PHYSISCHE GEOGRAPHIE

EIN BEITRAG ZUR KENNTNIS VON BERGWETTER UND BIOKLIMA DER OSTALPEN,

mit besonderer Berücksichtigung von Atemenergie und Abkühlungsgröße 98 Jahre Beobachtung auf dem Sonnblick (3105 m), 14-Uhr-Termin

Franz FLIRI, Innsbruck

(Mit einer Textabbildung)

INHALT

2. Die Berechnung von Atemenergie und Abkühlungsgröße 3. Jahresägne und Häufigkeitsverteilungen jener meteorologischen Größen, die Atem- energie und Abkühlungsgröße bestimmen 4. Korretation der Größen, die Atemenergie und Abkühlung bestimmen 5. Jahresägne und Häufigkeitsverteilungen von Atemenergie und Abkühlungsgröße zum 14-Uhr-Termin 6. Extreme von Atemenergie und Abkühlungsgröße 7. Atemenergie und Abkühlungsgröße bei den Witterungslagen 8. Böjährige Pentadenmittel 9. Übersicht der langlährigen Klimaentwicklung Zusammertassung Literaturverzeichnis Summary	1. Einleitung	5
3. Jahresgånge und Häufigkeitsverteilungen jener meteorologischen Größen, die Atem- energie und Abköhlungsgröße bestimmen 4. Korrelation der Größen, die Atemenergie und Abköhlung bestimmen 14-Uhr-Termin 6. Extreme von Atemenergie und Abkühlungsgröße 6. Extreme von Atemenergie und Abkühlungsgröße 8. Bighänige Pontadenmittel 8. Bighänige Pontadenmittel 9. Übersicht der langjähnigen Klimaentwicklung Zusammenfassung Literaturverzeicnnis Summary	2. Die Berechnung von Atemenergie und Abkühlungsgröße	e
energie und Abkühlungsgröße bestimmen . 4. Korreitation der Größen, die Attemenergie und Abkühlung bestimmen . 5. Jahrssgånge und Häufigkeitsverteilungen von Atemenergie und Abkühlungsgröße zum 14-Uhr-Termin . 6. Extreme von Atemenergie und Abkühlungsgröße . 7. Atemenergie und Abkühlungsgröße iden Witterungslagen . 8. Gighänge Pentadenmittel . 9. Übersicht der langjährigen Klimaentwicklung . Zusammenfassung . Literaturverzeichnis . Summary .	3. Jahresgänge und Häufigkeitsverteilungen jener meteorologischen Größen, die Atem-	
4. Korrelation der Größen, die Atemenergie und Abkühlung bestimmen 5. Jahresgänge und Häufigkeitsverteilungen von Atemenergie und Abkühlungsgröße zum 14-Uhr-Termin 6. Extreme von Atemenergie und Abkühlungsgröße 7. Atemenergie und Abkühlungsgröße bei den Witterungslagen 8. Böjänfige Pentadenmittel 9. Obersicht der langjährigen Klimaentwicklung Zusammerfassung Literaturverzichnis Summary.	energie und Abkühlungsgröße bestimmen	8
5. Jahresgånge und Häufigkeitsverteilungen von Atemenergie und Abkühlungsgröße zum 14-Uhr-Termin 6. Extreme von Atemenergie und Abkühlungsgröße 7. Atemenergie und Abkühlungsgröße bei den Witterungslagen 8. ößhärige Pentadenmittel 9. Übersicht der langjährigen Klimaentwicklung Zusammenfassung Literaturverzichnis Summary Riassunto	4. Korrelation der Größen, die Atemenergie und Abkühlung bestimmen	12
14-Uhr-Termin . 6. Extreme von Alamenergie und Abkühlungsgröße . 7. Atemaenrgie und Abkühlungsgröße bei den Witterungslagen . 8. 98jährige Pentadenmittel . 9. Obersicht der langjährigen Klimaentwicklung . Zusammertassung . Literaturverzeichnis . Summary . Riessunto .	Jahresgänge und Häufigkeitsverteilungen von Atemenergie und Abkühlungsgröße zum	
6. Extreme von Atemenergie und Abkühlungsgröße 7. Atemenergie und Abkühlungsgröße bei den Witterungslagen 8. Sölährige Pertademittel 9. Übersicht der langjährigen Klimaentwicklung . Zusammenfassung . Literaturverzeichnis Summary . Riessunto	14-Uhr-Termin	12
7. Atemengie und Abkühlungsgröße bei den Witterungslagen	6. Extreme von Atemenergie und Abkühlungsgröße	13
8. 98jährige Pentadenmittel 9. Übersicht der langjährigen Klimaentwicklung . Zusammenfassung . Literaturverzeichnis . Summary . Riassunto .	7. Atemenergie und Abkühlungsgröße bei den Witterungslagen	15
9. Übersicht der langjährigen Klimaentwicklung . Zusammenfassung Literaturverzeichnis Summary . Riassunto	8. 98jährige Pentadenmittel	17
Zusammenfassung Literatuverzeichnis . Summary . Hiassunto	9. Übersicht der langjährigen Klimaentwicklung	19
Literaturverzeichnis	Zusammenfassung	21
Summary	Literaturverzeichnis	21
Riassunto	Summary	22
	Riassunto	22

EINLEITUNG

Das erste Gebirgsobservatorium der Erde war von einheimischen Pionieren aus dem Raurisertal vor hundert Jahren errichtet worden, unter denen der aus großer Armut zum Besitzer des Goldbergbaues aufgestiegene Ignaz ROJACHER die treibende Kraft war. Seit 1888 hat die Österreichische Akademie der Wissenschaften (seit 1930 mit der Kommission für hochalpine Forschungen) das Observatorium betreut. Juderdem wurde 1892 der Sonnblick-Verein gegründet, in dessen Rahmen von 1925 bis 1938 bzw. 1945 die Regierungen Österreichs und des Deutschen Reiches, die Österreichische Akademie der Wissenschaften, die Kalser-Wilheim-Gesellschaft zur Förderung der Wissenschaften und des Deutschen Reiches, die Österreichische Akademie der Wissenschaften, die Salser-Wilheim-Gesellschaft zur Förderung der Wissenschaften und des Unterrichts –, später Wissenschaftsministerium zu Trägern, wobei die Zentralanstalt für Meteorologie und Geodynamik in Wien die wissenschaftliche Betreuung übernahmen. Univ.-Prof. Dr. Ferdinamd STEINHAUSEE II: Wien die wissenschaftliche Detreuung übernahmen. Univ.-Prof. Dr. Ferdinamd STEINHAUSER ist.

zugleich Obmann der Kommission für hochalpine Forschungen und Vertreter der Akademie im Sonnblickverein. Im Zeitalter der Satellitenmeteorologie und -klimatologie haben die Gebirgsobservatorien, zumal die abjinen, nichts von ihrer Bedeutung eingebüßt. Vor allem zum Beurtielen der aktuellen Fragen über die Veränderlichkeit von Wetter und Klima sind ihre langen Beobachtungsreihen ganz unentbehrlich. Wir werden auch in Hinkunft auf Gebirgsobservatorien nicht verzichten können.

Es wird als bekannt vorausgesetzt, wie sich jene meteorologischen Werte, die bioklimatisch bedeutsam sind, allgemein und in den Alpen im besonderen höhenbedingt ändern. Die Unterschlede gegenüber der Niederung betreffen nicht nur die durchschnittlichen Zustände, sondern auch die Tages- und Jahresgänge, die Häuftigkeitsverteilungen bzw. Extreme und überhaupt die physikalische Verknöptung der Werte in Wetter und Witterungsablaur. Nicht zuletz zeichnet sich das Höhenklima durch eine wesentlich stärkere reliefbedingte Buntheit aus. Auf alle diese Gesichtspunkte kann hier jedoch nur soweit eingegangen werden, als die Bestimmung von Ahemenergie und Abkühlungspröche betroffen ist.

Bei längerem Aufenthalt in Höhen über etwa 2000 m hat die Abnahme des Luftdruckes und damit auch des Sauerstoff-Partialdruckes (Hypoxie) besondere Bedeutung. Auf dem Sonnblick (3105 m) betrug dier durchschnittliche Luftdruck (Periode 1887–1984, 14 Uhr) 693 hPa (Hektopascal, früher Millibar) gegen 1013 hPa im Meeresniveau, der Sauerstoff-Partialdruck war bei 29% Gewichtsenteil daher 160 hPa gegen 234 hPa. Der menschliche Körger beantwortet diese Kürzung um fast ein Drittel zunächst mit gesteigertem Blutabbau, dann aber mit Zunahme der roten Blutkörperchen (VIAULT 1890) bis zur Anpassung an den verringerten Sauerstoffpartialdruck. Auch das Blutvolumen nimmt zu (nach A. v. MURALT u. H. K.ELLER).

Anderseits wird die Regelung der Atmung durch den Kohlensäuregehalt des Blutes (HALDA-NE u. PRIESTL 1905) empfindlicher, wobei die Atemvolumina je Zeiteinheit ansteigen (H. WIN-TERSTEIN 1921 u. J. R. LEUSEN 1954, nach H. G. PAULU). Diese Hyperventilation dürfte für die Höhe des Sonnblick etwa ein Viertel bis ein Drittel betragen. Das ist besonders zu beachten, da den folgenden Berechnungen der Atemeergie nur der für die Niederung übliche Wert von 5 Liter/Minute zugrundegelegt ist. Hingegen braucht auf eine schwerwiegende physiologische Fölge der Hyperventilation, den Kohlensäurerverlust im Biltu, desen Alkalose und wegen Regelung des pH-Wertes die vermehrte Alkaliausscheidung über die Nieren, in diesem Zusammenhang nicht eingegangen werden.

Die vorliegende Arbeit enthält als Nebenergebnis auch die monatlichen Durchschnitte, Haufügkeitsverteilungen und Extreme einiger wichtiger Klimagrößen, die seit dem Oktober 1866 durch numehr 89 Jahre fast ungestört beobachtet worden sind. Sie ist somit als Ergänzung der ersten Sonnblick-Monographie von F. STEINHAUSER (1938) und der seither vor allem in den Jahresberichten des Sonnblick-Vereines verdrietnichten Ergebnisse zu verstehen. Schließlich soll mit diesem Beitrag aus Anlaß der 100-Jahrfeier des Sonnblick-Observatoriums ein bescheidener Dank der Geographen ausgedrückt vereine.

2. DIE BERECHNUNG VON ATEMENERGIE UND ABKÜHLUNGSGRÖSSE

Die Berechnung der Atemenergie folgt, abgesehen von den physikalischen Einheiten und einigen Umformungen, den beiden Arbeiten von H. ABEL, A BAUMGARTNEE und W. DONLE (1972, 1977), wo die Ableitungen angegeben sind. Die gesamte beim Atmen abgegebene Energie setzt sich aus fühlbarer und latenter Wärme zusammen. Erstere ist durch das Aufheizen der eingeatmeten Lutt auf die Körper-Kerntemperatur von 37 Grad bedingt, letztere durch das Sättigen derselben erwärmten Lutt mit Wasserdampf, also durch Wasserabgabe beim Ausatmen. Unter Annahme eines Atemvolumens von 300 Liter/Stunde erhält man zunächst für den fühlbaren Anteil Af = 25,47*dt/T (in kJ/h, Kilojoule je Stunde).

Darin ist dt = 37-t, also die Differenz von Körperkern- und Außenlufttemperatur. T hingegen die in Kelvingraden angegebene der letzteren (T = t + 273,15). Daraus folgt, daß bei einer linearen Abnahme der Luftemperatur um 7 Grad je 1000 m die Atemenergie nichtlinear zu nimmt, z. B. um 0,722 kJ/h zwischen +7 Grad und 0 Grad, aber um 0,761 kJ/h zwischen 0 Grad und –7 Grad.

Die latente Wärme beträgt AI = (66,01*de*r) / (p*T) (in kJ/h).

Darin ist de das Sättigungsdefizit der Außenluft bezogen auf den Sättigungsdampldruck bei 37 Grad Kerntemperatur. Letzterer erreicht 627 1 hPa, esi sta isto d = 62,71 -e., wenn e der tatsächliche Dampldruck der Außenluft ist. Die Berechnung von e erfolgt in der Regel mit Hilfe des Sättigungsdampldrucks e' der Außenluft und deren in Prozent angegebenen relativen Feuchte I, es ist also e = e''t/100. (Dabei wird e' als Funktion der Lufttemperatur 1 nach der Magnus schen Formel bestimmt: e' = exp(In(10) ' (a''(10+1) + c)). Die Konstanten a und b betragen 7, 50-xx 237,3 über Wasser (also ab 0 Grad) und 5,5 tzw. 265,5 über Els (unter 0 Grad). Weiter ist c = 0,78567 und In(10) = 2,3026, exp bezeichnet die Exponentialfunktion. In der Formel für Altra die spezifische Wärme, die bestmeltals von der Temperatur abhängt := 2499.1 - 2,343't + s, wobei bei t unter 0 Grad für die Schmelzwärme 334.7, sonst aber 0 zu setzen ist. Schließlich ist he der Luftdruck in Pa und T die Lufttemperatur in Keivingraden wie oben.

Würde wie im vorliegenden Beispiel in einem Vertikalprofil die Luttemperatur um 7 Grad je 1000 m abnehmen, der Luttdruck dabei von 870 hPa unten auf 770 hPa bei 0 Grad in der Mitte und auf 680 hPa bei – 7 Grad oben fallen, die relative Feuchte aber immer 80% betragen, so würde der latente Teil der Atemenergie von 36,78 k/h über 45,36 auf 62,38 steigen. Im Anstieg entsteht ein Sprung bei 0 Grad wegen Hinzurterns der Schmetzwärne. Otwohl auch die latente Wärme mit der Höhe zunimmt, können die Veränderungen bei tiefen Temperaturen nicht mehr sehr groß sein, da der Dampfdruck der Außenluft gering und nur wenig veränderlich ist. Übrigens ist auch der Einfluß der Luttdruckschwankungen ziemlich klein.

Im Gegensatz zu der physikalisch gut faßbaren Atemenergie ist der Begriff der Abkühlungsgröße unscharf und sehr problematisch. Vorausgeschickt sei, daß die Entwärmung eines Körpers, also seine Wärmeabgabe an der Oberfläche durch Strahlung und Austausch, mit Frigorimetern gemessen werden kann. Im vorliegenden Falle handelt es sich jedoch um ein klimatologisches Schätzen der Wärmeabgabe von der trockenen Haut anhand bekannter (Grösen, wobei Lufttemperatur; Einstrahlung und Wind entscheidend sind. Für diese Abkühlungsgröße nach HILL* sind verschiedene empirische Formein angegeben worden (vgl. F. FLIRI 1962), von denne inden kwird.

Es ist H = (0,0544 + 0,1967* \sqrt{v}) * (dt+b) in 10-3 cal/cm²/h.

Darin bedeutet v die Windgeschwindigkeit in m/s, dt die Differenz von Körper- und Lufttemperatur und b die Bewölkung in Zehntel. Nach F. LAUSCHER hätte also ein Bewölkungszehntel über die Strahlung dieselbe Wirkung wie ein Grad Temperaturänderung. Für die folgenden Berechnungen wurde die obige Formel derart umgeformt, daß die Windgeschwindigkeit in der Beaufort-Skala (8) angegeben werden kann. Auch sind die Ergebnisse nun in Kilojoule pro-Stunde und 100 cm²-Fläche angegeben, sodaß man Werte erhält, die mit jenen der Atemenergie leichter vergleichbar sind. Schließlich wurde die Körpertemperatur wie oben mit 37 Grad angesetzt (gesprüber 36.5 Grad bei F. LAUSCHER).

Dann ist H = (0,08194 + 0,27926*B0.736) * (dt+b) (kJ/h/100 cm2).

Hier sei noch kurz die Problematik beleuchtet, Bewölkungsschätzungen als Ersatz für Strahlungsbeobachtungen zu verwenden. Für die Zeit von 1957 bis 1981 hat die Zentralanstalt

für Meteorologie und Geodynamik in Wien Stundensummen der Globalstrahlung (direkte Sonnenstrahlung + diffuse Himmelsstrahlung), veröffentlicht, die sich auf eine waagrechte Auffangliächs beziehen. Die Umrechnung der Summen zwischen 13 und 14 Uhr auf eine zum direkten Strahleneinfall um 13.30 Uhr senkrecht stehende Fläche ergibt im Jahresdurchschnitt folgende Beziehung:

Tabelle 1: Globalstrahlung G auf dem Sonnblick (3105 m), 1957–1981, 13–14 Uhr in Abhängigkeit von der Bewölkung b (Zehntel) um 14 Uhr. Werte in J/cm³/min senkrecht zum Einfall

b	G	b	G	b	G	b	G	b	G	b	G
0	6,43 6,43	2 3	6,33 6,27	4 5	6,16 5,75	6 7	5,25 4,81	8 9	4,38 3,91	10	3,21

Die Berechnung ist zwar wegen Verwendung der mitteleuropäischen Zeit und Bewölkungsschätzung am Ende der Bezugsstunde unschart, doch mag als gesichert gelten, daß um 14 Uhr die Globalstrahlung bei voller Bewölkung durchschnittlich die Hälfte jener bei fehlender oder geringer Bewölkung ausmacht. Diesem Umstand wird in der obigen Schätzung der Abkühlungsgröße gewöl nicht Rechnung getragen. Dbrigens sei bemerkt, daß die monatsweise beobachte ten Minima der Globalstrahlung zwischen 13 und 14 Uhr zwar ausnahmslos bei voller Bewölkung 10 um 14 Uhr zu verziechnen waren, die Maxima (von der Größenordnung der extraterestrischen Strahlung) hingegen immer bei mittlerer, teilweise sogar stärkerer Himmelsbedekkung, nie aber bei fehlender und geringer Bewölkung vorgekommen sind. Das Phänomen der verstärkten Globalstrahlung stolge von Wolkenlücken und Schneereffektion ist zwar auch in seiner bioklimätischen Bedeutung wohlbekannt, wird jedoch in obiger Formel ebenso übergangen.

Endlich sind die Energieabgaben beim Atmen von der Haut auch insoferne verschiedenwertig, als man sich im Freien gegen letztere fast beliebig, gegen erstere aber überhaupt nicht schützen kann.

JAHRESGÄNGE UND HÄUFIGKEITSVERTEILUNGEN DER DIE ATEMENERGIE UND ABKÜH-LUNGSGRÖSSE BESTIMMENDEN METEOROLOGISCHEN GRÖSSEN UM 14 UHR

Das Verständnis der im Jahresgang berechneten Atemenergie und Abkühlungsgröße setzt die Kennthis der gesamten Halturgkeitswerteilungen aller meteorologischen Werte vorzus, durch die sie, wie oben gezeigt, funktional bestimmt sind. Diese Verteilungen werden in der Folge für das Gesamtjahr und für die Monate in relativer Form mitgeteilt. Die anfallenden Werte sind dabei auf Promille gerundet. Ein Punkt bedeutet, daß ein Wert nie beachtet wurde, eine Null, daß er kleiner als 0,5 Promille war. Den Tabellen sind unten auch Angaben über die Durchschnitt und (soweit sinvoll) über die Extreme und die Spannweite (Sp) beigefügt.

Der Luftdruck zeigt eine Verteilung mit niedrigem Durchschnitt bei größerer Spannweite im Winter sowie höherem Druck und geringerer Spannweite im Sommer. Das entspricht dem bekannten Bild des europäischen Wettergeschehens. Wie schon erwähnt, ist die unmittelbar funktionale Rolle für die Atemenergie freilich gering. Anderseits sind aber die Verteilung der Windstarken (und damit der Abkühlungspröße) und wegen der Luftmassenadvektion auch jene der Lufttemperatur von den Druckverteilungen abhängig.

8

Tabelle 2: Häufigkeitsverteilung (in Promille) des Luftdrucks um 14 Uhr in Stufen von 5 zu 5 hPa auf dem Sonnblick, 3105 m (1886–1984) sowie Extreme. Durchschnitte und Spannweiten in Zehntel hPa

hPa	Jahr	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Spt.	Okt.	Nov.	Dez.
655-	0	0											0
660-	0	4	2	0								0	0
665	4	19	17	6								3	11
670-	21	61	63	41	10	0					2	21	56
675-	50	114	143	117	60	3				0	11	58	103
680-	101	185	216	204	174	45	3		0	9	65	138	183
685	145	200	215	240	263	151	41	12	10	40	139	209	222
690-	198	202	163	211	278	305	188	90	96	164	227	255	201
695-	219	139	105	122	166	312	347	305	285	261	261	184	139
700-	185	52	56	45	42	151	318	409	416	340	218	101	69
705-	66	17	14	9	3	27	96	169	175	166	71	25	12
710-	4	1	0			0	4	13	15	16	1	1	
715-	0						0		0	0			
Max.	7164	7115	7113	7089	7087	7108	7152	7136	7164	7159	7108	7109	7094
Mitt.	6934	6875	6866	6876	6896	6947	6987	7008	7009	6997	6955	6909	6881
Min.	6568	6595	6609	6635	6703	6733	6801	6851	6835	6796	6707	6629	6568
Sp.	596	520	504	454	384	375	351	285	329	363	401	480	526

Tabelle 3: Häufigkeitsverteilung (in Promille) der Lufttemperatur (14 Uhr) in Stufen von 5 zu 5 Grad auf dem Sonnblick, 3105 m (1886-1984) sowie Extreme, Durchschnitte und Spannweiten in Zehntel Grad

Grad	Jahr	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Spt.	Okt.	Nov.	Dez.
-35-	0	2	1	0									0
-30-	4	18	15	7								1	7
-25-	19	70	69	34	5						0	12	44
-20-	65	176	199	127	55	3					12	77	143
-15-	154	360	363	284	192	39	2			10	80	188	346
-10-	240	315	291	444	412	207	71	23	25	100	223	416	365
- 5-	261	54	55	97	315	546	382	247	240	342	482	277	90
0	190	0	2	4	18	189	441	459	485	446	195	26	1
+ 5-	60					13	102	255	241	99	4		
+10-	1						0	13	6				
+15-	0							0					
Max.	+150	+5	+27	+32	+42	+90	+117	+150	+112	+99	+72	+45	+10
Mitt.	-52	-124	-125	-105	-74	-29	+3	+24	+22	+0	-36	-79	-111
Min.	-348	-348	-347	-322	-230	-181	-110	-86	-88	-144	-228	-259	-313
Sp.	498	353	374	354	272	271	227	236	200	243	300	304	323

Der mittlere Jahresgang der Lutttemperatur (zwischen Februar und Juli) ist mit rund 15 Grad wesentlich flacher als jener benachbarter Orte in der Niederung. Anderseits sind die witterungsbedingten Schwankungen in den Monaten und im Gesamtjahr doch sehr bedeutend. Rechnet man für den Winter mit einem Gradienten der Temperatur von 0.6 Grad und für den Sommer mit 0.6 Grad, so entsprechen die Spannweiten rund 6000 bzw. 3000 m lisothermenschwankung.

Tabelle 4: Häufigkeitsverteilung (in Promille) der relativen Feuchte (%) in Stufen von 10 zu 10% auf dem Sonnblick, 3105 m (1886–1984) und Durchschnitte in Zehntel Prozent, Minima in %, Termin 14 Uhr

Proz.	Jahr	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Spt.	Okt.	Nov.	Dez.
0-	0	1	1	0						0	0	0	2
10-	з	9	10	2	1					0	4	10	7
20-	12	27	33	13	з		0			3	17	27	27
30-	20	39	39	24	7	1	1	1	1	7	33	40	46
40-	27	46	51	32	13	3	2	5	6	18	49	48	54
50-	31	50	42	37	15	11	12	12	12	30	52	51	44
60-	45	57	53	49	30	25	33	33	40	51	58	57	52
70-	79	97	85	67	65	61	80	83	90	90	83	75	78
80-	226	348	332	295	248	175	148	168	159	168	144	236	296
90-	450	288	311	442	573	633	525	469	441	451	478	421	361
100%	100	31	38	33	40	85	195	225	246	176	76	31	27
Mitt.	849	777	779	830	879	911	913	910	908	879	822	794	783
Min. %	2	4	2	5	15	30	21	34	30	6	8	5	4

Auch die Verteilung der relativen Feuchte zeigt einen einfachen Jahresgang mit niedrigeren Werten bei großer Streuung im Winter und Anstieg bei kleiner Veränderlichkeit im Sommer. Die im Winter möglichen Minima bedeuten natürlich extreme Aridität (Sättigungsdefizit in der Lunge über 62 hPa), doch ist die zusätzliche Wirkung auf den latenten Anteil der Atemenergie gering, das selbst bei dem beobachteten Jähnermaximum der Temperatur von 0,5 Grad und allenfalls vorhandenen 100% relativer Feuchte ein Sättigungsdefizit von 56,4 hPa bestünde. Nur im Sommer wird der Entzug an latenter Wärme bei Temperaturen über dem Gefrierpunkt und größerer Sättigung der eingeatmeten Lutt merklich herabgesetzt.

Die Häufigkeitsverteilung der Bewölkung auf hohen Gipfeln unterscheidet sich wesentlich von jener am Talstationen oder am Orten im Alpenvorland. Für letztere ist die (bimodale) Verfellung mit Maxima bei geringer und hoher sowie Minimum bei mittlerer Bewölkung kennzeichnend. Der Sonblick besitzt hingegen ganzjährig ein beherrschendes Maximum bei voller Bewölkung. Die Untergrenze von mächtigen Schicht- und Haufenwolken liegt häufiger unter der Gipfelnheh als deren Obergrenze. Für das Maximum im Sommer (durchschnittlich schon im Mai), ist die Konvektion mit Konvergenz der Talwindsysteme entscheidend, für das Minimum im Winter (besonders Dezember und Jänner) die Neigung zu stabiler Schichtung und Temperaturinversion.

Dazu sei ergänzt, daß die Intensität der Globalstrahlung (nach den Beobachtungen von 1957 bis 1981) senkrecht zum direkten Strahlungseinfall einen anderen Gang aufweist. Die höchsten Werte traten von Februar bis April, die tiefsten im Juli auf. Im Jahresdurchschnitt beträgt die Globalstrahlung um 14 Uhr rund 6,3 Jicm?imin, also etwa 77% der extraterrestrischen Intensität.

10

Bew.	Jahr	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Spt.	Okt.	Nov.	Dez.
0	50	95	100	71	18	7	4	7	12	31	81	82	90
1	70	106	97	79	54	28	23	26	40	75	98	104	111
2	48	63	59	51	40	35	28	26	37	54	63	57	58
3	46	47	44	43	42	36	39	48	45	52	53	53	53
4	43	37	45	39	35	33	50	43	46	57	52	39	43
5	36	33	32	32	31	41	40	40	46	38	30	39	29
6	43	42	38	34	31	44	59	59	52	54	39	38	31
7	44	36	33	31	39	48	57	63	61	44	37	39	44
8	61	53	45	47	55	63	76	91	83	59	52	57	53
9	53	45	44	38	41	59	61	85	71	60	39	39	56
10	499	439	457	530	608	600	559	506	501	471	449	448	427
Mitt.	7,2	6,4	6,5	7,1	7,9	8,2	8,1	7,9	7,7	7,1	6,5	6,5	6,4

Tabelle 5: Häufigkeitsverteilung (in Promille) der Bewölkung (in Zehntel) um 14 Uhr, Sonnblick, 3105 m (1886–1984), sowie Durchschnitte

Auf das Wintermaximum und Sommerminimum der Windgeschwindigkeit wurde bereits im Zusammenhang mit dem Gang des Luttdruckes verwiesen. Auf die jahreszeitlichen Veränderungen in der Richtung braucht hier nicht eingegangen werden (vgl. die Darstellung bei F. F.LRI) (1975, S. 83). Zur Berechnung der Abkühlungsgröße, für die der Wind entscheidend ist, wurden die Beaufortwerfe B in m/see umerechnet mit Hilf der Bezichmung – 0.8883¹⁹⁴⁷.

Wind	Jahr	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Spt.	Okt.	Nov.	Dez.
0	31	27	21	21	23	37	41	45	46	40	31	19	17
1	87	50	52	68	81	98	102	137	136	127	77	63	54
2	205	153	144	155	201	217	263	282	274	241	206	174	151
3	221	183	209	206	230	250	247	230	237	230	214	206	212
4	159	163	167	167	177	165	162	142	127	136	156	169	174
5	139	174	171	169	152	128	106	96	101	107	146	153	164
6	78	114	112	100	75	58	45	35	39	63	82	100	108
7	46	74	66	63	35	27	20	20	25	33	52	62	71
8	22	37	40	33	16	14	7	6	6	13	27	34	32
9	4	11	9	9	4	0	0	1	2	2	3	7	6
10	2	7	2	9	0	0	2	0	0	1	0	6	4
11	0	0	1	0								0	0
12	0	0				0		0				0	0
13	0				0								
Mitt.	3,7	4,1	4,1	3.9	3,5	3.3	3.1	2,9	2,9	3,1	3,6	3,9	4,0

Tabelle 6: Häufigkeitsverteilung (in Promille) der Windstärken (Beaufort), 14 Uhr, Sonnblick, 3105 m (1886–1984), sowie Durchschnitte

4. KORRELATION DER GRÖSSEN, DIE ATEMENERGIE UND ABKÜHLUNG BESTIMMEN

Zur Beurteilung der funktionalen Abhängigkeit der beiden bioklimatischen Größen von den vorgegebenen meteorologischen Werten ist vor allem die wechselseitige Korrelation der letzteren nützlich. Große Atemenergie ist mit tiefem Luftdruck, tiefer Temperatur und geringer relativer Feuchte verbunden. Letzter ist mit Druck und Temperatur negativ korreliert, was die Schwankungen der Atemenergie verringert.

Anderseits wird die Abkühlungsgröße maximal bei tiefer Temperatur, großer Bewölkung und großer Windgeschwindigkeit. Die wechselseitigen Korrelationen der letzteren bedeuten eine Verstärkung der Schwankung der Abkühlungsgröße.

Tabelle 7: Lineare Korrelation zwischen den meteorologischen Größen, die Atemenergie und Abkühlungsgröße bestimmen. Sonnblick (3105 m), 14 Uhr (1866–1984); p = Luftdruck, t = Temperatur, f = Feuchte, b = Bewölkung, v.= Wind; angegeben 100 * Korrelationskoeffizient

Korrelat.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Spt.	Okt.	Nov.	Dez.
p*t	+59	+52	+49	+49	+54	+61	+67	+66	+68	+62	+58	+58
p*f	-41	-45	-38	-31	-29	-43	-48	-49	-40	-41	-41	-43
t*f	-25	-24	-10	-4	-16	-45	-57	-49	-31	-26	-24	-27
t*v	-11	-8	-12	-12	-6	-14	-15	8	-11	-2	-5	-4
t*b	-18	-12	-7	-11	-15	-32	-36	-34	-30	-27	-21	-18
b*v	+15	+9	+10	+14	+13	+23	+21	+21	+19	+15	+11	+11

JAHRESGÄNGE UND HÄUFIGKEITSVERTEILUNGEN VON ATEMENERGIE UND ABKÜH-LUNGSGRÖSSE

Tabelle 8: Häufigkeitsverteilung (in Promille) der Atemenergie A (kJ/h) in Stufen von 5 zu 5 kJ/h auf dem Sonnblick, 3105 m (1886–1984), um 14 Uhr. Extreme, Durchschnitte und Spanweite in Zehntel kJ

hkJ/h	Jahr	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Spt.	Okt.	Nov.	Dez.
40-	0							2	0				
45-	44					2	50	215	208	51	0		
50	199	0		1	14	187	491	510	523	487	159	11	1
55-	9		2	2	з	5	4	6	9	15	41	16	1
60-	258	75	73	76	303	569	404	250	244	345	459	231	64
65-	328	548	515	581	523	217	48	14	12	98	296	545	541
70-	139	306	351	290	150	18				1	42	182	333
75-	20	65	55	47	5							12	58
80-	0	3	1	1									0
Max.	833	828	833	811	762	726	678	660	657	702	750	774	807
Mitt.	606	692	694	679	655	607	558	529	529	560	615	659	684
Min.	432	548	550	527	508	451	461	432	442	457	490	500	537
Spw.	401	280	283	284	254	275	217	228	215	245	260	274	270

Die Atemenergie hängt am meisten von der Lufttemperatur, die Abkühlunsgröße von der Windgeschwindigkeit und der Lufttemperatur ab. Es verwundert daher nicht, daß beide blöchmatischen Größen denselben klaren Jahresgang aufweisen. Die Minima fallen in den Juli und August, die Maxima in den Jänner und Februar. Das Hinzutreten oder Wegfallen der Schmeizwärme bewirkt eine Unstetigkeit in der Verteilung der Atemenergie. Bemerkenswert ist, daß in beiden Verteilungen die Spannweiten im März am größten und im August am kleinsten ausfallen.

Grad	Jahr	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Spt.	Okt.	Nov.	Dez.
0-	31	27	21	21	23	38	41	46	47	40	32	19	17
10-	90	33	31	47	53	91	125	179	187	159	86	49	35
20-	203	97	92	108	150	234	310	344	327	287	221	160	103
30-	233	178	190	205	258	274	271	243	247	250	243	228	214
40-	197	212	227	216	225	215	169	137	137	160	221	215	233
50-	130	193	195	190	174	104	65	37	43	79	122	169	187
60	68	133	127	123	74	34	12	7	7	18	57	103	119
70-	30	79	78	54	31	5	3	2	1	3	13	38	57
80-	9	27	22	22	7	1	0	0		0	1	11	21
90-	3	27	22	22	7	1						3	6
100-	0	2	2	0								1	0
110-	0	0	0	0									
120-	0		0										0
Max.	1239	1109	1212	1239	1018	876	871	840	724	856	864	1044	1214
Mitt.	363	479	477	455	405	351	315	288	288	315	369	428	461
Min.	22	33	30	36	30	29	26	22	24	23	27	30	31
Spw.	1217	1076	1182	1203	988	847	845	818	700	833	837	1014	1183

Tabelle 9: Häufigkeitsverteilung (in Promille) der Abkühlungsgröße H um 14 Uhr (KJ/h/100 qcm) auf dem Sonnblick, 3105 m (1886–1984). Extreme, Durchschnitte und Spannweite in Zehntel kJ/h

6. EXTREME VON ATEMENERGIE UND ABKÜHLUNGSGRÖSSE

Tabelle 10: Absolute Maxima der Atemenergie (A in kJ/h) auf dem Sonnblick, 3105 m, 14 Uhr (1886–1984); p = Lutfdruck (hPa), t = Luttemperatur, f = relative Feuchte %, b = Bewölkung (Zehntel), v = Wind (Beaufort), r = Windrichtung, H = Abkühlungsgröße (kJ/h/100 cm²)

Monat	Tag	Jahr	Α	р	t	f	b	v r	н
Jänner	1	1905	82,8	672,3	-34,8	72	10	5 ENE	81,3
Februar	13	1940	83,3	666,7	-34,7	83	10	5 NW	81,2
März	5	1971	81.1	674.3	-32.2	75	3	5 NNE	71.9
April	13	1913	76.2	674.9	-23.0	71	10	4 NNE	60.0
Mai	2	1909	72.6	684.8	-18.1	82	10	2 NW	35.7
Juni	6	1914	67,8	682,0	-9,8	95	10	6 NNE	64,0

Monat	Tag	Jahr	А	р	t	f	b	v r	н
Juli	8	1954	66,0	692,7	-8,6	93	10	7 NW	69,6
August	28	1924	65,7	689,7	-7,6	92	10	4 NE	46,8
September	29	1936	70,2	686,9	-14,4	87	10	3 N	43,6
Oktober	30	1941	75,0	671,2	-20,0	82	10	7 NNW	83,9
November	27	1915	77.4	678.0	-25.9	79	10	3 NE	51.7
Dezember	17	1927	80,7	674,3	-31,3	87	10	3 NNW	55,4

Tabelle 10: (Fortsetzung)

Tabelle 11: Absolute Maxima der Abkühlungsgröße (H in kJ/h/100 cm³) auf dem Sonnblick, 3105 m, 14 Uhr (1886–1984); p = Luftdruck (hPa), t = Lufttemperatur, f = relative Feuchte %, b = Bewölkung (Zehntel), v = Wind (Beaufort), H = Atemenergie (kJ/h)

Monat	Tag	Jahr	А	р	t	f	b	vr	н
Jänner	29	1895	110,9	674,4	-33,8	82	10	8 N	82,0
Februar	5	1969	121,2	680,5	-23,8	79	10	11 NNE	76,0
März	16	1962	123,9	675,7	-25,3	78	10	11 NE	77,3
April	16	1970	101,8	698,7	-5,8	94	10	13 NNE	63,7
Mai	5	1920	87,6	691,6	-11,8	?	10	9 NE	70,2
Juni	14	1894	87,1	690,7	-7,4	92	10	10 NE	65,4
Juli	18	1968	84,0	693,3	-5.4	95	10	10 NNW	63.8
August	27	1900	72,4	698,8	1.8	97	10	10 SSW	51.2
September	25	1896	85,6	682,5	-6.4	90	10	10 SW	65.7
Oktober	17	1895	86,4	687,9	-16,0	86	10	8 N	71.0
November	24	1909	104,4	682,7	-18,2	82	10	10 N	72.9
Dezember	26	1968	121,4	674,4	-22,7	80	7	12 NNE	76,1

Tabelle 12: Absolute Minima der Atemenergie (A in kJ/h) auf dem Sonnblick, 3105 m, 14 Uhr (1886–1984); p = Lutfdruck (hPa), t = Lutftemperatur, f = relative Feuchte %, b = Bewölkung (Zehntel), v = Wind (Beaufort), r = Windrichtung, H = Abkühlungsgröße (kJ/h/100 cm²)

Monat	Tag	Jahr	Α	р	t	f%	b	vr	н
Jänner	6	1983	54,8	704,5	0,5	42	3	2 NW	21,7
Februar	29	1960	55,0	700,0	0,4	45	8	6 N	50,2
März	20	1898	52,7	692,9	3,2	66	1	2 W	19,0
April	23	1968	50,8	704,1	4,2	73	4	3 NW .	26,0
Mai	30	1949	45,1	696,4	9,0	100	10	6 SW	42,8
Juni	- 26	1941	46,1	707,2	7,2	100	10	1 SSW	14,3
Juli	6	1930	43,2	705,5	11,9	87	6	1 W	11,2
August	1	1983	44,2	705,1	11,0	86	6	4 SW	27,4
September	22	1916	45,7	695,7	9,6	90	1	3 N	20,1
Oktober	5	1941	49,0	707,5	5,0	87	4	0 N	3,0
November	4	1927	50,0	705,9	4,5	79	0	2 WSW	17,8
Dezember	28	1983	53,7	709,5	0,0	62	6	7 NNE	53,9

Tabelle 13:	Absolute Minima der Abkühlungsgröße (H in kJ/h/100 cm ²) auf dem Sonnblick,
	3105 m, 14 Uhr (1886-1984); p = Luftdruck (hPa), t = Lufttemperatur, f = relative
	Feuchte %, b = Bewölkung (Zehntel), v = Wind (Beaufort), H = Atemenergie (kJ/h)

Monat	Тад	Jahr	А	р	t	f	b	vr	Α
Jānner	27	1887	3,3	706,9	-4,0	70	0	. 0 C	62,8
Februar	7	1939	3,0	705,9	-0,4	16	0	0 C	63,6
Mārz	26	1921	3,6	693,7	-4,7	?	2	0 C	67,1
April	30	1955	3,0	703,3	2,0	63	2	0 C	52,9
Mai	25	1920	2,9	701,3	4,8	?	3	0 C	55,8
Juni	17	1904	2,6	709,3	7,4	55	1	0 C	49,7
Juli	4	1905	2,2	710,5	11,7	53	2	0 C	47,0
August	27	1960	2,4	710,5	9.4	50	2	0 C	48,8
September	1	1806	2,3	708,0	8,0	72	0	0 C	47,9
Oktober	31	1984	2,7	706,3	4,8	45	1	0 C	52,2
November	28	1968	3,0	694,5	0,3	31	0	0 C	56,1
Dezember	1	1899	3,1	700,5	-1,2	22	0	0 C	64,0

Die monatlichen Maxima der Atemenergie sind alle bei niedrigem Lufdruck, tiefer Temperatur, fast alle bei voller Bewölkung und hoher relativer Feuchte, Windstärken zwischen 2 und 7 sowie Windrichtungen aus NW bis NE aufgetreten. Auch die maximalen Abkühlungsgrößen kamen bei tiefer Temperatur und niedrigem Luftdruck vor, die relative Feuchte war hoch, die Windstärke reichte von stürmisch (8) bis zum Orkan (13), die Richtungen waren NNW bis NE, nur im August und September auch SSW bis W.

Die monatlichen Minima der Atemenergie kamen alle bei hohem Luftdruck, hoher Temperatur, bei niedriger winterlicher und hoher sommerlicher Feuchte und Bewölkung sowie bei Windstärken von 7 abwärts und Richtungen zwischen SSW und N vor. Schließlich ergaben sich die monatlichen Minima der Abkühlungsgröße alle bei hohem Druck, hoher Temperatur, bei eher geringer Feuchte, bei Bewölkung von 3 abwärts und schließlich immer bei Windstille

Es könnte bei flüchtigem Betrachten dieser Ergebnisse der falsche Eindruck entstehen, daß Atemenergie und Abkühlungspröße immer ziemlich straff verkningft wären. Das ist jedoch nicht der Fall. Die in Tab. 14 sichtbaren Korrelationskoeffizienten zeigen, wenn man sie quadriert, daß die Relinen der beiden bicklimätischen Maßzahlen im Winter auch maximal nur 13%, und im Sommer miniam 13% ihrer Streuung gemeinsam haben. Kombinationen beider Größen könnten daher für eine Typisierung eines jeden Tages verwendet werden (F. FLIRI 1980). Der ausgeprägte Jahresgang würde sich derart einmal mehr bestätigen.

Tabelle 14:	Lineare	Korrelation	zwischen	Atemenergie	und	Abkühlungsgröße,	Sonnblick,
	3105 m	(1886-1984),	14 Uhr, 10	0* Korrelations	koeff		

Korrelat.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Spt.	Okt.	Nov.	Dez.
A*H	+36	+34	+34	+33	+26	+30	+33	+26	+29	+28	+30	+31

7. ATEMENERGIE UND ABKÜHLUNGSGRÖSSE BEI DEN WITTERUNGSLAGEN

Die Ausprägung wichtiger Klimaelemente im Alpenraum zwischen dem Mont Blanc und den Hohen Tauern in Abhängigkeit von der Luftdruckverteilung hat der Verfasser (1984) für die Periode 1946–1979 dargestellt. Er hat sich dabei des Systems der Klassifikation der Witterungslagen von M. SCHÜEPP bedient, der hiefür auch die Karten der jeweiligen mittleren Druckverteilung beigetragen hat. Kalendarien der Witterungslagen enthalten die Annalen der Schweizerischen Meteorologischen Anstalt.

Es hat sich gezeigt, daß anhand dieser Klassifikation auch für das Sonnblickgebiet Klimaelemente analysiert und interpretiert werden können. Hinsichtlich des Systems sei un obige Veröffentlichung bzw. die dort angegebene Literatur verwiesen. Hier werden 32 Lagen unterschieden, wofür 8 Strömungsrichtungen verwendet werden, die jeweils bei antizyklonaler, indifferenter oder zyklonaler Witterung vorkommen können. Die übrigen Lagen sind "Kernlagen". 2.B. Hochruck (+H), Tiefdruck (L), Flachdruck (F) Ebzw. Sättellagen '(N).

Die monatlichen Maxima der Atemenergie sind vor allem bei Strömungen aus NW bis E (meist indifferent) aufgerteren, jene der Abkühungsgröße nicht nur bei diesen, Sondern auch bei zyklonalen West-, Nordwest- und zentralen Tiefdrucklagen. Anderseits sind die Minima der Atemenergie für die die Lutttemperatur ausschlaggebend ist, bei sehr verschiedenen Strömungsrichtungen, bei zyklonalen wie auch antizyklonalen Lagen vorgekommen. Schließlich waren die Minima der Abkühlungsgröße in fast allen Monaten an antizyklonale Witterungslagen gebunden.

Beim Beurtelien des Inhaltes der Abb. 1 ist zu bedenken, daß die Witterungstagen innerhalb der Halbjahre zeitlich nicht gleichmäßig verteilt, Aussagen über Atemenergie und Abkühlungsgröße sonit incht ganz vom Jahresgang frei sind, vor allem wegen der Temperatur. Trotzdem ist zu erkennen, daß zwar die Atemenergie bei fast allen Lagen im Winter größer als im Sommer ist, die Abkühlungsgröße dagegen über einen weiten Bereich und beide Jahreshählten streut. Ferner

Abb. 1: Zusammenhang von Atemenergie und Abkühlungsgröße in Abhängigkeit von den Witterungslagen

fällt auf, daß bei Strömung aus Süd und Südwest geringe Atemenergie mit großer Abkühlung verhunden ist.

8 LANGJÄHRIGE PENTADENMITTEL

Die fast 100 Jahre umfassenden Beobachtungen erlauben, die Hauptgrößen des Bergwetters auch in ihrer mittleren zeitlichen Feinstruktur zu zeigen. "Tagesnormalwerte" wären aber mit zufälligen Schwankungen behaftet. Daher sind in Tab. 15 Mittelwerte für Pentaden berechnet worden, die genauer sind und einen glatteren Jahresgang erkennen lassen.

	peratur t (G	rad), relati	ve Feucht	ef (Prozer	nt), Bewöl	kung b (2	Zehntel),	Windge-
	schwindigke	it v (Beauf	ort), Ateme	energie A	(kJ/h) und	Abkühlu	ngsgröße	H (kJ/h/
				100 cm ²)			
Pe	ntade von bis	P	t	f	b	v	Α	н
01	01. Jan – 05. Jan	686,9	-12,6	79,7	7,1	4,3	69,3	49,8
02	06. Jan – 10. Jan	687,8	-12,4	78,3	6,4	3,9	69,2	46,9
03	11. Jan – 15. Jan	686,8	-12,6	78,4	6,6	4,3	69,3	49,6
04	16. Jan - 20. Jan	687,7	-12,3	77,5	6,3	4,1	69,1	47,6
05	21. Jan – 25. Jan	688,6	-12,2	75,4	5,8	4,1	69,1	47,4
06	26. Jan - 30. Jan	687,4	-12,4	76,8	6,2	3,9	69,3	46,3
07	31. Jan - 04. Feb	686,5	-12,7	79,3	7,0	4,3	69,5	49,9
08	05. Feb - 09. Feb	687,3	-12,5	77,2	6,5	4,1	69,3	47,6
09	10. Feb - 14. Feb	685,2	-13,1	78,3	6,8	4,1	69,9	48,5
10	15. Feb - 19. Feb	686,0	-12,9	79,6	6,4	4,2	69,6	48,8
11	20. Feb - 24. Feb	686,9	-12,3	76,5	6,1	3,9	69,3	45,9
12	25. Feb - 01. Mrz	687,6	-11,3	77,9	6,5	4,0	68,6	46,4
13	02. Mrz – 06. Mrz	687,1	-11,8	81,6	6,8	3,9	68,9	46,7
14	07. Mrz – 11. Mrz	687,2	-11,4	81,2	6,9	4,1	68,6	46,9
15	12. Mrz – 16. Mrz	687,5	-10,9	81,9	6,9	3,9	68,2	45,7
16	17. Mrz – 21. Mrz	687,9	-10,1	81,9	6,8	3,9	67,7	45,3
17	22. Mrz – 26. Mrz	688,5	- 9,3	84,9	7,3	3,9	67,0	44,3
18	27. Mrz – 31. Mrz	687,7	- 8,9	86,6	7,7	3,8	66,8	43,3
19	01. Apr – 05. Apr	688,5	- 8,4	85,9	7,7	3,5	66,4	40,9
20	06. Apr – 10. Apr	688,3	- 8,4	87,2	7,9	3,7	66,4	42,3
21	11. Apr – 15. Apr	689,4	- 8,0	86,9	7,6	3,6	66,0	41,3
22	16. Apr - 20. Apr	690,2	- 7,3	87,8	8,1	3,6	65,4	40,8
23	21. Apr – 25. Apr	690,8	- 6,6	89,4	7,9	3,4	64,8	38,6
24	26. Apr – 30. Apr	690,6	- 5,7	90,6	8,4	3,5	63,9	39,3
25	01. Mai – 05. Mai	692,2	- 4,7	90,7	8,3	3,4	62,9	37,5
26	06. Mai – 10. Mai	693,6	- 3,9	91,4	8,4	3,2	62,1	35,8
27	11. Mai – 15. Mai	694,9	- 3,3	90,8	8,0	3,4	61,3	36,1
28	16. Mai – 20. Mai	694,8	- 2,4	90,4	8,1	3,3	60,2	35.3
29	21. Mai – 25. Mai	695,8	- 2,0	91,2	8,1	3,2	59,7	33.7
30	26. Mai - 30. Mai	696.3	- 1.3	91.9	8.2	3.2	58.7	33.3

Tabelle 15: Pentadenmittel Sonnblick, 3105 m (1886-1984), 14 Uhr. für Luftdruck p (hPa). Tem-

Tabelle 15: (Fortsetzung)

Pe	ntade von bis	р	t	f	b	v	A	н
31	31. Mai – 04. Jun	697,9	- 0,5	91,4	7,9	3.0	57,0	31,6
32	05. Jun – 09. Jun	698,1	- 0,0	90,8	8,1	3,2	56,2	32,4
33	10. Jun – 14. Jun	697,7	- 0,0	91,7	8,4	2,9	56,2	30,9
34	15. Jun – 19. Jun	698,4	- 0,2	91,4	8,0	2,9	56,4	31,2
35	20. Jun – 24. Jun	699,4	- 0,9	91,6	8,2	3,1	54,6	31,7
36	25. Jun – 29. Jun	699,9	1,0	91,3	8,1	3,1	54,8	31,2
37	30. Jun – 04. Jul	700,3	1,8	89,9	7,9	3,0	53,9	30.0
38	05. Jul – 09. Jul	700,5	2,0	90,9	7,9	3,0	53,3	29,9
39	10. Jul – 14. Jul	700,7	1,9	91,3	8,2	2,9	53,3	29,4
40	15. Jul – 19. Jul	700,7	2,4	91,9	7,9	2,9	52,6	28,7
41	20. Jul – 24. Jul	700,9	2,6	91,5	8,0	2,8	52,5	28,3
42	25. Jul – 29. Jul	701,2	2,9	90,4	7,8	2,7	52,3	27,2
43	30. Jul – 03. Aug	701,3	2,9	90,6	7,8	2,9	52,1	28,2
44	04. Aug – 08. Aug	701,1	2,6	90,7	7,8	2,9	52,4	28,4
45	09. Aug – 13. Aug	701,3	2,6	91,3	7,8	2,7	52,4	27,6
46	14. Aug – 18. Aug	700,9	2,3	91,2	7,7	2,8	52,9	28,3
47	19. Aug – 23. Aug	700,4	1,9	91,4	8,0	3,0	53,6	29,8
48	24. Aug – 28. Aug	700,8	1,7	90,6	7,7	2,9	53,5	29,6
49	29. Aug – 02. Spt	700,7	1,5	89,4	7,3	2,9	54,0	29,6
50	03. Spt – 07. Spt	700,8	1,2	88,6	7,2	2,9	54,2	29,5
51	08. Spt – 12. Spt	700,4	0,7	88,0	7,3	3,0	54,8	30,4
52	13. Spt – 17. Spt	699,7	- 0,1	89,2	7,2	3,1	56,2	31,5
53	18. Spt – 22. Spt	699,3	- 0,2	86,0	6,9	3,1	56,8	31,1
54	23. Spt – 27. Spt	698,7	- 1,1	88,3	7,1	3,4	57,5	33,9
55	28. Spt – 02. Okt	697,9	- 1,4	87,4	7,1	3,5	58,3	34,6
56	03. Okt – 07. Okt	697,4	- 2,1	85,1	6,9	3,4	59,5	34,8
57	08. Okt – 12. Okt	696,8	- 2,9	83,9	6,5	3,5	60,7	35,2
58	13. Okt – 17. Okt	695,8	- 3,6	79,8	6,0	3,6	61,6	36,4
59	18. Okt – 22. Okt	695,1	- 4,3	78,8	6,4	3,7	62,6	37,8
60	23. Okt – 27. Okt	693,6	- 4,7	80,9	6,4	3,8	63,1	38,9
61	28. Okt - 01. Nov	693,0	- 5,4	81,5	6,6	3,9	63,5	40,4
62	02. Nov – 06. Nov	692,7	- 5,7	80,8	6,6	3,8	64,1	39,9
63	07. Nov – 11. Nov	691,1	- 6,9	81,6	6,8	3,8	65,0	41,4
64	12. Nov – 16. Nov	690,2	- 8,2	81,5	6,8	3,9	66,2	43,2
65	17. Nov – 21. Nov	690,9	- 8,9	78,1	6,4	4,1	66,7	44,4
66	22. Nov – 26. Nov	690,7	- 9,1	76,5	6,3	3,8	66,9	42,4
67	27. Nov – 01. Dez	689,4	- 9,5	78,2	6,5	4,2	67,2	46,1
68	02. Dez – 06. Dez	689,1	-10,2	79,1	6,3	4,0	67,8	45,2
69	07. Dez – 11. Dez	687,6	-10,7	78,7	6,6	3,9	68,1	45,1
70	12. Dez - 16. Dez	687,7	-10,9	77,5	6,3	4,0	68,4	45,7

Pentade von bis		р	t	f	b	v	А	н
71	17. Dez – 21. Dez	688,5	-11,2	76,5	6,3	4,2	68,5	47,6
72	22. Dez - 26. Dez	688,6	-11,3	77,6	6,2	3,8	68,5	44,7
73	27. Dez – 31. Dez	686,6	-12,3	79,8	6,7	4,3	69,2	48,8

9. ÜBERSICHT DER LANGJÄHRIGEN KLIMAENTWICKLUNG

Eine Beurteilung der säkularen Änderung ist mit Hilfe einer einfachen linearen Regression (Tab. 16) sicher unzureichend. Alberdem können bei den Bewökungs- und Windschätzungen systematische Fehler enthalten sein und selbst für die relative Feuchte ist das nicht auszuchließen. Die säkulare Abnahme des Luftdrucks im Winter von 2,2 hPa bei gleichzeitigem Temperaturanstieg um 1 Grad kann als Folge versfährter Advektion gedeutet werden, die Luftdrucksnahme um 1.6 hPa im Sommerhalbjahr bei eberfalls 1 Grad Temperaturerhöhung läßt sich eher als vermehrte Antzityklonalität verstehen. Wegen obiger Einwände erscheint die Abnahme der Atemengrie (im Sommer mehr als im Winter) besser gesichert als die Zunahme der Abkühlunggröße, bei die verstärkter Wind mehr wiegt als höhere Temperatur.

Tabelle 16:	Sonnblick, 3105 m (1886–1984); Veränderung der Klimaelemente (14 Uhr) im hun-
	dertjährigen linearen Trend; p = Luftdruck (hPa), t = Lufttemperatur (Grad), f =
	relative Feuchte (Prozent), b = Bewölkung (Zehntel), v = Windgeschwindigkeit
	(Beaufort), a = Atemenergie (kJ/h), h = Abkühlungsgröße (kJ/h/100 cm²), d =
	Veränderung in 100 Jahren, r = Korrelationskoeffizient

Wir	Winterhalbjahr (OktMärz)						Sc	Sommerhalbjahr (April–Sept.)						
	р	t	f	b	v	a	h	р	t	f	b	v	a	h
d	-2,2	+1,0	-3,8	+0,7	+0,8	-0,6	+6,5	+1,6	+1,0	+0,0	+0,0	+0,6	-1,2	+4,0
r	.104	.279	.259	.242	.451	.214	.425	.318	.367	.000	.017	.371	.336	.340

Schließlich gelten die obigen Bedanken auch für eine Darstellung der Veränderung der wichtigsten Klimaelemente seit 100 Jahren. Um diese Schwankungen besser vergleichen zu können, wurde jede der sieben hier verwendeten Datenreihen nach Halbjahren getrennt standardisert und dann untersucht, wie groß die Abweichungen vom Durchschnitt an der Standardabweichung gemessen ausfallen. Nur in 33 von 196 Halbjahren bileben alle 7 Reihenwerte Innerhalb der Spanne der einfachen Standardabweichung. In Tab. 17 sind die Ergebnisse zusammengestellt. Sie gestatten eine recht gute Typisierung des allgemeinen Witterungscharakters in den Halbjahren. Man hat nicht den Eindruck, daß die Anomalien gleichmäßig über die Zeit verteilt sind. Wegen der bereits betrachteten Verknüpfung sind überdies meist mehrere Klimaelemente betroffen.

Besonders schwankungsreich waren die ersten beiden Jahrzehnte dieses Jahrhunderts und die Jahre zwischen 1938 und 1952. Auffallend ausgeglichen verhielten sich hingegen die Klimagrößen zwischen 1952 und 1938 sowie (mit einigen Ausnahmen) zwischen 1954 und 1980. Besonders hervorzuheben sind der schlechte Sommer des Klimajahres 1909/10 (gefolgt von einem durchschnittlichen Winter) und das strenge Winterhalbjahr 1914/15 (gefolgt von einem unauffälligen Sommer). Tabelle 17: Somblick, 3105 m, (1866–1984), 14 Uhr; Abweichung der Klimagrößen vom langjährigen Durchschnitt: Die Abweichung der Werte um mindestens die einfache bzw. doppette Standardabweichung wird mit Klein- bzw. Großbuchstaben bezeichnet; pP = Lufdruck, tT = Lufttemperatur, IF = relative Feuchte, bB = Bewölkung, vV = Windgeschwindigkeit, al. = Atemenzeigt, hH = Abköhlungspröße, i = indifferent

Jahr	Winterhj.	Sommerhj.	Jahr	Winterhj.	Sommerhj.
1886/87	+F-b-A	-t+f	1887/88	-P-T+F+b+A	-t+f-v-h
1888/89	-t+a	-p+f+b+v+h	1889/90	+p-b	+F+v+h
1890/91	-T+a	1	1891/92	+v	-b
1892/93	-t-b+a	i	1893/94	-b	i
1894/95	-p-T	+p	1895/96	i.	-T+f+B+a
1896/97	+f+B	+f	1897/98	+P-f-b-v-h	-f
1889/99	+p+t-v-a-h	-t+b-v+a-h	1899/00	-b	-f-b
1900/01	-b-v-h	-v-h	1901/02	i	-p-F-v-h
1902/03	+p-f-b-v-H	-p-t-f-b+a	1903/04	-v-h	-F-b-V-H
1904/05	-t-b-v+a-h	-F-b-v-H	1905/06	-p-t-V+a-H	-f-V-H
1906/07	-t+a	-v	1907/08	+f-V-H	-v
1908/09	-T-f-V+a-H	-p-t-V+a-H	1909/10	+f	-P-t+f+b-v+a-h
1910/11	-v	-V-H	1911/12	+t+f-v-a-h	-p-T+b+A
1912/13	i i	-p-T+b+A	1913/14	+t-a	-t+v+a+h
1914/15	-P-t+f+b+v+a+h	i	1915/16	-p+b	-p-t+a
1916/17	p	-f-a	1917/18	-f+v+h	-p+b+v+h
1918/19	-p+b	-p-t-b+v+a+h	1919/20	-b	-b+v
1920/21	+p+t-B-h	+t-B	1921/22	-B-h	-p-B-h
1922/23	-p-t+a	-f	1923/24	-p+f	-p+f+b
1924/25	+p+t-b-a	-p+f+b	1925/26	i	-v-h
1926/27	+f	+f+b	1927/28	+p	i
1928/29	-t+a	+p-a	1929/30	+t	+b
1930/31	i	i	1931/32	+p-f-b	-a
1932/33	+p	-t+b+a	1933/34	-v-h	+p+f-a
1934/35	i	1	1935/36	+b	+f
1936/37	i	+f+b	1937/38	i i	i .
1938/39	-f-b-v-h	-v-h	1939/40	i	-t+f+b+v+a+h
1940/41	-p-t+v+a+h	-t+v+a+h	1941/42	-t+b+a+h	+v+h
1942/43	+p+t+v-a	+p+v	1943/44	+v+h	1
1944/45	-t+a	+p+t-f-a	1945/46	+b	+p+T-a
1946/47	-p+f+b-v	+P+T-f-v-a-h	1947/48	+p+t+f-V-a-h	-v-h
1948/49	+P+t-f-b-a	+P+t	1949/50	+p+t-a	+p+t+b-a
1950/51	-p+f+B+h	+p+b	1951/52	+B+h	+p+b
1952/53	-t+b+a	+p-a	1953/54	+p+b-a	+B+v+h
1954/55	i	t	1955/56	-t+v+a+h	+v+h
1956/57	+p-f	i	1957/58	-f	+p+t-a
1958/59	+p+t-a	+p	1959/60	i	1
1960/61	-v-h	+t-f-v-h	1961/62	+v+h	-t-f+v+h
1962/63	-p-t+v+A+h	+t+b-a	1963/64	+t-F	+p-f
1964/65	i	-p-t+a	1965/66	I.	i

Jahr	Winterhj.	Sommerhj.	Jahr	Winterhj.	Sommerhj.
1966/67	+v+h	I	1967/68	-f+v+h	+f+V+H
1968/69	+v+h	+v+h	1969/70	-p+v+h	+v+h
1970/71	+v+h	+t	1971/72	+p+t-a	-p+f+b
1972/73	+p	+p-a	1973/74	+p+t-a	1
1974/75	1	+t-a	1975/76	-b	 1
1976/77	1	+v+h	1977/78	-a	-p
1978/79	+t	-b	1979/80	i	+v+h
1980/81	-f+v+h	+t	1981/82	I	+P+t-f-b-a
1982/83	+p+t+v-a	+p+t-b+v-a	1983/84	i i	-p

Tabelle 17: (Fortsetzung)

Zusammenfassung

Vom Nochgebirgsobservatorium auf dem Sonnblick (Hohe Tauern, 3105 m) liegen ganz bzw. fast unnuterkonchene meteorologische Bobachtungen seit dem Oktober 1886 vor. In der vorliegenden Arbeit wird das Bergwetter um 14 Uhr anhand Luftdruck, Temperatur, relativer Fauchte, Bewölkung, Wind, Atemenergie und Abkühlungsgröße untersucht, wobei der Schwerpunkt auf letztere beiden Größen gelegt wird. Zu diesem Zwecke werden die Jahresgänge und monatlichen Häufigkeitsverteilungen dieser meteorologischen Werte, aber auch ihr funktionaler und stochastischer Zusammenhang betrachtet. Sodann werden die Extreme von Atemenergie und Abkühlungsgröße sowie ihre durchschnittliche Zuordnung zu den Witterungslagen nach M. SCHÜEPP behandelt. Zum Schluß wird einerseits der mittlere Jahresgang des Bergwetters mittles Pentader dargesteltt underseite werden die Schwamkungen der beabreiteten Größen seit 1886 anhand standardisierter Reihen gezeigt, womit eine Typisierung des Bergwetters nach Halbiahren verbunden ist.

LITERATURVERZEICHNIS

- ABEL, H., A. BAUMGARTNER und W. DONLE (1972): Energieverbrauch zur Erwärmung und Wasserdampfsättigung der Atemluft. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B 20, 373–400.
- ABEL, H., A. BAUMGARTNER und W. DONLE (1977): Energie- und Wasserumsätze bei der Atmung. Wissenschaftliche Mitteilung 28 der Universität Nünchen, Meteorologisches Institut, 137 S.
- DESCHWANDEN, J. v., K. SCHRAM u. J. C. THAMS (Hgb.) (1968): Der Mensch im Klima der Alpen. Huber Bern/Stuttgart, 240 S. FLIRI, F. (1962): Zur Wetterlagen-Bicklimatologie der Ostalpen. Die Hillsche Abkühlungsgröße auf der Zugspitze. Wetter und
- Leben 14, 71-76.
- FLIRI, F. (1975): Das Klima der Alpen im Raume von Tirol. 454 S., Innsbruck.
- FLIRI, F. (1980): Landwirtschaft, Verkehr und Tourismus Beispiele angewandter Klimatologie im Alpenraum. In: Klima und Planung 79, Veröffentlichung der Geographischen Kommission der Schweizerischen Naturforschenden Gesellschaft, 109-120, Bern.
- FLIRI, F. (1994): Synoptische Klimatographie der Alpen zwischen Mont Blanc und Hohen Tauern (Schweiz Tirol Oberitalien) und M. SCHUEPP: Alpine Witterungslagen und europäische Luftdruckverteilung. Wissenschaftliches Alpenvereinsheft 29, 686 S., Insphruck.
- KELLER, H. M. (1968): Hypoxie und Erythropolese. In: DESCHWANDEN, J. v., K. SCHRAM u. J. C. THAMS (Hgb.): Der Menschim Klima der Alpen. 67–72.
- LAUSCHER, F. (1951): Über die Verteilung der Hillschen Abkühlungsgröße auf der Erde. Archiv für Meteorologie, Geophysik und Bioklimatologie, Seire B 3, 275–288.
- LAUSCHER, F. (1956): Gibt es bloklimatisch kalten Föhn? Wetter und Leben 8, 168-173.
- MURALT, A. v. (1968): Der Beitrag der H
 öhenphysiologie zur allgemeinen Bioklimatologie. In: DESCHWANDEN, J. v., K. SCHRAM u. J. C. THAMS (Hob.): Der Mensch im Klima der Alpen. 57–59.
- PAULI, H. G. (1968): Zentrale Atemregulation in der Höhe. In: DESCHWANDEN, J. v., K. SCHRAM u. J. C. THAMS (Hgb.): Der Mensch im Klima der Aloen, 73–79.
- STEINHAUSER, F. (1938): Meteorologie des Sonnblicks I., Wien.
- STEINHAUSER, F. (1973): Klimatabellen österreichischer H
 öhenstationen f
 ür die Periode 1941–1970. 68.–69. Jahresbericht des Sonnblick-Vereines f
 ür die Jahre 1970–1971, 82–90.

STEINHAUSER, F. (1977): Die geschichtliche Entwicklung des Sonnblick-Observatoriums und seine Bedeutung für die meteorologische Wissenschaft. 74.–75. Jahresbericht des Sonnblick-Vereines für die Jahre 1976–1977, 82–89.

STEINHAUSER, F. (1984): Charakteristik der Bewölkungsverhältnisse auf dem Sonnblick und in seiner weiteren Umgebung. 79.–81. Jahresbericht des Sonnblick-Vereines für die Jahre 1901–1983, 77–100.

Zentralanstalt für Meteorologie und Geodynamik, Wien: Jahrbücher, Ergebnisse von Strahlungsmessungen in Österreich (1957–1981).

Summary

Meteorological observations have been carried out at the high mountain observatory on top of Sonnblick (Hohe Tauern, 3105 m) with only minor interruptions since October 1866. The present paper treats the mountain weather at 2 p. m., barometric pressure, temperature, relative humidity, cloudiness, wind, and, with special emphasis, energy of breathing and wind chill.

The annual variation of these parametres, their monthly frequency distribution as well as their functional and stochastic interrelation are discussed. Extreme values of breathing energy and wind chill and their respective correlation with M. Schüep's weather types are presented.

Finally the mean annual march of the mountain weather is presented in pentade values and the variance since 1886 of the analyzed parameters is refered to standardized records, which allows a classification of seasonal mountain weather (M. KUHN).

Riassunto

Dal osservatorio sul Sonnblick (Hohe Tauern, 3105 m) esistono a partire dall'ottobre del 1866 quasi ininterrottamente delle osservazioni meteorologiche. Nel lavoro fatto viene studiato il tempo di montagna con valori della pressione atmosferica, della temperatura, dell' umidital relativa, della nuvolosita', del vento, dell' energia respiratoria e del ratfredamento. Particolare importanza assumono gli utilmi due fattori.

A questo scopo vengono studiati i corsi medie annuali e le distribuzioni mensilii della frequenza di queste misurazioni meteorologiche, ma viene anche osservato la loro conessione furzionale e stochastica. Poi vengono elaborati gli estremi dell'energia respiratoria e della misura del raffredamento come pure la loro appartenenza aprossimativa alle tipi meteorologiche secondo M. SCHUEPP.

Alla fine viene rappresentato da una parte il corso medio annuale del tempo di montagna per mezzo di pentade, dall'altra parte vengono mostrate le oscillazioni delle misurazioni elaborate dal 1886 in base a delle serie standardizzate. Con questo si ha una tipizzazione del tempo di montagna semestrale (R. RECHENMACHER).

ZOBODAT www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Mitteilungen der Österreichischen Geographischen Gesellschaft

Jahr/Year: 1985

Band/Volume: 127

Autor(en)/Author(s): Fliri Franz

Artikel/Article: Physische Geographie. Ein Beitrag zur Kenntnis von Bergwetter und Bicklima der Ostalpen, mit besonderer Berücksichtigung von Atemenergie und Abkühlungsgröße 98 Jahre Beobachtung auf dem Sonnblick (3105 m.) 14-Uhr. Termin 5-22