-Keimes bis etwa gegen Ende des zweiten Monats

Nachdem ich feststellen konnte, dass die Keimesanlage bei den Gibbons und bei acht verschiedenen östlichen Schwanzaffen in gewissem, wesentlich gleichem, von allen anderen Säugetieren abweichendem Typus sich vollzieht, während nur in der Placentarbildung zwei verschiedene Formen zustande kommen, halte ich es für richtig, den Gang der Entwickelung derartig zu schildern, dass ich die Embryonen der verschiedensten Species, nach ihrer Entwickelungsphase zeitlich ordne und in dieser Reihenfolge bespreche.

Ich verweise dabei teils auf die in früheren Publikationen, teils auf die weiter unten neu beschriebenen Keimlinge, Embryonen und Föten.

Ei-Furchung des Macacus nemestrinus.

Nachdem ich manche Dutzende von Eileitern, deren zugehörige Ovarien einen geplatzten Graaf'schen Follikel aufwiesen, während im Uterus nach sorgfältigster und genauester Prüfung kein Ei gefunden war, in Schnittserien zerlegt, ohne jemals ein Ei zu Gesicht zu bekommen, wurde mir durch meinen treuen Freund A. A. W. Hubrecht in Utrecht ein Uterus des Macacus nemestrinus Desmarest aus Java zur Verfügung gestellt, dessen eines Ovarium eine frische Graaf'sche Narbe trug. Der Präparator Hubrecht's zerlegte den betreffenden Ovidukt in Querschnitte von o,or mm, und

Hubrecht übersandte mir einen Objektträger mit fünf Schnitten, die ein in Furchung begriffenes Ei enthielten. Das Verdienst, das erste sich furchende Primatenei aufgefunden zu haben, gebührt daher nicht mir, sondern Hubrecht!

Ungefähr in der Mitte des Eileiters liegt lose verklebt an den etwas zerfetzten Wimperzellen das Ei von 0,04 mm Durchmesser. Etwa die gleiche Grösse zeigen die grössten, der Reife nahen Ovarialeier.

Vier Furchungszellen von nahezu gleichem Volumen sind sehr deutlich zu unterscheiden; zwei derselben (in der Abbildung die mittlere und die links oben gelegene) sind etwas unregelmässig oval, die beiden anderen fast kugelig.

Fig. 1.

Macacus nemestrinus,

Desmarest (Borneo).

Ei in Furchung 4.0.0.

Die Zellen sind nackt; keine Spur einer Hüllhaut ist zu bemerken.

Die Schrumpfung, welche die Gewebe des Eileiters aufweisen, legt den Gedanken nahe, dass auch das sich furchende Ei nicht mehr seine natürliche Beschaffenheit bewahrt habe. Immerhin ist es von Belang, zu wissen, was das Präparat lehrt:

Die Furchung beginnt in einer ähnlichen Art, wie bei anderen höheren Säugetieren, und es ist wahrscheinlich, dass die Furchung abgelaufen ist, sobald das Ei in die Weitung des Uterus eintritt. Neue Gesichtspunkte kann ich nicht aufstellen.

Gastrulation. — Keimblase mit primärer Placenta (Schwanzaffen).

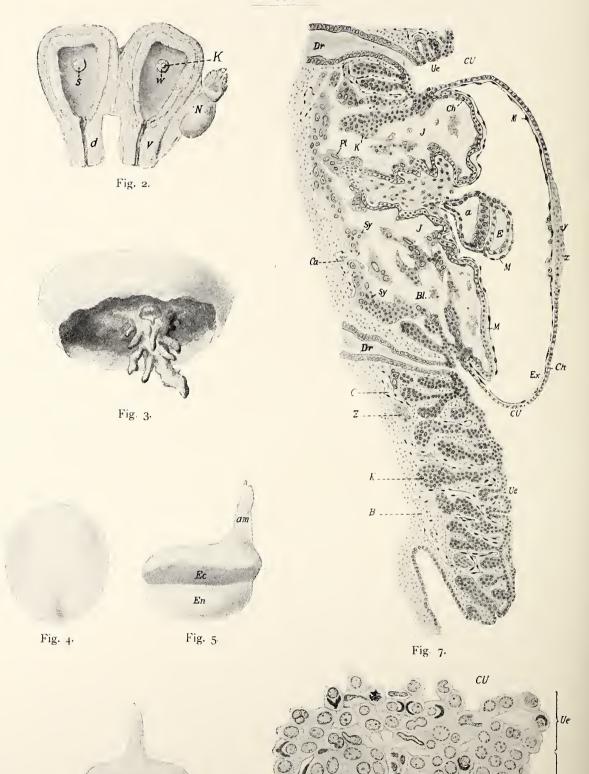
Soweit meine Erfahrung reicht, kommen bei den Schwanzaffen und Menschenaffen regulär zwei einander gegenüberliegende Placenten zur Anlage. An der ventralen, seltener an der dorsalen Wand verwächst die Keimblase und bildet hier ein primäres Zottenfeld und somit eine primäre Placenta. Erst nachdem eine grössere Centralzotte und eine Anzahl anderer Zotten im primären Felde entstanden, kommt bei den Schwanzaffen die bisher freie Chorionfläche der Keimblase auch mit der gegenüberliegenden Uteruswand in Kontakt, um eine zweite oder sekundäre Placenta zu bilden. Diese zweite Verwachsung kann etwas früher oder später geschehen, wie mir scheint, in der Regel nachdem eine bis vielleicht 20 Zotten des ersten Feldes entstanden sind. Bei Hylobates und Simia wird die junge Keimblase jedoch frühzeitig von der Uterusschleimhaut umkapselt, sodass die der primären Placenta gegenüberliegende Chorionfläche mit dem Kapselgewebe des Uteringewebes in Berührung kommt und in dieser Membran die sekundäre Placenta erzeugt. Indem die Membrana capsularis uteri aber dem allmählichen Schwunde anheimfällt, wird auch das sekundäre Zottenfeld resorbiert; es bleibt nur die primäre Placenta übrig. Die primäre Placenta persistiert daher bei allen Affen und Menschenaffen, die sekundäre nur bei Schwanzaffen der alten Welt. (Studien, Tafel 35, Fig. 3-5 und Fig. 10 u. 11. - Menschenaffen pag. 171, 197 und folg. — Lutung, Fig. 2 u. 7).

Nur zwei Fälle sind mir bekannt, in denen die Anlage einer sekundären Placenta unterblieb. Unter fünf trächtigen Uteri des borneanischen Semnopithecus cruciger Thomas fand ich die Ventroplacenta [in zwei Fällen] gänzlich fehlend, während sie in zwei anderen Fällen auffallend klein war, und nur einmal hatten beide Mutterkuchen nahezu gleiche Grösse, so wie dies für die katarrhinen Schwanzaffen typisch ist¹). Es handelt sich hier offenbar um einen Ausfall, um das Unterbleiben eines typischen Vorganges, vermutlich veranlasst durch die nicht stattfindende Berührung und Verwachsung der antiplacentaren Chorionfläche des Eies mit der Uteruswand.

Ganz ausnahmsweise begegnete ich allerdings auch beim Javaaffen (Cercocebus cynomolgus) nur einer einzigen Placenta; diese erwies sich jedoch bei näherer Untersuchung stets als ein, aus den zwei typischen Placenten sekundär verwachsenes Gebilde.

¹⁾ Selenka. Atypische Placentation eines altweltlichen Schwanzaffen. In: Extrait des Annales du Jardin Botanique de Buitenzorg. Supplement II, pag. 85–88. — E. J. Brill, Leiden, 1898.

Die amerikanischen Affen scheinen, so weit bekannt¹), durchweg nur eine einscheibige Placenta zu besitzen, die vielleicht durch Ausfall der sekundären Placenta, aus der doppelscheibigen der Ostaffen abzuleiten ist, denn als Stammhalter der Westaffen erscheinen die östlichen, die sich erst durch Wanderungen auch über Amerika ausbreiteten.


Betreffs der histologischen Umformungen, welche der Uterus während der Anlage der Zottenfelder erleidet, verweise ich auf meine früheren Arbeiten. Die ausführliche "Entwickelungsgeschichte der Affen-Placenta" bleibt einer späteren Publikation vorbehalten. Betont sei hier nur noch einmal, dass das Uterusepithel beim Aufbau der Placenta eine wichtige Rolle spielt. Schnittserien durch vorzüglich erhaltene Präparate trächtiger Uteri der Gattungen Semnopithecus und Cercocebus beweisen dies aufs schlagendste (z. B. Menschenaffen, Tafel 11).

Die jüngsten Keimblasen und Keimanlagen der Schwanzaffen, die mir zu Gesicht kamen, weichen in ihrer Gestalt ganz auffallend von den typischen Gebilden ähnlicher Entwickelungsphasen der übrigen Säugetiere ab; zeigen dagegen eine gewisse Ähnlichkeit mit denjenigen Säugetiereiern, welche frühzeitig mit dem Uterusepithel verwachsen und eine Inversion der Keimblätter, oder wie ich es allgemeiner bezeichnet habe, eine "Entypie des Keimschildes" aufweisen (Menschenaffen, Seite 201 und folg.).

Wenn man nun erwägt, dass überall da, wo bisher eine sehr frühzeitige Verwachsung der Keimblase mit dem Uterusepithel beobachtet wurde, zugleich eine Einschiebung oder Entypie des Keimfeldes nachzuweisen war, so ist ein Zusammenhang beider Vorgänge nicht unwahrscheinlich. Diese Annahme gewinnt an Boden, sobald man alle Arten der Keimfeld-Entypie vergleichend nebeneinanderstellt. Auf Seite 201—205 der Menschenaffen, ferner in meiner Mitteilung über die Placentaranlage des Lutung, Seite 12, habe ich diese Vergleichung ausgeführt, ich beschränke mich daher hier auf einige Bemerkungen.

Aus der Abbildung Figg. 2—8 ist die Lagerung und Gestalt der Keimblase im Uterus ersichtlich. Nur das primäre Zottenfeld ist in Form einer scheibenartigen Verwachsung mit verästelter Centralzotte (Fig. 3 u. 7) angelegt. Die Bildung eines sekundären Zottenfeldes ist erst durch eine geringe Verwachsung angedeutet, deren Bau wegen Zerreissens der Verwachsungsflächen nicht näher erforscht werden konnte.

¹⁾ Selenka hat sich grosse Mühe gegeben, auch Material von amerikanischen Affen zu erhalten, um die Embryonen und ihre Placenten mit denen der Ostaffen zu vergleichen; es ist ihm aber nicht gelungen dasselbe herbeizuschaffen. Erst nach seinem Tode traf eine Anzahl gravider Uteri ein. Es handelt sich zumeist um ältere Stadien von Mycetes seniculus. Wie mir Herr Professor Strahl, in dessen Händen die Präparate augenblicklich sind, mitteilt, ist die Placenta einscheibig; Andeutungen des Ausfalls einer sekundären Placenta hat er bis dahin nicht gefunden.

B

Fig. 8.

Fig. 6.

Erklärung zu Fig. 2-8.

Fig. 2-6 u 8. Semnopithecus pruinosus, von Borneo.

Fig. 2. Der geöffnete Uterus in nat. Gr. — d dorsale Hälfte, K das Keimbläschen. N Narbe auf dem rechten Ovarium, s Anlage der sekundären Placenta, v ventrale Hälfte, w wallartige Erhebung der Uterinschleimhaut, in deren Mitte die 1 Millimeter grosse Keimblase liegt.

Fig. 3. Die Keimblase isoliert. ⁵⁰/₁. Rekonstruktionsbild. In der Wurzel der "Zentralzotte" ist der Keim bemerkbar.

Fig. 4-6. Der Keim, isoliert. Rekonstruktionsbilder in 200 facher Vergrösserung.

Fig. 4 Der Keimschild von oben gesehen; Amnion weggelassen. Die Primitivrinne ist schwach angedeutet.

Fig. 5. Derselbe im Profil. — am Amnionstiel, dessen Zipfel in das Mesenchympolster übergeht. Vergl. Figur 7.

Fig. 6. Derselbe von vorn.

Fig. 7. Keimblase des Semnopithecus pruinosus nebst Umgebung, im Schnitt. ¹³⁰ 1. Camera. — a Amnionhöhle, B Bindegewebe, Bl mütterliche Blutkörper, C erweiterte Capillare, Ca Capillare, in den intervillösen Raum sich öffnend, Ch Chorionektoderm, CU Cavum uteri, Dr Drüsengang, E Dottersack, Ex Exocoelom, I intervillöser Raum, mit Mutterblut gefüllt, K kolbenförmige Wucherungen des Uterusepithels, später in Zellennester zerfallend, M Mesoderm, Pl Plasmodiblast (van Beneden), Plasmodialschicht, Sy Syncytium, aus Zellennestern entstanden, Ue taschenartige Einsenkungen des Uterusepithels, sy ein vom sekundären Placentarpolster abgerissener Teil des Chorion, Z Zellennester.

Fig. 8. Schnitt durch das wuchernde Uterusepithel des sekundären Placentarkissens, Randpartie. Vergr. ca. 600. Camera — B Bindegewebszellen, C Capillaren, C U Cavum uteri, K kolbenförmige Einwucherung des Uterusepithels, später in Zellennester zerfallend, N Zone der Nesterzellen, Ue Zone des geschichteten Uterusepithels.

In die Zentralzotte hinein ragt ein Zipfel des Amnion (Fig. 7), der auf den Ort hinzuweisen scheint, wo die Abschnürung des Amnion vor sich ging.

Für diese Deutung spricht der vom Chorion bis unmittelbar an den äussersten Amnionzipfel reichende Schlauch der in Figur 9 (S. 340) abgebildeten Keimblase. Dieser Schlauch ist einschichtig, enthält ganz unzweifelhaft keinen Belag von Syncytialzellen; aber an seiner Ausmündung in den intervillösen Raum beginnt das Syncytiallager. Ich halte diesen Schlauch für den Amnionnabelstrang, der zufällig sich in diesem Einzelfalle erhalten hat.

Auch in Figur 22 auf Seite 186 der Menschenaffen ist ein hohler Schlauch (a), der ebenfalls in der Richtung des Amnionzipfels gelegen ist, vielleicht ähnlich zu deuten. Doch konnte ich mich früher nicht entscheiden, ob derselbe als ein Stück nachträglich abgeschnürten Chorions oder als zufällig erhaltenes Stück des Amnionnabelstranges zu deuten sei, da seine Wandung aus zwei Zellschichten besteht. Nachdem ich den Befund der Fig. 9 festgestellt, scheint mir die letztere Deutung richtig, und über die Bildung des Amnion beim Affenkeimling mache ich mir nun folgendes Bild.

Wie bei den Nagern und Insektivoren, bei denen eine Entypie des Keimfeldes statt hat, der Verschluss oder die Abschnürung des Amnion selbst bei nahe verwandten Formen in sehr verschiedener Weise vor sich gehen kann, so mag auch bei Affen und Menschenaffen dieser Prozess etwas verschiedenartig verlaufen! Die Regel ist vielleicht, dass die formativen Zellen des Keimschildes und des Amnionektoderms sich in Gestalt einer soliden Kugelabschnüren. So vollzieht sich wenigstens die Abschnürung auch bei Pteropus und Cavia cobaya, wo sicherlich die Verwachsung in gleicher Weise wie bei Affe und Mensch, nämlich im Bereiche der Keimschildpartie geschieht. In anderen Fällen mag die Keimfeld-Entypie derartig vor sich gehen, dass sich Keimschild- und Amnionektoderm-Zellen als hohle Blase ins Keimblaseninnere vorbuchten und einen langen Amnionstiel entstehen lassen, der sich auch nach der Abschnürung noch eine Zeitlang erhält (Menschenaffen, S. 186, Fig. 22, Schlauch a; Fig. 9). Weitere Spekulationen über dieses Problem scheinen mir unnötig; hier müssen neue Thatsachen Aufklärung bringen, die zu finden mir trotz ausserordentlicher Opfer an Zeit und Geld nicht beschieden ward.

Die Gastrulation des Affen- und Menscheneies vollzieht sich im allgemeinen nach dem Typus der übrigen Säugetiere; nur ist die räumliche und zeitliche Scheidung der beiden Entoderm- und Mesoderm-Keime noch etwas weiter gediehen.

Wie die neueren Untersuchungen ausgezeichneter Forscher, wie Kupffer, Keibel.... und besonders letzthin Bonnet ergeben haben, hat der Verlust des Dotters im Säugetierei zu der Trennung der ursprünglich einheitlichen Anlage des Entoderms geführt, bis schliesslich das Dotterblatt (Dottersackentoderm) früher und ohne Zusammenhang mit dem Protentoderm (Urdarmstrang, Urdarm, Kopffortsatz) sich ausbildet.

Bei den meisten Nagern und Insektivoren mit Keimfeld-Entypie erscheint das Auftreten des Urdarms verzögert, indem die formativen Zellen des Keimschildes (Schildektoderm und Amnionektoderm plus Urdarm und dessen Derivaten) schon während der Verwachsung des Eies mit dem Uterusepithel als kugeliges Gebilde isoliert werden Aber der gesamte Mesoblast scheint hier, wie in anderen Säugetiereiern, erst hervorzutreten, nachdem der Urdarm sich angelegt hat.

Bei Affen und Mensch aber wird ein Mesench ymgewebe schon früher von dem Dotterblatt geliefert. Denn lange bevor irgendwelche Differenzierung des Keimschildes in Schildektoderm und Urdarm begonnen hat, findet sich schon ein geschlossenes Lager von Mesenchymzellen, welches epithelartig das einschichtige (glatte) Chorion auskleidet und in den Zotten und am Amnionzipfel ein lockeres Polstergewebe darstellt (Fig. 7, M).

Aus diesem Befunde lassen sich für die Entwickelung des Eies der Affen und des Menschen folgende Schlüsse ableiten:

- I. Nach der Verschmelzung des Chorion mit dem Uterusepithel müssen die formativen Zellen des zukünftigen Embryos ins Einnere geschoben werden.
- 2. Zugleich oder unmittelbar danach lösen sich die Bildungszellen des Dotterblatts von den formativen Zellen und bilden einen, dem Keimschilde anliegenden Sack. (Fig. 7, E).
- 3. Unmittelbar darauf treten Mesenchymzellen auf, die unter Vergrösserung der Chorionblase zwischen Chorion und Dotterblattblase sich eindrängen und letztere vom Chorion abheben, indem sie die Innenfläche des Chorion austapezieren, und Amnionektoderm wie Dotterblattblase überdecken, zugleich in den Zotten ein lockeres Gewebe bildend.
- 4. Die Abschnürung des amniogenen Ektoderms vom Chorionektoderm geschieht sehr frühzeitig, jedenfalls vor Differenzierung des Keimschildes. Doch können die schlauchartigen, in der Verlängerung des Amnionzipfels gelegenen Gebilde, die sich in einigen Fällen vorfanden, als ein restierender Amnionstiel gedeutet werden.

Zur Tabelle: Differenzierung des Keimschildes bis gegen Verschluss der Rückenwülste.

In der Tabelle sind die Objekte nach dem Entwickelungsgrade des Keimschildes geordnet, was vielleicht nicht immer ganz den Altersstufen der Keimblasen entsprechen mag. Eine Prüfung in dieser Beziehung grenzt aber an die Unmöglichkeit.

Auffallend ist die grosse Übereinstimmung des ganzen Entwickelungsganges bei den verschiedensten Spezies. Mit der Vergrösserung und Differenzierung des Keimschildes geht Hand in Hand sowohl die Vergrösserung und Vaskularisation des Dottersackes, die Ausbildung der Medullarwülste, als auch sogar die Vergrösserung der Chorionblase und deren Zottenfelder, und es finden sich nur Unterschiede untergeordneter Art.

Von den 12 Affenkeimlingen unterscheiden sich:

- I. zwei Fälle durch Verzögerung der Anlagen der sekundären Placenta, was nicht Wunder nehmen kann,
- 2. nur bei einem Schwanzaffen Cu wurde ein langer, mit dem Amnionzipfel in Kontakt stehender, jedoch von diesem abgeschnürter Schlauch gesehen, der sich gegen den intervillösen Raum öffnet. Dies scheint ein restierendes

												4	
Cercocebus cynomolgus <i>Cc.</i> (<i>Sc.</i>) molgus <i>Cc.</i> (<i>Sc.</i>) Fig. 13 – 16 u Taf. 12. S. 344 – 351.	Semnopithecus cephalopterus <i>Wa</i> . Fig. 11, 11 a—e u. 12. S. 342—344.	Cercocebus cynomolgus F . (Studien, Tafel 37.)	Hylobates Rafflesi Ab.	Hylobates concolor A. Menschenaffen S. 170—182.	Cercocebus cynomolgus <i>Cu.</i> Fig. 9 u. 10, S. 340—342.	Cercocebus cynomolgus C . (Studien, Tafel 35.)	Semnopithecus pruinosus B. (Studien, Tafel 35.)	Cercocebus cynomolgus <i>Ca.</i> Menschenaffen S. 196–199.	Cercocebus cynomolgus <i>Cb.</i> Menschenaffen S. 199–201.	Homo sapicus, Peters Ei.	Semnopithecus nasicus S. Menschenaffen S. 189–196.	Semnopithecus pruinosus <i>Lk</i> . Fig. 2–8.	
P. (ventral) S. (dorsal)	P. (ventral) S. (dorsal)	P. (dorsal) S. (ventral)	P. S. diffuse Zotten zwischen P. u S.	P. S. (in der Decidua capsularis) diffuse Zotten zwischen P. u. S.	P. (ventral) S. (dorsal)	· r.	סיָּאַ	w.ro	y ro	ganz kurze Zot- tenschläuche, ringsum an- gelegt	P. mit c. 50 Zot- ten und Zotten- anlagen	P. mit nur einer Centralzotte S. im Beginn der Bildung	P. primäre Placenta S. sekundäre Placenta
8,5 8,5 12,5	7	5	ca. 10 ca. 8	ca II ca. 9	0 4	Sı	5,5 ca. 3	2,7 1,6	0,4 1,4	Chorionblase 1,4 × 1 mm. Zottenlänge bis 0,15 mm	0,9	0,6	Durchmesser der primären u. sekundären Placenta in Millimetern
ca. 4 lang (geknickt) ca. 0,6 breit	3,3 lang ca. 1 breit	2,4 lang ca. 1 breit	ca. 2 lang 1 breit	ı lang 0,85 breit	im ganzen ca. o,9 lang, hin- ten zipfelig ausgezogen o,5 breit	o,6 lang o,4 breit	0,46 lang 0,41 breit	ca. 0,33 lang 0,3 breit	0,33	0,33 lang 0,28 breit	0,7	0,1	Durchmesser des Keimschildes in Millimetern
lang- gestreckt	lang- gestreckt	biscuitför- mig, hinten verjüngt	gestreckt, hinten stark verjungt	birnförmig, hinten zipfelig aus- gezogen	oval, hinten stark sich verjüngend	birnförmig	birnförmig	birnförmig	rundlich- birnförmig	rundlich- oval	rundlich, schwach birnförmig	rundlich, schwach elliptisch	Form des Keimschildes
Durchmess. 2 mm, gefässreich. Zotten auch gefässreich	Durchmesser 3,5 mm, gefäss- reich. Zotten ge- fässreich	gefässreich, auch Zotten mit Ge- fässen	Durchmesser 1,7mm gefässreich. – Auch in d. Zotten Gefässe	gefässreich	mit Gefässen, Zotten noch ge- fässfrei	mit Gefässen	etwas kleiner als der Keimschild; mit Gefässanlagen	etwas kleiner als der Keimschild	etwas grösser als der Schild, noch ohne Gefässe	ca. 0 ,3 mm	ca. 0,4 mm	ca. o,1 mm	Dottersack [Chorion]
22	4	ω	N				1				1		Urwirbelpaare
geschlossen, nur ganz hint. noch offen	zum Teilge- schlossen, vorne und hinten noch offen	noch ganz offen	Medullar- platte noch ganz offen	ebenso	in Form kur- zer hoher Wülste an- gelegt	ebenso	Medullar- wülste sind angelegt	Medullar- platte bucke- lig erhöht		Medullar- platte bucke- lig erhöht	1	1	Medullar- wülste
-	1		I		l	ebenso	Urdarm und Can.	Urdarm und Can.	Urdarnı und Can.		ì	schwache Einsenkung der Primitiv- rinne	Primitivplatte, Can. neurentericus (=Blastoporus)
			abgeschnürter, schlauchförmigerAm- nionstiel. Keim steht senkrecht gegen die Chorionfläche.	der Keim hat sich schon senkrecht gegen die Chorionfläche aufge- richtet.	langer, abgeschnürter Amnionkanal.					keine grössere Central- zotte; alle Zottennoch einfach schlauchför- mig, nur bis 0,15 mm lang.			Bemerkungen

- Stück des Amnionkanals zu sein (siehe oben S. 335 und 336), der sonst nur noch bei Hylobates in ähnlicher Lage angetroffen wurde.
- 3. Spezifisch verschieden verhalten sich die Zotten, sowohl in Gestalt als im Rhythmus der Vermehrung. Eine grössere Centralzotte, in deren Basis stets der Keim liegt, konnte ich nachträglich bei allen jüngeren primären Placenten der Schwanzaffen nachweisen; in den sekundären Placenten erschienen von Anfang an die Zotten, nahezu gleichartig. Bei Nasenaffen erhalten schon die jungen Zottensprossen Seitenästchen, sonst sind sie anfangs schlauchförmig. Die Zottenfelder des Gibbon unterscheiden sich selbstverständlich von denen der Schwanzaffen u. s. w.

Amnion [und Allantois].

Durch zahlreiche Thatsachen ist in den letzten Decennien dargelegt, dass manche Organe sehr stark innerhalb einer Spezies [oder doch innerhalb] einer Klasse variieren. Dahin gehören für die Amnioten von frühen Embryonalorganen zumal Amnion und Allantois, [sowie] die Form der Primitivplatte.

Wo von aussen kommende Störungen eintraten, sind diese Variationen am grössten, das beweisen die Keimblasen der Affen und des Menschen. Von aussen Kommende! Es wäre doch kurzsichtig, die unter sich ähnlichen caenogenetischen Veränderungen, welche die Eier sämtlicher Säugetiere mit Keimfeld-Entypie aufweisen, als autochthone, ich will damit sagen, als von aussen unbeeinflusste, zu betrachten. Mag nach van Beneden's vorzüglichen Untersuchungen auch die Struktur des abgefurchten Eies selbst erst Gelegenheit darbieten zur Ausbildung neuer Variationen: erst durch äussere Einflüsse, nämlich durch die frühzeitige Verwachsung des Eies mit dem Uterusepithel wird Veranlassung gegeben zu Neuerungen in den Organanlagen! Diese von aussen her veranlassten Bildungen mögen als allochthon bezeichnet werden.

Amnion und Allantois sind autochthone Organe; die junge Allantoisanlage des Meerschweinchens und der Primaten besteht aber anfangs nur aus Mesodermgewebe bei Primaten sogar dauernd, und diese Form kann eine allochthone genannt werden.

Der Haftstiel der Primatenkeimlinge ist eine, dem Amnion und darauf auch der Allantois zugehörige Wucherung des Mesenchymgewebes, die ganz offenbar auf frühe Verwachsung des Eies zurückzuführen ist; dies Gebilde ist daher ein allochthones, d. h. unter dem Einflusse äusserer Bedingungen entstandenes.

Ein ganzes Gebilde, oder auch nur seine Form kann autochthon oder aber allochthon sein.

Cercocebus cynomolgus Cu.

Fig. 9 u. 10.

Ventroplacenta 10 mm zu 8 mm.

Dorsoplacenta rund, Durchmesser 4,5 mm.

Der Embryo ist der Ventralwand des Uterus angeheftet.

Der Uterus wurde seitlich geöffnet, nach Durchschneidung des ringförmigen Chorion laeve völlig aufgeklappt und unter dem Zeiss'schen Binokularmikroskope der

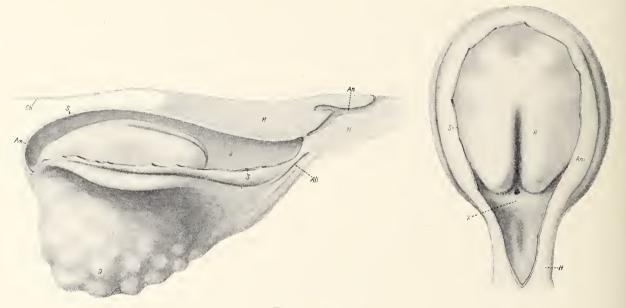


Fig. 9 und 10.

[Keim des Cercocebus cynomolgus Cu. Verg. 80 . — a Amnionhöhle, All Allantoisgang, Am Amnion, An Amnionnabelstrang, Ch Chorion, D Dottersack, H Haftstiel, M Mensenchym, R Rückenwülste, S Schnittlinie des Amnion, x hintere Lippe des canalis neurentericus.]

Keim von anhaftendem Schleim und Zellensträngen befreit, mit dem Prisma gezeichnet, dann mitsamt einem Stück Uterus herausgeschnitten, in der Seitenansicht gezeichnet, nach schwacher Färbung und Durchtränkung mit Xylol abermals gezeichnet und dann eingebettet und mikrotomiert. Die Schnitte wurden genau senkrecht zu der Längsachse des Keimes geführt. Nach den 0,02 mm dicken Schnitten wurde ein Wachsmodell angefertigt, und nach diesem und den Schnitten wurden die ursprünglichen Zeichnungen ergänzt.

Der Keimschild bis an den Umschlagsrand des Amnion mass im Spiritus 0,84 mm Breite und etwa 1,2 mm Länge; der Dottersack 0,67 mm Breite.

Der Keimschild lässt zwei Abschnitte unterscheiden, die durch den Can. neurentericus getrennt sind; im vorderen erheben sich die Markplatten beiderseits der tief eingesenkten Medullarfurche. Die Medullarwülste erheben sich am hinteren Rande in die Höhe und zwar so schroff, wie ich es nur an Affen und an Menschen kenne (Fig. 9 und 10). Nach vorn erscheint die Hautmarkplatte schwach konvex gewölbt; erkennbar in zwei unbedeutenden Einsenkungen sind die Augenblasen!

Der Can. neurentericus besitzt keine Vorderlippe, sondern senkt sich aus der Markrinne direkt ein; hinter dem Canalis erhebt sich aber ein mächtiger, querer Wulst, die hintere Lippe des Canalis. Hinter dem Wulste erscheint das Primitivfeld schwach konvex, beiderseits abwärts gesenkt: eine Primitivrinne ist nur ganz schwach angedeutet.

Das Amnion überdeckt locker den Keimschild. Das Amnionektoderm verläuft nach hinten verjüngt und setzt sich in einen 0,08 mm langen Zellenstrang fort, welcher in einen, mit dem intervillösen Raume kommunizierenden dünnen Schlauch übergeht (Fig. 9). Solch einen Schlauch fand ich auch bei dem Keimling Ab des Hylobates (Menschenaffen S. 186, Fig. 22—23), doch stand derselbe nicht mehr, wie es hier der Fall ist, in offener Kommunikation mit dem intervillösen Raume. Es ist kaum in Zweifel zu ziehen, dass dieser Schlauch den Amnionnabelstrang repräsentiert, d. h. jenes Stück des Chorion, welches die schlauchförmige Brücke bildet zwischen dem "entypierten Keimfelde" und dem Chorion. In den meisten Fällen kommt dieser Amnionnabelstrang nicht zur vollen Ausbildung, denn nur in drei Fällen (unter 13) fand ich denselben vor: entweder als blindsackförmige Einsenkung des Chorion, oder als isolierten, im Mesenchym eingebetteten, wurstförmigen, mit hohlen Knöspchen versehenen Schlauch, oder, wie in diesem Falle als gegabelten, gegen den intervillösen Raum offenen Schlauch, der durch einen Zellenstrang direkt noch mit dem Amnionektoderm in Verbindung steht.

(NB! Ausführen, warum diese Variabilität nicht auffallend. Feldmaus ebenso!)

Der Dottersack zeigt *äusserlich buckelige Auftreibungen. Sie sind hervorgerufen, durch darunterliegende Gefässanschwellungen. Sein Lumen setzt sich hinten in den Allantoisschlauch fort.

Eine Herzanlage konnte ich nicht mit Sicherheit wahrnehmen.

Der Keimling *Cu* unterscheidet sich von den Keimlingen der Nicht-Primaten gleicher Entwickelungsstufe:

- 1. durch die auffallende Form der Medullarwülste,
- 2. durch die Anwesenheit eines gegen den intervillösen Raum offenen Schlauches, der durch einen Zellenstrang mit dem Amnionektoderm in Verbindung steht; es ist ein Amnion-Nabelstrang.

Erklärung zu den Figuren 11, 11a-e u. 12.

Fig. 11. [Embryo des Semnopithecus cephalopterus Wa. Vergr. $\frac{3.0}{1}$. — All Allantoisgang, b knopfartiger Anhang eines Dottersackgefässes, C Herz, Ch Chorion, Da Darm, K Kopfdarm, Zo Wurzel einer Zotte. Die Linien a—e bezeichnen die Lage der in Fig. 11a—e dargestellten Querschnitte.]

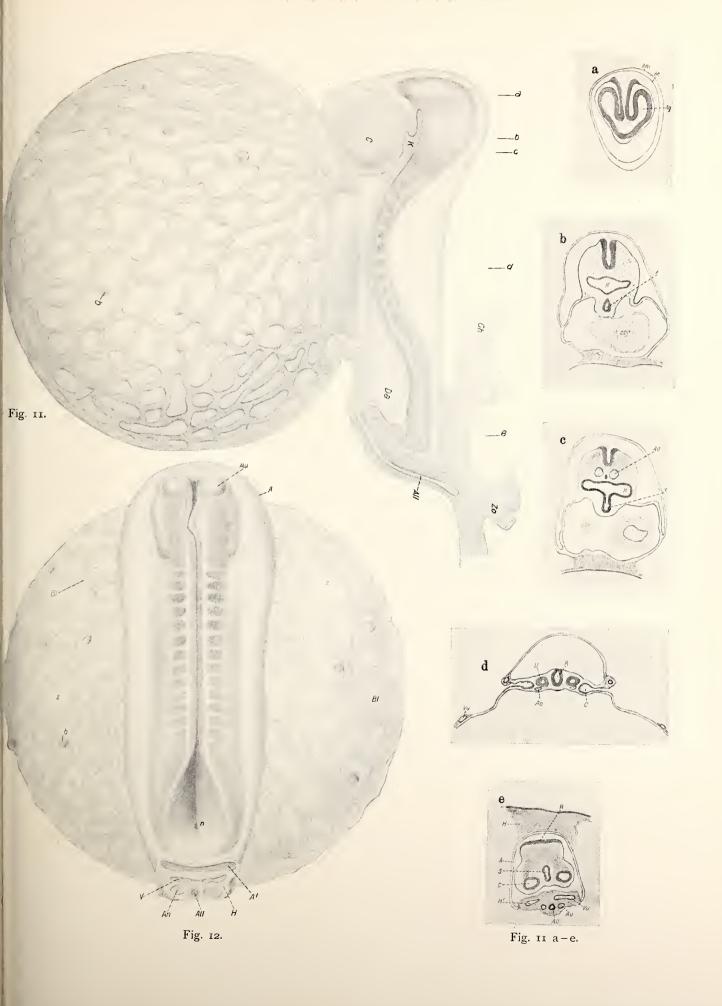
Fig. 11 a—e. Querschnitte a—e in der Richtung der Linien der Figur 11. — A Amnion, Ae Amnion-ektoderm, Am Amnionmesoderm, Ag Augenblasen, All Allantoisschlauch, Ao Aorten, Au Arteria umbilicales, C Cölom, cor Herz, H Haftstiel, K Kopfdarm, R Medullarplatte, S Schwanzdarm, Vu Venae umbilicales, x nach vorn gerichteter Blindsack (vgl. Fig. 11).

Fig. 12. [Embryo des Semnopithecus cephalopterus Wa. Vergr. $\frac{3n}{1}$. — A Amnion, A^1 Amnionzipfel im Haftstiel, All Allantoisgang, An Arteria umbilicalis, Au primäres Augenbläschen, B Blutgefäss auf dem Dottersack, b knopfartiger Anhang eines Dottersackgefässes, H Haftstiel, n Canalis neurentericus, V Vena umbilicalis, Z Räume auf dem Dottersack zwischen den Maschen der Blutgefässe.]

Die eigentümliche Gestalt der Medullarwülste findet sich auch bei den übrigen Primaten, wenigstens bei den wenigen bisher untersuchten Keimen gleicher Entwickelungsstufe; der sich längere Zeit erhaltende Amnionnabelstrang scheint nur zuweilen zur Ausbildung zu gelangen.

Beide Bildungen sind sehr wahrscheinlich als Ausflüsse der frühzeitigen Verwachsung des Eies mit dem Uterusepithel zu betrachten.

Semnopithecus cephalopterus, Wanderu, Wa. von Ceylon.


Fig. 11, 11 a-e, 12.

Die Keimblase und die beiden kreisrunden, einander gegenüberliegenden Placenten glichen im allgemeinen denen des Embryos *Cc* (S. 344–351); ich habe sie daher nicht abgebildet. Die Präparation und das Zeichnen geschah unter denselben Kautelen, wie sie auf Seite 349 angegeben sind. Besondere Sorgfalt wurde auch auf die Wiedergabe der Dottergefässe verwendet.

Dreizehn Urwirbel sind angelegt, der vierzehnte ist in Abschnürung begriffen. Die Kopfbeuge beginnt; Halsgegend und vorderste Rückenpartie sind eingesenkt.

Das Medullarrohr ist vorn spaltartig offen und hinten noch zu einer breiten Platte ausgebreitet (Fig. 12).

Die Augenblasen haben sich ausgestülpt, eine Gliederung des Gehirns ist noch nicht zu bemerken. Eine auffallende seitliche Krümmung des Hirns nach links lässt den Kopfteil unsymmetrisch erscheinen, auch die Mesodermanlage des Kopfes ist nicht symmetrisch ausgebildet. Bekanntlich gehören dergleichen Asymmetrien, die häufiger noch an dem hinteren Körperabschnitte in der Region des Primitivstreifs vorkommen, nicht zu den Seltenheiten. Sie sind individuelle Unregelmässigkeiten, die ohne Schaden der Weiterentwickelung allmählich ausgeglichen werden. — Der Darm reicht sehr weit nach vorn.

Die Gefässe des Dottersacks sind weit und sehr unregelmässig ausgebildet; auf der linken Hälfte bilden sie ein Netzwerk, auf der rechten erweitern sie sich stellenweise zu weiten Blutbeuteln (Fig. 11—12). Die Gefässe sind möglichst gewissenhaft mit Hilfe der Camera bei auffallendem Lichte in die Figuren 11 u. 12 eingetragen.

Der Allantoisschlauch reicht auffallend weit in das Mesenchymgewebe hinein. Das ist wohl ein Zufall. Wie in manchen anderen, etwas jüngeren oder älteren Keimblasen finden sich auch hier knopfartige Anhänge der Dottersackgefässe, die bisweilen zu langen Schläuchen auswachsen können (Lieferung 3 der Menschenaffen, Seite 186). Die Blutgefässe haben sämtlich Endothelauskleidung und beherbergen kernhaltige Blutkörper.

Das Gefässsystem zu rekonstruieren habe ich unterlassen; Abbildung 2, Taf. 12 möge Ersatz dafür geben.

Ein Canalis neurentericus ist noch vorhanden. Das Hinterende des Embryos ist in der Entwickelung zurückgeblieben. Dieses Verhalten ist bei Beschreibung des Embryos *Cc* (S. 347-348) ausführlich erörtert.

Die übrigen Organanlagen sind aus den Zeichnungen zu ersehen. Genaueres vermag ich nicht darüber mitzuteilen, da die Einbettung, die ich einem anderen überlassen hatte, ungenügend war und infolgedessen die Schnitte recht mangelhaft ausfielen.

Cercocebus cynomolgus, Cc. (früher Sc.); gemeiner Makak oder Javaaffe.

Fig. 13, 14, 15, 16; Tafel 12.

Zu den auffallendsten caenogenetischen Modifikationen, welche der menschliche Embryo während der dritten Woche des Uterinlebens aufweist, gehört die Rückenfaltung oder Rückenknickung; sie vollzieht sich während der Anlage der zweiten und dritten äusseren Kiemenfurche, ist aber bis zur Bildung der vierten Kiemenfurche bereits vollständig verstrichen.

His 1) beschrieb und zeichnete diese Rückenknickung bei drei menschlichen Embryonen: Sedgwick Minot 2) [bildet in der Fig. 27 seines Lehrbuchs der Entwickelungsgeschichte einen solchen Embryo ab].

Beide Forscher äussern ihre Zweifel, ob diese scharfe Rückenknickung als normaler Vorgang zu betrachten ist, oder [ob sie, wie dies His als möglich angiebt, durch postmortale Einflüsse über das Normale hinaus gesteigert worden ist].

¹⁾ W. His. Anatomie menschlicher Embryonen. Tafel IX.

²) Ch. S. Minot. Lehrbuch der Entwickelungsgeschichte des Menschen. Deutsch von S. Kaestner: Leipzig 1894.

Der hier beschriebene Affenembryo zeigt nun die gleiche Knickung. Genau wie beim Menschen fällt die Umbiegungsstelle in den 12. bis 14. Urwirbel. Diese drei Urwirbel zeigen sich in meinem Präparate deformiert, indem ihr dorsaler Teil durch Pressung verschmälert, ihr ventraler Abschnitt durch Zugkraft verbreitert erscheint. (Tafel 12, Fig. 2.)

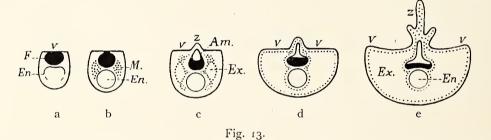
Verglichen mit den menschlichen Embryonen gleicher Entwickelungsstufe ist die Knickung bei dem Affen weniger stark, weniger tief; es ist jedoch nicht ausgeschlossen, dass dieselbe eine ähnliche Form erreicht, wie bei dem Menschen. Ich kann darüber nichts Näheres mitteilen, weil mir die unmittelbar vorangehenden und nachfolgenden Entwickelungsphasen unbekannt geblieben sind.

Wie ist diese Rückenknickung, die bisher nur bei Embryonen des Menschen und eines Affen zur Beobachtung kam, zu deuten?

Ist sie zu betrachten als regulärer, den Primaten zukommender Vorgang? Ist sie bedingt durch die revolutionären Einflüsse, welche schon die atypische Anlage des Keimschildes hervorrief?

Zur Beantwortung dieser Frage diene folgende Thatsache zum Leitstern: Die Keimschilder, Keimlinge und jungen Embryonen der Affen und des Menschen gleichen sich während der ersten drei Schwangerschaftswochen ganz auffallend, unterscheiden sich zugleich vor allen andern bisher untersuchten Säugetieren durch eine ganze Reihe caenogenetischer Sonderbildungen.

Diese Sonderbildungen lassen sich nun zum Teil wirklich ganz ungezwungen als Folge der eigentümlichen Verwachsung der Eiblase mit dem Uterusepithel betrachten, und die Rückenknickung ist als eine natürliche Konsequenz dieser organologischen Veränderungen anzusehen; sie stellt die letzte der caenogenetischen Umwandlungen dar. Das tritt durch folgende Betrachtung ins Licht. Die jüngsten Keimschilder der Primaten, die wir kennen, sind der Keimschild eines Lutung¹) (Semnopithecus pruinosus) und derjenige des von Peters beschriebenen Menscheneies²). Abgesehen von einem einzigen Furchungsstadium des Eies von Macacus nemestrinus, welches ich der grossen Güte meines Freundes Hubrecht verdanke, sind bisher ausschliesslich solche Keimblasen der Primaten beobachtet, in denen der Keimschild bereits angelegt, jedoch noch nicht differenziert war. Diese Verhältnisse habe ich ausführlich auf Seite 201—208 der Menschenaffen dargelegt und in der oben citierten Arbeit über Placentaranlage des


¹⁾ Selenka, Placentaranlage des Lutung (Semnopithecus pruinosus von Borneo). Sitzungsberichte der mathemat.-physikal. Klasse der k. bayer. Akademie der Wissenschaften. 1901. Heft 1 mit 2 Tafeln

²) H. Peters, die Einbettung des menschlichen Eies und das früheste bisher bekannte menschliche Placentationsstadium. Mit 14 Tafeln. Leipzig und Wien, Deuticke 1899.

Lutung in Wort und Bild ergänzt. Der letzteren Publikation entnehme ich die folgenden schematischen Abbildungen, welche die mutmassliche Entstehung der primitiven Organe der jungen Keimblase veranschaulichen sollen.

Zur Beobachtung kam nur die in Fig. 13e dargestellte Keimblase; Fig. 13a-b sind erdacht, und zwar nach Analogie derjenigen Säugetierkeime, welche ebenfalls durch frühzeitige Verwachsung eine abnorme Anlage des Keimschildes und des Eilings erfahren, wie Mäuse, Ratten, Hyppudaeus, Cavia, Pteropus (Selenka, Studien über Entwickelungsgeschichte der Tiere. Heft I, III und V).

Halten wir uns an die Fig. 13e, die eine schematische Darstellung des in Fig. 7 abgebildeten Schnittes giebt und an die aus der Schnittserie rekonstruierten Fig. 3-6.

Schematische Darstellung der mutmasslichen Bildung des Amnion bei Affe und Mensch.

Dicke Umrisslinie = Chorionektoderm, dünne Kreislinie = Dotterblatt, punktierte = Mesoderm.

Am = Amnion. En = Dottersack. Ex = Exocolom.

F = Formative Keimschildzellen, welche sich vermutlich als kugeliges Gebilde abschnüren und aus denen das Ektoderm des Amnion und des Keimschildes sowie der Primitivstreif hervorgehen.

M = Mesoblast.

V = Verwachsungsfläche des Eies mit dem Uterusepithel.

Z = Die bei den Schwanzaffen zuerst gebildete Centralzotte.

Der Keimschild ist schwach oval und besteht aus einer Schicht hochcylindrischer oder konischer Zellen, deren Kerne in verschiedenem Niveau liegen. An den Rändern biegt er in das Amnionektoderm, einen zugespitzten Sack, um. Dem Keimschilde liegt der Dottersack an, das Dotterblatt. Als äusserer Überzug erscheint das einschichtige Mesoderm, welches auf das Amnionektoderm übergeht und am Zipfel desselben sich zu einem Zellenstrang verdickt.

[Hier fehlt eine Seite des Manuskripts].

Was diese Keimanlage des Lutung vor allen anderen Keimen der Säugetiere auszeichnet, ist ihre Fixierung am Amnionstiel, und zwar ist es ihr Mesoderm, welches diesen Haftstiel zu einem soliden Strange ausbildet, während

die übrigen Teile des Keimes frei in der zähen Flüssigkeit des Exocöloms Ex (Fig. 7) flottieren. Allerdings finden sich schon frühzeitig (das Peters'sche Ei), einzelne Mesodermstränge, die von der inneren Chorionwand an das Mesoderm des Dottersackes treten, und später vermehren sich diese Haftstränge, sodass der ganze Dottersack wie mit Dutzenden von Fäden und filzigen Zellensträngen festgeheftet ist — aber anfangs ist es der amniotische Mesodermstrang, welcher die Keimanlage fixiert. Er verdickt sich schnell, überwuchert etwa den dritten Teil der Amnionoberfläche (Selenka, Studien Tafel XXXV, Fig. 6) und endlich sogar den hinteren Abschnitt des Dottersackes (Menschenaffen, Seite 180). Während dessen ist der Keimling herangewachsen, aber das Hinterende desselben ist nun ganz eingebettet in den Mesodermstiel des Amnionzipfels, desgleichen der hintere Abschnitt des Dottersackes (Menschenaffen, Seite 186).

So erscheint es ganz erklärlich, dass das Hinterende des Keimlings in seiner Entwickelung gehemmt wird, während der übrige Keimschild normal sich weiter differenziert. Die Fixierung und Umbettung seitens des Amnionmesodermstieles ist also offenbar der Grund, dass der hintere Abschnitt des Embryos in seiner Differenzierung gehemmt wird!

Und noch eine zweite Folge hat diese Einbettung. Die Allantois, indem sie sich in Gestalt eines Schlauches ausbuchtet, trifft auf den Mesodermstiel und ist nun gezwungen, in dieses Mesodermgewebe sich einzubohren, findet aber hier einen unüberwindlichen Widerstand und sistiert ihr Wachstum; sie bleibt im Anfangsstadium erhalten, und nur das ihr zugehörige Mesodermgewebe — ohne irgendwelche erkennbare Abgrenzung gegen das wuchernde Mesodermgewebe des Amnionstiels des Chorion — verbreitet sich zugleich mit den Blutgefässen auf der Innenfläche des Chorion und in die Zotten (Menschenaffen, Seite 186).

Durch Einwachsen des Allantoisschlauches und der Allantoisgefässe wird der Haftstiel dicker und kompakter; er rundet sich ab, und erscheint, sobald die ersten Urwirbel auftreten, als ein kurzer, rundlicher Embryonalstiel (Studien z. Entwickelungsgesch. V. Tafel XXXVIII), in welchen auch das nunmehr geknickte Hinterende des Keimlings eingebettet liegt! (Menschenaffen, Seite 180 und 186; Fig. 9 und 11 dieser Lieferung). Und während im vorderen und mittleren Abschnitte des Embryos die Entwickelung ungehemmt weiter schreitet, hinkt sie im hinteren Abschnitte (etwa vom 18.—20 Urwirbel ab nach hinten) in der Ausbildung nach: das Rückenmark bleibt hier noch lange Zeit offen (Fig. 12 und Fig. 15). Die Differenzierung in Urwirbel schreitet erst ganz allmählich weiter nach hinten vor, bis zum Schlusse ziemlich spät die Ausbildung des Schwanzes erfolgt.

Erscheint so die retardierte Differenzierung der hinteren Körperhälfte des Embryos aus mechanischen Ursachen plausibel, so vermag ich für die Rücken-knickung nur die Erklärung beizubringen, dass das relativ feste Gefüge der ganzen Hinterhälfte des Embryos und dessen innige Verbindung mit dem Dottersack und dessen hinteren Gefässsträngen die typische Streckung des Embryos zeitweilig verhindern und eine Knickung hervorrufen. Ob die Spannung des Amnion (Fig. 14) diese Knickung begünstigt, wage ich nicht zu behaupten.

Diese Erklärung gewinnt an Glaubwürdigkeit, wenn man sich vorstellt, dass die Embryonen der Säuger und der Amnioten überhaupt zeitweilig eine konkave Rückeneinbiegung erleiden, und die Knickung lediglich als verstärkte Einbiegung erscheint.

Verzögerung der Differenzierung der hinteren Hälfte der Embryonalanlage wäre demnach als Ursache der Rückenknickung zu betrachten. Es ist zu vermuten, dass diese transitorische Rückenknickung allen östlichen Primaten zukomme. Wenigstens ist bei allen bisher untersuchten Keimlingen ein Haftstiel aufgefunden; die unmittelbar dem Knickungsstadium voraufgehenden und ihm folgenden Stadien stimmen aber so vollkommen überein, dass auch der Prozess der Einknickung der hinteren Hals- und vorderen Rückenpartie als ein für die Primaten typischer Vorgang betrachtet werden kann.

Ich wies die Existenz eines Haftstiels als Embryophor nach bei Cercocebus cynomolgus (Java, Borneo, Sumatra etc.), Semnopithecus pruinosus (Borneo),

- " maurus (Java),
- " nasicus (Borneo),
- " cephalopterus (Ceylon),
- mitratus Surili (Java),

Hylobates concolor (Borneo),

Rafflesi? (Sumatra).

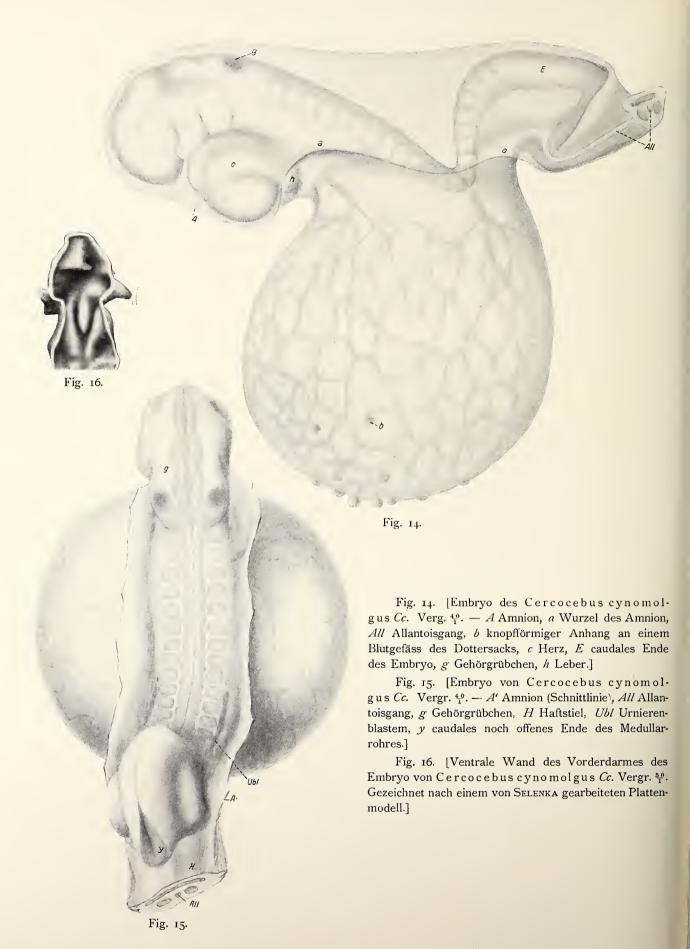
Von His und Sedgwick Minot ist der Haftstiel und die Rückenknickung beim Menschen nachgewiesen.

Ob auch die amerikanischen Affen die gleichen Bildungen aufweisen, wird die Zukunft lehren. Es ist mir nicht gelungen, auf meiner Reise in Brasilien junge Keime dieser Tiere zu bekommen.

Über den Bau des hier besprochenen Keimlings, der in seiner Entwickelungsstufe einem menschlichen Keime von ungefähr dreizehn Tagen entspricht, ist noch

folgendes zu melden: (Die histologische Struktur konnte wegen der Konservierung in Alkohol nicht näher berücksichtigt werden.)

Die ventrale Hälfte des Uterus ist in der Innenansicht auf Tafel 12 in Figur 1 abgebildet. Das kleine ventrale Zottenfeld W löste sich bei Eröffnung des Uterus von der Ventroplacenta ab. Die Dorsoplacenta besitzt Gestalt und Grösse der Umrisslinie des Chorion laeve Ch, welches von Uterinschleim umspült wurde. Die elliptische Form der Dorsoplacenta und des Chorion ist Ausnahme; in der Regel haben beide nahezu Kreisform.


Der Innenraum der Chorionblase zeigte sich beim Eröffnen mit einem schleimigen von zähen Fäden durchzogenen Gerinnsel erfüllt, welches unter dem Zeiss'schen Binokularmikroskope bei auffallendem Sonnenlichte mittelst sehr feinspitziger Pincetten und Scheren herausgeholt wurde, bis Keimling nebst Nabelbläschen frei lagen; dann, nachdem der Keimling mit Hilfe der Camera lucida in situ gezeichnet und genaue Maasse desselben genommen waren, wurde er durch einen Schnitt am Grunde des Haftstiels abgeschnitten, in verschiedenen Lagen plastisch skizziert, schwach durchgefärbt, in Xylol aufgehellt, nochmals sehr sorgfältig bei vierzigfacher Vergrösserung in durch- und auffallendem Lichte fertig gezeichnet, endlich in Paraffin eingebettet und in 200 Querschnitte von je 0,02 mm zerlegt. An der Hand dieser Schnitte konnten schliesslich noch einige Details, sowie der Verlauf der Blutgefässe in die Zeichnungen eingetragen werden, wobei der geringen Schrumpfung, die der Embryo durch Behandlung mit Xylol und Paraffin erfahren hatte, gebührend Rechnung getragen ward.

Ich habe die Präparationsmethode hier näher beschrieben, um den Leser zu überzeugen, dass die Abbildungen auf grosse Genauigkeit Anspruch erheben dürfen.

Der Keimling misst in der Länge 3,25 mm. Er zeigt am 12.—14. Urwirbel eine starke Einsenkung. Denkt man sich diese ausgeglichen und den ganzen Rumpfteil gestreckt, so resultiert eine Gesamtlänge von etwa 4 mm, — gemessen bis zum hinteren Rande der noch offenen Rückenfurche.

Erst ein einziger Kiemen- und Schlundwulst ist vorhanden.

Das Medullarrohr ist geschlossen bis auf das hintere offene Ende; in Hals- und Rückenpartie lassen sich deutliche Vorragungen des Medullarrohrs erkennen, die Anlagen der oberen Spinalwurzeln. Deutlich zu erkennen sind die fünf Hirnblasen und deren Lumina; neben der Hinterhälfte des Hinterhirns liegen die Labyrinthgrübchen (Fig. 15). Zwanzig bis einundzwanzig Ursegmente oder Urwirbel sind angelegt, die hinteren noch unvollkommen von dem Urwirbelblastem getrennt. Neben dem 9. Urwirbel beginnt das sog. Urnierenblastem, jederseits ein solider Strang, der bei durchfallendem Lichte neben dem 9. bis 14. Urwirbel erschien und deutliche, metamerische

Anschwellungen zeigte, die in den Querschnitten jedoch nicht scharf zu erkennen waren weiter nach hinten hängt das Blastem mit den Urwirbelmassen zusammen. Vom vordersten Urnierenkörperchen trennt sich jederseits ein solider Strang ab, der frei; nach hinten verläuft und in der Höhe des 16. bis 17. Urwirbels mit dem Ektoderm in Verlötung getreten ist. (Taf. 12, Fig. G); dieser Strang ist der "Wolffsche Gang".

Das Amnion umhüllt locker den Keimling, [auch schon sein] Herz. Aus den Querschnitten und aus Fig. 15 ist seine Anheftungslinie ersichtlich.

Das Gefässsystem ist geschlossen. In Fig. 2, Taf. 12 ist dasselbe nach Querschnitten rekonstruiert, nur die Gefässe des Dottersacks sind nach dem unverletzten Präparate mit dem Prisma direkt eingezeichnet.

Die Gefässbahnen unterscheiden sich kaum von den Abbildungen, welche His von menschlichen Embryonen ähnlicher Entwickelungsstufe in so vortrefflicher Weise gegeben hat. Nur der erste Aortenbogen ist ausgebildet, der zweite als Knospe der Aorta descendens (II) wahrnehmbar. Auf dem Dottersack finden sich an der vom Keime abgekehrten Fläche 15 rundliche, von der Fläche sich erhebende Anschwellungen; es sind dies blinde kolbenförmige Gefässanschwellungen von Gefässenden, wie ich solche auch schon auf jüngeren Dottersäckchen des Hylobates beschrieben habe (III. Lieferung der Menschenaffen, Fig. 22 und 23). Sie sind vermutlich transitorische Gebilde, die nur gelegentlich eine Reihe von Tagen oder Wochen auch beim Menschen sich erhalten können; ich vermute, dass ihr Vorkommen ein allgemeines ist, da ich die gleichen Knötchen auf den Dottergefässen anderer jungen Keimlinge wiederfand (Fig. 11 und 12).

Leider sind mir keine Keimlinge der nächstfolgenden Entwickelungsstadien in die Hände gekommen, sodass ich nicht sagen kann, ob die Einknickung bei den Affen noch weiterschreitet und bis zu jenem Maasse der Zusammenknickung gelangt, wie dies His [und] Sedgwick Minot von menschlichen Embryonen mit 2 und 3 Schlundwülsten beschrieben haben. Es ist aber kaum zu bezweifeln, dass diese Rückenknickung bei Affe und Mensch ein typischer und normaler Vorgang sei, denn der Verlauf der Nabelgefässe, die straffe Spannung des Amnion in der hinteren Körperpartie schliesst die Annahme, dass hier eine künstliche [Verunstaltung]¹) vorliege, vollkommen aus! Auch fällt bei Affe und Mensch der Ort der schärfsten Einknickung ungefähr zusammen; er liegt beim Makak am 12.—13., beim Menschen am 13.—14. Urwirbel. Wie His lehrte, verstreicht beim Menschen diese Rückenknickung binnen wenigen Tagen vollständig.

¹⁾ Im Manuskript Schrumpfung.

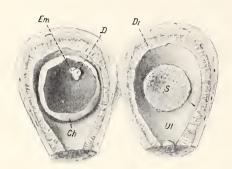


Fig. 17.

Fig. 17. [Uterus mit Ei von Cercocebus cynomolgus Cd. Vergr. $\frac{1}{1}$. — Ch Chorion, D Dottersack, Dc Decidua, Em Embryo, S Ventroplacenta, Ut Uterushöhle.]

Fig. 18. [Embryo von Cercocebus cynomolgus Cd. Vergr. $\frac{90}{1}$. — a Amnion, v Anlage der vorderen Extremität, h Anlage der hinteren Extremität.]

Fig. 19. [Embryo von Cercocebus cynomolgus Cd. Verg. $^{3}_{1}$. -c Herz, D Dottersack, H Haftstiel.]

Fig. 20. [Embryo von Cercocebus cynomolgus Cd Vergr. $^{30}_{1}$.]

Fig 19.

Fig 18.

Fig. 20.

Das Darmrohr ist noch in sich abgeschlossen, da das Rachensegel unverletzt ist.
Der Dottersack war durch so zahlreiche freie Fadengerüste an der inneren
Fläche der sekundären Placenta festgehalten, dass beim Öffnen der Chorionblase der
Bauchstiel durchriss.

[Die ventrale Wand des Vorderdarms von Cercocebus cynomolgus Cc nach einem von Selenka gearbeiteten Plattenmodell zeigt bei fünfzigfacher Vergrösserung die Fig. 16. Von vornher wölbt sich die noch nicht durchgebrochene Mundbucht in den Darm vor. Sie erscheint asymmetrisch, was wohl auf Rechnung von Unregelmässigkeiten des Modells zu setzen ist. Rechts und links ist eine entodermale Kiementasche zu erkennen, die das Ektoderm berührt. Das aber, was Selenka besonders auffiel, war der Wulst in der Mitte der ventralen Darmwand dicht kaudal von den beiden ersten Kiementaschen. Im Querschnitt erscheint derselbe in Fig. C der Taf. XII. Er ist dort als Epiglottis bezeichnet, doch kann es sich wohl nicht um die Anlage der Epiglottis handeln, und Selenka scheint von dieser Deutung auch selbst wieder zurückgekommen zu sein.]

Cercocebus cynomolgus Cd., Makak.

Fig. 17-20.

Dieser Embryo entspricht einem menschlichen von etwa 24--25 Tagen (Taf. X, Fig. 8, His, Anatomie menschlicher Embryonen).

Den geöffneten Uterus stellt Fig. 17 in natürlicher Grösse dar. S ist die kleinere Ventroplacenta; die grössere (primäre) Dorsoplacenta ist durch das noch anhaftende Chorion Ch verdeckt. Nach Entfernung des schleimigen, von Haftfäden und Fadengerüsten durchzogenen Gerinnsels im Exocölom wurde der Embryo nebst Nabelbläschen, Em und D, sichtbar. Der Haft- oder Bauchstiel wurde nahe seiner Anheftungsstelle durchschnitten und der Embryo in der oben erwähnten Weise gezeichnet (Fig. 18—20). Die Kopf-Steiss-Länge betrug 3,1 mm.

In den drei Zeichnungen Fig. 18—20 ist das Amnion weggelassen, der Dottersack in Fig. 18 abgeschnitten.

Was vor allem in die Augen springt, ist der unförmige Becken- und Schwanzteil, die gegen den übrigen Körper in ihrer Entwickelung auffallend zurückgeblieben sind, entsprechend der [verzögerten Entwickelung] des hinteren Körperabschnitts schon während der Differenzierung des Keimschildes.

Drei Paar Schlundfurchen sind äusserlich zu sehen, die sich ebensowenig wie beim Menschen in den Schlunddarm öffnen.

Die Wolff'sche Leiste weist zwei Verdickungen auf, die Anlage der Extremitäten.

Selenka, Entwickelungsgeschichte X.

46

Fig. 22.

Fig 21. [Geöffneter Uterus des Cercocebus cynomolgus Cm . Vergr. $\frac{1}{1}$.]

Fig. 22. [Embryo des Cercocebus cynomolgus Cm. Verg. $\frac{18}{1}$.]

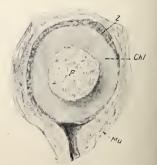


Fig. 21.

Cercocebus cynomolgus. Cm., (Pontianak-Borneo).

Fig. 21 und 22 18.

Den geöffneten Uterus stellt Fig. 21 in natürlicher Grösse dar. $\mathit{Chl} = \mathsf{Chorion}$ laeve; $[M = \mathsf{Muskulatur} \ \mathsf{des} \ \mathsf{Uterus};]$ P sekundäre Placenta; Z Zotten der primären Placenta.

[Den Embryo Cm^1) zeigt Fig. 22 achtzehnmal vergrössert, er entspricht etwa einem menschlichen Embryo von 27—30 Tagen. (Fig. 9 der Hıs'schen Normentafel). An der Zeichnung erkennt man 39 Urwirbelpaare. Der Embryo zeigt Scheitel-, Nacken- und Rückenbeuge, die Schwanzanlage ist sehr kräftig. Die Augen sind klein; offenbar haben wir offene Linsengrübchen vor uns; man erkennt ein flaches aber deutlich abgegrenztes Riechfeld. Vier gut entwickelte Kiemenbogen, am ersten ein kräftiger Oberkieferfortsatz sind angelegt. Die Extremitäten sind ungegliederte Platten. Das Amnion, das dem Embryo offenbar noch dicht anlag, überkleidet den Bauchstiel eine Strecke weit. Die Oberfläche des Dottersackes erscheint durch die Gefässe rauh. A = Amnionscheide des Bauchstiels, B = Bauchstiel, Ch = Chorion, Zo = Zotten des Chorion.]

Semnopithecus mitratus. Surili. Sr. (Java)

(durch Hubrecht).

Fig. 23 14 und 24 14.

[Der in Figur 23 und 24 bei vierzehnfacher Vergrösserung wiedergegebene Embryo ist wenig weiter entwickelt als der Embryo Cm, er steht dem menschlichen Embryo 9 (27—30 Tage) der His'schen Normentafel fast noch näher als jener. Seine NL beträgt 8,75 mm. Man erkennt 41(-42) Urwirbelpaare. Der kräftige Schwanz ist am Ende knopfförmig aufgetrieben, dieser Knopf birgt offenbar das erweiterte kaudale Ende des Medullarrohres. Das Riechfeld ist etwas tiefer eingesunken als bei Embryo Cm, den 4. Kiemenbogen sieht man nicht mehr, der 1. und 2. sind kräftiger ausgestaltet. Auf dem Dottersack ist ein Teil der Gefässe freigelegt. A = Amnion, B = Bauchstiel.]

Cercocebus cynomolgus Nr. 1 (Java).

Fig. 25³, Fig. 26-28⁶.

[Fig. 25 stellt einen Schnitt durch Uterus mit Ei dreimal vergrössert dar; der Fundus des Uterus ist nach unten gekehrt. A Amnion, Ch l Chorion laeve, P p Pla-

¹⁾ Eine andere Abbildung desselben Embryo wurde von mir in Hertwig's Handbuch der Entwickelungslehre als Fig. 60 c widergegeben, dort ist das Riechfeld weniger deutlich, auch lässt sich ein Urwirbel weniger erkennen.

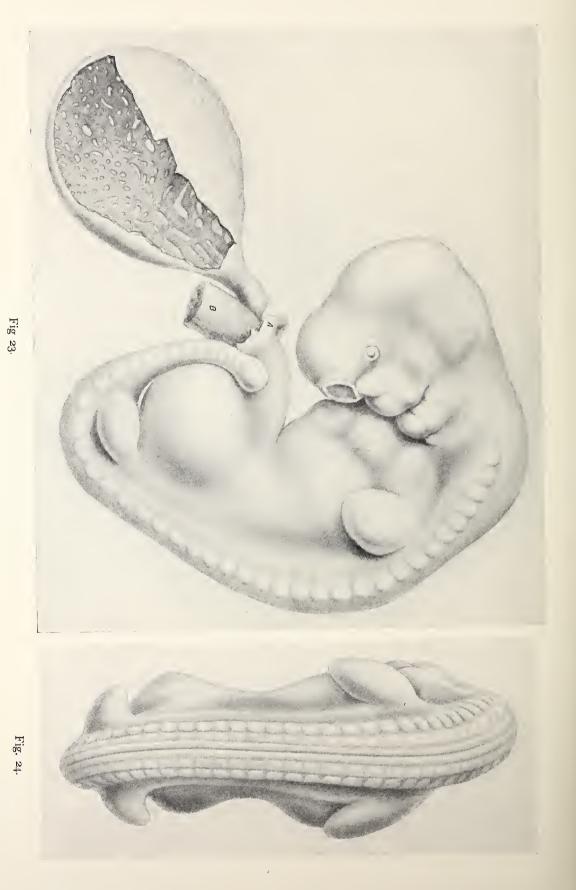
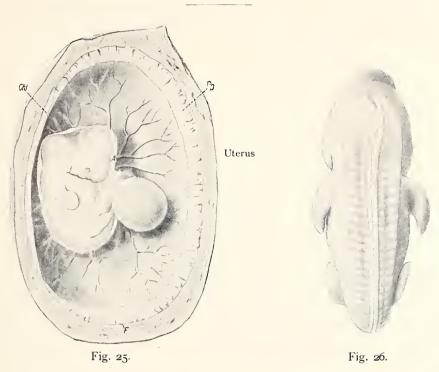



Fig. 23. [Embryo des Semnopithecus mitratus Sr. Vergr. $\frac{1-4}{4}$.]

Fig. 24. [Embryo von Semnopithecus mitratus Sr. Verg. 14 .]

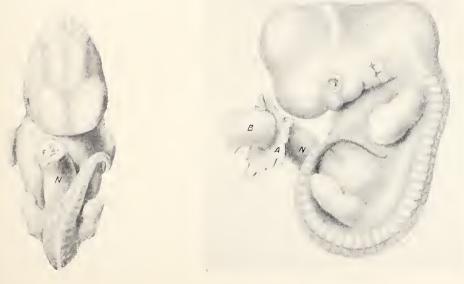


Fig. 28. Fig. 27.

- Fig. 25. [Embryo des Cercocebus cynomolgus Nr. 1 im Uterus. Vergr. 3.]
- Fig. 26. [Embryo des Cercocebus cynomolgus Nr. 1. Vergr. $\frac{6}{1}$.]
 Fig. 27. [Embryo des Cercocebus cynomolgus Nr. 1. Verg. $\frac{6}{1}$.]
 Fig. 28. [Embryo des Cercocebus cynomolgus Nr. 1. Vergr. $\frac{6}{1}$.]

centa prima. Der in den Fig. 26—28 in sechsfacher Vergrösserung dargestellte Embryo entspricht etwa den in der His'schen Normentafel als 11 und 12 dargestellten Embryonen (Alter 27—30 Tage); ebenso wie jene Embryonen zeichnet er sich durch einen starken Nackenhöcker aus. Auch der 3. Kiemenbogen ist unter dem Hyoidbogen verschwunden. Die Nasengrube ist beträchtlich tief, und das Nasengebiet hebt sich auch äusserlich ab. An den Extremitäten sind die Stellen von Ellbogen und Knie zu erkennen. Hand und

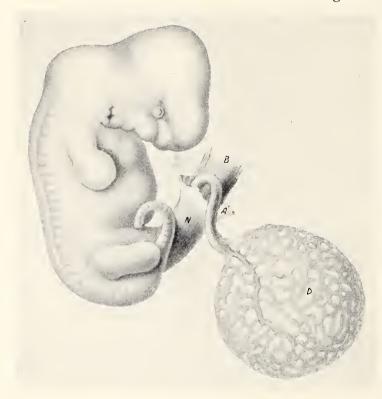


Fig. 29.

[Embryo des Semnopithecus mitratus H. Vergr. $\frac{6}{1}$.]

Fussplatte sind deutlich, aber noch nicht gegliedert. A = Amnion, B = Bauchstiel, N = Nabelstrang.]

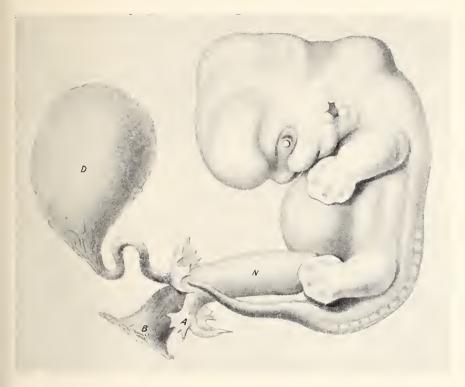
Semnopithecus mitratus. Surili. *H.* (Java).

Fig. 29 6.

[Der in Fig. 29 bei sechsfacher Vergrösserung dargestellte Embryo ist etwa ebenso weit entwickelt, wie der vorige. Die Schwanzpartie tritt weniger hervor. A = Amnion, B = Bauchstiel, D = Dottersack, N = Nabelstrang.

Cercocebus cynomolgus Nr. 2, Cf.

Fig. $30-33\frac{6}{1}$.


[Der in Fig. 30 – 33 sechsfach vergrössert dargestellte Em-

bryo entspricht etwa den Embryonen 18 und 19 der His'schen Normentafel (Alter etwa 35 Tage); er hat einen sehr starken Nackenhöcker, der infolge des gleichzeitigen Auftretens einer tiefen Nackengrube besonders auffällt. Das Gesicht bekommt Form. Die Endplatten der vorderen und der hinteren Extremitäten beginnen sich zu gliedern und lassen die Anlagen der Finger und Zehen erkennen. A = Amnion, B = Bauchstiel, D = Dottersack, N = Nabelstrang.

Semnopithecus maurus. Lm. (Ida) Lutung (Java).

Fig. 34 6.

[Der in Fig. 34 bei sechsfacher Vergrösserung dargestellte Embryo lässt sich nicht mehr so leicht einem menschlichen Embryo vergleichen, am ehesten dürfte er noch



Fig. 30

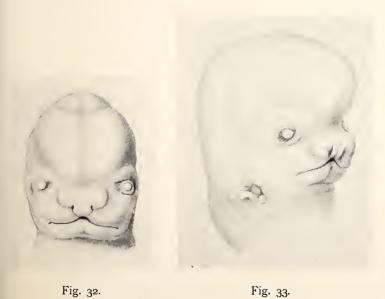


Fig. 30—33. [Abbildungen des Embryo Cercocebus cynomolgus Nr. 2, *Cf.* Vergr. $\frac{6}{1}$.]

Fig. 34. [Embryo des Semnopithecus maurus Lm. (Ida). Vergr. $\frac{6}{1}$.]

Fig. 34.

dem Embryo 21 der His'schen Normentafel an die Seite zu stellen sein (Alter etwa 39-40 Tage). Der Schwanz ist künstlich etwas abgehoben.]

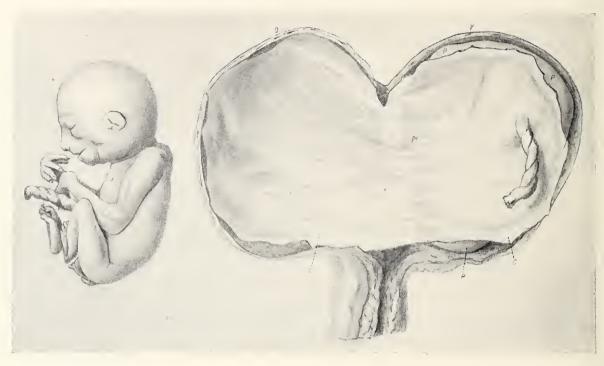


Fig. 36.

Fig. 37.

Fig. 35.

Fig. 35. [Eröffneter Uterus des Embryo Hylobates agilis, *Ha.* mit Placenta. Vergr. ½.]

Fig. 36 u. 37. [Abbildungen des Embryo von Hylobates agilis, Ha. Vergr. $\frac{1}{1}$.]

Hylobates agilis. Ha.

Fig. 35-37.

Nach Eröffnung der Gebärmutter parallel und nahe dem Ligamentum latum wurde die Nabelschnur durchschnitten, um den in Kopflage befindlichen Embryo besser zeichnen zu können; um den Fötus in seine natürliche Lage zu bringen, müsste derselbe mit dem Kopf nach unten auf die Placenta gelegt werden.

Die Decidua capsularis zeigte sich schon locker verwachsen mit dem Uterusepithel, soweit sie mit diesem in Berührung gekommen. Das Chorion ist ausserhalb der Placenta zu einem lockern Gewebe geworden und mit der Decidua capsularis verwachsen; Zottenreste konnte ich nicht mehr auffinden. Das Amnion liegt überall dem Chorion locker an, nur hie und da durch vereinzelte Fäden mit demselben verbunden, sodass es sowohl im Placentarbezirke als ausserhalb desselben leicht abzutrennen war.

Es bezeichnet

- C, C die Capsularis plus Chorion plus Amnion.
- D die dorsale Uterushälfte,
- V die ventrale Uterushälfte,
- P Scheibenplacenta, etwas unregelmässig im Umriss,
- P' Scheibenplacenta, durchschimmernd.

Hylobates Mülleri *Hm.*, Sintang † am Kapuas (Borneo) (2. VIII. 1894). Fig. 38 \(\frac{3}{4} \).

Gut erhaltenes Alkoholpräparat. In genau dreimaliger Vergrösserung gezeichnet. Eine scheibenförmige Ventroplacenta.

Fig. 38.

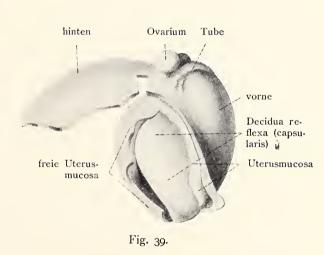


Fig. 38. [Hylobates Mülleri *Hm.* Vergr. $\frac{3}{1}$.]

Fig. 39. [Uterus des Hylobates concolor Nr. C. Vergr. c $\frac{8}{5}$.]

Amnion vollständig verwachsen mit der inneren Chorionwand. Dottersack nicht aufzufinden.

An den Vorderhänden waren die Nägel schon gut differenziert, an den Füssen noch nicht.

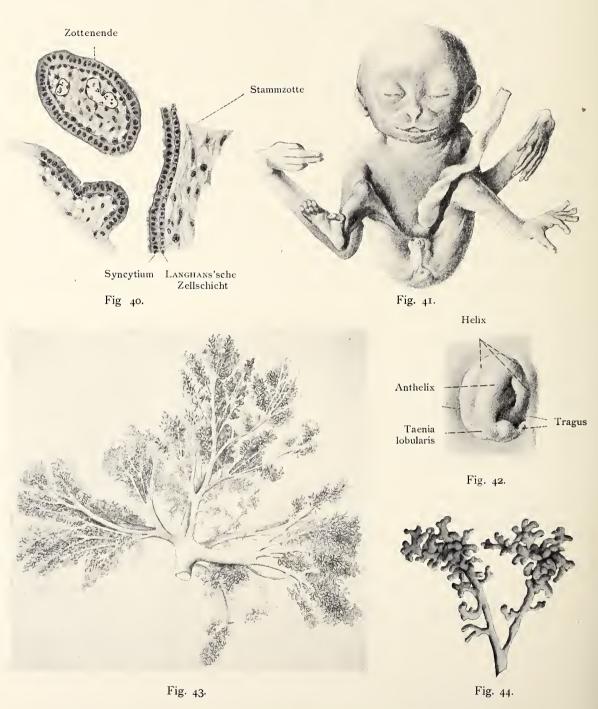


Fig 40. [Schnitt durch den Teil einer Stammzotte und ein Zottenende vom Chorion des Hylobates concolor Nr. C. Vergr. $\frac{2\,0\,0}{1}$.]

Fig. 41. [Embryo des Hylobates concolor G 3. Vergr. $\frac{1}{1}$.]

- Fig. 42. [Ohr des Hylobates concolor G 3. Vergr. 3.]
- Fig. 43 [Chorionzotte des Embryo von Hylobates concolor G 3. Vergr. 6.1.]
- Fig. 44. [Ein Teil der in Fig. 43 dargestellten Zotte. Vergr. ²⁰.]

Hoden noch innerhalb des Bauches.

Epitrichial-Haut löst sich stellenweise los.

Der Uterus war noch nicht aufgeschnitten. In der Amnionhöhle getrübte Flüssigkeit.

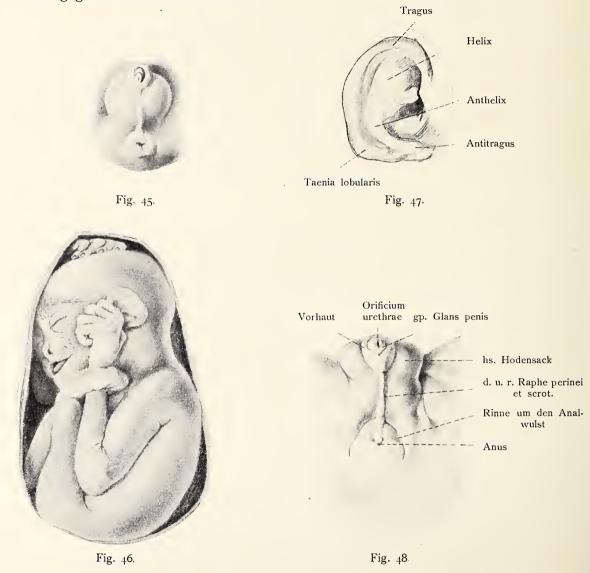
Steisslage, aber der Embryo liegt in einer geräumigen Höhle, deren Weitung wohl das Dreifache fast des Embryonalkörpers an Volumen besass.

[Mit diesem Embryo sollte die Reihe der jüngeren Stadien, das 5. Kapitel abschliessen.]

B. Fragmente über ältere Föten von Primaten.

(Körperform, Placentation, äusseres Ohr.)

[Für das 6. Kapitel, welches den älteren Stadien gewidmet sein sollte, fand ich im Nachlass folgendes Material vorbereitet. Zunächst eine Reihe Hylobatesembryonen. Diese sollte mit dem jetzt als G 8 bezeichneten schon im 3. Kapitel veröffentlichten (Menschenaffen, S. 167, Fig. 6 u. 7) und dort als Hylobates concolor Nr. C bezeichneten Embryo beginnen; beide Bilder sollten noch einmal reproduziert werden. Ferner fand sich im gleichen Umschlag eine Zeichnung des geöffneten Uterus, welchem dieser Embryo entnommen war. Für diese Zeichnung, Fig. 39, giebt Selenka folgende Erklärung: Seitenansicht des im frontalen Durchmesser aufgeklappten Uterus. Auf der ganzen hinteren Seite ist die Uterusschleimhaut von der Muscularis abgelöst und hängt mit dem Ei zusammen. Der Verwachsungsrand der Decidua reflexa [capsularis] mit der Mukosa ist an der rechten Seite etwa 0,5 cm unterhalb des unteren Ovariumrandes gelegen. Von dieser Gegend nach hinten fällt der Verwachsungsrand steil ab, sodass an der hinteren Fläche die Eispitze nur 1,5 cm weit und links und links vorne nur der untere Eipol frei erscheint. Der Defekt in der rechten seitlichen Uterusmukosawand ist durch das Aufschneiden des Uterus entstanden. Mit Ausnahme des hinten und hinten rechts befindlichen freien Uterusmukosalappens fällt der Verwachsungsrand mit dem abgerissenen zusammen.


[Fig. 40 stellt den Schnitt durch einen Teil einer Stammzotte und ein Zottenende dar; man erkennt die Langhans'sche Zellschicht und das Syncytium in schöner Ausbildung.]

[Als G 3 wird der in Fig. 14 in natürlicher Grösse wiedergegebene Embryo bezeichnet. Es ist ein Embryo von Hylobates concolor (Borneo)]. [Fig. 42 stellt das äussere Ohr des Embryo G 3 dreifach vergrössert dar. Selenka bemerkt zu der Zeichnung:]

I. Das äussere Ohr steht in seiner Entwickelung dem Stadium E (MINOT-HIS 14 Wochen¹) am nächsten.

^{1) [}Vergl. His, Anatomie menschlicher Embryonen, III, S. 217, Fig. 148; die Abbildung ist von His als "Ohr eines Fötus von ca. fünf Monat" bezeichnet, Minot bezeichnet (Entwickelungsgeschichte, Deutsche Ausgabe, S. 767, Fig. 431) eine Kopie der His'schen Figur als "vierzehn Wochen" alt.]

2. Der Tragus und die Taenia lobularis befinden sich in E in einer Senkrechten; bei G 3 dagegen in einer Wagrechten; beide Teile treten in der Grösse den übrigen Teilen gegenüber bedeutend zurück.

- Fig 45. [Geschlechtsteile und Aftergegend des Embryo von Siamanga syndactylus Nr. E. Vergr. 2.]
- Fig. 46. [Männlicher Fötus von Hylobates concolor Nr. G, später G 1, im Uterus. Verg. 3/4]
- Fig. 47. [Ohr des Fötus Fig. 46. Verg. ?.]
- Fig. 48. [Geschlechtsteile des Fötus Fig. 46. Vergr. 2.]
- 3. Die Helix läuft bei G 3 ganz flach in die Anthelix aus, bei E ist sie dagegen durch eine tiefe Rinne von derselben getrennt.

4. Die Unterschiede in der äusseren Konfiguration beziehen sich hauptsächlich auf die untere, unter der Fläche a-a gelegene, an Grösse und Stellung im Vergleich zu E bedeutend zurücktretende Portion.

[Fig. 43 giebt eine Chorionzotte des Embryo G 3 sechsfach vergrössert, Fig. 44 einen Teil einer solchen Zotte zwanzigfach vergrössert.]

[Der Embryo G 5, der nun folgen sollte, ist der bereits als Fig. 8, Menschenaffen, S. 167, abgebildete Embryo von Siamanga syndactylus Nr. E. Ausser einem

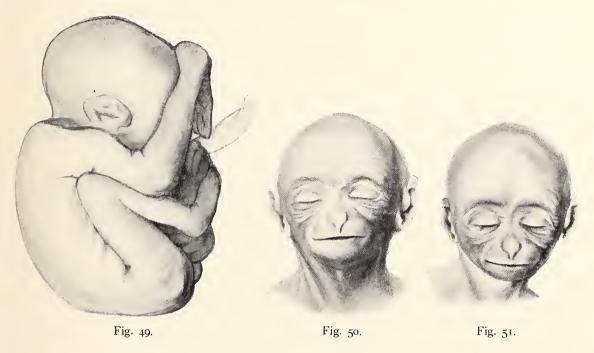


Fig. 49. [Fötus von Hylobates concolor G 2. Vergr. $\frac{3}{4}$.] Fig. 50 u. 51. [Kopf des Fötus von Hylobates concolor G 4. Vergr. $\frac{3}{4}$.]

Neudruck dieser Figur, sollten die Geschlechtsteile und die Aftergegend dieses Embryo abgebildet werden, wie sie Figur 45 in doppelter Vergrösserung zeigen.]

[Auch der folgende Embryo von Hylobates concolor (Borneo) G 1, ist als Fig. 8, S. 168, im dritten Kapitel der Menschenaffen bereits abgebildet; er ist dort als Hylobates concolor, Nr. G, bezeichnet. Der männliche Fötus befand sich in Kopflage, und in seiner Lage im Uterus zeigt ihn Fig. 46 auf ³/₄ verkleinert. Das Ohr des Embryo zeigt Fig. 47; Selenka bemerkt zu der nicht ausgeführten Skizze:] Stadium älter als G 3. Die untere Partie des Ohres Taenia-Tragus hat relativ an Grösse zugenommen. Die Helix ist etwas schärfer durch zwei Furchen, (oder künstlich abgeflachten Mulden?) von der Anthelix abgegrenzt. Der Antitragus ist als schwache

[Randpartie der Placenta eines Embryo von Hylobates concolor von ca. 9 cm. Scheitelsteisslänge. Kombinationsbild. Vergr. $\frac{2 n}{1}$.

Prominenz angedeutet. Das Ohr E ist in seinem Abschnitte Taenia-Tragus im Vergleich zu G I um 90° in senkrechter Richtung gedreht.

[Fig. 48 zeigt die äusseren Geschlechtsteile und den Anus von G I in doppelter Vergrösserung.] Der männliche Geschlechtsapparat ist in der Entwickelung etwas weiter als das Stadium der Ziegler'schen Modelle 5 (3 Monate) fortgeschritten. I. Die Urethra, die in Modell 5 als Geschlechtsrinne noch offen steht, ist in G I allseitig umschlossen. — 2. Die Vorhaut ist in G I ein dicker Wulst. — 3. Die Hodensäcke in Ziegler's Modell 5 noch ziemlich flach, sind in G I bereits stark hervorgewölbt. — 4. Die

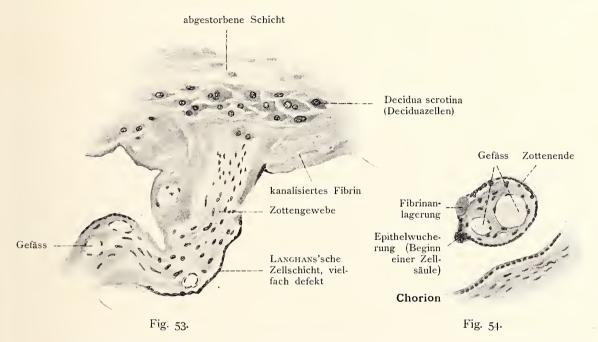
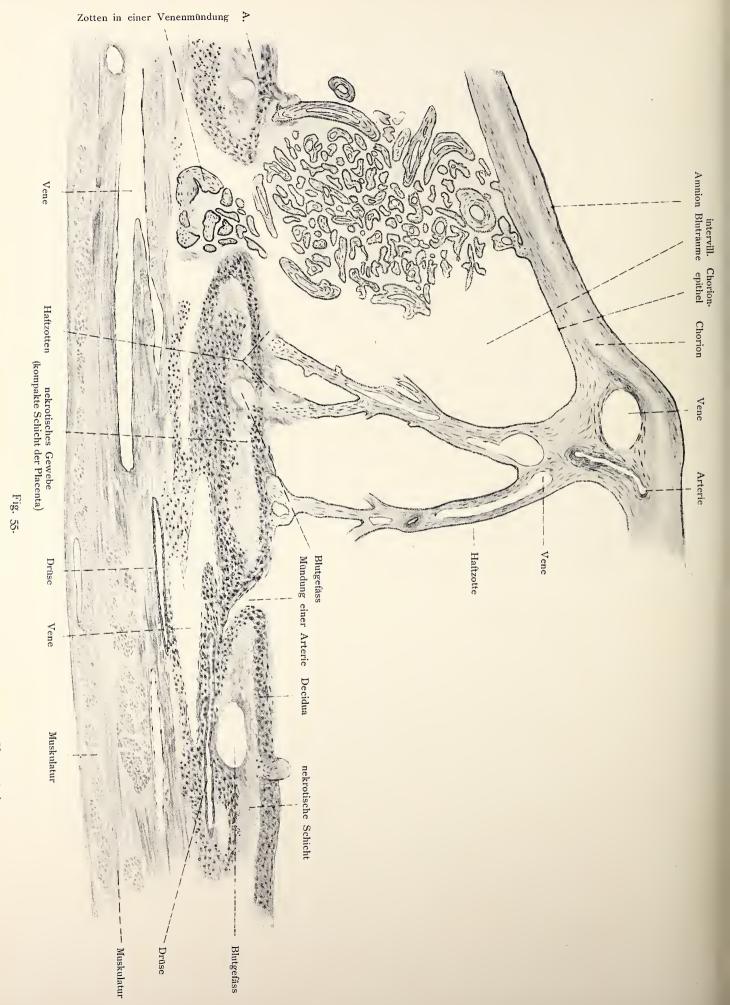
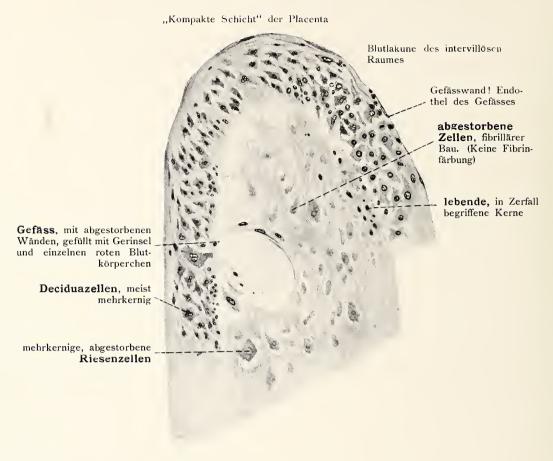



Fig. 53. [Ein Zottenende aus der Placenta des Hylobates concolor G 2. Verbindung mit dem Uteringewebe. Vergr. 17 n.]

Fig. 54. [Schnitt durch ein Zottenende aus der Placenta des Hylobates concolor G 2. Daneben ein Stück Chorion. Das Syncytium ist geschwunden. Vergr. 354.]

Raphe ist in beiden Fällen als starker Wulst sichtbar. — 5. Die Analöffnung ist in G I von einem breiten, mächtigen Wulst umgeben, welcher von den angrenzenden Weichteilen durch eine tiefe, hufeisenförmige, nach hinten flach auslaufende Rinne abgegrenzt ist. — 6. Der Embryo Hylobates G 3 (jüngeres Stadium), steht in der Ausbildung der äusseren Genitalien in jeder Hinsicht dem Embryo G I gleich.

[Die Skizzen, welche von den als G 6, G 7 bezeichneten Embryonen von Hylobates concolor (Borneo) gegeben sind, eignen sich nicht zur Reproduktion. Die Skizze von Embryo Hylobates concolor (Borneo) G 2 (Scheitelsteisslänge ca. 11,4 cm) sei als



[Schnitt durch einen Teil der Placenta des Hylobates concolor G 2. (Kombinationsbild.) Vergr. $\frac{2^0}{1}$.

Fig. 49 wiedergegeben, weil wir alsbald noch auf seine Placenta zurückkommen müssen. Der Embryo von Hylobates concolor (Borneo) G 4 war der grösste dieser Serie. Die Steissscheitellänge des Embryo betrug etwa 14 cm. Von dem ganzen Embryo fand sich nur eine flüchtige Skizze vor, dagegen zwei schön ausgeführte Zeichnungen, welche seinen Kopf darstellen und hier als Fig. 50 und 51 wiedergegeben seien. Ausser den Skizzen, welche die äussere Gestalt der Embryonen betrafen, befanden sich — offenbar zur Veröffentlichung an gleicher Stelle bestimmt — Darstellungen von Chorionzotten und von dem Aufbau der Placenta, wie ja Selenka auch in früheren Publikationen die Grundzüge der Placentation gleich im Anschluss an die äussere Form behandelt hat. In Fig. 40, 43 und 44 sind bereits derartige Zeichnungen wiedergegeben worden, Fig. 52 giebt eine weitere. Sie befand sich in einem Umschlag, der G 5—G 6 überschrieben war; sie ist bezeichnet als:] Schnitt durch die Randpartie der Placenta von Hylobates concolor; Kombinationsbild. (Embryo von 9 Centimeter Kopfsteisslänge.) [Die Abbildung war durch eine Umrisszeichnung mit eingetragenen Bezeichnungen erläutert.]

[Von dem in der Skizze, Fig. 49, wiedergegebenen Embryo G 2 fanden sich vier die Placenta betreffende Zeichnungen, Fig. 53-56 geben dieselben wieder. Fig. 53 ist bezeichnet als] Hylobates concolor (G 2) Schnitt: Verbindung der Zotte mit dem Uteringewebe. (Embryo circa 14 cm Kopfsteisslänge.) [Fig. 54 ist bezeichnet:] Hylobates (G 2). Schnitt durch ein Zottenende. Das Syncytium ist geschwunden. [Fig. 55 ist ein Schnitt durch einen Teil der Placenta des Embryo G 2, wir finden die Bezeichnung: Hylobates. Placenta, aus mehreren Schnitten kombiniert. Rechtes Drittel nicht schematisch. — Die äussere Schicht der Muscularis ist entfernt. — Embryo 14 cm Kopfsteisslänge. [In Fig. 56 ist die mit A bezeichnete Partie stärker vergrössert dargestellt. Die Figuren 53, 54 und 56 waren durch Umrisszeichnungen erläutert, in welche die Erklärungen eingetragen sind; die Bezeichnungen zu der Fig. 55 stammen Von mir.] [Vom "Roten Affen", wir können ihn nach einer von Herrn Dr. Jentink in Leiden gütigst gegebenen Auskunft wohl unbedenklich als Semnopithecus rubicundus ansprechen¹), fanden sich drei ausgeführte Zeichnungen. Fig. 57 zeigt den Embryo eines solchen Affen im Uterus (Bez. H 11), Fig. 58 giebt einen beträchtlich grösseren Embryo wieder, Fig. 59 den dazu gehörigen Uterus mit der Placenta [Bez. beidemale H 11]. Von Inuus speciosus (Japan) fanden sich, abgesehen von Zeichnungen des äusseren Ohres, auf welche ich zum Schlusse komme, die Zeichnung eines ganzen

¹⁾ Dieser Affe heisst bei den Eingeborenen in Borneo "monjet mera", d. i. "roter Affe". Ich habe zunächst an den Semnopithecus cruciger, Thomas gedacht, der auch rot ist, weil Selenka diesen Affen S. 329 erwähnt und sich sonst nichts von ihm vorfindet, während Semnopithecus rubicundus nicht erwähnt wird.

Fötale Oberfläche der Placenta

Fig 56.

Fig. 57.

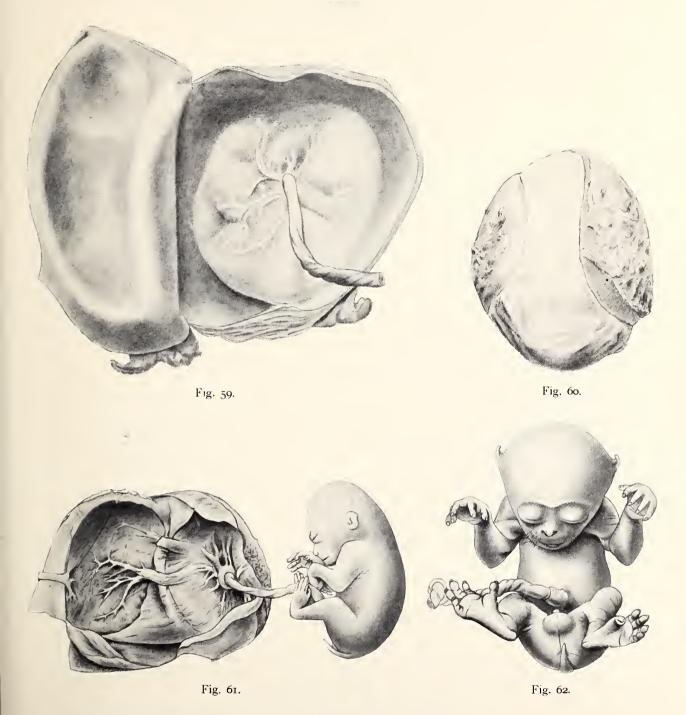

Fig. 56. [Die in Fig. 55 mit A bezeichnete Partie stärker vergrössert. Vergr. 100.]

Fig. 57. [Ein "roter Affe" im Uterus. (Semnopithecus rubicundus oder Semnopithecus cruciger.)
Bez. H 11. Vergr. 3/4.]

Fig. 58. ["Roter Afte." Bez. H 10. Vergr. 4.]

Fig 58.

- Fig. 59. [Placenta und Uterus des "roten Affen" H 10. Vergr. $\frac{3}{4}$.]
- Fig. 60 | Ei von Inuus speciosus H 8. Dorso- und Ventroplacenta. Vergr. 3/4-]
- Fig. 61. [Das in Fig. 60 dargestellte Ei von Inuus speciosus H 8 eröffnet. Vergr. 3/4-]
- Fig. 62. [Embryo von Inuus speciosus H 3. Vergr. \(\frac{3}{4}\).

Eies mit Dorso- und Ventro-Placenta [Bez. H 8] Fig. 60. Fig. 61 stellt dieses Ei eröffnet dar; der herausgenommene Embryo ist im Profil dargestellt, er hängt noch
durch den Nabelstrang mit dem Ei zusammen, [Bez. H 8]. — Einen älteren Embryo
von Inuus speciosus (Japan) zeigt Fig. 62. [Bez.: H 3.]

Den Schluss mögen fünf Darstellungen des äusseren Ohres bilden. Fig. 63 bis 65 stellen embryonale Ohren von Inuus speciosus dar. Fig. 63 u. 64 und Fig. 65 sind zweimal vergrössert. Bei Fig. 63 weist die Bezeichnung H 3 darauf hin, dass

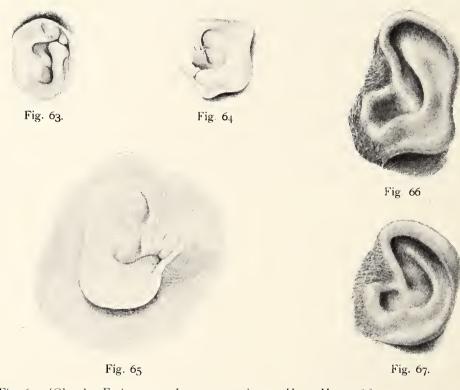


Fig. 63. [Ohr des Embryo von Inuus speciosus H 3. Vergr. 2.]

Fig. 64 [Ohr eines Embryo von Inuus speciosus. Bez. H 6. Vergr. 2.]

Fig. 65. [Ohr eines Embryo von Inuus speciosus. Bez. H 4. Vergr. 2.1.]

Fig. 66 [Ohr eines Orang-Utang Vergr. 1.]

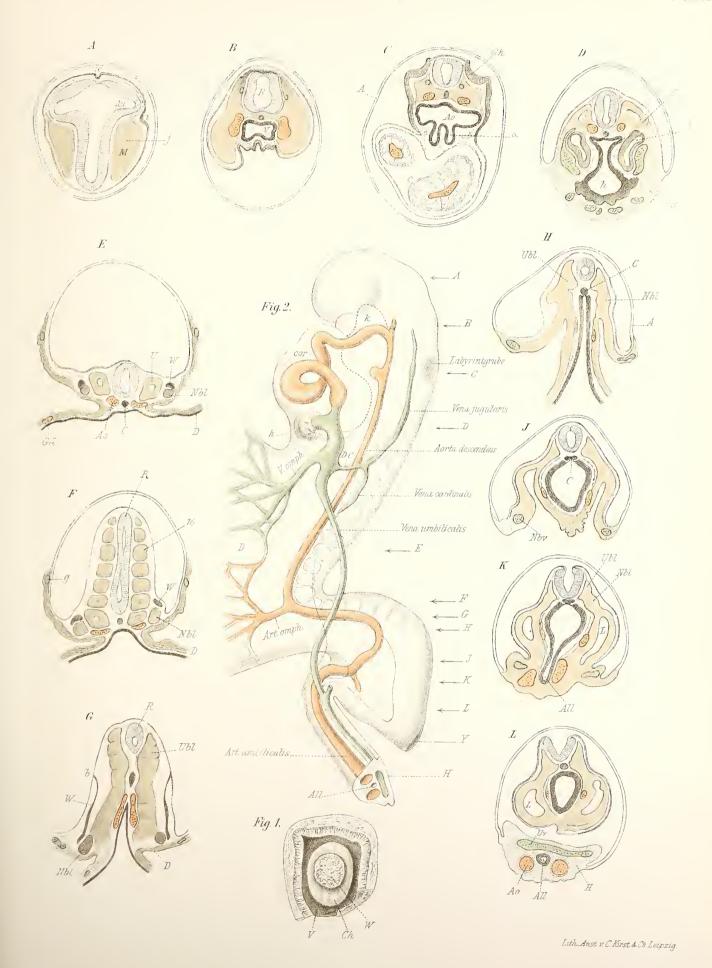
Fig. 67. [Ohr eines Orang-Utang. Vergr. 1.]

es sich um ein Ohr des in Fig. 62 dargestellten Embryo handelt, Fig 64 ist mit H 6, Fig. 65 mit H 4 bezeichnet. Bei diesen Zeichnungen lagen zwei Zeichnungen von Orang-Utang-Ohren in natürlicher Grösse. Fig. 66 und 67 geben sie wieder. Mehrere Auszüge und verstreute Notizen wiesen darauf hin, dass Selenka sich für die Entwickelungsgeschichte des äusseren Ohres lebhaft interessierte, irgend welche nähere Ausführungen haben sich aber nicht gefunden 1).]

^{1) [}Vergl. auch Fig. 42, S. 362 und 47, S. 364.]

Erklärung von Tafel 12.

Cercocebus cynomolgus, Ce., gemeiner Makak, von Java.


A Amnion.
All Allantoisschlauch (Fig. 2, Fig. K u. L).
Ao Aorten.
Au Augenblasen (Fig. A).
Verlötung des Wolffschen Ganges mit dem Integument (Fig. G).
Herz.
C Chorda.
Ch Chorion (Fig. 1).
D Dottersack.
De Ductus Cuvieri (Fig. 2).
g Vena umbilicalis (Fig. F).
Gd Gefässe des Dottersacks (Fig. E)
gh Labyrinthgrübchen (Fig. C).
h Leberaussackung (Fig. 2, Fig. D).

Hautfurche hinter den Augenblasen (Fig. A).

Vorderes Blindende des Venae jugulares (Fig. A).

H Haftstiel.

- k Kopfdarm.
- L Cölom (Fig K und L).
- M Mesoderm (Fig. A).
- Nbl Urnierenblastem (Fig. E bis H).
- Nbo Nabelvenen
- R Rückenmark.
- S Septum transversum.
- U Urwirbel (Fig. D) (erster Urwirbel).
- Ubl Urwirbelblastem (Fig. H bis K).
- Uv Umbilikalvene (Fig. L).
- 1 Vorderdarm
- Wolff'scher Gang (Fig. G) aus zwei benachbarten Schnitten kombiniert; in Fig. E dessen Zusammenhang mit dem Urnierblastem Nbl.
- X Furche, als Rest der Verwachsungsstelle.
- Y hintere Medullarplatte; vergl. Fig. 15.
- der sechzehnte Urwirbel (Fig. F).
- α Furchen neben der Epiglottis; vergl. Fig. 16.
- Fig. 1. Dorsale Hälfte des Uterus. Das ventrale (sekundäre) Zottenfeld W ist von der Ventroplacenta abgerissen. Ch das von Uterinschleim umspülte, glatte Chorion. V Uteruslumen. Natürliche Grösse.
- Fig. 2. Der Keimling bei 40 facher Vergrösserung Alle vorhandenen Gefässe sind nach der Schnittserie eingetragen. Die rechtsseitige Umbilikalvene ist abgeschnitten gedacht. Amnion weggelassen. Die punktierte Linie bezeichnet das Profil des Vorderarms
- Fig. A bis L. Querschnitte an den, neben Fig. 2 bezeichneten Orten. Vergrösserung $\frac{5.0}{1}$. In Fig. G ist das Amnion weggelassen.

 $@ \ Biodiversity \ Heritage \ Library, \ http://www.biodiversitylibrary.org/; \ www.zobodat.at$

MENSCHENAFFEN

(ANTHROPOMORPHAE)

STUDIEN ÜBER ENTWICKELUNG UND SCHÄDELBAU

HERAUSGEGEBEN

VON

EMIL SELENKA

NACH SEINEM TODE AUF GRUND DES NACHLASSES FORTGEFÜHRT

VON

A. A. W. HUBRECHT, H. STRAHL UND F. KEIBEL

UTRECHT

GIESSEN

FREIBURG.

SECHSTE LIEFERUNG:

DIE DILUVIALEN MENSCHLICHEN KIEFER BELGIENS

UND

IHRE PITHEKOIDEN EIGENSCHAFTEN

VON

DR. OTTO WALKHOFF

PROFESSOR IN MÜNCHEN.

MIT 24 ABBILDUNGEN IM TEXT.

WIESBADEN.

C. W. KREIDEL'S VERLAG.

1903.

Alle Rechte vorbehalten.

Inhaltsverzeichnis zur VI. Lieferung.

																									Seit
Eir	nleitung .																								373
I	. Der Kiefe	er von	la	Naul	lette																				37
II.	Der Kiefe	r von	la	Naul	ette	als	Ty	pus	der	dilu	ıvia	len	Köı	rper	forn	n u	nd	sein	е р	ithel	coid	en :	Eige	n-	
	schaften																								38
Ш	Die Kiefe	rreste	Vo	n Sp	у.																				39
IV	. Der Kiefe	er von	G	oyet																					40
V.	Die Über	gänge	de	s dilu	ıvia	len	Kief	erty	pus	zur	he	utig	en l	Forr	n.										40

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Einleitung.

Die in der vierten Lieferung dieses Werkes von mir genauer beschriebenen menschlichen Unterkiefer der Diluvialzeit stammen sämtlich aus Fundstätten, welche innerhalb der österreichisch-ungarischen Monarchie gelegen sind. Von verschiedenen Seiten, besonders aber von Herrn Geheimrat Waldeyer wurde ich nach dem Erscheinen jener Arbeit darauf aufmerksam gemacht, dass es höchst zweckmässig, ja entscheidend sei, diese Untersuchungen auf eine noch grössere Anzahl von diluvialen Kiefern auszudehnen. Auch Wiedersheim spricht diese Forderung in seinem Buche ("Der Bau des Menschen als Zeugnis für seine Vergangenheit" 1902) in Rücksicht auf meine Arbeit direkt aus. Es war endlich speziell einer der letzten Wünsche des verstorbenen Herausgebers, die übrigen diluvialen Schädelreste in seinem Werke vergleichend und zwar noch mehr in Rücksicht auf ihre pithekoiden Eigenschaften abzuhandeln.

Durch Unterstützung der Kgl. bayerischen Akademie der Wissenschaften wurde ich in den Stand gesetzt, den zweiten klassischen Länderkomplex für diluviale menschliche Funde zu besuchen und letztere eingehend zu studieren, nämlich die Rheinlande und Belgien. Dass eine derartige Untersuchung eine wichtige und wünschenswerte Ergänzung meiner früheren Arbeit über diesen Gegenstand sein musste, lag auf der Hand. Hier handelt es sich um einen zweiten Bezirk, welcher, räumlich weit von den österreichischen Fundstätten entfernt, während des Diluviums mehrmals durch eine für den Menschen schwer übersteigbare Eisbarre geschieden wurde. Dadurch hat man eine gewisse Gewähr, dass der damalige Mensch in jenen beiden Ländern sich einer mehr selbständigen Entwickelung erfreute. Letztere konnte, unabhängig von dem etwa bei dem Menschen auftretenden Wanderungstriebe, entweder zur Erhaltung der Grundform oder aber zu einer Neuerwerbung einer bestimmten Lokalform von Teilen des menschlichen Körpers, vielleicht sogar zu einer verschiedenen Rassenbildung in der Diluvialzeit führen. Bei einem Vergleich der diluvialen Funde beider Länder muss

das Resultat selbst von schwerwiegender Bedeutung sein, wenn sich gleiche Formen entwickelt haben. Weichen etwaige gleiche Formen, welche an ganz verschiedenen Orten gefunden wurden, ausserdem von denjenigen des heutigen Menschen ab, so ist damit der sicherste Beweis für die Umgestaltung des Menschen seit der Diluvialzeit geliefert, was bisher von den Anthropologen meistens geleugnet ist.

Die deutsche Anthropologie hat im vorigen Jahrhundert sich den belgischen Funden gegenüber im allgemeinen leider sehr skeptisch gezeigt, ja sie hat dieselben teilweise unbeachtet gelassen. Erst neuerdings ist man in Deutschland durch Klaatsch und Schwalbe auf dieselben wieder aufmerksam geworden. Die Bedeutung dieser belgischen Funde ist samt dem Neanderthaler in der That nicht genug zu würdigen. Denn sie sind so vollständig und gut erhalten, dass man erst durch sie in mancher Hinsicht ein wirkliches Bild der Formen des diluvialen Menschen erhält. Jene genannten Autoren haben die äusseren Formen der belgischen und rheinischen Funde im allgemeinen schon klargelegt. Ich werde in nächster Zeit diese diluvialen Reste auch in Rücksicht auf ihre innere Struktur und die sich daraus ergebende Formgestaltung in einigen grösseren Arbeiten erörtern, indem dabei ganz besonders die Entwickelungsmechanik herangezogen werden soll, welche sicherlich als wesentlicher Faktor zur Erklärung einer Abänderung der Formen in Betracht zu ziehen ist. Ich habe für diese Arbeiten wiederum die Röntgenstrahlen benutzt und mit Hilfe derselben alle mir dort erreichbaren diluvialen Reste des Menschen radiographisch aufgenommen. Der Wert der Röntgenstrahlen für diese Untersuchungen kann nicht überschätzt werden. Es lassen sich mit ihrer Hülfe auf einfache Weise und oft ganz überraschend Dinge entscheiden, welche aller äusseren Betrachtung bisher trotzten.

Die vorliegende Lieferung als Ergänzung der vierten des Selenka'schen Werkes erledigt alle hervorragenden bisher aufgefundenen sicheren diluvialen Kieferreste des Menschen und bringt dann die Übergänge zu den heutigen Formen. Die makroskopischen Aufnahmen sind sämtlich in natürlicher Grösse wiedergegeben.

Es ist mir eine angenehme Pflicht, auch an dieser Stelle der Kgl. bayerischen Akademie der Wissenschaften, sowie Herrn Professor Dr. Dupont in Brüssel, Herrn Professor Dr. Fraipont in Lüttich und Herrn Museumsdirektor Dr. Lehner in Bonn für die gütige Unterstützung bei diesen Arbeiten, indem sie mir alles vorhandene Material zur Verfügung stellten, meinen herzlichsten Dank auszusprechen.

I. Der Kiefer von la Naulette.

Von den belgischen Funden ist der in Deutschland bekannteste und berühmteste der Unterkiefer von la Naulette. Selten ist wohl die wissenschaftliche Welt mehr in Aufregung versetzt, als Dupont dieses Kieferstück in Verbindung mit unzweifelhaft diluvialen tierischen Knochen ausgrub. Geschah es doch zu einer Zeit, wo Darwin's Lehren gerade allgemein verbreitet wurden. Die Anhänger der letzteren sahen den Unterkiefer von la Naulette einerseits als Zwischenglied von Mensch und Affe an; andererseits betrachtete man die besonderen Unterscheidungsmerkmale dieses Kiefers von denjenigen der heutigen Rassen als Rassencharaktere des damaligen Menschen.

Dupont hat in seinem Werke (L'homme pendant les âges de la pierre dans les environs de Dinant- sur Meuse) schon 1872 die hauptsächlichsten Eigenschaften des Kiefers von la Naulette aufgeführt. Er schildert die beträchtliche Höhe und Dicke desselben, das fehlende Kinn, die fehlende Spina mentalis interna, ihre Ersetzung durch eine Grube und endlich das Grösserwerden der Molaren nach hinten, dergestalt, dass der dritte Molar der mächtigste ist. In Deutschland nahm sich Schaaffhausen mit grossem Eifer dieses Fundes an und gelangte zu der Auffassung, dass es sich um wirkliche Rassencharaktere handele.

Schaaffhausen geriet dadurch in einen grossen Streit mit Virchow, welcher in einer Arbeit: "Der Kiefer aus der Schipka-Höhle und der Kiefer von la Naulette" beide Kiefer für pathologische Excessbildungen und noch ausserdem beide Funde so verschieden voneinander erklärte, dass nur "eine einzige genetische Übereinstimmung beider Kiefer besteht in der eigentümlichen und in dieser Vollständigkeit in der That unerhörten Entwickelung der Basalfläche". Die durch Virchow geschaffene pathologische Richtung hat in der deutschen Anthropologie auch für die Erklärung dieser Kieferreste immer die Oberhand behalten, und nur unter dem Einfluss dieser Richtung kann man es verstehen, dass auf dem Ulmer Anthropologen-Kongress eine

besondere diluviale Rasse anstandslos als "Phantasiegebilde" bezeichnet wurde und damit auch jene Kieferformen zu den Toten geworfen wurden.

Nachdem ich in der vierten Lieferung dieses Werkes nachgewiesen habe, dass der Schipkakiefer mit allen seinen Eigenschaften ein ganz normales Produkt der

Fig. 1.
Vorderseite des Kiefers von la Naulette.

damaligen Zeit ist, dessen Form der heutigen gegenüber in einer ander en Funktion der Teile ihren Ursprung hatte, wobei wiederum eine strukturelle und eine äussere Abänderung des ganzen Knochens eintrat, möchte ich das Gleiche vom la Naulette-Kiefer auf Grund der erneuten Untersuchung im folgenden beweisen.

Ich gebe zunächst in den Fig. 1-3 einige genaue photographische Abbildungen des Kiefers von la Naulette in natürlicher Grösse, weil die

Illustrationen bisher als Holzschnitte und zumeist nur nach einem Gipsabguss des Kiefers erschienen, wodurch naturgemäss vieles von dem Original verloren ging und

Fig. 2.

Linke Seitenansicht des Kiefers von la Naulette.

die Ursache für Irrtümer gegeben war. Am wichtigsten ist jedenfalls die Lingualseite. Der Kiefer von la Naulette hat an derselben wie der Affe im Bereich der 6 Vorderzähne einen konskaven Alveolarfortsatz (Fig. 3 a). In der Medianlinie teilt ein von oben nach unten verlaufender Wulst die grubenförmige Ausbuchtung des

Alveolarfortsatzes in zwei gleiche Hälften, deren linke ein grösseres und deren rechte zwei kleinere Gefässlöcher aufweisen. Unter dieser alveolaren, lingualen Ausbuchtung zieht nun, wiederum wie beim Affen, ein horizontal verlaufender starker Lingualwulst (1). Dieser bildet die obere Grenze des eigentlichen Kieferkörpers. Die Symphyse ist durch eine sehr zarte Einsenkung auf dem Lingualwulste deutlich er-

kennbar. Zwischen letzterem und der noch zu besprechenden Basalfläche zeigt der Kieferkörper eine grosse, dreieckige Einsenkung (e), welche sich seitwärts bis an die Richtungslinie der zweiten Prämolaren zur Linea mylohyoidea erstreckt. In dieser grossen Einsenkung sind für sich zwei verhältnismässig tiefe Gruben (g) für den M. genioglossus angelegt. Die Basis jener grossen Einsenkung beträgt über zwei Centimeter und wird durch die direkte Fortsetzung der Linea obliqua interna sive mylohyoidea (m) gebildet. Nahe der Symphyse wulstet sich diese Linea nochmals stärker auf, um dann nach der Medianlinie zu wieder abzufallen In diesem Raum, welcher von der einen Wulstung zur anderen 5 Millimeter beträgt, findet sich nahe der Medianlinie eine doppelte vertikale Leisten bildung. Diese zwei Leisten ziehen zur Basalfläche, wo sie, jede für sich einen schwachen Bogen bildend, zwischen den

Gruben der Mm. digastrici (d) sich zu einer grösseren, spitzigen Leiste vereinigen, sodass nach dem Übergange zur vorderen Kieferplatte eine dreieckige Erhöhung das Ende bildet. Unmittelbar an der unteren Vereinigungsstelle jener beiden Leisten liegt in der durch letztere gebildeten Einsenkung ein kleines Foramen für ein in den Knochen tretendes Gefäss. Oberhalb der Linea mylohyoidea,

Fig. 3.
Lingualseite des Kiefers von la Naulette.

welche übrigens in ihrem ganzen Verlaufe stark ausgeprägt erscheint, vereinigen sich die soeben erwähnten Leisten ebenfalls und als Fortsetzung dieser Vereinigung finden sich nach der grossen Einsenkung zu zahlreiche vertikal verlaufende kleine Rinnen und Firsten. Hier ist die Insertionsstelle des M. geniohyoideus (h) und jene Leistchen sind so angeordnet, dass sie ein ovales System bilden. An ihrem oberen Ende, in der tiefsten Stelle der grossen Einsenkung, liegt jene erwähnte Doppelgrube für den M. genioglossus. Diese Gruben zeigen sich in ersterer noch als eine besondere Vertiefung und sind im Gegensatz zu dem umgebenden Knochen ganz rauh. Beide Gruben sind durch eine Y-artige Leiste getrennt, zwischen deren Schenkeln ein grösseres Foramen liegt.

Bei dem Vergleich, welchen Virchow in seiner Abhandlung zwischen den la Naulette- und dem Schipkakiefer anstellt, werden viele Unterschiede zwischen beiden Knochenresten aufgeführt. "Die basale Fläche des la Naulette-Kiefers liegt mehr schräg; sowohl die Spina oder Crista inferior, als auch die daneben liegenden Gruben. sowie die Vertiefung in der Gegend der fehlenden Spina posterior oder interna sind viel stärker ausgebildet." Diesen Einwänden Vırcнow's gegenüber ist zu bemerken, dass es sich um zwei Kiefer von ganz verschiedenem Alter handelt, was durch die Röntgenaufnahmen unzweifelhaft festgestellt wurde, und dass aus diesem Grunde der Kiefer des Erwachsenen an den Muskelansätzen eine viel stärkere Modellierung aufweisen muss als der kindliche. Das stärkere Herabsteigen der Vorderfläche des la Naulette-Kiefers erklärt sich durch die Überwallung, welche durch die viel grössere stattgehabte Funktion der digastrici bei dem älteren Individuum hervorgerufen ist. Die Schrägstellung der Insertionsstelle des Digastricus zum Kieferkörper begünstigte bei einer stärkeren Funktion die Überwallung, während sie beim kindlichen Schipkakiefer noch nicht ausgebildet wurde. Dem Alter entsprechend ist auch die Grubenbildung des Genioglossus beim Kiefer von la Naulette eine viel tiefere als beim 10jährigen Schipkakiefer. Bei letzterem ist der breite, horizontale Lingualwulst oberhalb dieses Muskelansatzes, welcher erst durch die starke Funktion der Zähne erzeugt wird, kaum vorhanden. Auch dieses Fehlen führte Virchow als wichtiges Unterscheidungsmoment dem la Naulette-Kiefer gegenüber an. Letzterer folgt aber durchaus den von mir auf S. 269 gegebenen Erklärungen über die Gestaltung der hinteren Kieferplatte bei bestehendem Prognathismus. Der Kiefer von la Naulette zeigt eine doppelte Prognathie, wahre Kieferprognathie und Zahnprognathie. Die Kieferprognathie ist eine ausgesprochen günstige Vorbedingung für eine sich entwickelnde Zahnprognathie. Junge und alte Affenkiefer, vergleichend betrachtet, beweisen das sofort. Auch beim Schipkakiefer bestand eine ganz bedeutende ererbte Kieferprognathie, die Zähne stehen dagegen noch ziemlich gerade zur Basis des Kiefers, aber die Wurzeln der bleibenden Schneidezähne sind eben erst fertig gebildet, der Eckzahn überhaupt noch nicht in Funktion getreten! Deshalb konnte für dieses Individuum die Umformung der hinteren Kieferplatte durch die verstärkte Funktion der fertigen Zähne noch nicht zu stande kommen. Man ersieht daraus, dass wiederum die Feststellung des Altersunterschiedes zwischen diesen beiden Kiefern von ausschlaggebender Bedeutung für die Erklärung ihrer verschiedenen Formen ist. Sowohl die Einsenkung des Alveolarfortsatzes der Vorderzähne als der darunter liegende Lingualwulst sind die notwendigen Folgen der vermehrten Beanspruchung eines ursprünglich prognathen Kiefers, zumal wenn letztere so stark ist, dass durch den Gebrauch der Zähne eine stärkere Alveolarprognathie entsteht.

Bevor man sich in der Anthropologie nicht über den unendlich variierten Begriff der Prognathie geeinigt hat, werden bei den Beschreibungen der Autoren viele gegenseitige Missverständnisse entstehen. Um das nur an einem Beispiel zu zeigen, so erklärt Topinard in seinem Aufsatz: "Les charactères simiens de la machoire de la Naulette" die Alveolen und Schneidezähne des Kiefers für vertikal (orthognath). In seiner Anthropologie sagt Topinard: "Da, wo das Kinn am meisten zurücktritt, an dem alten Kiefer von la Naulette, geschieht es um 3 Millimeter; man muss dies als Prognathismus des Körpers des Unterkiefers ansehen." Wenn man von der unzweifelhaft bestehenden Zahnprognathie überhaupt absieht, so sind das zwei von rein anatomischem Standpunkte betrachtet als richtig anzuerkennende Thatsachen. Aber Kiefer und Zähne dürfen durchaus nicht für sich allein beurteilt und die funktionelle Thätigkeit dieser Organe unberücksichtigt bleiben, wenn man von Orthognathie oder Prognathie eines menschlichen Kiefers spricht. Trotz der (wenigstens nahezu) orthognathen Stellung der Zähne im Kiefer von la Naulette waren auch erstere in der Funktion prognath und sogar stark prognath und nur bei fortwährender Berücksichtigung dieser Thatsachen lassen sich die eigenartigen Formen des Kiefers von la Naulette erklären.

Ich möchte hier gerade mit Rücksicht auf die diluvialen Reste meine Ansicht über Prognathie etwas näher ausdrücken. Da bisher keine vollständig erhaltenen Schädel aufgefunden wurden, sondern zumeist nur Bruchstücke einzelner Kiefer, so kann bei den diluvialen Resten von dem Prognathismus der Region "Alveolarsubnasalpunkt" Topinard's kaum Gebrauch gemacht werden. Mit der eventuellen Bestimmung des Unterkiefers nach Topinard ist im vorliegenden Falle noch weniger anzufangen. Ich meine, jeder muss sogar gegenüber Topinard dem Ausspruche Virchow's recht geben, wenn letzterer vom la Naulette-Kiefer schreibt: "Der Alveolarrand legt sich nach aussen heraus, um eine deutliche prognathe Stellung einzunehmen" (siehe Fig. 2). Häufig wurde die Prognathie des alleinigen Unterkiefers durch Zuhilfenahme des unteren Kieferrandes bestimmt. Aber dieser ist so variabel, dass er vergleichend keine exakte Messungen zulässt. Dagegen lassen sich meines Erachtens immer gewisse Punkte in der Medianlinie eines Unterkiefers mit Sicherheit feststellen. Der eine Punkt ist der Schnittpunkt der Symphyse und des unteren Kieferrandes. Bei Kiefern mit einer Basalfläche wird ersterer durch die Spitze des dreieckigen Vorsprunges der vorderen Kieferplatte, welcher zwischen die Gruben der Mm. digastrici sich erstreckt, gebildet. Der zweite fixe Punkt ist der Berührungspunkt der mittleren Schneidezähne. letztere fehlen, so tritt dafür die entsprechende Stelle des Alveolarfortsatzes ein, welche auch anzunehmen ist, wenn es sich nur um Feststellung einer Kieferprognathie handelt. Die Projektion der Verbindungslinie dieser beiden Punkte erfolgt weitaus am besten über die Ebene der Mastikationsfläche der Zahnreihe hinaus. Diese "Bissebene" ist der Ausdruck der stattgehabten funktionellen Belastung des betreffenden

Kiefers, von welcher eine individuell erworbene aber auch eine physiologische Prognathie der vorderen Zähne abhängig ist. Man kann auf diese Weise mit Sicherheit durch Messung des Winkels, welchen jene Linien bilden, eine allgemeine Prognathie des Unterkieferkörpers feststellen. Auf diese kommt es gerade besonders bei den diluvialen Kiefern an. Eine etwaige ausserdem bestehende Alveolar- oder Zahnprognathie kann mit Berücksichtigung einer Verbindungslinie des tiefsten Punktes oberhalb des Kinnes zur vorderen Fläche der Schneidezähne ebenfalls festgelegt werden.

Fig. 4.
Unterkiefer von la Naulette, Basalfläche.

Die Bissebene eines menschlichen Unterkiefers ist mindestens annähernd horizontal, und deshalb muss der Vorderkiefer von la Naulette in situ nicht allein in Bezug auf seinen Körper, sondern auch in der Stellung der Zähne stark prognath gewesen sein.

Wenn man diese normale Stellung des Kiefers von la Naulette in der Funktion und Belastung berücksichtigt, so kann unmöglich "ein Teil der hinteren Kieferfläche gleichsam nach vorn gewandt sein", wie Virchow angiebt. Selbst wenn man das Kieferstück so hält, dass die auch von Virchow zugegebene prognathe Stellung des Alveolarfortsatzes zu einer orthognathen würde, so biegt der dreieckige Fortsatz der vorderen Kieferplatte unterhalb des geringen Kinnvorsprunges

doch nach hinten. Die gesamte Basalfläche inklusive der Region der M. digastrici gehört auch bei diesem Kiefer zur hinteren Kieferplatte. In dem Verhalten der Basalfläche sind beide Kiefer gleich, der Formunterschied wurde, wie schon oben bemerkt, nur durch die funktionell verschiedene Muskelüberwallung hervorgerufen.

Ein von Schaaffhausen, Virchow und anderen Autoren als wichtig bezeichnetes "pithekoides" Merkmal ist die Ersetzung der Spina mentalis interna des heutigen Menschen durch eine Grube. Für die Genese hat man auch hier eine einfache deskriptive Erörterung der Variationen für entscheidend gehalten, aber selbst die ausführlichen Mitteilungen Topinard's über die Formvariationen der Spina beim Kiefer des heutigen

Menschen geben keine ausreichenden Erklärungen. Dasselbe gilt von der ja sicherlich vorhandenen verschiedenen Stärke der einzelnen angehefteten Zungenmuskeln. Allein kann dieselbe aber jenes affenähnliche Merkmal nicht erklären. Hier müssen die Grundsätze der Entwickelungsmechanik wieder in den Vordergrund geschoben werden. Auch die belgischen Kiefer, welche von Erwachsenen herrühren, bestätigen meine früheren Erläuterungen in Bezug auf Gruben- oder Fortsatzbildung für Muskelinsertionen durchaus. (Vergleiche S. 301 u. ff.) Ja infolge stattgehabter grösserer Beanspruchung sind diese Kieferformen noch weit einfacher zu erklären als diejenigen der kindlichen Kiefer vom Schipka und Predmost. Allerdings muss man eine strenge Scheidung zwischen der Insertionsstelle des Genioglossus (Apophysis genii superior) und derjenigen des Geniohyoideus (Apophysis genii inferior) innehalten. Für den Genioglossus war die grosse dreieckige Einsenkung, welche bei dem la Naulette-Kiefer infolge des stark ausgebildeten Lingualwulstes und der mächtigen zur Medianlinie ziehenden Linea obliqua interna entstand, für den Ansatz in einer Grube wie geschaffen. Der äussere Winkel an der Insertionsfläche ist weit unter 180°.

Das oberhalb und zwischen den Insertionsstellen der M. genioglossi bei allen menschlichen Kiefern sehr häufig auftretende Gefäss dient zur besseren Ernährung des hier mehr beanspruchten Knochens. Die Lage und Grösse dieses Foramens ist bei den verschiedenen diluvialen Kiefern nicht konstant. Bei dem Kiefer von la Naulette ist es klein und liegt auf dem Dreieck, welches die beiden Gruben mit ihrer oberen Hälfte durch eine Überwallung bilden, unmittelbar zwischen den beiden Schenkeln der Y-artig angeordneten Leisten, welche Überwallungsleisten sind, aber nicht in einer Fossula supraspinata Virchow's. Eine Fossula supraspinata entsteht nach meinen Untersuchungen beim Menschen nur, wenn seitens des Genioglossus eine Überwallung unterhalb das Foramens geschaffen wird. Dann bildet das Gefässloch den tiefsten Teil einer neuen kleinen Grube. Ich will noch bemerken, dass beim la Naulette-Kiefer über dem normalen noch ein sehr kleines Foramen in einer ganz sanften Vertiefung liegt, welche durch die Grubenüberwallung des Genioglossus gebildet wird.

Ganz anders als wie die Ansatzstelle des Genioglossus muss sich nach den Lehren der Entwickelungsmechanik die Insertion des Geniohyoideus verhalten. Dieser Muskel entspringt bei den diluvialen Kiefern auf einer wallförmigen, stärkeren Erhabenheit, welche durch die beiderseitige Vereinigung der Linea mylohyoidea und dem unteren Kieferrande entsteht. Durch diese Konfiguration ist die Ansatzstelle des Muskels auf einen grösseren äusseren Winkel als 180° verteilt. Die Folge davon ist, dass es bei allen bisher aufgefundenen diluvialen Kiefern hier zur Leisten bildung kommt, welche beim Schipkakiefer infolge der noch gering ausgebildeten kindlichen Muskeln,

ferner der noch kräftigeren, in der Form vererbten Entwickelung des Kieferkörpers und der Zähne am geringsten ist. Beim la Naulette-Kiefer sind die Leistchen schon etwas stärker angedeutet, während sie beim Krapina-Kiefer und besonders beim Spy-Kiefer Nr. 1 kräftiger hervortreten und die Anfänge einer Apophysis genii inferior, des unteren Teiles einer heutigen Spina mentalis interna, darstellen.

Es erübrigt noch einige Worte über die vordere Kieferplatte des la Naulette-Kiefers zu sagen. Die Alveolarpartie schmiegt sich den prognathen Vorderzähnen eng an. Dadurch entsteht eine Schrägstellung des Alveolarfortsatzes über dem Kieferkörper aber keine Einbuchtung, wie bei allen postdiluvialen Kiefern. Darunter fällt der Knochen zur Basalfläche senkrecht ab, und nur gegenüber der Gegend der Ansatzstelle des M. genioglossus erscheint eine kaum sichtbare, geringe Vorwölbung auf der vorderen Kieferplatte. Den Mangel eines Kinnes beim Kiefer von la Naulette hat Virchow in seiner Abhandlung nicht präzisiert, soweit es sich um die Erklärung des genetischen Vorganges handelt.

Von der erwähnten geringen Vorwölbung fällt die Kieferplatte ziemlich glatt in schräger Richtung nach hinten und in schwach angedeuteter Dreiecksform ab, um sich mit der Basalfläche zu verbinden, indem sie hier, scharf abgesetzt, die Überwallung der M. digastrici bildet. An dem erhaltenen linken Seitenteile des la Naulette-Kiefers ist die Linea obliqua externa mächtig entwickelt und zwar nicht als Leiste, sondern als grosse Wölbung. Das Foramen mentale liegt hinter der Richtungslinie des zweiten Prämolaren, ganz im Gegensatz zu der Lage bei heutigen Kiefern civilisierter Rassen.

Nachdem jetzt keine Differenzen zwischen diesem Kiefer und demjenigen aus der Schipkahöhle mehr vorhanden sind, welche sich nicht auf natürliche Altersunterschiede zurückführen lassen, musste der Kiefer von la Naulette auch eine bestimmte Struktur zeigen, welche derjenigen bei den Kiefern von Schipka und Krapina ähnlich ist. Um die innere Struktur des vorderen Kieferteiles zu zeigen, gebe ich in Fig. 5 und 6 Röntgenaufnahmen von der Vorder- und Rückseite. Durch diese Aufnahmen wird die vollständige Abwesenheit eines wirklichen Trajektoriums des Genioglossus bewiesen. Auf der Aufnahme, bei welcher die Lingualseite der Platte anlag, (Fig. 6) ist deutlich und nur allein das Foramen an der Eintrittsstelle zu erkennen. Das Gleiche ist auch auf der Aufnahme der vorderen Kieferplatte zu sehen, ein Beweis, dass ein wirkliches Trajektorium des Genioglossus nicht vorhanden ist. Darunter liegt im Bereich der Digastricusinsertion eine starke Zone verdichteter Compakta. Die Balken dieses Trajektoriums im Vorderkiefer sind allerdings meistens mehr horizontal gelagerte Knochenplättchen. Selbst die starke Überwallung zeigt, obgleich kompakt, Andeutungen dieser Knochenplättchen, während letztere beim Schipkakiefer weniger hervortreten.

Die heutigen Kiefer unterscheiden sich gegenüber diesen diluvialen Formen in der Struktur sehr. Beim Geniohyoideus des recenten Kiefers beginnen nämlich die Bälkchen sich schon aufzurichten, um für das Trajektorium des Genioglossus neben der Verdichtung eine mehr senkrechte Stellung zu zeigen. Die Bälkchen sind bei diesen beiden letzteren Muskeln gewöhnlich feiner aber dafür zahlreicher als beim Trajektorium des Digastricus. Um ein etwa bestehendes grösseres Gefäss in der Medianlinie sind die Bälkchen des Trajektoriums des M. genioglossus elliptisch angeordnet. (Vergl. Fig. 51, 53, 54 in Lieferung IV.)

Trotz einer verhältnismässig starken Grubenbildung für den Genioglossus finden wir also beim la Naulette-Kiefer dieselbe innere Struktur wie beim Schipkakiefer. Auch bei ersterem war die Funktionsthätigkeit dieses Muskels in konstanter Richtung

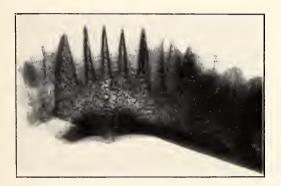


Fig. 5.

Fig. 6.

Fig. 5. Röntgenaufnahme des Vorderkiefers von la Naulette (vordere Kieferplatte der Schicht zugewandt). Fig. 6. Röntgenaufnahme des Vorderkiefers von la Naulette (hintere Kieferplatte der Schicht zugewandt).

keinenfalls eine grössere zu nennen, und ich schliesse deshalb auch bei diesem Individuum, wie beim Schipkakiefer auf das Fehlen einer artikulierten Sprache in grösserem Umfange.

Ich komme zu der Stellung, Grösse und Form der Zähne beim Kiefer von la Naulette. Trotzdem sämtliche Zähne fehlen, kann man doch aus der Untersuchung des Objektes selbst und den Röntgenaufnahmen sichere Schlüsse auf die Beschaffenheit der Wurzeln machen und auch gewisse Beweise für die Stellung und Form der Kronen bringen. Virchow sagt in seiner Abhandlung bei der Erörterung der etwaigen "pithekoiden" Eigenschaften des Kiefers von la Naulette, dass nach der Angabe von Pruner-Bey nachträglich ein sehr kleiner Eckzahn in der Höhle von la Naulette gefunden sei. Ich habe in Brüssel nicht ermitteln können, ob der nachträglich gefundene Zahn wirklich zum Kiefer von la Naulette gehörte. Jedenfalls wurde ersterer gar nicht

mit letzterem aufbewahrt. Wenn auch die Zähne am Kiefer von la Naulette wahrscheinlich nicht aussergewöhnlich gross waren, wie beim Schipkakiefer, so könnte doch die Virchow'sche Anführung eines aufgefundenen sehr kleinen Eckzahnes zu der Annahme führen, dass hier ein sehr stark entwickelter Kiefer mit sehr kleinen Zähnen ganz aus der Reihe der Eigenschaften der diluvialen Kiefer herausfiele. Das ist aber thatsächlich durchaus nicht der Fall. Ich gebe die am Objekte gemessene Wurzellänge der einzelnen Zähne in Millimetern:

Nun muss man zu diesen objektiven Maassen der Wurzellänge noch mindestens 1-2 mm hinzurechnen, weil einerseits der Alveolarfortsatz beschädigt ist, anderseits

 $\label{eq:Fig.7} \mbox{Fig 7.}$ Röntgenaufnahme der linken Seite des Kiefers von la Naulette.

bekanntlich an einem skelettierten Kiefer der Zahnhals noch mindestens um das angegebene Maass über den ersteren herausragt. Nach MÜHLREITER misst die Krone heutiger unterer Eckzähne 9 bis 14 mm, die Gesamtlänge 20—34 mm. Selbst wenn wir nur Mittelzahlen für die Kronen der Eckzähne

im la Naulette-Kiefer annehmen, erreicht der rechte Eckzahn desselben annähernd, der linke aber sicherlich die Maximal grenze der heutigen Zähne. Von einem sehr kleinen Eckzahn in diesem Kiefer kann also keine Rede sein, sondern für heutige Verhältnisse waren sie unbedingt sehr gross zu nennen. Dafür spricht auch noch beifolgende Röntgenaufnahme der linken Seite des Kiefers von la Naulette. Für die Grösse der Zähne zeugt ferner der labio-linguale Durchmesser der Alveolen. Er beträgt z. B. links bei J¹ 7 ½ mm, beim C 10 mm, beim M¹ 9 mm, M¹ 10 mm, M¹ 11 mm. Das sind sehr respektable Grössen, viel höher, als wie sie bei heutigen Zähnen durchschnittlich vorkommen. Grade der grosse labio-linguale Durchmesser der Vorderzähne ist ein hervorragendes Merkmal des diluvialen Menschen. Die bestehende starke Prognathie des diluvialen Kiefers und der Zähne bedingte bei den Vorderzähnen eine Verstärkung des Querschnitts in der Richtung der Beanspruchung.

Das zeigt auch der Kiefer von la Naulette deutlich. Ich bemerke weiter, dass die Wurzeln, besonders der Vorderzähne, wie im Schipkakiefer auf der mesialen und distalen Seite der Länge nach stark gefurcht sind. Also auch die Zahnformen nähern sich dem Schipkakiefer ganz bedeutend, und dieser übertrifft den Kiefer von la Naulette nur durch eine noch mächtigere, offenbar vererbte Entwickelung der funktionell mehr beanspruchten Teile, besonders also durch die gewaltigere Grösse der Zähne und ihrer stärkeren Wurzelkrümmung nach hinten. Über den Zahnbogen des la Naulette-Kiefers werde ich mit demjenigen der Spykiefer berichten, weil gewisse infolge des Mangels der Zähne unsichere Schlüsse durch letztere klar gestellt werden können.

Ich musste den Kiefer von la Naulette in ausführlicher Weise beschreiben, weil die Arbeit Virchow's über denselben und den Schipkakiefer, wenn man auch gelegentlich dagegen opponierte, die Richtschnur für die deutsche Anthropologie durch Jahrzehnte wurde. Man betrachtete die unserem Auge ganz fremd erscheinenden Funde und zwar besonders die Kiefer und Zähne aus der Diluvialzeit als excessive Bildungen; das Interesse für sie wurde so gering, wie für irgend ein Präparat einer pathologischen Sammlung. Nachdem sich die vollständige Grundlosigkeit für diese Annahme ergeben hat, würde eine Nichtberücksichtigung der für die damalige Zeit typischen Normalform der menschlichen Kiefer eine Verkennung wichtigster Reste und kostbarster Funde der Vergangenheit unseres Geschlechtes bedeuten.

II. Der Kiefer von la Naulette als Typus der diluvialen Kieferform und seine pithekoiden Eigenschaften.

Der Kiefer von la Naulette ist von allen bisher aufgefundenen Kiefern des Menschen derjenige, welcher die meisten Eigenschaften der diluvialen Normalform des Unterkiefers zeigt. Ich rekapituliere hier kurz: das fehlende Kinn, die Kieferund Zahnprognathie, die Einsenkung am inneren Alveolarfortsatz der Vorderzähne, der Lingualwulst, der Ansatz des Genioglossus in einer Grube, die mächtige Entwickelung des gesamten Kieferknochens in allen seinen Teilen insbesondere des unteren Randes zu einer Basalfläche, die Grösse des labio-lingualen Durchmessers der Wurzeln der Vorderzähne, die allgemeine Grösse der Zähne, der mehr elliptische Zahnbogen, die zunehmende Grösse der Molaren von vorn nach hinten, endlich das nahezu vollständige Fehlen des Trajektoriums des Genioglossus. Weniger ausgeprägt aber immerhin zum allgemeinen diluvialen Typus zu rechnen sind die Rückwärtskrümmung der Schneidezahnwurzeln und die Höhenentwickelung des Kiefers von la Naulette. Das geringere Hervortreten dieser Eigenschaften kann meines Erachtens sehr wohl in einer individuellen Anlage jenes Menschen, welcher noch dazu nach Virchow's Anschauung ein weibliches Individuum war, eine Erklärung finden. Zufolge des Mangels sämtlicher Zähne ist die sehr grosse Zahl von Schmelzfalten mit eventueller Vermehrung der Höcker für den Kiefer von la Naulette nicht zu konstatieren, welche in Rücksicht auf die zahlreichen Funde von Krapina als Eigenschaften der diluvialen Zähne angesehen werden müssen.

Die pathologische Richtung versagte hier vor diesem Funde von la Naulette; er wurde für Virchow zu einer "isolierten" Erscheinung. Wenn man aber die verschiedenen Kiefer unter Berücksichtigung der funktionellen Beanspruchung und der daraus folgenden Entwickelung ihrer einzelnen Teile vergleicht, so sind viele aufgezählte Eigenschaften der diluvialen Kiefer nur eine zwingende Folge der Prognathie des Kieferkörpers. Die Kombination möglichst aller jener aufgezählten Eigenschaften, welche bei dem Kiefer von la Naulette von allen bisher aufgefundenen diluvialen Kiefern in der That am zahlreichsten vorhanden sind, respektive am markantesten hervortreten, schafft den diluvialen, menschlichen Unterkiefertypus. Dass

einzelne dieser Eigenschaften bei der individuell verschiedenen Beanspruchung der Kieferteile schon im Diluvium einen schwankenden Charakter der Ausprägung zeigen, erscheint aus den angeführten, entwickelungsmechanischen Gründen nicht wunderbar. Rein schematisch wird man die Kieferformen wie alles Organische wohl niemals behandeln können. Die ganze weitere Entwickelung respektive Veränderung der menschlichen Kiefer und Zähne seit der Diluvialzeit besteht gegenüber in einem Wechsel der Form und zwar in einer regressiven Metamorphose der äusseren Form und inneren Struktur, indem ein ursprüngliches Merkmal nach dem anderen abbröckelt und einer neuen, schwächeren funktionellen Form Platz macht. Die einzige Ausnahme bildet die durch die Sprachmuskulatur beeinflusste Kinnpartie, welche nicht nur durch die Funktion erhalten, sondern sogar kräftiger gestaltet wird.

Es erübrigt noch eine sehr wichtige Frage zu berühren, ob der diluviale Kiefertypus "pithekoide Eigenschaften" aufweist. Dieser Ausdruck ist sehr verschieden interpretiert worden. Schaaffhausen ging entschieden zu weit, als er behauptete, dass man eine Abweichung vom normalen Bau des heutigen Menschen pithekoid nennen könne, wenn sie nur in entfernter Weise an den Typus des Affen erinnere. Virchow hat dem gegenüber betont, dass die genetische Frage in Betracht zu ziehen sei. "Nicht jede tierähnliche Abweichung vom Normalbau, am wenigsten eine solche, welche nur in entfernter Weise an den Typus der Affen erinnert, darf pithekoid genannt werden; vielmehr muss eine positive Übereinstimmung der Bildung und zwar nicht mit einem gedachten Affen, sondern mit einem bestimmten Affen, einer bestimmten Spezies vorhanden sein. Die Abweichung darf auch nicht zufällig, durch das Zusammenwirken erkennbarer Ursachen, sondern sie muss spontan durch einen inneren Bildungstrieb hervorgebracht sein." Virchow setzt dieser Auseinandersetzung die Frage hinzu: "Bei welchem Affen finden wir die an dem Kiefer von la Naulette und Schipka vorkommenden Merkmale?" Er erklärt unmittelbar darauf: "Mit dem Kiefer des Gorilla hat der vorliegende keine Ähnlichkeit."

Folgen wir nun einmal bei einer Vergleichung des Kiefers von la Naulette der Virchow'schen Festlegung des pithekoiden Charakters. Die hauptsächlichste und wichtigste äussere Eigenschaft des diluvialen menschlichen Kiefers ist die Prognathie des Kieferkörpers mit allen ihren Folgen für die Bildung der Kieferform nach den Gesetzen der Entwickelungsmechanik. Die Prognathie des Kieferkörpers ist aber auch die hervorragendste Eigenschaft des Affenkiefers. Je mehr sie und ihre Folgen an einem menschlichen Objekt vorhanden sind, um so eher wird man letzteres nicht nur als dem diluvialen Typus zugehörig, sondern auch als pithekoid erklären können.

Die Prognathie des Kieferkörpers, welche beim heutigen Menschen durchaus fehlt, ist bei jedem diluvialen Kiefer vorhanden; sie bleibt sogar in der Symphyse, wie wir noch aus den Übergangsformen zu denen des heutigen Menschen sicher erkennen werden, am längsten erhalten. Wir kommen damit zu dem Schlusse, dass diese Prognathie eine der Stammesform des diluvialen Menschen eigentümliche war.

Fig. 8.
Unterkiefer vom Gorilla,
Ansicht der Rückseite
(Symphysengegend).

Virchow leugnet mit dem obigen Ausspruch eine Ähnlichkeit mit dem Gorilla. Er spricht allerdings dabei vergleichend von dem Schipkakiefer und nicht von demjenigen von la Naulette. Sieht man sich jedoch die Abweichungen näher an, so kann man die Verschiedenheit dieser Kiefer leicht durch die verschiedenartige funktionelle Beanspruchung einzelner Kieferabschnitte erklären. Gerade der Vorderkiefer des Gorilla zeigt in mancher Weise grosse Anklänge an die diluvialen menschlichen Formen, speziell an den Kiefer von la Naulette und zwar mehr wie die Kiefer der übrigen grossen Anthropromorphen. (Vergleiche Fig. 8.) Ich rechne dazu die beim Gorilla zu konstatierende konkave Einsenkung des Alveolarfortsatzes an der hinteren Kieferplatte, der nach oben und unten abgesetzte Lingualwulst, die grössere Einsenkung des Kieferkörpers unter letzterem, in welcher deutlich umgrenzt die Insertionsgruben für die Genioglossi liegen. Diese Insertionsgruben sind wieder durch eine kleine Leiste getrennt, welche sich oben Y-artig

teilt. Zwischen den beiden Schenkeln findet man ein kleines Foramen. An der Insertionsstelle des Geniohyoideus sieht man häufig eine wahre Spina ausgebildet. Diese entsteht durch das Zutreten der Linea mylohyoidea an dieser Stelle zur Symphyse. Nur beim Gorilla ist das der Fall, beim Orangutan und Schimpanse erreicht diese Linie den Unterkieferrand schon früher. Das sind alles Eigenschaften des Gorilla-Unterkiefers, welche an dem Kiefer von la Naulette ebenfalls zu finden sind und man kann diese Formen deshalb sehr wohl als pithekoid bei diesem Kiefer bezeichnen. Selbst zur Bildung einer gewissen Basalfläche kommt es gelegentlich beim Gorilla; sie wird durch die Insertionsflächen der M. digastrici und durch die vom M. geniohyoideus ziemlich stark ausgebildete Spina hervorgerufen. Zwei Momente sind es meines Erachtens, weshalb die Basalfläche beim Affen nicht zu einer grösseren werden kann. Einerseits ist es die stark vermehrte Prognathie durch die Grössenzunahme der Vorderzähne und des Kiefers bei den Anthropomorphen, welche gegenüber derjenigen der Stammesform noch zunahm. Für den Gorilla und Orangutan hat ja Selenka in der ersten und

zweiten Lieferung dieses Werkes nachgewiesen, dass das Gebiss sich noch vergrössert Anderseits kann es weniger zur Bildung einer grösseren Basalfläche kommen, weil der M. digastricus bei den Affen viel stärker wirkt, als beim Menschen. Der weit grössere Einfluss dieses Muskels bei den Affen auf den Kieferrand wird durch die vorgestreckte und hängende Stellung des Kopfes bedingt. Zweitens hat der Digastricus den ganz bedeutenden Dehnungswiderstand vielleicht auch einen natürlichen Tonus der gewaltigen Kaumuskeln der Affen zu überwinden. Die starke Funktion des M. digastricus zeigt sich ja gerade bei den Anthropomorphen deutlich in dem starken Trajektorium des zurückgebogenen Kieferrandes, welches sich trotz der starken Compacta in der Spongiosa ausbildet. (Siehe Lieferung IV. S. 262.) Für den diluvialen Menschen fehlte die erste Bedingung infolge seines aufrechten Ganges, die zweite war bei der unzweifelhaft mächtigen Kaumuskulatur, der starken Beanspruchung und der Prognathie des Vorderkiefers sicher vorhanden. Schwalbe setzt den M. temporalis bei dem Neanderthaler an die erste Stelle der Schädelmuskulatur, während dieser Muskel bei heutigen Menschen erst an dritter kommt. Die Formwirkung dieses Muskels auf den Vorderkiefer wird durch die Kraftebene ermittelt, welche durch die Linea obliqua externa und interna zum äusserlichen Ausdruck kommt. Diese Kraftebene zieht bei den diluvialen menschlichen Kiefern zum unteren Rande der Symphyse und mit ihrer mehr oder weniger starken Ausbildung hängt die Entstehung der grossen Basalfläche der diluvialen Kiefer bei gleichzeitiger Anwesenheit von grossen M. digastricis zusammen. Der Gorilla hat von allen Anthropomorphen den ähnlichsten Verlauf jener Kraftebene des Temporalis zur Symphyse. Trotzdem kann es nicht zur Entwickelung einer grösseren Basalfläche wie beim diluvialen Menschen kommen, weil die viel bedeutendere Kieferprognathie und die Kraftrichtung des M. digastricus die Bildung einer grösseren Fläche, welche in Anbetracht der Dicke des Kieferkörpers im übrigen wohl entstehen könnte, verhindern. Der vordere Unterkiefer des Gorilla würde andernfalls demjenigen des diluvialen Menschen noch vielmehr ähneln und der letztere wiederum noch mehr als pithekoid bezeichnet werden müssen.

Die vordere Kieferplatte des Kiefers von la Naulette ist in ihrer Form sicherlich als pithekoid zu bezeichnen. Ihre hervorragende Eigenschaft, der Mangel des Kinnes, ist die Folge der deutlich ausgesprochenen Prognathie des Kieferkörpers, der Schrägstellung des letzteren nach vorn zur Bissebene. Nicht die Grösse dieser thatsächlichen Eigenschaft ist das entscheidende, sondern der Umstand, dass dieselbe überhaupt vorhanden ist. Dadurch ist der alt diluviale menschliche Kiefertypus von demjenigen der heutigen Rassen vollständig abweichend und nicht nur allein dem Kiefer eines bestimmten Affen, wie Virchow es verlangt, sondern sogar

je dem Affenkiefer ähnlich. In Bezug auf die Grösse der Prognathie des Kieferkörpers übertrifft der Kiefer von la Naulette nächst dem Schipkakiefer alle bisher bekannt gewordenen Kiefer des späteren menschlichen Geschlechtes bis zur Jetztzeit. Die heutigen tiefstehenden Rassen mit sehr prognathem Gebiss haben keine Prognathie am Körper der vorderen Kieferplatte. Diese steht unter denselben sich verändernden Einflüssen des funktionellen Gebrauches der Teile, wie ich sie für die hintere Kieferplatte entwickelt habe. Der Kiefer des diluvialen Menschen näherte sich meines Erachtens demjenigen einer etwaigen gemeinsamen Stammesform noch am meisten, während die Anthropomorphen in Bezug auf Grössenverhältnisse der Zähne, der Kiefer und der Muskeln insbesondere des M. temporalis eine progressive Veränderung einschlugen. Bei allen Affen trägt ausserdem die kolossale Entwickelung der Eckzähne zur Entwickelung einer viel stärkeren Prognathie (wie selbst beim diluvialen Menschen) bei. Bei ihrem Wachstum muss der ganze Vorderkiefer im Bereich der Schneidezähne noch mehr nach vorn gedrängt werden. Man vergleiche die Figuren Fig. 5 D und Fig. 6 A der vierten Lieferung. Der dort augenscheinlich demonstrierte ungeheuere Einfluss der sich entwickelnden Eckzähne in frontaler Richtung erfolgt natürlich durch Ausweichen des Kieferknochens auch nach vorn, und vermehrt damit die schon bestehende Prognathie um ein Bedeutendes. Nach den Befunden jegliche pithekoide Eigenschaften der äusseren Kieferform des diluvialen Menschen abzuleugnen, wäre meines Erachtens eine vollständige Verkennung unumstösslicher Thatsachen. Der junge Gorilla, welcher gelegentlich, wie Selenka nachwies, Anfänge von Kinnbildung zeigt, verliert dieselben mit der Entwickelung der Eckzähne. Beim diluvialen Menschen kam die Vermehrung der Prognathie durch eine enorme Entwickelung der Eckzähne nicht zu stande, weil letztere nur eine verhältnismässig geringe Ausbildung gegenüber den Affen erhielten. Bei diesen findet ein Wurzelwachstum nicht selten durch den ganzen Kieferkörper bis nahe zur Basalfläche statt, (vergl. Fig. 6 A Lieferung IV.) eine Eigentümlichkeit, welche dem heutigen Menschen vollkommen abgeht. Auch der diluviale Mensch hatte, dem Affen gegenüber, eine viel geringere Zahnentwickelung.

Als besonders wichtige pithekoide Eigenschaft ist endlich zu betonen, dass beim Kiefer von la Naulette, Schipka und Krapina, das Trajektorium der Zungenmuskeln vollständig oder doch nahezu fehlt, während es beim heutigen Menschen immer mehr oder wenig stark ausgeprägt nachzuweisen ist. Für jene alt-diluvialen Kiefer haben wir damit eine unzweifelhafte und ganz hervorragende pithekoide Eigenschaft in der Struktur. Auch nach dieser Richtung deutet der Unterkiefer des diluvialen Menschen, besonders aber derjenige von la Naulette stark auf eine gemeinsame Stammesform hin.

III. Die Kieferreste von Spy.

Nachdem hervorragende Anthropologen auf dem Kongress in Ulm "die Neanderthalrasse" begraben und ihr sogar gewünscht hatten, "dass sie nie wieder die Auferstehung feiern möge", war es nicht wunderbar, dass man in Deutschland einem ähnlichen belgischen diluvialen Funde, nämlich demjenigen von Spy, wenig Aufmerksam-



Fig. 9.
Unterkieter von Spy I, Vorderansicht.

keit geschenkt hat. Abgesehen von den übrigen wohlerhaltenen und zahlreichen Knochenresten sind aber gerade die Kiefer der Spy-Menschen von ganz eminenter Bedeutung. Zum ersten Male wurden einerseits ein nahezu vollständig erhaltener Unterkiefer eines Erwachsenen mit sämtlichen Zähnen, andererseits Kieferstücke mit Zähnen aufgefunden, deren Eigenschaften von denjenigen des heutigen Menschen ganz

erheblich abweichen. Der Fund von Spy ist von ihren Entdeckern Fraipont und Lohest sehr sorgfältig gehoben und in Bezug auf die äusseren Formen so ausgezeichnet beschrieben, dass ich hier nur auf die Abhandlung derselben (La race humaine de Neanderthal ou de Canstadt en Belgique 1887) hinweisen möchte. Fraipont rechnet denselben zur Moustérien-Periode. Er wäre somit jünger als der Kiefer von la Naulette, welchen Dupont, Mortillet u. A. dem ältesten Paläolithicum, dem Chelléen, zuweisen. Ich werde im folgenden die für die entwickelungsmechanische Anthropologie wichtigen Eigenschaften dieser Funde erörtern, ohne die Frage der etwaigen Alters-

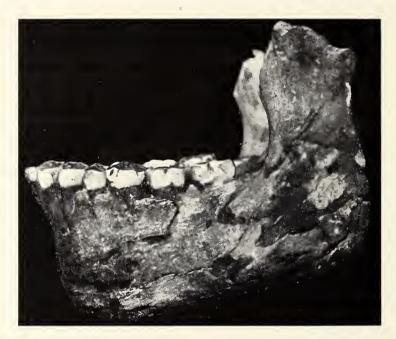


Fig. 10.
Unterkiefer von Spy II, linke Seitenansicht.

unterschiede in den Vordergrund zu schieben.;

Es wurden in der Höhle von Spy die Reste zweier Individuen aufgefunden, welche von den Entdeckern mit Spy I und 2 bezeichnet sind. Der nahezu vollständig erhaltene Unterkiefer Spy No. 1 hat in der Symphyse (ohne Zähne gemessen) eine Höhe von 38 mm. Die ursprüngliche Grösse der Zahnkronen ist nicht zu bestimmen, sie sind stark benutzt und zwar insbesondere die Schneidezähne, sodass diese Zähne an den Approximalflächen bis zum Zahnhalse

abgeschliffen sind. Der Vorderkiefer ist in allen seinen Teilen stark prognath. Die vordere Kieferplatte hat eine winklige Stellung zum Alveolarfortsatze, welcher etwa von der Höhe der Wurzelspitzen an noch mehr prognath ist, als der Kieferkörper. Dieser zieht gerade herunter bis zur Basalfläche, ein Kinn ist nicht vorhanden. Nur ein ganz kleiner Vorsprung kommt wieder wie beim Kiefer von la Naulette — bei aufmerksamer Betrachtung von der Basalfläche her — zum schwachen Ausdruck. Seitliche Kinnhöcker sind als sehr geringe Erhabenheiten vorhanden. Das Foramen mentale liegt jederseits unter dem ersten Molaren, die Linea obliqua externa tritt als breiter gerundeter Wulst von dem nahezu rechtwinklig aufsteigenden Kiefer-

aste auf die äussere Kieferplatte. Die ganze vordere Kieferplatte des Spykiefers No. I entspricht somit in ihrer Anlage derjenigen von la Naulette durchaus. Der einzige grössere Unterschied besteht in der grösseren Höhe des Spykiefers.

Auch die innere Kieferplatte des Spykiefers No. 1 ist in ihrem oberen Teile analog derjenigen des la Naulette-Kiefers gestaltet. Unter Berücksichtigung der Grössenverhältnisse beider Kiefer ist jedoch der Lingualwulst bei letzterem stärker entwickelt. Die Zahnwurzeln des Spykiefers sind wiederum nach rückwärts gebogen und es entstehen

Fig. 11. Unterkieter von Spy I, Rückseite.

durch Aussparung von Material oberhalb des Lingualwulstes ebenfalls zwei grössere Mulden, weil in der Symphyse eine vertikale Leiste die Alveolareinsenkung in zwei Abschnitte teilt. Unter dem nicht so hohen, aber sich horizontal bis zum ersten Prämolaren erstreckenden Lingualwulste folgt eine Einsenkung von bedeutenderer Ausdehnung in der Breite, aber von geringerer Tiefe als beim Kiefer von la Naulette. Diese Einsenkung erstreckt sich bis zu der Richtungslinie der ersten Molaren. In ihr liegt in der Medianlinie ein kleines Gefässloch. Um dieses Foramen herum sieht man die Grube für den Ansatz der Genioglossi schwach vertieft. Seitlich besonders aber

unterhalb dieses Foramens ziehen zunächst noch im Gebiete der M. genioglossi nahe der Medianlinie, in einem etwas nach aussen gekrümmten Bogen zwei dünne Leisten als Schenkel eines Y. Ihre Vereinigung zieht senkrecht zur Basalfläche. Diese Leiste wird sofort im Gebiete des Ansatzes des Geniohyoideus zu der Basis hin von zwei weiteren Leisten verstärkt. Letztere erstrecken sich bis zum unteren Kieferrande fort, um sich an dem aufgewulsteten hinteren Rande der Basalfläche mit der mittleren Leiste zu verbinden. Dagegen setzt sich die nun stärkere vertikale Leiste in der Medianlinie noch über die Basalfläche bis zum vorderen Kieferrande fort. An der Ansatzstelle des Geniohyoideus oberhalb des hinteren Kieferrandes zweigen sich von jener Hauptleiste noch zwei kleine Nebenleisten in mehr horizontaler Richtung ab, indem sie die untere Begrenzungslinie der Gruben für den Ansatz des Genioglossus bilden. Für den Genioglossus fällt also auch beim Spykiefer No. 1 die Bildung einer wirklichen Spina fort. Nur am unteren Rande seiner Insertion ist eine geringe Überwallung und beginnende Leistenbildung für die Sehne des Muskels zu konstatieren. Die ganze übrige, verhältnismässig grosse Leistenbildung entspricht dem Ursprunge des Geniohyoideus, aber die Stärke derselben ist indirekt dem hier vorspringenden hinteren unteren Kieferrande zuzuschreiben, dessen Entwickelung durch die mächtige Linea mylohyoidea (Linea obliqua interna) bedingt ist. Letztere erscheint als die direkte Fortsetzung einer äusserst kräftigen Leistenbildung, welche vom inneren Kieferwinkel sowohl zum Processus coronoideus als auch zum Processus condyloideus zieht. Nur gegen den unteren Kieferrand ist diese Linie scharf abgesetzt. Unter der Linea obliqua interna finden sich nämlich sehr grosse Fossae mylohyoideae und starke Gruben für die Insertion des M. pterygoideus internus. Der untere Kieferrand wird sofort von dieser Insertionsstelle aus nach vorn zu immer stärker. Zu ihm tritt noch die mächtige Linea obliqua, sodass der hintere Kieferrand aufgewulstet jederseits die Symphyse erreicht. Damit ist eine bessere Gelegenheit für die Entwickelung der Insertionsleisten des M. geniohyoideus gegeben. Der Spymensch No. 1 war ein älteres Individuum als der Neanderthaler, die Nahtlinien der Epiphysen sind bei ersterem verschwunden, während sie an den Extremitätenknochen des Neanderthaler nachweisbar sind. Im übrigen war er noch auf der Höhe funktioneller Leistungsfähigkeit und stand wahrscheinlich im besten Mannesalter. Sicherlich ist die Kieferthätigkeit dieses Menschen eine enorme gewesen. Die stärkeren Leistenbildungen im Gebiete des Geniohyoideus müssen unter dem Gesichtspunkte der Kieferfunktion eines länger erwachsenen Menschen aufgefasst werden.

Da die Dicke des Spykiefers No. 1 in der Medianlinie ca. 15 mm beträgt, so ist die Basalfläche desselben von ganz bedeutender Breite. Die Muskelinser-

tionsgruben sind viel breiter entwickelt als beim Kiefer von la Naulette, haben aber auch deshalb eine viel geringere Überwallung nach der vorderen Kieferplatte zu nötig. Die Tiefe der Gruben ist jedoch eine geringere und entspricht etwa derjenigen am Kiefer von Predmost. Die Basalfläche des Spykiefers setzt sich zur hinteren und vorderen Kieferplatte nahezu rechtwinklig ab. Dadurch unterscheidet er sich von demjenigen von la Naulette und Krapina, bei welchen die hintere Kieferplatte kürzer erscheint. Gerade die Basalfläche, welche Virchow als einzige genetische Über-



Fig. 12. Unterkiefer von Spy I, Basalfläche.

einstimmung zwischen dem Kiefer von la Naulette und dem von Schipka anerkennt, erscheint somit beim Spy I noch mehr übereinstimmend mit letzterem Funde. Man kann beim Spykiefer bis zum zweiten Prämolaren von einer wirklichen Basalfläche sprechen. Neben dem Schipkakiefer, welchem er bis auf die kleineren Zähne auffallend gleicht, stellt sich der Spykiefer No. I in seiner Formgestaltung als der gewaltigste diluviale Kiefer dar, welcher bisher aufgefunden wurde. Dabei sind durch aus keine pathologischen Eigenschaften zu erkennen, wenn man nicht etwa kleine Verdickungen am zweiten Prämolaren an der inneren Kieferplatte besonders hervorkehren will. Derartige Funde macht man jedoch an vielen normal gebauten

Kiefern noch heute und auch der la Naulette-Kiefer zeigt sie, ohne dass diese Erscheinung bisher als anormal bezeichnet wurde. Jedenfalls ist sie auf die Gestaltung des Kiefers ohne jeden Einfluss.

Im Spykiefer No. I haben wir einen neuen, ganz hervorragenden Repräsentanten der diluvialen Kieferform. Wenn man den la Naulette-Kiefer für denjenigen einer etwa dreissigjährigen Frau erklärte, muss man jenen als denjenigen eines älteren Mannes, vielleicht ebenfalls in den dreissiger Jahren, erklären.

Röntgenaufnahmen des Vorderkiefers ergaben die Anwesenheit eines stärkeren Trajektoriums des Genioglossus. Die grössere Thätigkeit dieses Muskels, welche sich schon durch die beginnende Leisten- und Überwallungsbildung äusserlich kundgiebt,

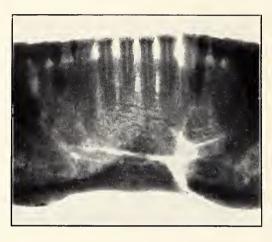


Fig. 13.
Unterkiefer von Spy I, Röntgenaufnahme, das
Trajektorium des M. genioglossus zeigend

wird durch das ausgebildetere Trajektorium gleichfalls bewiesen. Die gesamte übrige Spongiosa des Kiefers zeigt sehr grobmaschige und starke Balken.

Vom Oberkiefer des Spy-Menschen No. I ist ein grösseres Stück der rechten Seite erhalten. Es enthält die Molaren und Prämolaren, die Alveolen des Eckzahnes und der Schneidezähne sind fast vollständig erhalten. Fraipoint macht auf die beträchtliche Höhe des Kiefers zwischen Alveolarrand und der Spina nasalis anterior aufmerksam, erstere beträgt 28 mm. Noch viel wichtiger erscheint mir, dass durch dieses Kieferstück eine starke Prognathie des

Kieferkörpers und des Alveolarfortsatzes für den Oberkiefer des Spyschädels No. 1 feststeht.

Bei dem Schädel Spy II ist vom Unterkiefer leider nur ein Stück der rechten Seite mit den drei Molaren und den beiden Prämolaren, ferner ein Stück der linken Seite mit den drei Molaren und dem zweiten Prämolaren erhalten. Die Reste umfassen jederseits noch die Gegend des inneren Kieferwinkels. Vom Oberkiefer sind sämtliche Zähne mit Ausnahme des linken kleinen Schneidezahnes des ersten Prämolaren und des rechten oberen dritten Molaren aufgefunden. Viele der vorhandenen Zähne sind einzelne, sodass vom Alveolarfortsatz nur wenig, vom Kieferkörper gar nichts vorhanden ist.

Trotz dieses arg defekten Zustandes ergänzen diese Kieferreste des Schädels von Spy II denjenigen von Spy I in hohem Maasse. Die Unterkieferstücke des ersteren zeigen wieder die zunehmende Neigung der Molaren nach innen wie bei letzterem, sodass auch die Zahnreihe dieses Kiefers elliptisch gewesen ist. Sehr interessant ist die Thatsache, dass der zweite Molar der kleinste der im übrigen sehr kräftigen Molaren ist, dann folgt der erste Molar und der grösste ist der Weisheitszahn, von welchen der linke alle Molaren an Grösse übertrifft. Wir haben also in Bezug auf den dritten Molaren ein ähnliches Verhältnis wie am Kiefer von la Naulette.

Fig. 14.
Unterkiefer von Spy II, linke Seite.

Fig. 15.
Unterkiefer von Spy II, rechte Seite.

Die oberen Zähne liessen sich bei meiner Anwesenheit in Lüttich auf Grund der approximalen Reibungsflächen zu einem Zahnbogen zusammenstellen, welcher zum ersten Male die Zahnstellung eines älteren diluvialen Oberkiefers repräsentiert. Der Zahnbogen dieses Menschen war demnach von gewaltiger Grösse und nähert sich mehr der Form eines Trapezes mit etwas nach innen gebogenen Schenkeln. Trotz dieser Form des Zahnbogens in der Gegend der Vorderzähne ergab die ganze Zusammenstellung, dass eine sehr starke Prognathie des Oberkiefers vorhanden ge-

wesen sein muss, eine wichtige Thatsache, die noch nicht für die diluvialen Kiefer bisher konstatiert war. Man beachte die Grösse der Prämolaren speziell ihrer Wurzeln. Der Eckzahn zeigt eine harmonische Grösse im Zahnbogen. Die sämtlichen Zähne

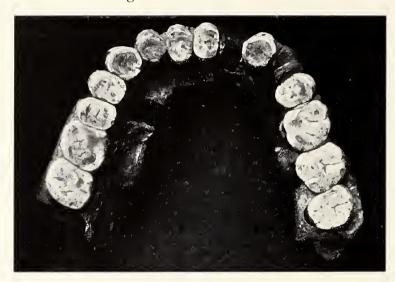


Fig. 16.

Der Zahnbogen des Oberkiefers von Spy II in der Aufsicht.

haben eine Biegung der Wurzeln nach dem Gaumen zu, am stärksten ist die Rückwärtskrümmung der Schneidezahn wurzeln. welche niemals einem orthogenen Oberkieferkörper angehört haben können. Man vergegenwärtige sich bei einem Zweifel nur einmal die nötigen Veränderungen der Kraftbahnen, welche durch Gesichtshöhlen dann gehen müssten.

Die enorme Abnutzung der Vorderzähne des Ober-

kiefers von Spy II weist nach Feststellung der Prognathie des Oberkiefers unzweifelhaft auf eine Prognathie des Unterkiefers, welcher bei diesem Funde verloren ging,

Fig. 17.

Der Zahnbogen des Oberkiefers von Spy II, rechte Seitenansicht.

hin, wie sie beim Spy I so deutlich vorhanden ist.

Also auch bei Spy II haben wir die vom heutigen Typus so abweichenden Kiefer- und Zahnformen, welche ich für den diluvialen Menschen als spezifisch erklärte. Die Rückwärtskrümmung der Wurzeln der Vorderzähne ist im Oberkiefer selbst bei stärkster Prognathie der heutigen Rassen meistens gar nicht vorhanden, keinenfalls aber mit denjenigen bei Spy II zu vergleichen. Bei der Untersuchung von Neger-

schädeln ergab sich mir z. B. die überraschende Thatsache, dass die oberen Schneidezahnwurzeln ganz gerade waren. Die den Negern eigentümliche starke Prognathie ist allein eine Alveolarprognathie, der Unterkieferkörper ist dagegen nach rück-

wärts geneigt und nur im günstigsten Falle nahezu orthognath. Letzteres gilt auch vom Oberkieferkörper. Die Reste der Oberkiefer von Spy I und II ergeben dagegen deutlich ausser der Alveolarprognathie eine Notwendigkeit der Prognathie des Kieferkörpers. Das ist wiederum eine sehr wichtige pithekoide Eigenschaft des Oberkiefers. Unter Berücksichtigung des geraden Wurzelwachstumes bei stärkster Alveolarprognathie der heutigen Rassen scheint die Rückwärtskrümmung der

Schneidezahnwurzeln direkt an das Vorhandensein einer Prognathie des Kieferkörpers gebunden zu sein, wie sie für die Anthropomorphen typisch ist.

Ich schliesse an die Besprechung des Zahnbogens des Oberkiefers von Spy II denjenigen des Unterkiefers von la Naulette und von Spy No. 1 an. Beide Unterkiefer haben innerhalb desselben Krümmungsmerkmals des Bogens dieselbe Zahnstellung. Die Schneideflächen der Vorderzähne liegen in schräger Richtung nach vorn, die Kauflächen der Prämolaren stellen sich allmählich gerade, der erste Molar steht genau vertikal zum Kieferkörper, der zweite und noch mehr der dritte Molar neigt nach innen. In der Aufsicht sind die Bissflächen beider Kiefer, wie Virchow gegenüber Broca schon in Bezug auf den Kiefer von la Naulette betont hat, hufeisenförmig. Das ist eine besondere Eigenschaft jener alten Kiefer, von welcher man noch Anklänge bei heutigen Australiern findet. Kiefer von la Naulette lässt sich durch ein Spiegel-

Fig. 18. Zahnbogen des Unterkiefers von la Naulette, Aufsicht.

bild die fehlende Hälfte rekonstruieren und die vorhandene ergänzen. Mit Hilfe eines solchen Bildes konnte ich die vollständige Identität des Krümmungsmerkmales des Zahnbogens vom Unterkiefer Spy I und demjenigen von la Naulette konstatieren. Letzterer unterscheidet sich vom Spykiefer nur durch eine noch grössere Ausdehnung des Zahnbogens nach rückwärts. Die gerade Entfernung des Berührungspunktes der mittleren Schneidezähne bis zur distalen Fläche des Weisheitszahnes beträgt beim Spykiefer I 60 mm, beim la Naulette-Kiefer war sie wenigstens

65 mm! Niemand wird die Zahnkronen des ersteren für klein anerkennen. Da das Krümmungsmerkmal des Zahnbogens beider Kiefer dasselbe ist, so müssen bei der grösseren Länge des Zahnbogens beim la Naulettekiefer noch grössere Zähne als beim Spykiefer vorhanden gewesen sein. Es können auch keine Lücken zwischen den Zähnen bestanden haben, denn die Alveolarsepta sind gerade beim Kiefer von la Naulette dünn, und folglich war eine geschlossene Zahnreihe vorhanden. Die Annahme von Prunner-Bey und Virchow, dass der Kiefer von la Naulette sehr kleine

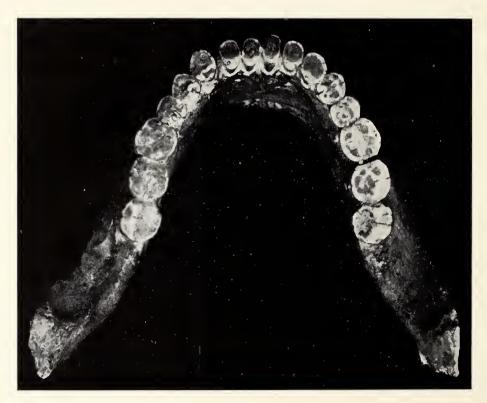


Fig. 19. Zahnbogen des Unterkiefers von Spy No. I, Aufsicht.

Zähne gehabt hätte, wird schon durch den einfachen Vergleich mit dem Spykiefer durchaus widerlegt. Gerade die Kronen in dem Kiefer von la Naulette müssen von einer enormen Dicken-Entwickelung (der mesiodistale Durchmesser der Backenzähne kommt hauptsächlich in Betracht) gewesen sein, damit sie überhaupt den gegebenen Raum ausfüllen konnten.

Die grössere Länge des Zahnbogens beim Kiefer von la Naulette ist entschieden auf die zunehmende Grösse seiner Molaren gegenüber derjenigen am Spykiefer No. I zu setzen. Für letzteren ist schon ein geringer Rückgang seiner letzten Molaren an Grösse zu konstatieren. Höchst wahrscheinlich entsprachen die Grössenverhältnisse der Zähne im la Naulette-Kiefer mehr dem Unterkiefer von Spy No. II. Die Bruchstücke dieses Kiefers und selbst die Rekonstruktion des Oberkiefers dieses Individuums deuten zum mindesten auf eine Neigung zur Parallelität der Backenzähne hin, wie sie für die Affen in ihrer Vollendung typisch ist. Auch ist die Zahnreihe des Oberkiefers von Spy II auffallend simognath (Vorderteil nach aufwärts gebogen).

Die vorhandenen Kieferreste von Spy II endlich sind entschieden noch pithekoider zu nennen als diejenigen von Spy I; erstere sowie die Zähne sind ferner kräftiger gebaut als bei dem letzteren Individuum.

Vergleicht man die Länge der diluvialen Kiefer und diejenige der Zahnreihen mit heutigen Kiefern von Kulturvölkern, so ergeben sich ganz bedeutende Unterschiede. Obwohl von Zahnärzten sichere Beweise für die fortschreitende Grössenreduktion der Kiefer und einzelner Zähne, besonders des Weisheitszahnes, des kleinen Schneidezahnes und des zweiten Prämolaren bei den Kulturvölkern gebracht sind, leugnen manche Anthropologen noch heutigen Tags eine solche. Ich beabsichtige hier nicht, auf diese offenbare Reduktion einzelner Zähne einzugehen. Hier handelt es sich um eine etwaige Reduktion der Kieferknochen respektive des Zahnbogens als Ganzes betrachtet. Der Zahnarzt Bonwill hat an mehreren tausend Schädeln der heutigen civilisierten Rassen festgestellt, dass in der Regel der Abstand der beiden Condyli 100 mm ist, und ferner, dass der Abstand von jedem Condylus bis zum Berührungspunkt der Schneideflächen der beiden mittleren Schneidezähne wiederum 100 mm beträgt. Ausnahmen sind in der That selten und betragen nur wenige Millimeter. Aber diese sonst so interessante Mitteilung Bonwill's gilt nur für die Kulturvölker. Die Konstruktion eines gleichseitigen Dreiecks aus jenen Punkten lässt sehr häufig im Stich, wenn man die Unterkiefer heutiger niederer Rassen misst. Bei letzteren kann sich der Abstand der Condyli bis zu den Schneidezähnen bis auf 120 mm. und mehr erhöhen, während der Abstand der Condyli untereinander dann bis auf 85 mm sinken kann. Das hat schon Branco ("Die menschenähnlichen Zähne aus dem Bohnerz der schwäbischen Alb") nachgewiesen und ich kann diese Angaben infolge eigener Nachmessungen nur bestätigen.

Ich gebe einige Zahlen, welche Unterkiefer von inferioren heutigen Rassen aus der anthropologischen Sammlung der Universität München (Prof. Dr. Ranke) betreffen.

Abstand der Condyli (Mittelpunkt der Flächen)
I. unter sich II. von den mittleren Schneidezähnen
Indianer No. 11 bezeichnet
I06 mm
I11 mm
Bewohner des Bismarcksarchipel
I05 mm
I17 mm

Abstand der Condyli (Mittelpunkt der Flächen) I. unter sich II. von den mittleren Schneidezähnen Eskimo 111 mm 113 mm Bakwiri Bewohner des Kamerungebirges 95 mm 125 mm

Wenn ich in der vierten Lieferung desselben Werkes aussprach, dass die Kiefer und Zähne des Menschen allmählich eine starke Grössenreduktion erlitten hätten, so müssten die diluvialen Kiefer den schlagenden Beweis liefern. Leider ist aber von allen diluvialen nur der Predmoster Unterkiefer mit den aufsteigenden Ästen vollständig erhalten, Derselbe passt in das Bonwill'sche Schema nach keiner Richtung. Dieses siebenjährige Kind hätte im erwachsenen Zustande sicherlich ein durchaus spitzwinkliges Dreieck Bonwill'schen Systems aufzuweisen gehabt. Es fehlen ihm noch die zweiten und dritten Molaren. Um die Länge dieser Zähne hätte sich der Kiefer also zum mindesten im erwachsenen Zustande vergrössern müssen. Die gewaltige Grösse dieses kindlichen Kiefers geht daraus hervor, dass der Abstand der Condyli bis zu den Schneidezähnen schon etwa 95 mm betrug. Man vergleiche damit einmal heutige Unterkiefer siebenjähriger Kinder!

Aber die belgischen Kiefer liefern wenigstens einen indirekten, darum aber durchaus nicht unsicheren Beweis für meine obige Ansicht. Mit Berücksichtigung der äusseren Formen, besonders des Verlaufes der Leisten im Kieferaste und der Trajektorien, muss man beim Spykiefer No. I den Abstand der Condyli von dem Berührungspunkte der Schneidezähne auf mindestens 125 mm wahrscheinlich aber noch grösser annehmen. Die teilweise Restauration der hinteren Seite der Kieferäste, wie sie ausgeführt wurde, entspricht keinenfalls nur annähernd der ursprünglichen Breite und Höhe der Kieferäste. Eine genaue Ergänzung der fehlenden Partieen war auch nicht beabsichtigt, aber ich muss gegenüber den Abbildungen des jetzigen Zustandes auf erstere Thatsache aufmerksam machen.

Die noch grössere Ausdehnung des Zahnbogens im Kiefer von la Naulette lässt den Schluss gerechtfertigt erscheinen, dass dieser Kiefer auch in seinem hinteren nicht zahntragenden Abschnitt in Bezug auf Längenausdehnung dem Spykiefer No. I mindestens gleichkam; ebenso deuten die geringen Reste des Spykiefers No. II durch ihre gewaltige Grösse darauf hin.

Auch diese älteren belgischen Kiefer aus der Diluvialzeit beweisen, wie der Schipka-, der Krapina- und der Predmost-Kiefer, gegenüber denjenigen der heutigen Menschen (selbst der niedrigsten Rassen) eine weit stärkere funktionelle Beanspruchung, zufolge deren die individuelle Entwickelung und Formgestaltung jener Kiefer von den heutigen gänzlich abweicht.

IV. Der Kiefer von Goyet.

Neben den genannten Funden ist noch ein Kiefer zu erwähnen, welcher von Dupont in der Höhle von Goyet aufgefunden wurde. In der deutschen Litteratur ist derselbe nirgends erwähnt. Dieser Kiefer ist durch aufgenommene Kalksalze vollständig versteinert. Leider ist der ganze Alveolarfortsatz vorn stark zerstört und sämtliche Zähne fehlen. Die hintere Kieferplatte zeigt jedoch eine wenn auch etwas geringere

Konkavität des Alveolarfortsatzes wie beim Kiefer von la Naulette (etwa so stark wie beim Spy I). Darunter liegt ein deutlicher aber schwächerer Lingualwulst. Der obere Teil zeigt somit den diluvialen Typus, die Insertionsstelle der Zungenmuskulatur dagegen verhält sich abweichend. Es findet sich an diesem Kiefer eine im Entstehen begriffene Spina mentalis interna, welche in einer sehr flachen Grube unter dem Lingualwulst

Fig. 20.
Unterkiefer von Goyet, Lingualseite.

mit zwei etwas konvergierenden Leisten zum Ausdruck kommt. Diese dienten zur Insertion des Genioglossus. Zwischen diesen Leisten liegt ein Foramen. An der Vereinigungsstelle dieser Leisten entspringen nach unten divergierend zwei ebensolche, welche wohl dem oberen Rande des M. geniohyoideus entsprechen. Perpendikulär von der Vereinigungsstelle jener grösseren vorspringenden Leisten ziehen in der Symphyse zwei sehr zarte Leistchen zur Basalfläche. Ein kleines Foramen ist am oberen und unteren Ende dieser Leisten gelegen. Dieselben machen durch ihre Lage und Form durchaus den Eindruck, als wenn sie Überwallungen durch die M. geniohyoidei sind. Die Basalfläche ist wieder derjenigen vom la Naulette-Kiefer ähn-

lich, jedoch nicht ganz so dick, in der Mitte liegt ebenso ein mächtiger, dreieckiger Wulst zwischen den grossen Gruben der M. digastrici, welche die vordere Kieferplatte durch Überwallung länger erscheinen lassen. Die Höhe des Kiefers ist schein-

Fig. 21. Unterkiefer von Goyet, Basalfläche.

bar eine niedrige, doch darf man sich durch den fortgebrochenen vorderen Alveolarfortsatz nicht täuschen lassen. So weit man überhaupt nach den geringen Alveolenresten urteilen kann, können die Vorderzähne etwas kleiner wie beim Kiefer von la Naulette gewesen sein.

Weist somit die linguale Seite dieses Kiefers neben unzweifelhaft diluvialen Formen schon Übergänge zum heutigen Typus auf, so wird die Vorderseite des Kiefers von höchstem Interesse; sie erklärt die Entstehung

des menschlichen Kinnes in schönster Weise. In der Medianlinie zeigt die Profilansicht eine nahezu gerade Symphysen-Linie als Ausdruck der hier noch be-

Fig. 22.
Unterkieter von Goyet, linke Seitenansicht.

stehenden Prognathie des Kieferkörpers-, und ist damit der Goyet-Kiefer dem la Naulette-Kiefer ganz ähnlich. Seitlich von der Symphyse jedoch sehen wir jederseits eine Grube und zwar in der Form wie beim heutigen Kinn. Es erstreckt sich also in der Mittellinie ein breiter gradaufsteigender Wulst, welcher unten in schwacher Dreieckform beginnend sich bis in den Alveolarfortsatz fortsetzt. Seitlich davon ist ein Einsinken des Kieferkörpers zu konstatieren. Hier musste eine Röntgenaufnahme ein scharfer Prüfstein für meine Theorie der Entsteh-

ung des menschlichen Kinnes sein. Ich gebe in Fig. 24 die Röntgenaufnahme, wobei die Kinnpartie der Platte anlag. Man kann sich leicht von dem Vorhandensein eines stärkeren Trajektoriums des Genioglossus oberhalb desjenigen des Digastricus überzeugen. Zwischen den beiden Kiefern von la Naulette und Goyet ist also nicht

nur ein äusserer sondern ein gewaltiger, durch die Röntgenaufnahme sichtbar gewordener struktureller Unterschied, welcher erst die Erklärung der äusseren Form zulässt. Der Kiefer von Goyet ist nach diesen beiden Richtungen hin eine höchst

wichtige Übergangsform des [vorher kinnlosen diluvialen Menschen zu den Kiefern des Postdiluviums und der Neuzeit.

Der Kiefer rührt aus einer viel jüngeren Zeit als derjenige von la Naulette her. Dupont rechnet ihn noch zur letzten Periode der Mammuthszeit, während Franpont denselben schon in die älteste Renntierzeit (Solutréen) verweist. Jedenfalls stammt der Kiefer aus der Übergangsperiode

Fig. 23. Kiefer von Goyet, Vorderansicht.

jener Zeitabschnitte und nicht aus dem älteren Diluvium. Der menschliche Kiefer der damaligen Zeit nahm allmählich eine andere Form an. Der Kiefer von Goyet ähnelt in Bezug auf die Kinn- und Basalfläche dem Predmost-Kiefer, welchen Массика

ebenfalls als dem jüngeren Diluvium angehörig bestimmte. Wichtig ist, dass diese beiden Kiefer beginnende Kinnbildung zeigen, dass sie beide starke Trajektorien des Genioglossus haben und dass der Predmoster-Kiefer die Insertion des Genioglossus in einer Grube, der Kiefer von Goyet aber schon an einer wahren Spina zeigt. Das deutet auf eine zunehmende, stärkere Beanspruchung der Zungenmuskulatur hin, als es bei den Kiefern des ältesten Diluviums der Fall war.

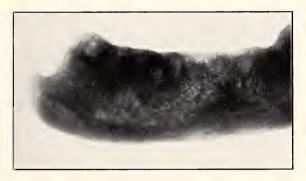


Fig. 24. Kiefer von Goyet, Röntgenaufnahme von vorn, das starke Trajektorium des M. genioglossus zeigend.

Der Mensch des jüngeren Diluviums sprach schon mehr. Es begann aber auch mit dem Ende der Diluvialzeit die allmähliche Reduktion des Vorderkieferkörpers an Grösse in sagittaler Richtung. Die Zahnprognathie bestand vorläufig noch fort. Von der ursprünglichen Prognathie aller Kieferteile wurde, bei der Reduktion des Vorderkiefers durch die sich verstärkende Thätigkeit des Genioglossus und der sich gleichbleibenden Funktion ides Geniohyoideus und Digastricus, nur ein geringer Teil in der Medianlinie noch auf dem bisherigen Zustande erhalten. Die Kombination dieser Muskelwirkungen liess dies in Dreiecksform geschehen, welche

äusserlich durch die allmähliche Ausbildung des heutigen Kinnes zum Ausdruck kam, nachdem auch die ursprünglich noch stehengebliebene Leiste in der Medianlinie dem Schwunde verfällt: Der Mensch des jüngeren Diluviums gebrauchte besonders seine Vorderzähne nicht mehr so stark wie seine Vorfahren. Es entstand eine grössere Variabilität der Formen, die zunächst mehr individuell, allmählich heute fast allgemein vorhandene Kieferformen schuf, welche von der ursprünglichen stark abweichen. Die abgeänderte und neue funktionelle Thätigkeit nach bestimmter Richtung hin fing an, mit der Vererbungsform einen Kampf um die Gestalt der menschlichen Kiefer zu führen. Aber noch heute ist nicht in allen Fällen aus den prognathen Kiefern und mächtigen Zähnen des diluvialen Menschen das vollständig orthognathe Gebiss mit seinem wohl ausgebildeten Kinn und seinen stark reduzierten Zähnen geworden!

V. Die Übergänge des diluvialen Kiefertypus zur heutigen Form.

Die Übergangsformen der menschlichen Kiefer vom Diluvium zur heutigen Zeit sind durchaus nicht an eine geologisch bestimmte Zeitepoche gebunden. Noch weit in die Renntierzeit hinein (Postglaciale Zeit) können wir einzelne echt diluviale Merkmale von Kieferteilen verfolgen, während viele der letzteren sich schon heutigen Formen nähern. Wenn wir jetzt durch die sich mehrenden Funde allmählich auch Übergangsformen kennen lernen, welche die bisher klaffende Lücke zwischen den Formen beider Perioden mehr und mehr ausfüllen, so ist das meines Erachtens ein ziemlich sicherer Beweis dafür, dass jener altdiluviale Mensch keine besondere Gattung war, wie King und noch neuerdings Schwalbe annahm, sondern dass eine ganz allmähliche Umformung der Organe des Menschen eintrat, welche zunächst wieder nur an einzelnen Teilen des betreffenden Organes vor sich ging. Wenigstens für die Kiefer lassen sich schon jetzt die Übergangsformen vom altdiluvialen, in seinen Eigenschaften fast konstanten Typus zum heutigen Menschen lückenlos nachweisen und nach den Gesetzen der Entwickelungsmechanik erklären. Wird dieses durch neue noch zu machende Funde auch für die übrigen Knochen festzustellen sein, woran ich nicht zweifele, so würde der altdiluviale Mensch nicht ein besonderes Genus, welches sich selbständig entwickelt hat, sondern der direkte Vorfahre des heutigen Menschen sein.

Ich will im folgenden noch einige dieser Übergangsformen der Kiefer erörtern, welche die Brücke zu den Formen der Neuzeit bilden, und bespreche einige Funde aus der Solutréen- und Magdalénien-Periode.

Von den belgischen Kiefern aus der Renntierzeit habe ich besonders in Brüssel eine Anzahl untersucht. Die am besten erhaltenen Exemplare aus der Trou de Frontal bei Furfooz sind in Deutschland! nicht beachtet und selbst in Belgien sind nur einige von Dupont auf dem Congrès d'Anthropologie préhistorique 1872 beschrieben. Ich erwähne hier z. B. einen Kiefer (Brüsseler Sammlung No. 2431), der nahezu in

allen Teilen gut erhalten ist. Derselbe ist in der Symphyse bis zur Höhe des Alveolarfortsatzes 38 mm hoch, die wohlerhaltenen Processus condyloidei sind 29—30 mm breit. Die Höhe von der Spitze des Processus coronoideus bis zum Kieferwinkel beträgt 57 mm. Das sind sehr grosse Dimensionen, welche für eine kräftige funktionelle Beanspruchung sprechen. In der That sind die Zähne stark abgekaut, der erste und zweite Molar bis zu seiner halben Kronenhöhe. Dagegen ist die Basalfläche gegen diejenige der diluvialen Kiefer klein zu nennen. Es ist schon eine Unterkiefer-Randbildung vorhanden. Prognathie des Kieferkörpers ist nicht mehr vorhanden, nur noch eine geringere Alveolarprognathie. Das Kinn ist dreieckig und stark vorspringend, ebenso findet sich eine grosse Spina mentalis interna, wozu die ausgeprägte Linea obliqua interna, welche bis zur Symphyse nahe dem unteren Kieferrande läuft, bedeutend beiträgt. Der Kiefer stammt von einem älteren Individuum. Trotz der kräftigen Entwickelung des Kieferastes und des hinteren Kieferkörpers beträgt der Abstand des Condyli zu den mittleren Schneidezähnen nur noch 105 mm. Wo blieben die mindestens 15 mm des Bonwillschen Maasses, welche die diluvialen Kiefer mehr aufweisen?

Der Unterschied des Bonwill'schen Längenmaasses bei den diluvialen Kie fern, gegenüber denjenigen einer späterer Zeit, erklärt sich durch die Entstehung des Kinnes infolge der Reduktion des Kieferkörpers und der Vorderzähne an Grösse. Bei zahlreich ausgeführten Messungen der Basis vom äusseren Kieferwinkel bis zur Symphyse schrumpft die Differenz bei sämtlichen Kiefern der diluvialen und neuen Zeit bis auf sehr wenige Millimeter zusammen. Daraus geht hervor, dass sich die Basis des menschlichen Unterkiefers in Bezug auf Länge seit jener Zeit nur sehr wenig veränderte und die unzweifelhafte Reduktion der Grösse, welche durch das Bonwill'sche Maass festgelegt wird, zum allergrössten Teile den oberen Teil desselben betraf. Hier könnte ein Zweifel entstehen, ob der Kieferast oder der zahntragende Teil am meisten der Reduktion verfallen ist. Wenn man auch nicht leugnen kann, dass eine Reduktion des aufsteigenden Astes um wenige Millimeter stattfand, so überzeugt doch eine einfache Vergleichung des Spykiefers No. I mit einem heutigen Kiefer, dass eine enorme Reduktion des zahntragenden Kieferteiles und auch der Zähne stattgefunden hat. Der Abstand der Berührungspunkte der Schneidezähne bis zum inneren Kieferwinkel beträgt beim Spykiefer No. I 7,4 cm, bis zur distalen Fläche des dritten Molaren 6,1 cm, es könnte noch bequem ein vierter Molar im Kiefer stehen. Diese letztgenannte Zahl entspricht derjenigen, welche Charles Tomes in seiner Anatomie der Zähne als Unikum bei einem heutigen Kiefer bezeichnet. Der Spykiefer No. I ist aber in Bezug auf Zahngrösse an das Ende der heute bekannten, echten diluvialen Kiefer zu stellen. Der Predmoster Kiefer zeigt entschieden noch eine stärkere Entwickelung, wenigstens der Backenzähne und des Eckzahns. Der la Naulette-Kiefer zeigt direkt den grösseren Zahnbogen. Die Zähne der Krapinamenschen waren durchschnittlich grösser als die vom Spy I. Man denke sich endlich die gewaltigen Vorderzähne des Schipkakiefers mit den Backenzähnen von Krapina oder Spy II in einem Kiefer vereinigt. Welches gewaltige Gebiss würde da zu stande kommen!

Die mächtige Entwickelung der Zähne war eine typische Eigenschaft des Diluvialmenschen und ich möchte gleich hinzusetzen: diejenige sämtlicher Zähne. Aus diesem Grunde mussten die Kiefer derselben bei sonst gleicher Ausdehnung der Basis nahezu oder gänzlich kinnlos gegenüber denjenigen späterer Generationen sein. Ich bemerke aber auch zugleich, dass ein Prädominieren des Eckzahnes an Grösse, etwa wie bei den Anthropomorphen, bei keinem diluvialen Kiefer, welcher bisher aufgefunden wurde, zu konstatieren ist. Die Schneidezähne nähern sich umgekehrt an Grösse dem Eckzahn viel eher, während letzterer sich immer sehr harmonisch in den gesammten Zahnbogen einfügt. Es lässt sich eine grosse und fortschreitende Reduktion des menschlichen Eckzahnes an Grösse, wie sie Darwin annahm, seit der Diluvialzeit keinenfalls konstatieren. Für den Diluvialmenschen war der Eckzahn kein besonderer Gebrauchszahn (Waffe). Solange nicht noch ältere menschliche Kiefer aufgefunden sind, welche eine hervorragende Entwickelung des Eckzahnes unzweifelhaft zeigen, muss man auch nach den diluvialen menschlichen Funden annehmen, dass der prädominierende Eckzahn der Affen speziell für die letzteren eine generelle Neuerwerbung ist. Keinenfalls hat der Eckzahn des diluvialen Menschen auf die Kiefergestaltung den besonderen Einfluss gehabt, wie ihn Selenka in der ersten und zweiten Lieferung dieses Werkes für den Affen unzweifelhaft nachgewiesen hat.

Die in Brüssel befindlichen belgischen Kiefer aus eigentlicher Renntierzeit zeigen sämtlich noch eine mehr oder weniger starke Zahnprognathie. Die Kieferprognathie, das untrügliche Zeichen des diluvialen menschlichen Kiefers, ist dagegen verschwunden. Die Molaren sind sehr stark abgeschliffen, die ganzen Backenzähne noch annähernd ebenso gross wie diejenigen der diluvialen Kiefer. Aber das Kinn ist überall deutlich vorhanden und der übrigen Kieferplatte gegenüber vorspringend. Die Schneidezähne, gelegentlich auch der Eckzahn stehen der Grösse der heutigen Normalformen schon ziemlich gleich. Wesentlich reduziert ist besonders der labiolinguale Durchmesser der Vorderzähne.

Weiter fehlt diesen Kiefern der Lingualwulst und die Lingualgrube; selten ist noch eine Andeutung derselben vorhanden. Diese beiden anatomischen Eigenschaften in prägnanter Ausbildung zeichnen die diluvialen Kiefer ebenfalls vor denjenigen aller späteren Perioden aus. Wo bei einem Kiefer der Renntierperiode die Lingualgrube noch schwach vorhanden ist, wird die Spina mentalis interna gering ausgebildet (z. B. bei 2431 No. 6 des Brüsseler Museums). Im übrigen ist die Spina mentalis zunächst in der Insertionsstelle des M. geniohyoideus später auch an derjenigen des Genioglossus häufig zu einer respektablen Grösse entwickelt.

Im Gegensatz zum Vorderkiefer erhielt der übrige Teil viel länger seine ursprüngliche Form. Der Sulcus mylohyoideus ist bei den Kiefern der Renntierperioden — selbst bei Kinderkiefern — meist noch ebenso stark ausgeprägt wie bei denjenigen aus der Mammutszeit. Die Linea obliqua interna ist ebenfalls nur nach unten scharf abgesetzt, gegen den Alveolarfortsatz zu ist der Kieferkörper noch gut ausgebildet und gelegentlich wie bei den diluvialen Kiefern sogar aufgewulstet. Die Höhe der Kiefer ist meist eine beträchtliche, die Kieferäste noch sehr breit und stark entwickelt.

Die belgischen Kiefer der Renntierperiode entsprechen somit in ihren äusseren Formen denjenigen der Mammutzeit, jedoch ist der Vorderkiefer und seine Zähne durch eine starke Reduktion an Grösse vollständig verändert.

Die soeben an belgischen Kiefern erörterten Eigenschaften fanden sich auch bei einer Reihe von Unterkiefern im Provinzialmuseum zu Bonn. Es sind das teilweise solche, welche schon Schaaffhausen in seiner Arbeit über den menschlichen Kiefer aus der Schipkahöhle 1883 kurz erwähnt hat. Ich möchte besonders hier einen mit "Metternich" bezeichneten als denjenigen von diesen Kiefern hervorheben, welcher sich den Formen des Diluviums am meisten nähert. Der Kieferast ist zwar noch nicht bedeutend entwickelt. Seine Höhe vom Processus coronoideus bis zum äusseren Kieferwinkel beträgt 51 mm, bis zum Processus condyloideus sogar nur 48 mm. Dagegen ist die äussere Kieferplatte an den Molaren sehr kräftig und die Linea obliqua demgemäss stark ausgeprägt. Die Kinnbildung ist gering, jedoch in deutlicher Dreiecksform. Der Kiefer macht den Eindruck eines kindlichen, die Zähne sind wenig abgekaut, nur der erste Molar zeigt eine grössere Abnutzung. Die Röntgenaufnahme ergab nach nicht fertigen Wurzeln zu schätzen - ein Alter des Individuums von ungefähr 12 Jahren. Den genannten vom diluvialen Typus sich entfernenden Eigenschaften stehen folgende, sich ersteren nähernde, gegenüber. Die Wurzeln der Vorderzähne sind nach rückwärts gebogen, wodurch ein stärkerer Lingualwulst entsteht. Die Kronen der Vorderzähne überschreiten zwar nicht erheblich das Mittelmass der heutigen Breite, aber ihr labio-lingualer Durchmesser ist noch bedeutend, der Eckzahn ist sogar beiderseits zweiwurzelig; die vordere Wurzel ist 15 mm, die hintere 17 mm lang. Die Wurzel des ersten Schneidezahnes ist 15 mm, seine Krone 9 mm lang. Die Krone des zweiten Prämolaren ist deutlich fünfhöckerig, drei Höcker stehen aussen, zwei innen. Durch den Lingualwulst entsteht eine Grube, in welcher der Genioglossus ansetzt.

Gefässloch befindet sich ebenfalls an dieser Stelle. Darunter befindet sich in der Symphysenlinie die Insertionsstelle des Geniohyoideus, welche seitlich in Dreiecksform Aufwulstungen zeigt. Der Übergang zu einer wirklichen Basalfläche ist ein ziemlich plötzlicher; letztere zeigt starke Insertionsgruben der M. digastrici. Die Dicke des Kiefers in der Medianlinie beträgt hier 12 mm. Der Abstand der Processus condyloidei bis zu den Schneidezähnen beträgt 100 mm; das sind Maasse, welche gegenüber einem heutigen kindlichen Kiefer von 12 Jahren als sehr beträchtlich genannt werden müssen.

Als weitere wichtige Objekte in dem Provinzialmuseum zu Bonn sind die Kiefer von Grevenbrück erwähnenswert. Der mit No. 1 bezeichnete hat ein stärkeres Kinn, der vordere Kieferkörper ist von geringer Grösse und orthognath, dagegen besteht wieder eine stärkere Alveolarprognathie. Die Zähne vom Weisheitszahn bis zum Eckzahn sind kräftig entwickelt. Der mesiodistale Durchmesser des Weisheitszahnes beträgt 11 mm, des zweiten Molar 10 mm, des ersten Molar 11 mm, des zweiten Prämolar gut 7 mm. Diese Maasse entsprechen noch ganz den diluvialen Zähnen von Spy I. Diejenigen des vorderen Kieferteiles sind dagegen vollständig verändert. Da die übrigen Zähne fehlen, kann man mittelbar aus der Wurzellänge auf die Grösse der Vorderzähne schliessen. Die Wurzeln der Schneidezähne waren kaum 10 mm lang! Wir sehen hier eine starke Reduktion derselben an Länge; auch der labiolinguale Durchmesser (kaum 6 mm) ist gegenüber demjenigen der diluvialen Zähne (7-8,5 mm) verringert. Kieferast und hinterer Kieferkörper sind dagegen gut entwickelt. Die Condylenbreite beträgt beinahe 20 mm, die Entfernung von ihm zu den Schneidezähnen 105 mm. Starke Leistenbildung am Kieferaste, eine starke Fossa mylohyoidea und grosse Gruben der Digastrici mit dazwischen liegender leistenartiger Emporwölbung vervollständigen das Bild. Die Spina ist ziemlich gering, der schwache Lingualwulst erzeugte keine stärkere Grube, die Insertionsstelle für den Genioglossus ist mehr eine ebene Fläche. Das Kinndreieck ist ziemlich stark entwickelt und vorspringend. Die Röntgenaufnahme ergab ein ziemlich starkes Trajektorium des Genioglossus. Kiefer gehörte nach der vollständig entwickelten Wurzel des Weisheitszahnes einem älteren Individuum an; er ist in der fortschreitenden Umformung des Vorderkiefers dem "Metternich" bedeutend voraus.

Ein Kiefer, mit Grevenbrück No. 2 bezeichnet, hat gleichfalls einige diluviale Eigenschaften. Sein Foramen mentale liegt in der Richtebene des ersten Molaren, während dasselbe sich bei den meisten neolithischen Unterkiefern unterhalb des zweiten Prämolaren befindet. Er besitzt ferner eine sehr starke Basalfläche mit grossen Fossae digastricae, zwischen welchen eine kugelige Erhabenheit mit zwei Gefässlöchern

sich befindet. Der Kiefer besitzt hier in der Medianlinie eine Dicke von 15 mm. Die innere und äussere Kieferplatte ist dagegen schon vollständig umgeformt. Für den Geniohyoideus und Genioglossus ist eine starke Spina mentalis interna in Form einer einzigen Leiste vorhanden. Über der Spina liegt ein Foramen mit einer Gefässrinne, welche sich in der Medianlinie circa 5 mm nach oben erstreckt. Die ganze hintere Kieferplatte ist schon flach, oben findet sich nur eine Andeutung eines Lingualwulstes, weshalb die Spina mentalis interna eine bedeutende Grösse erhielt. Die konstante Thätigkeit der Zungenmuskeln war jedenfalls eine sehr kräftige. Das Trajektorium des Genioglossus ist sehr stark entwickelt, die Zahnwurzeln der Schneidezähne dagegen klein und kurz. Das Kinn ist sehr hoch und zieht die Spitze dieses Dreiecks bis zum Alveolarfortsatz der Schneidezähne. Hier erinnert der Kiefer sehr an denjenigen von Goyet, nur ist die Dreieckbildung des Kieferkörpers in der Symphyse schon weiter vorgeschritten. Die beiden unteren Winkel des Kinndreieckes sind die Ausläufer der Linea obliqua externa, welche, sich teilend, einerseits am Kieferrand unter der Richtebene des ersten Molaren endigt, mit der anderen Abzweigung dagegen die äusseren Kinnhöcker bildet.

Endlich möchte ich noch einen in Bonn befindlichen "Unterkiefer aus dem Torf der Lippe" erwähnen. Derselbe ist nahezu tadellos erhalten. Er stammt von einem Erwachsenen; bis auf die Weisheitszähne sind sämtliche Zähne stärker abgekaut. Alle Backenzähne und die Eckzähne sind noch von beträchtlicher Grösse, die Schneidezähne dagegen als sehr klein zu bezeichnen. Das betrifft Kronen und Wurzeln nach jeder Richtung hin, wie ich durch Röntgenaufnahmen feststellte. Die Wurzel des Eckzahnes ist z. B. um 9 mm länger als diejenigen der Schneidezähne. Der Kiefer macht bis auf seine vordere Partie einen äusserst kräftigen Eindruck, und könnte beinahe dem Spykiefer No. I an die Seite gesetzt werden. Die Condyli sind 23-24 mm breit, ihre Entfernung bis zum inneren Kieferwinkel beträgt 63 mm. Die Breite des Kieferastes schwankt zwischen 35 und 40 mm. Der Processus coronoideus ist nach vorn stark konvex und die Linea obliqua externa als mächtiger Wulst entwickelt. Auch die innere Kieferplatte zeigt eine kräftige Linea obliqua interna und eine grosse Fossa mylohyoidea. Selbst die hintere Platte des Vorderkiefers zeigt noch Anklänge an den diluvialen Typus. Die Alveolarprognathie, welche bei diesem Erwachsenen einen allerdings sehr geringen Lingualwulst erzeugte, bewirkte indirekt eine schwächere Grube an der Ansatzstelle des Genioglossus. Dennoch kam es zur Spinabildung aber nur in Form zweier kleiner Leisten. Die Röntgenaufnahme ergab ein sehr starkes Trajektorium des Genioglossus. Der Vorderkiefer weicht dementsprechend (noch dazu bei der starken Reduktion der Schneidezähne) vollständig vom diluvialen Typus ab. Er besitzt ein sehr stark vorspringendes dreieckiges Kinn. Besonders günstig war für die Entstehung des letzteren die Erhaltung einer 11 mm breiten Basalfläche, welche starke Insertionsgruben der M. digastrici aufweist. Der Abstand der Processus condyloidei bis zu den Schneidezähnen und derjenige jener unter sich beträgt je 112 mm.

Ich könnte diese Schilderung der Unterkiefer aus der Renntierzeit durch weitere Funde, welche sich in Bonn und Belgien befinden, ausdehnen, glaube jedoch, dass erstere genügt, um die folgenden Eigenschaften dieser Übergangsformen zur heutigen Kiefergestalt festzustellen.

Der allgemeine Habitus dieser Kiefer ist noch ein sehr kräftiger. Die äussere Kieferplatte in der Gegend der Linea obliqua externa erscheint stark gewulstet. Die innere Kieferplatte zeigt starke Leistenbildungen als Zeichen der starken Trajektorien zu den Processus des Astes. Die Linea obliqua interna ist nur nach unten gegen den grossen Sulcus mylohyoideus begrenzt, nach oben sind die Kiefer zum Alveolarfortsatz noch aufgewulstet. Sämtliche Backenzähne und der Eckzahn sind sehr wenig an Grösse reduziert. Nur die Schmelzfalten, welche die diluvialen Funde von Krapina ja so eklatant aufweisen, sind an Zahl viel geringer geworden. Der Kiefer, vom Eckzahn nach rückwärts gerechnet, hat im grossen und ganzen noch den diluvialen Typus. Dagegen ist der ganze Vorderkiefer in der Umgestaltung begriffen. Die Reduktion an Grösse infolge des geringeren Gebrauches der Vorderzähne betraf zunächst den Kieferkörper, welcher dem Zahnfortsatz zur Basis dient. Dann erfolgte eine deutliche Reduktion der Schneidezähne und zwar betraf das nicht allein ihre Kronen in der Breite, sondern besonders den labio-lingualen Durchmesser derselben; auch die Wurzellänge hat abgenommen. Die Verstärkungsleisten an der Rückfläche der Vorderzähne sind meistens verschwunden. Der Kieferkörper verlor seine ursprüngliche Prognathie, während die Schneidezähne sich noch nicht so schnell in ihrer Grössenreduktion an diejenige des Kieferkörpers anpassten, wie man das gelegentlich noch selbst an heutigen Kiefern deutlich beobachten kann. Der mesiodistale Durchmesser der Kronen erhielt sich am längsten auf der ursprüng-Meistens haben deshalb die Kiefer der Renntier-Zeit noch eine lichen Grösse. stärkere Zahnprognathie. Gelegentlich blieb, bei grösserer Alveolarprognathie und genügender Wurzellänge, sogar noch ein geringer Lingualwulst. Durch diesen Einfluss auf die Insertionsstelle des Genioglossus, liegt dann der obere Teil in einer Grube. Im Gegensatz zu den erwähnten Reduktionserscheinungen gegenüber den eigentlichen diluvialen Kiefern lässt die verstärkte Thätigkeit der Zungenmuskeln das Trajektorium des Genioglossus besser hervortreten und sie trägt durch die Erhaltung des Kieferkörpers in der Symphyse gleichzeitig mit der Thätigkeit des Geniohyoideus und des Digastricus zur Entstehung des Kinnes bei. Die Thätigkeit des letzteren Muskels war mit der zunehmenden Entwickelung der Sprache unzweifelhaft keine geringere. Wir sehen selbst bei civilisierten Rassen mit fortgeschrittenster Reduktion der Kiefer und Zähne gelegentlich recht grosse Gruben für die M. digastrici. Die breite Basalfläche bestand bei dem postdiluvialen Menschen am längsten. Reduktion des Kieferkörpers betraf in der Renntierzeit wesentlich die Dicke, viel weniger seine Höhe. Die Insertionsstelle des Genioglossus, war morphologisch und mathematisch der Mittelpunkt, um welchen sich bei der fortschreitenden Reduktion der übrige Kieferkörper und die Schneidezähne nach rückwärts bewegten. vordere Rand der Basalfläche blieb selbst dem recenten Menschen noch erhalten, der hintere Rand wurde teils durch geringere Entwickelung der Linea obliqua interna, welche noch kaum sichtbar zur Symphyse tritt, teils durch das Auftreten der darüber liegenden Spina mentalis interna infolge der grösseren Beanspruchung durch die Zungenmuskulatur allmählich verlagert und die hintere Kieferplatte gänzlich umgestaltet. Das Zurückweichen der sich verkleinernden Schneidezähne in der Sagittalrichtung führt zu einer allmählichen graden Wurzelbildung. Je kürzer die Wurzeln der Schneidezähne ausgebildet werden, um so schneller nehmen erstere eine gerade Richtung an. Die Wurzelkrümmung der Vorderzähne nach vorn, welche bei den heutigen civilisierten Rassen häufig gefunden wird, entsteht durch die funktionelle Beanspruchung des noch nicht in der Wurzel vollendeten Zahnes, in dem der Pulpawulst bei Fertigstellung der Wurzel in der Richtung des geringsten Widerstandes sich Raum schafft. Gerade für den letzten Teil der Wurzelbildung muss eine verhältnismässig umfangreiche Resorption der Spongiosa stattfinden, wenn nämlich durch den gewonnenen Antagonisten der durchbrechende Zahn nicht mehr länger werden kann. Die alsdann noch weiter fortschreitende Wurzelbildung erfolgt bei den orthognathen Vorderzähnen der civilisierten Rassen häufig nach vorn, weil der resorbierende Pulpawulst die hart anliegende Compacta der inneren Kieferplatte weit weniger zur Resorption bringen kann als die vor ihnen liegende Spongiosa, welche nach der vorderen Kinnpartie sich verbreitert. Die Wurzelkrümmung der Vorderzähne erfolgt somit genau den entwickelungsmechanischen Gesetzen des Zahndurchbruches, welche ich schon in der vierten Lieferung dieses Werkes Seite 236-240 ausgesprochen habe.

Ich komme auf Grund meiner Untersuchungen zu folgenden phylogenetischen Schlüssen.

Es ist unzweifelhaft, dass selbst einzelne heutige tiefstehende Völker Anklänge an den diluvialen Typus der Kiefer und Zähne zeigen, welcher nach den bisherigen Funden an den verschiedensten, räumlich weit entfernten Orten dennoch eine grosse Konstanz prägnanter Eigenschaften zeigte, welche die äussere Form betrafen. Dieser diluviale Typus fing aber mit der allmählich sich verschiedenartig gestaltenden Funktion an zu variieren, einzelne Eigenschaften traten zurück und gingen allmählich verloren, neue Funktionen einzelner Teile schufen andere Formen, so dass die ursprünglichen unserem heutigen Auge vollkommen fremd erscheinen. Pathologisch lassen sich die alten diluvialen Kiefer und Zähne nach den Resultaten der Untersuchung keinenfalls mehr erklären. Im Gegenteil, wenn irgend ein Organ des Menschen zu pathologischen Erscheinungen neigt, so sind es wohl die heutigen Zähne. Der diluviale Kiefer und jeder einzelne Zahn desselben war für die Kaufunktion sohervorragend ausgebildet, wie es die heutigen auch nicht einmal annähernd sind.

Gerade die Konstanz der Eigenschaften jener diluvialen Kiefer und Zähne weist vielmehr darauf hin, dass sie die normalen Formen dieser Organe zu jener Zeit darstellten. Die Gestaltung der diluvialen Kiefer war eine zwingende Folge der starken funktionellen Beanspruchung und die darauf folgenden Variationen in späteren Zeiten wurden bedingt durch die sich ändernde Beanspruchung ihrer Teile nach den Gesetzen der Entwickelungsmechanik. Die Übergangsformen zu den Kiefern und Zähnen der heutigen Zeit zeigen aber auch deutlich, dass der Mensch, weicher im Diluvium an diesen Organen unzweifelhaft pithekoide Eigenschaften aufwies, andere Formen erwarb, welche zunächst individuell auftretend, allmählich zu neuen typischen Kiefer- und Zahn-Formen bei dem menschlichen Geschlecht führen müssen. Bei dem Vergleich der bisher bekannten Formen dieser Organe, wie er in der vierten und vorliegenden Lieferung dieses Werkes durchgeführt wurde, ergab sich ein Resultat meines Erachtens nicht in dem speziellen Sinne Darwin's, sondern weit eher nach den Lehren Lamark's. Für die neue Formgestaltung der Kiefer und Zähne war weder die grösste Zweckmässigkeit, noch die natürliche Auslese im Kampf ums Dasein ausschlaggebend, sondern allein der veränderte funktionelle Gebrauch. Die Verminderung der Thätigkeit seiner Kauorgane konnte sich der Mensch ungestraft gestatten, weil er durch die wachsende Kultur seine Ernährung in anderer genügender Weise ersetzen konnte. Die jetzt bestehenden grossen Variationen der Form könnten zu einer gewissen Konstanz wieder führen, wenn das menschliche Geschlecht in seiner Gesamtheit am Ende seiner künstlichen Hilfsmittel für eine genügende Ernährung, gegenüber dem natürlichen Gebrauch seiner Kauorgane, angelangt ist.