Mitt. Pollichia	64	63-75	3 Abb.	2 Tab.	Bad Dürkheim/Pfalz 1976
Min. Foliand		00 73	U ADD.	2 100.	ISSN 0341-9665

Burkhard W. SCHARF & Ragnar KINZELBACH

Zur Hydrochemie des Naturschutzgebietes "Hördter Rheinaue"

Kurzfassung

Scharf, B. W. & Kinzelbach, R. (1976): Zur Hydrochemie des Naturschutzgebietes "Hördter Rheinaue". — Mitt. Pollichia 64: 63—75, Bad Dürkheim/Pfalz.

Die wichtigeren Gewässer des Naturschutzgebietes "Hördter Rheinaue" wurden hydrochemisch untersucht. Sie sind überwiegend anthropogen beeinflußt. Zum Teil ergibt sich hieraus die Möglichkeit hydrographischer Zuordnung. Z. B. sind Gewässer, die über das Grundwasser mit dem Rhein in Verbindung stehen, durch erhöhte Cl.—Konzentration gekennzeichnet. Mit Ausnahme einiger Baggerseen und der Aubach-Quellen sind alle Gewässer eutroph; dieser Umstand erschwert eine Klassifizierung auf rein hydrochemischer Grundlage.

Abstract

Scharf, B. W. & Kinzelbach, R. (1976): Zur Hydrochemie des Naturschutzgebietes "Hördter Rheinaue" [The hydrochemistry of the natural preserve "Hördter Rheinaue]. — Mitt. Pollichia 64: 63—75, Bad Dürkheim/Pfalz.

The more important waters of the natural preserve "Hördter Rheinaue" were investigated hydrochemically. They are influenced by anthropogenic factors which allow hydrographic coordinations: the waters which are connected with the Rhine River across the water table are characterized by high Cl⁻-concentrations. With the exception of some dredged lakes and springs of water-meadow brooks all waters are eutrophic. This makes difficult their classification on a hydrochemical base.

Résumé

Scharf, B. W. & Kinzelbach, R. (1976): Zur Hydrochemie des Naturschutzgebietes "Hördter Rheinaue" [L'hydrochimie de la réserve naturelle d'"Hördter Rheinaue"]. — Mitt. Pollichia, 64: 63—75, Bad Dürkheim/Pfalz.

On fait une analyse hydrochimique des eaux les plus importantes de la réserve naturelle d'"Hördter Rheinaue". Pour la plus grande partie elles souffrent d'une influence anthropogène ce qui permet de les classifier d'après l'hydrographie. Les eaux, reliées au Rhin par l'eau souterraine, se distinguent par une concentration élevée de chlore. A l'exeption et de la source du "Aubach" toutes les eaux sont eutrophes ce qui rend difficile une classification purement hydrochimique.

1. Einleitung

Die Hydrochemie von Oberflächengewässer der Rheinniederung war lange Zeit nur gelegentlich und im Zusammenhang mit ganz bestimmten Fragen untersucht worden. In Rheinland-Pfalz erfolgt seit einigen Jahren eine intensive Bestandsaufnahme durch das Landesamt für Gewässerkunde in Mainz. Dabei fielen auch Daten aus dem Bereich des Naturschutzgebietes "Hördter Rheinaue" an, die zusammen mit einigen Analysen aus dem Institut für Zoologie der Universität Mainz als Ergänzung der Gesamtcharakteristik des Gebietes (Kinzelbach 1976a) nachfolgend dokumentiert werden sollen. Es handelt sich dabei um punktuelle Untersuchungen. Über längere

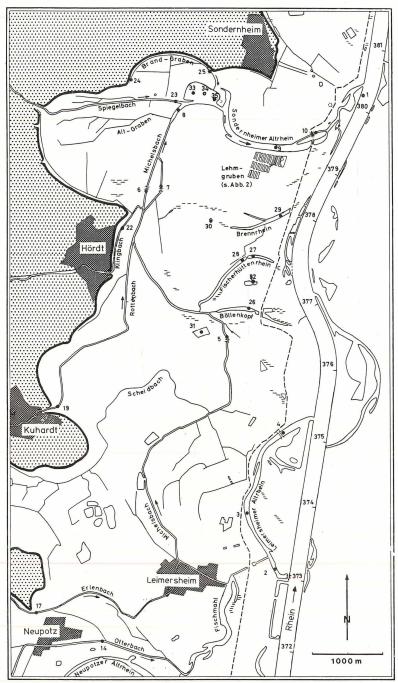


Abb. 1: Lage der Untersuchungsstellen in der "Hördter Rheinaue".

Niederterrasse, Hochufer, Talaue; Ortschaften;

----- Rheinhauptdeich. Original.

Zeiträume hinweg konnten bisher nur einige Grundgrößen (z. B. O2-Gehalt, Temperatur, Härte) erfaßt werden. Sie sind in den Arbeiten von Dannapfel (1977) und Schmidt (1976) niedergelegt.

Die Autoren danken dem Landesamt für Gewässerkunde Rheinland-Pfalz für die Bereitstellung der Analysedaten. Ein Teil dieser Ergebnisse wurden von Frau Dr. von Aufsess und Frau Ökologin Seydel erarbeitet.

2. Material und Methode

Die Orte der Probenahmen sind der Tab. 1, Abb. 1 und 2, das Untersuchungsdatum und das Ergebnis der Analysen der Tab. 2 zu entnehmen. Insgesamt wurden 84 umfangreichere Analysen ausgewählt. Davon stammen die folgenden vom Institut für Zoologie in Mainz (s. Tab. 2): Probestellen-Nr. 25 vom 12. 12. 1976, Nr. 26 vom 17. 5. 1976, sämtliche Analysen von Nr. 27 und 28 sowie Nr. 29 vom 31. 5. 1976; alle übrigen Analysen erarbeitete das Landesamt für Gewässerkunde Rheinland-Pfalz. Die Entnahmen an der Probestelle 1 erfolgten von dem landeseigenen Laborschiff "Oskar", jene an den Probestellen 31 und 33—35 vom Schiff "Secchi" des Landesamtes für Gewässerkunde (Scharf & Matterne 1975), die übrigen vom Ufer aus. Die Analysen des Landesamtes wurden von dessen Laboratorium nach den Deutschen Einheitsverfahren für die Wasseruntersuchung (1972), jene des Zoologischen Institutes nach Höll (1970), Freier (1974), Merck (o. J.) und Schwoerbel (1966) durchgeführt.

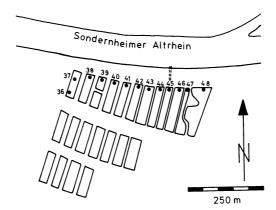


Abb. 2: Lage der Untersuchungsstellen in der "Hördter Rheinaue". Vergrößerter Ausschnitt von Abb. 1. Original.

3. Ergebnisse und Auswertung

Eine Unterteilung der Gewässer der "Hördter Rheinaue" in Großgruppen (Kinzelbach 1976a) war zunächst möglich unter Verwendung geographischer bzw. physikalischer Größen wie Strömung, Größe und Form des Wasserkörpers, Entstehung der Gewässer sowie Herkunft des sie speisenden Wassers. Sie führte zu folgender Gliederung:

- 1. Fließgewässer
- 1.1. Potamal des Rheins
- 1.1.1. Neuer Rhein

- 1.1.2. Leimersheimer Altrhein
- 1.2. Potamal der Niederterrasse
- 1.2.1. Potamal der Altaue
- 1.2.2. Potamal der "feuchten" Aue
- 1.3. Potamal bzw. Rhithral der Haardtbäche
- 1.4. Au-Quelle und Au-Bach (Au-Graben)
- 2. Stehende Gewässer
- 2.1. Natürliche Gewässer
- 2.1.1. "Seen-Typ" (vgl. Lauterborn, 1917)
- 2.1.2. Weiher-Typ, verschiedenen Verlandungsgrades
- 2.1.3. Pfützen, Überschwemmungsreste
- 2.2. Naturnahe künstliche Gewässer
- 2.2.1. Am Beginn des Besiedlungsprozesses
- 2.2.2. Am Ende des Besiedlungsprozesses

Diese Großeinteilung wurde durch faunistische Befunde an Wassermollusken (Kinzelbach 1976b) und Wasserkäfern (Dannapfel 1976) weitgehend unterstützt sowie in einigen Punkten ergänzt. Es bleibt zu prüfen, inwieweit sich die hydrochemischen Befunde mit diesem Bild in Übereinstimmung befinden.

Die Reihenfolge der Behandlung der einzelnen Gewässertypen folgt der geographisch-physikalischen Einteilung (s. oben).

3.1. Neuer Rhein (Probestelle 1): Als "Neuer Rhein" wird der kanalisierte Flußlauf bezeichnet, im Gegensatz zu den Altwässern, die mit ihm keine direkte Verbindung mehr haben oder nur an einem Ende, so daß sie nicht oder nur unvollständig durchströmt werden.

Der Neue Rhein ist im Vergleich zu den anderen Gewässern der "Hördter Rheinaue" vor allem durch einen hohen Cl--Gehalt gekennzeichnet. Er betrug im Jahre 1976 durchschnittlich (11 Messungen über das ganze Jahr verteilt) 206 mg Cl-/l. Die Schwankungen zwischen minimal 108 und maximal 258 mg/l sind durch unregelmäßige Chlorideinleitung und durch unterschiedliche Wasserstände und damit verschiedene Verdünnungsgrade verursacht.

Die Sauerstoffsättigung beträgt über das Jahr 1976 gemittelt (11 Messungen) 72 % (minimal 58, maximal 90 %). In diesen Zahlen spiegelt sich die im behandelten Flußabschnitt noch relativ geringe Belastung durch abbaubare Stoffe (vgl. auch die niedrigen BSB₅-Werte; der KMnO₄-Verbrauch betrug im Jahr 1975 bei Maximiliansau (Strom-km 362) nach 10 Messungen durchschnittlich 18,3 mg/l). Sauerstoffübersättigung, die in den stehenden Gewässern der "Hördter Rheinaue" sowie im Sondernheimer Altrhein häufig auftreten, sind in den letzten Jahren im Rhein bei Sondernheim nicht beobachtet worden.

3.2. Leimersheimer Altrhein (Probestellen 2—4): Über den Leimersheimer Altrhein berichtete ausführlich Schmidt (1976) im Vergleich zum Sondernheimer Altrhein. Dabei kam er zu dem Ergebnis, daß Rheinwasser im Verlauf des Leimersheimer Altrheins keine wesentlichen chemischen Veränderungen erfährt, und daß sich in diesem Arm des heutigen Rheins keine eigene Planktongesellschaft entwickelt. Dieser Nebenarm stellt demnach keine Zone der Regeneration für den Hauptstrom dar.

3.3. Michelsbach (Probestellen 5—8): Das Michelsbach-System beginnt in Leimersheim mit dem Fischmahl und endet im Sondernheimer Altrhein. Die Speisung dieses Gewässers erfolgt im wesentlichen durch die Haardtbäche. Infolgedessen hängt der Chemismus auch von deren Wasserqualität ab. Dieser Zusammenhang wird etwa bei einem Vergleich der Probestellen 6 und 7 im Michelsbach deutlich. Probestelle 7 weist gegenüber 6 eine bessere Wasserqualität auf, insbesondere durch die geringeren Konzentrationen der Stickstoffverbindungen, des Phosphats und die höheren Sauerstoffwerte. Die Differenzen zwischen den Probestellen sind vor allem durch den Einfluß des stark belasteten Klingbaches begründet. Der Unterschied im Wasserchemismus wirkt auch auf die Besiedlung zurück. So ist z. B. bei 7 die Muschelkrebsfauna arten- und individuenreicher als bei Stelle 6 (Scharf 1976).

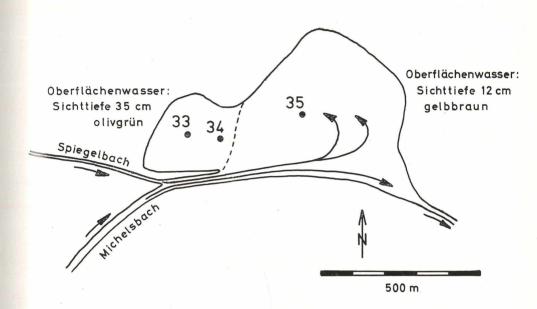
Die Analysendaten bei Probestelle 8 zeigen eine erhebliche Belastung des Michelsbachs an seinem Nordende.

- 3.4. Sondernheimer Altrhein (Probestellen 9 und 10): Nach Kinzelbach & Schmidt (1977) ist der Sondernheimer Altrhein im Gegensatz zum Leimersheimer in der Lage, eine beachtliche Klärleistung zu erbringen und den Rhein mit Benthos-Organismen und Plankton zu bereichern. Umfangreichere Analysen, die den biologischen Abbau der vom Michelsbach und Spiegelbach mitgeführten Abwässer belegen, sind bei Schmidt (1976) zu finden.
- 3.5. Die Haardtbäche (Probestellen 11—23): Wegen der Gleichartigkeit dieser Gewässer sollen sie gemeinsam besprochen werden. Die Quellregionen im Ostteil des Pfälzer Waldes (Haardt) führen aus dem Buntsandstein ein sehr weiches Wasser zu. Die Konzentrationen von Ammonium, Nitrit, Sulfat, Chlorid und damit auch die Leitfähigkeit sind zum Teil sehr gering. Entsprechend der zunächst geringen Belastung mit Abwässern (vgl. die BSB5- und KMnO4-Werte) ist der Sauerstoffgehalt der Gewässer hoch, sie sind von anspruchsvollen Organismen besiedelt. Einen solchen unbelasteten Quellbach repräsentiert die Probestelle 11.

Flußabwärts liegen zunehmend Ortschaften, deren Abwässer die Bäche stark belasten. Hinzu kommt die Auswaschung der gedüngten, landwirtschaftlich genutzten Flächen. Die sich daraus ergebende Änderung des Chemismus im Bach kann etwa beim Otterbach gut verfolgt werden. Zwischen den Probestellen 13 und 14 liegt eine längere Erholungsstrecke, die sich vor allem im biologischen Zustandswert bemerkbar macht. Die anderen Haardtbäche zeigen im Prinzip die gleiche Tendenz vom unbelasteten zum stark verschmutzten Bach.

3.6. Au-Quelle und Au-Bach (Probestelle 24, 25): Am Beispiel des Brand-Grabens soll dieser Gewässertyp besprochen werden. Vergleicht man die Analysen der Probestellen 24 und 25 etwa mit dem Quellbereich des Otterbaches (Probestelle 11), so fällt sofort die große Härte im Aubach auf. Dieses trifft sowohl für die Karbonathärte als auch bei der Gesamthärte zu. Die Analysen von Dannapfel (1976) am Brand-Graben und Alt-Graben bestätigen diese Beobachtung. Innerhalb der hier vorgelegten Analysenergebnisse führen die Au-Bäche das Wasser mit der größten Gesamthärte. Es ergibt sich die Frage, welche Anionen den vorhandenen Kationen äquivalent sind. Die gemessenen Konzentrationen von Karbonat, Nitrit, Nitrat, Phosphat, Chlorid und Sulfat zusammen sind mit den in der Gesamthärte erfaßten

Kationen nicht äquivalent. Dabei ist zu berücksichtigen, daß die Alkali-Ionen noch nicht in die Rechnung eingegangen sind. Die Klärung dieser Frage muß späteren Untersuchungen vorbehalten bleiben.


3.7. Natürliche stehende Gewässer (Probestellen 26—30): Wie bei Kinzelbach (1976a) dargelegt ist, darf der Begriff "natürlich" nicht zu eng gefaßt werden, da diese Gewässer ihre Eigenschaften als stehende Gewässer der Rheinkorrektion verdanken (Musall 1969). Heute sind die Gewässer vom neuen Rhein oberirdisch durch den Rheinhauptdeich getrennt. Über das Grundwasser stehen diese Altrheine aber noch zumindest zeitweilig mit dem Fluß in Verbindung, wie aus den gegenüber den Haardtbächen erhöhten Cl-Werten zu ersehen ist.

Die Altrheine sind eu- bis polytrophe Gewässer, was aus dem Sauerstoffgehalt sowie aus den Konzentrationen der Stickstoff- und Phosphorverbindungen hervorgeht. Die "Suhle" (Probestelle 30) hingegen verfügt zwar auch über genügend Nährstoffe, ist jedoch den größten Teil des Jahres sauerstofffrei (vgl. Dannapfel 1976). Das Wasser riecht vom Sommer bis zum Beginn des Winters nach H2S. Verursacht wird dieser Zustand von der sich schon im Frühjahr ausbildenden, im Sommer geschlossenen Decke von Wasserlinsen (Lemna minor), unter der keine bedeutende Photosynthese möglich ist. Die Farbe des Wassers ist gelbbraun.

- 3.8. Baggersee in der Mehlfurt (Probestelle 31): Der Baggersee macht auf den ersten Blick den Eindruck eines frisch angelegten, noch oligotrophen Gewässers. Die Farbe ist charakteristisch milchigtrüb blaugrün. Die Ufer sind noch recht steil und es fehlt die für alte Seen typische Uferbank. Die chemischen Daten weisen jedoch auf Eutrophierungstendenzen hin, z. B. starke Sauerstoffverarmung sowie relativ hohe Ammonium- und Phosphat-Werte über dem Grund. Ein Gespräch mit Anglern bestätigte die Vermutung, daß dieses Gewässer bisher regelmäßig gedüngt wurde; dies unterbleibt seit Anfang 1976 auf Anraten hin.
- 3.9. Baggersee im Herrengrund (Probestelle 32): Der Baggersee im Herrengrund ist von Kiefernwald umgeben und weist meist steile, unbewachsene Ufer aus reinem Kies auf. Die Sichttiefe des Sees beträgt über den größten Teil des Jahres mehrere Meter. Die chemischen Analysen bestätigen die erwartete Nährstoffarmut des Wassers.
- 3.10. Baggersee am Gänskopf (Probestellen 33—35): Der Baggersee weist im Sommer neben einer Temperaturschichtung, deren Sprungschicht sich aber auf einer anderen Tiefe einstellt als bei den von Klotter & Eck (1964) untersuchten Baggerseen, auch eine deutliche chemische Schichtung auf. Hinzu kommt die Einschichtung des Wassers vom Spiegelbach. Dieser Vorgang konnte am 23. 7. 1976 exemplarisch erfaßt werden (Abb. 3). Das Wasser des Spiegelbaches war durch eine hohe Wasserführung bedingt intensiv gelbbraun gefärbt mit einer Sichttiefe von 10 cm (vgl. die durch das Hochwasser zu erklärende relative Verbesserung der Wasserqualität in Tab. 2 bei Probestelle 23). Der Michelsbach hingegen hatte olivgrüne Färbung, bei einer Sichttiefe von 5 cm.

Der Baggersee zeigt in seinem östlichen Teil die gelbbraune Farbe des Spiegelbachs (Sichttiefe 12 cm), in seinem westlichen eine olivgrüne Färbung (Sichttiefe 35 cm). In Abb. 3 sind die Temperatur und die Wasserfarbe

	Temp. [°C]	Farbe	Sichttiefe [cm]
Spiegelbach	17,3	gelbbraun	10
Michelsbach	17,9	ölivgrün	5

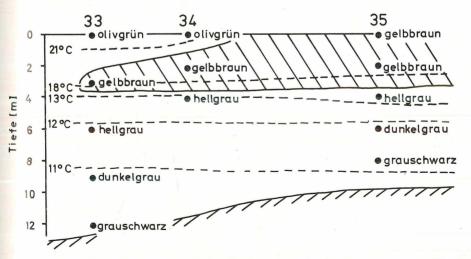


Abb. 3: Einschichtung des Spiegelbachwassers in den Baggersee am Gänskopf am 23. 7. 1976. Original.

auch für die Tiefe des Baggersees wiedergegeben. Davon läßt sich ableiten. daß sich das Wasser des Spiegelbachs entsprechend seinem weitgehend temperaturbedingten spezifischen Gewicht in den Baggersee einschichtet. und dabei in dessen Ostteil das einst vorhandene Oberflächenwasser verdrängt hat. Im Westteil des Baggersees ist kein vollständiger Austausch des Oberflächenwassers erfolgt, sondern das gelbbraune Spiegelbachwasser hat sich zwischen 2 und 4 m Tiefe eingeschoben. Aus Farbe und Sichttiefe im Ostteil des Baggersees ist weiterhin zu folgern, daß der Michelsbach an dem Austausch des Oberflächenwassers vom Baggersee nicht teilnimmt, sondern wahrscheinlich am Südufer direkt in den Auslauf abgeleitet wird. Diese Aussage ergibt sich aus der annähernd gleichen Farbe und Sichttiefe im Spiegelbach und im östlichen Teil des Baggersees. Dabei wird von der Annahme ausgegangen, daß nur eine geringfügige Vermischung des Oberflächenwassers mit dem Wasser des Spiegelbachs stattgefunden hat, und daß vor dem Hochwasser auch im Ostteil des Baggersees eine Sichttiefe von etwa 35 cm und eine olivgrüne Farbe vorlag.

Die Untergrenze des Spiegelbachwassers im Baggersee kennzeichnet gleichzeitig auch die Obergrenze eines chemisch recht einheitlichen Wasserkörpers, der durch graue bis schwarze Farbe gekennzeichnet ist und sich durch Sauerstofffreiheit, sowie sprunghaft hohe Ammonium- und Phosphat-Konzentrationen auszeichnet. — Unter Einbeziehung des Tiefenwassers ist der Baggersee am Gänskopf als polytroph anzusehen.

3.11. Lehmgruben (Probestellen 36-48): Unter dem Namen "Lehmgruben" werden alle jene künstlichen Gewässer zusammengefaßt, die sich unmittelbar südlich des Sondernheimer Altrheins befinden. Die Bezeichnung "Lehmgruben" ist insofern nicht ganz korrekt, als der Bananensee (Probestelle 48) zwischen 1930 und 1940 zur Kiesausbeute angelegt worden ist. In ihm, einem ursprünglich sehr klaren Gewässer, hat in den letzten Jahren eine starke Eutrophierung eingesetzt. 1976 wurden z. B. Wasserblüten von Anabaena sp. beobachtet. Es ist zu vermuten, daß die Angler den natürlichen Eutrophierungsprozeß beschleunigt haben. Hinzu kommt, daß bei hohem Wasserstand das sehr nährstoffreiche Wasser aus dem Sondernheimer Altrhein über den Düker bei Probestelle 45 in zumindest einem Teil der Lehmgruben fließt. — Die chemischen Analysen im Bananensee täuschen bessere Verhältnisse vor als in Wirklichkeit vorliegen: der relativ geringe Nährstoffgehalt erklärt sich durch die am Tag der Probenahme bestehende Algenblüte, in der ein Teil der Stickstoff- und Phosphorverbindungen festgelegt waren.

Auf die Sukzession der eigentlichen Lehmgruben (Probestellen 36—47) hat eine Reihe von Faktoren Einfluß genommen. Zunächst ist das Alter zu nennen: die westlichen Gruben sind die jüngsten. Demzufolge hat auf die östlichen der natürliche Eutrophierungsprozeß am längsten wirken können. Gewässer Nr. 39 ist in dieser Reihe eine Ausnahme, weil, wie aus älteren Karten hervorgeht, diese Grube schon früher angelegt wurde.

Entscheidender als das Alter dürfte für die Entwicklung dieser Weiher der Einfluß des Baumbestandes zwischen den Gewässern 41—46 sein. Zum einen bekommen die "Waldgewässer" weniger Licht, weshalb in diesen auch die submersen Pflanzen nicht so üppig wachsen wie in den unbeschatteten. Zum anderen dürfte das abfallende Laub zu einer verstärkten Eutrophierung der Waldgewässer beitragen.

Die chemischen Werte lassen eine stärkere Eutrophierung der östlichen, älteren Gewässer erkennen, was sich gegenüber den jüngeren Weihern in höheren Ammonium-, Nitrit-, Nitrat- und Phosphat-Konzentrationen ausdrückt; Gewässer Nr. 37 ist ein ephemeres Kleingewässer, das nur nach stärkeren Regen vorhanden ist. Demzufolge fehlen auch submerse Pflanzen.

Tab. 1: Verzeichnis der Untersuchungsstellen. Die Probestellen-Nummern entsprechen denen in Abb. 1. Ein * hinter der Nummer bedeutet, daß diese Probestelle nicht in Abb. 1 eingezeichnet ist.

Probe- stellen- Nr.	Gewässer	Ort	TK 25
1 2—4	POTAMAL DES RHEINS Neuer Rhein Leimersheimer Altrhein POTAMAL DER NIEDER-	s. Abb. 1 s. Abb. 1	681 6 6816
5—8 9—10	TERRASSE Altaue Michelsbach Sondernhemer Altrhein	s. Abb. 1 s. Abb. 1	681 6 681 6
11* 12* 13* 14 15* 16* 17 18* 19 20* 21* 22 23	RHITRAL DER HAARDTBÄCHE Otterbach Otterbach Otterbach Cotterbach Erlenbach Erlenbach Erlenbach Rottenbach Rottenbach Klingbach Klingbach Klingbach Spiegelbach	oberhalb Oberotterbach unterhalb Niederotterbach bei Jockgrim s. Abb. 1 unterhalb Birkenhördt bei Barbelroth s. Abb. 1 oberhalb Kuhardt s. Abb. 1 oberhalb Silz unterhalb Herxheim s. Abb. 1 s. Abb. 1 s. Abb. 1	6913 6914 6815 6815 6813 6814 6815 6815 6815 6816 6816
24, 25	AU-QUELLE UND AU-BACH Brand-Graben	s. Abb. 1	681 6
26 27, 28 29, 30	NATÜRLICHE STEHENDE GEWÄSSER Böllenkopf Fischerhüttenrhein Brennrhein mit Suhle (30)	s. Abb. 1 s. Abb. 1 s. Abb. 1	6816 6816 6816
31 32 33—35 36—38, 40	NATURNAHE KÜNSTLICHE GEWÄSSER Am Beginn des Besiedlungsprozesses Baggersee in der Mehlfurt Baggersee im Herrengrund Baggersee am Gänskopf westliche Lehmgruben Am Ende des Besiedlungsprozesses	s. Abb. 1 s. Abb. 1 s. Abb. 1 und 2	6816 6816 6816 6816
39 41—48	Lehmgrube östliche Lehmgruben	s. Abb. 1 und 2 s. Abb. 1 und 2	6816 6816

Hydrochemische Analysen der "Hördter Rheinaue". Die Probestellen-Nummern entsprechen denen in Tab. 1. In der Spalte "Z-Wert" ist der biologische Zustandswert des Gewässers, beurteilt nach dem 4-stufigen Saprobiensystem nach Kolkwitz & Marsson (1909), revidiert von Liebmann (1951), angegeben. Tab. 2:

Z- Wert	1. 4 & 4 4 & 4 4 & 6 4 4 & 6 4 4 & 6 4 4 & 6 4 4 & 6 4 4 & 6 & 6
Gesamt- Härte (° dH)	9,9 9,9 9,9 1,5,0 1,5,0 1,5,0 1,5,0 1,6,2 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,7 1,0,1 1,0 1,0
NH ₄ + NO ₂ ¯ NO ₃ ¯ ortho- Cl ¯ SO ₄ ²- SBV (PO ₄ ³- (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l)	ყყყ ტ ტ დ ფ ტ ტ ტ ლ დ დ ლ დ ტ ტ ფ ფ ფ გ გ ფ დ გ ფ ფ დ დ გ ტ დ დ ლ დ ტ დ
SO ₄ ²- (mg/l)	41,2 41,2 41,2 46,4 46,4 71,0 23,9 39,5 30,5 30,5 50,6
C1 ⁻ ng/l)	222 220 178 144 108 108 123 40 44 44 44 44 42 7 7 7 7 7 7 7 39 39 39 39 39 31 31 31 31 31 31 31 31 31 31 31 31 31
ortho- PO4³. mg/l) (r	0,65 0,70 0,70 0,67 3,1 1,5 5,9 3,1 3,9 4,9 4,9 10,4 10,4 10,4 6,7
O3 [–] c	4,4,4,4,1,0,6,1,0,6,4,4,4,4,4,1,0,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
NO2	0,16 0,16 0,28 0,16 0,50 0,50 0,51 0,014 0,03 0,03 0,03 0,03 0,03
NH4+ I (mg/l) ((00000000000000000000000000000000000000
KMnO4- Verbrauch (mg/l)	31,3 33,2 33,5 33,8 26,9 17,1
1 '	8,77
O ₂	8,01 4,0,0,0 8,0,0,0,0 8,0,0,0,0 8,0,0,0 8,0,0,0 8,0,0,0 1,0,0 1,0 1
Leitf. O ₂ BSB ₅ (μ S/cm)(mg/l) (mg/l)	973 839 847 847 877 877 877 887 586 586 575 575 575 576 876 876 876 876 876 876 876 876 876 8
Hd	ν.ν.ν.ν.ν.ν.ν.α.ν.ν.ν.ν.ν.ν.ν.α.ν.ν. σ.κ.π.τ.ν.ν.κ.κ. 4.1.8.8.4.κ.8.κ.δ.1.0.ν.κ.8.σ.0.ν.
efe Temp. n) (°C)	6,4 6,5 6,2 6,2 6,2 6,2 6,2 6,2 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3
Tiefe (m)	000000000000000000000000000000000000000
Datum	1. 1.976 1. 3. 1976 2. 8. 1976 3. 8. 1976 3. 10. 1976 4. 12. 1976 5. 7. 1976 7. 1977 7. 1976 7. 1977 8. 1977 9. 1977
1	21.15.2 113.2 113.2 113.2 114.2 115.
Probe- stellen- Nr.	1

Z- Wert	රැය ⊔ ය ය ය ස්ක්රී ක් ක් ක්
Gesamt- Härte (° dH)	15.6 15.6 16.6 16.6 16.6 16.6 16.6 16.6
NH ₄ + NO ₂ T NO ₃ T ortho- Cl SO ₄ ² - SBV (PO ₄ ³ - (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l)	4.47.97 రైజు ఇ. అ. 4. అ. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.
SO ₄ ²-	27,2 12,8 12,8 12,6 4,9 7,3 5,7 7,3 5,7
C:1 - ng/l)	20 20 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37
ortho- PO ₄ 3. mg/l) (r	0,90 9,8 10,4 11,0 10,4 11,9 11,9 11,9 11,0 11,0 11,0 11,1 11,1
NO ₃ ortho- PO ₄ ³ - (mg/l) (mg/l) (1,4 1,6 3,8 2,8 10,6 10,0 12,9 12,9 12,9 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
NO ₂ [–] N mg/l) (r	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
NH ₄ + NO ₂ ⁻ (mg/l) (mg/l)	() () () () () () () () () ()
KMnO4- Verbrauch (mg/l)	19,6 3,7,6 8,5,5 26,5,5 6, 9
1	4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
O ₂ (mg/l)	6,000 4,14,400 8,000 7,21 8,000 1,00
Leitf. O ₂ BSB ₅ (µ S/cm)(mg/l) (mg/l)	450 450 450 450 430 430 430 670 670 670 670 670 670 670 67
Hd	たたたたためのでたた
iefe Temp. m) (° C)	14,2 115,0 115,0 115,0 115,0 115,0 115,0 115,0 117,0 10,0 10
Tiefe '	000000000000000000000000000000000000000
Datum	13. 10. 1976 13. 10. 1976 13. 10. 1976 13. 10. 1976 23. 7. 1976 26. 7. 1976 26. 7. 1976 27. 1976 28. 7. 1976 29. 7. 1976 29. 7. 1976 29. 7. 1976 29. 7. 1976 29. 7. 1976 29. 7. 1976 29. 7. 1976 29. 7. 1976 29. 7. 1976 20. 7
1	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.
Probe- stellen- Nr.	1188 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25

Z- Wert	
Gesamt- Härte (° dH)	8,751 8,
SBV (mval/l)	44,00, 0,00,00,00,00,00,00,00,00,00,00,00,
SO ₄ 2- (mg/1) (48,9 49,3 42,7 45,2 32,0 32,0
C1 ⁻ (mg/l)	38 38 38 38 39 40 39 39 39 39 39 39 39 39 39 39 39 39 39
ortho- PO4³- mg/l) (5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
NOs [–] c mg/l) (3,38 0,041 0,05
NO ₂ ⁻] mg/l) (0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,003
NH4+ NO ₂ T NO ₃ T ortho- PO ₄ 3- (mg/1) (mg/1) (mg/1) (mg/1) (2,5 3,5,5 3,4,5 6,2 6,2 7,4 7,5 6,1 11,1 7,5 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7
BSBs KMnO4- Verbrauch (mg/l) (mg/l) (
Leitf. O: BSBs (u S/cm)(mg/l) (mg/l)	9
O ₂)(mg/l)	2, 2 2, 2 2, 2 3, 2 3, 2 3, 3 3, 4, 9 0, 0, 0 0, 0, 0 1, 1, 1 1, 1, 2 1, 2, 3 2, 3 3, 4, 9 1, 1, 1 1, 1,
Leitf. u S/cm	515 520 5215 545 545 520 520 520 520 520 520 520 52
рH	6.7.7.7.
remp.	17.9 17.9 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5
Tiefe 7 (m)	0046044004004408000000000000
E	21. 5. 1974 23. 7. 1976 21. 5. 1974 23. 7. 1976 26. 7. 1976
Dati	23. 21. 23. 21. 55. 23. 77. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25
robe- Datum Tiefe Temp. tellen- Nr. (m) (°C)	\$\frac{1}{4}:\frac

1) angegeben als Gesamt-Phosphat (mg/l)

Literaturverzeichnis

- Dannapfel, K. H. (1977): Faunistik und Ökologie von Wasserkäfern im Naturschutzgebiet "Hördter Rheinaue" bei Germersheim (Insecta: Coleoptera). Mitt. Pollichia, 65: (im Druck), Bad Dürkheim/Pfalz.
- Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung (1972). 2. Aufl. Weinheim (Verlag Chemie).
- Freier, R. K. (1974): Wasseranalyse. 214 S., Berlin.
- Höll, K. (1970): Wasser. Untersuchung, Beurteilung, Aufbereitung, Chemie, Bakteriologie, Biologie. 5. Aufl., XVIII + 423 S., Berlin.
- Kinzelbach, R. (1976a): Das Naturschutzgebiet "Hördter Rheinaue" bei Germersheim. Einführung in Ökographie, Ökologie, Pflege und Ausbau. Mitt. Pollichia, 64: 5—62, Bad Dürkheim/Pfalz.
 - (1976b): Die Wassermollusken des Naturschutzgebietes "Hördter Rheinaue".
 Mitt. Pollichia, 64: 138—152, Bad Dürkheim/Pfalz.
- Kinzelbach, R & Schmidt, U. (1977): Zur Ökologie abwasserbelasteter Altrheine.
 Verh. Ges. Ökologie. Göttingen, 1976, Den Haag (im Druck).
- KLOTTER, H.-E. & ECK, G. (1964): Untersuchungen über Temperatur- und Schichtungsverhältnisse in Kies- und Sandgruben (Baggerseen). Wasserwirtschaft, 54: 170—173, Stuttgart.
- Kolkwitz, R., Marsson, M. (1909): Ökologie der tierischen Saprobien. Internat. Rev. ges. Hydrobiol. Hydrogr., 2, Berlin.
- Lauterborn, R. (1917): Die geographische und biologische Gliederung des Rheinstroms. II. Sber. Heidelb. Akad. Wiss., Math-naturwiss. Kl., **B** 5: 1—70, Heidelberg.
- Liebmann, H. (1951): Handbuch der Frisch- und Abwasserbiologie, Bd. 1. München.
- Merck, E. (o. J.): Die Untersuchung von Wasser. Fa. E. Merck, 9. Aufl. 224 S., Darmstadt.
- Musall, H. (1969): Die Entwicklung der Kulturlandschaft der Rheinniederung zwischen Karlsruhe und Speyer vom Ende des 16. bis zum Ende des 19. Jahrhunderts. Heidelberger geograph. Arb., 22, 279 S., Heidelberg.
- Scharf, B. W. (1976): Zur rezenten Muschelkrebsfauna des Naturschutzgebietes "Hördter Rheinaue". Mitt. Pollichia, 64: 121—128, Bad Dürkheim/Pfalz.
- Scharf, B. W. & Matterne, M. (1975): Ein Segelboot für limnologische Untersuchungen. Dt. Gewässerkdl. Mitt., 19, 56—57, Koblenz.
- Schmidt, U. (1976): Vergleich der jahreszeitlichen Verteilung des Planktons in zwei Altwässern des Naturschutzgebietes "Hördter Rheinaue". Mitt. Pollichia, 64: 76—109, Bad Dürkheim/Pfalz.
- Schwoerbel, J. (1966): Methoden der Hydrobiologie (Süßwasserbiologie). 207 S., Stuttgart.

Anschriften der Verfasser:

Dr. B. W. Scharf, Landesamt für Gewässerkunde Rheinland-Pfalz, Am Zollhafen 9, 6500 Mainz

Prof. Dr. R. Kinzelbach, Institut für Zoologie d. Universität, Saarstraße 21, 6500 Mainz

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Mitteilungen der POLLICHIA

Jahr/Year: 1976

Band/Volume: 64

Autor(en)/Author(s): Kinzelbach Ragnar, Scharf Burkhard W.

Artikel/Article: Zur Hydrochemie des Naturschutzgebietes "Hördter

Rheinaue" 63-75