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ABSTRACT

The geochemical composition of the Neogene shales from the Surma Group in the Bengal Basin, Bangladesh encountered in pe-
troleum exploration wells were analyzed by lithium metaborate/tetraborate fusion Inductively Coupled Plasma (ICP) and Inductively
Coupled Plasma Mass spectrometry (ICP-MS).

Geochemically, the mean major element composition of the Neogene shales is similar to that of the average shale with the ex-
ception of the CaO content, which is lower here. The low CaO content (1.37 wt %) could be due to lower carbonate content. The
Neogene shales are enriched with V, Cr, Co, Ni in compared to UC (Upper Crust. The REE content (186-228) is higher than those
of UC and NASC but is in agreement with those of PAAS. The Eu/Eu* (~0.68), (La/Lu)cn (~0.43), La/Sc (~2.64), Th/Sc (~1.06),
La/Co(~2.71), Th/Co (~1.08), and Cr/Th (~5.59) ratios as well as Chondrite-normalized REE patterns with flat HREE, LREE en-
richment, and negative Eu anomaly indicate the derivation of the Neogene Surma Group shales from felsic rock sources.

The geochemical characteristics suggest the active continental margin setting for the Neogene Surma Group shales and preserve
the signatures of recycled provenance field that have undergone significant weathering at the source areas.

Die geochemische Zusammensetzung neogener Tone der Surma—Gruppe aus Erdél-Explorationsbohrungen des Bengal Beckens,
Bangladesh, wurde mit Hilfe von Lithium-Metaborate/Tetraborat Fusion Inductively Coupled Plasma (ICP) und Inductively Coupled
Plasma Mass spectrometry (ICP-MS) untersucht.

Geochemisch ist die Hauptelementzusammensetzung neogener Tone vergleichbar einer durchschnittlichen Tonzusammensetzung,
abgesehen von geringeren CaO-Gehalten (1,37 wt %), die auf geringere Karbonatgehalte zuriickzufiihren sind. Die neogenen Tone
sind angereichert in V, Cr, Co, Ni gegentber der Durchschnittsgehalte der oberen Kruste (UC). Die REE Gehalte (186-228) sind
hoéher als die der UC and NASC, aber stimmen mit jenen von PAAS Uberein. DieEu/Eu* (~0.68), (La/Lu)cn (~10.43), La/Sc (~2.64),
Th/Sc (~1.06), La/Co(~2.71), Th/Co (~1.08) und Cr/Th (~5.59) Verhaltnisse als auch Chondrite-normalisierte REE Muster mit fla-
chen HREE, LREE-Anreicherungen und negativen Eu-Anomalien belegen die Herkunft der Tone der neogenen Surma-Gruppe von
felsischen Ausgangsgesteinen.

Die geochemische Charakteristika der Tone der neogenen Surma-Gruppe legen einen aktiven Kontinentalrand nahe und zeigen

die Signatur wiederaufgearbeiteter Gesteine, die signifikanter Verwitterung im Herkunftsgebiet unterworfen waren.

1. INTRODUCTION

This paper describes the geochemical composition of Neo-
gene shales sampled from the Surma Group of the Bengal
Basin. Core samples were taken from three petroleum explo-
ration wells: Shahbazpur-1(SB), ShaldaNadi-1(SN) and Titas-
11 (TT) (Fig.1). Tertiary-Recent shallow-marine to continental
clastic sediments and some minor shelf carbonates in the
Bengal Basin, Bangladesh are considered to represent the
erosional detritus from a growing Himalayas to the north and
the Indo-Burman ranges to the east (Uddin and Lundberg,
1999) (Fig.1). Miocene sediments of the Surma Group com-
prise the early to middle Miocene Bhuban Formation and the
middle to late Miocene Boka Bil Formation. The Neogene
Surma Group sediments have been selected because the
huge pile of Neogene sediments (~4 km) comprising inter-
bedded mudrocks and sandstones record uplift and exhuma-

tion history of Himalaya and Indo-Burman Ranges. Moreover,
the bulk of the deltaic deposits are Miocene and younger
(Fig. 2). These thick accumulations of interbedded mudstones
and sandstones were deposited during repeated transgres-
sion and regression and hydrocarbons (oil and gas) discove-
red so far in the Bengal Basin have been located in the Neo-
gene Surma Group.

The sandstone framework components of the subsurface
Neogene Surma Group are dominantly quartzolithic and a
more quartzose one although some sandstones are quartzo-
feldspathic and quartzarenites with abundant sedimentary
and low-grade metamorphic grains, but lesser amounts of
feldspars and volcanic constituents (Rahman, 1999), which
are diagnostic of a quartzose recycled orogen province (sen-
su Dickinson, 1985). The geochemistry of the shales is of si-



milar importance, because such studies can give information
about the provenance, tectonic setting and weathering history
of the source rocks. Bhatia (1985) differentiated four major
tectonic provinces of mud rocks (oceanic island arc, conti-
nental island arc, active continental margin, passive margin)
on the basis of trace element geochemical parameters. Ro-
ser and Korsch (1986) used the ratio of K,O0/Na,O and SiO,
content of published data from ancient sedimentary suites to
refine passive margin (PM), active continental margin (ACM)
and oceanic island arc (ARC) settings. For sandstones and
argillites of selected New Zealand terranes, Roser and Korsch
(1988) used a discriminant function analysis of major ele-
ments TiO,, Al,O, Fe,0, tot., MgO, CaO, Na,O and K,O in dis-
criminating four different provenance groups: (1) mafic, (2) in-
termediate-dominantly andesitic detritus, (3) felsic - and plu-
tonic and volcanic detritus and (4) recycled-mature polycyclic
quartzose detritus from sandstones and argillites of selected
New Zealand terranes.
Elements La, Ce, Nd, Y, Th, Zr,
Hf, Nb, Ti and Sc are most suited

shales from the Surma group in the Sylhet Trough (north-eas-
tern part of Bengal Basin) based on major and trace element
geochemistry. This study builds on the earlier work by adding
samples from the eastern, central and southern parts of the
Bengal Basin. In this study, REE has added to major and trace
elements composition. These new results will give a more com-
plete image of Bengal Basin Neogene shale geochemistry and
thus their provenance and weathering signatures.

2. GEOLOGICAL SETTING

The Bengal Basin had its origin during the collision of India
with Eurasia and Burma, building the extensive Himalayan
and Indo-Burman Ranges and thereby loading the lithosphe-
re to form flanking sedimentary basins (Uddin and Lundberg,
1998).The Bengal basin is well known for the development
of a thick (¥22km) Early Cretaceous-Holocene sedimentary
succession (Curray, 1991a; Curray and Munasinghe, 1991).
The Cretaceous to Holocene Bengal basin forms a “remnant
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FIGURE 1: Major tectonic elements of the Bengal Basin (after Uddin and Lundberg, 1999); The

Rahman and Faupl (2003) repor-
ted the composition of Neogene

map also shows the locations of petroleum exploration wells (®) from which cores of Neogene shales
from the Surma Group were analyzed in this study. Symbol (0) shows the petroleum exploration wells
in the Sylhet Trough (northeastern Bengal Basin).
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FIGURE 2: Stratigraphic framework of the north-east and south-east
Bengal Basin (after Uddin and Lundberg,1999).

ocean basin” (Mitchell and Reading, 1986) at the juncture of
the Indian plate and the Burma plate (Curray et al., 1982). The
Bengal Basin lies on the north-eastern part of the Indian sub-
continent, between the Indian Shield to the west and north, and
the Indo-Burman Ranges to the east, occupies most of Bangla-
desh, parts of West Bengal and Tripura states of India and the
Bay of Bengal (Alam et al., 2003).

Sedimentation in the Bengal Basin has been controlled by

the movement of the Indian plate with the Burmese plate and
Tibetan plates and by the uplift and erosion of the Himalayas
and Indo-Burmese mountain ranges (Alam, 1989). The on-
shore part of the Bengal Basin has been divided into platform
or shelf, slope or ‘hinge’, and basinal facies (Fig.1) (Evans,
1964; Salt et al., 1986). The Bengal Basin of Bangladesh in-
cludes one of the largest delta complexes in the world, cove-
ring an area of more than 200,000 km® and it is filled mainly
by orogenic sediments derived from the eastern Himalayas
to the north and the Indo-Burman ranges to the east (Uddin
and Lundberg, 1999) (Fig.1). These deposits record uplift and
exhumation of mountain belts formed by the ongoing India-
Eurasia collision (Uddin and Lundberg, 1999). The bulk of
the deltaic deposits are Miocene and younger (Fig. 2). Mioce-
ne sediments of the Surma Group comprises Early to Middle
Miocene Bhuban Formation and the Middle to Late Miocene
Boka Bil Formation making up thick accumulations of mud-
stone and quartzolithic sandstones derived from neighbouring
orogenic belts and was deposited following repeated trans-
gressions and regressions. The Neogene Surma Group sedi-
ments reach 24 km thick in the eastern fold belts and the dee-
per part of the basin (Uddin and Lundberg, 1999).

3. METHODS

Fifteen shale samples from the Neogene Surma group en-
countered in three petroleum exploration wells (4 from Shah-
bazpur-1, 6 from Shalda Nadi-1, and 5 from Titas-11) in the
Bengal Basin, Bangladesh were analyzed for major, trace and
rare earth elements at the Activation Laboratories Ltd., (Code:
4Lithoresearch) Ontario, Canada. Major elements were analy-

Sample Depth (m) SiO, TiO, | Al,O; Fe,05(T) MnO | MgO Ca0 | Na;0 K0 P,05 LOI Total
SB-1 997-1006 57,95 | 094 | 17,18 8,8 0,06 3,34 0,61 1,46 3,32 0,13 594 | 99,73
SB-1(A) 997-1006 59,52 0,77 15,91 6,67 0,10 2,54 0,84 1,65 3,25 0,15 7,84 99,14
SB-3 2016 6582 | 0,76 | 1364 | 568 0,06 2,42 1,99 1,71 2,79 0,14 4,75 | 99,77
SB-5 3020-3021 69,42 | 0,70 | 1264 | 549 0,04 2,42 0,96 1,7 2,62 0,13 4,02 | 99,93
SN-1 1277.5-1278.5 59,97 | 0,824 | 1594 | 6,51 0,103 | 2,68 1,53 1,45 3,19 0,15 7,02 | 99,36
SN-1 A 1282.5-1283.5 59,6 0,78 | 16,28 | 6,52 0,10 2,66 1,32 1,5 3,11 0,15 7,01 99,01
SN-1B 1285.5-1286.5 60,6 0,83 | 1564 | 6,37 0,10 2,69 1,44 1,49 3,1 0,16 6,77 | 99,19
SN-2 1570.9-1571.9 59,42 | 0,814 | 16,09 | 6,44 0,09 2,64 2,09 1,39 3,12 0,14 7,5 99,72
SN- 2A 1575.9-1576.9 57,97 | 0,736 | 1454 | 6,19 | 0,253 | 2,45 4,59 1,32 2,91 0,16 8,8 99,92
SN-5 2313-2314 59,8 0,91 16,28 | 7,84 0,07 2,56 0,93 1,56 2,98 0,13 569 | 98,77
TT-2 2318.3-2318.9 60,81 0,78 15 7,53 0,06 2,76 1,69 1,39 2,96 0,12 6,58 | 99,67
TT-3 2716.2-2716.8 63,21 0,88 | 1582 | 6,38 0,08 2,19 0,56 1,47 2,94 0,13 6,17 | 99,82
TT-3A 2717-2718 60,7 0,88 | 17,04 | 6,76 0,07 2,37 0,49 1,48 3,19 0,12 6,74 | 99,83
TT-4 2736.9-2737.8 55,78 | 0,94 | 19,41 7,98 0,07 2,79 0,48 1,36 3,37 0,11 7,54 | 99,83
TT-5 2785.4-2786.3 63,35 | 0,83 | 1551 6,47 0,08 2,43 0,98 1,46 2,95 0,13 589 | 100,1
Average 60,93 0,82 | 15,79 | 6,78 0,09 | 2,60 1,37 1,49 3,05 0,14 6,55 | 99,59

SB-1 |SB-1(A) SB-3 | SB-5 | SN-1 |SN-1A[SN-1B| SN-2 |SN-2A| SN-5 | TT-2 | TT-3 | TT-3A| TT-4 | TT-5

K20/Na;O 23 21 1,6 1,5 1,9 2,2 2,2 2,1 2,2 21 21 2,0 2,2 2,5 2,0
Na,0/K,0 0,4 0,5 0,6 0,6 0,5 0,5 0,4 0,5 0,5 0,5 0,5 0,5 0,5 0,4 0,5
Fe,03+MgO | 12,14 | 4,09 | 8,10 | 7,91 | 10,40 | 864 | 9,08 | 906 | 919 | 9,18 | 10,29 | 857 | 9,13 | 10,77 | 8,90
SiO,/AI,04 3,4 3,7 4.8 5,5 3,7 4,0 3,7 3,9 3,8 3,7 4.1 4,0 3,6 2,9 4.1
Al,O,/TiO, 182 | 206 | 179 | 182 | 178 | 198 | 198 | 188 | 193 | 209 | 193 | 181 19,5 | 20,8 | 18,7

TABLE 1: Table1 Chemical composition of the Neogene shales from the Surma Group encountered in three petroleum exploration wells in the



zed by lithium metaborate/tetraborate fusion Inductively Coup- rent wells are presented in Table 1.
led Plasma (ICP) and trace and rare earth elements (REE) by

Inductively Coupled Plasma Mass Spectrometry (ICP-MS). 4.1 MAJOR ELEMENTS
The SiO, content varies from 55.78 to 69.42 wt%, TiO, con-
4. RESULTS tent from 0.70 to 0.94 wt%, the Al,O, content from 14.54 to
The results of major, trace and rare earth elements of the 19.41wt%, and the Fe203 content ranges from 5.49 to 8.80
Neogene shales from the Surma Group encountered in diffe- wt%. The CaO content is low (0.48-4.59 wt%; av. 1.37 wt %).

Trace element (ppm)

Sc | Be | V Cr|Co| Ni |[Cu|Zn|Ga | Rb| Sr | Y Zr | Nb | Sn | Sb | Cs | Ba | La
SB-1 997-1006 21 3 | 135|110 21 | 50 | 20 | 80 | 24 | 161 | 124 |32,2| 252 |17,1| 4 1 |12,6| 486 | 49,3
SB-1(A)|997-1006 17 3 |111|{110| 16 | 80 | 30 | 90 | 21 | 161|117 |31,4| 160 |14,3| 4 | 1,2 |11,4| 453 | 40,9
SB-3 2016 14 2 93 | 80 | 13| 20| 20 | 80 | 18 | 126|131(29,8| 240|139 3 | 15| 7,8 | 438 40
SB-5 3020-3021 12 2 81 |100| 13 | 30 | 20 | 70 | 17 | 124 | 120 |29,9| 222 |134| 3 | 1,4 | 8,1 417|391
SN-1 1277.5-1278.5 17 3 [109] 90 | 20 | 40 | 30 | 90 | 22 | 157|131 |33,3| 176 |16,2| 4 | 1,4 11,1478 458
SN-1 A |1282.5-1283.5 18 3 [114|100| 16 | 40 | 30 | 80 | 23 | 161| 135|32,9| 248 |17,7| 3 1 9,4 | 476 | 49,3
SN-1 B |1285.5-1286.5 16 3 [110|100| 16 | 30 | 30 | 260 | 22 | 154|132 | 34 | 188 |16,7| 5 | 1,4 |10,8( 513 46,3
SN-2 1570.9-1571.9 17 3 [110| 90 | 17 | 40 | 30 | 80 | 22 | 157 | 118 |31,1| 176 |16,2| 4 | 1,4 11,1478 458
SN-2A |1575.9-1576.9 15| 3 96 | 90 | 15| 40 | 30 | 70 | 20 | 147 | 137 |30,7| 168 |16,1| 4 | 1,5|11,4| 581|439
SN-5 2313-2314 20 3 [122]100| 17 | 40 | 20 | 70 | 24 | 146| 114 |39,4| 248 |17,7| 3 1 9,4 | 476 | 49,3
TT-2 2318.3-2318.9 17 3 [106| 90 | 16 | 40 | 460|550 | 21 | 143 | 106 |33,4| 216|158 3 | 1,9 | 9,5 | 456 | 47,2
TT-3 2716.2-2716.8 17 2 |108|110| 15 | 40 | 70 | 140 | 20 | 141|128 |33,5| 247 |116,3| 4 | 1,2 |10,1| 456 | 45,2
TT-3A |2717-2718 18 3 |118|110| 17 | 50 | 30 | 90 | 23 | 162 | 132 |33,5| 203 | 17 4 | 1,3[12,2| 539 | 47
TT-4 2736.9-2737.8 21 3 | 137|120 20 | 50 | 40 | 110 | 27 | 182 | 142| 32 | 160 |17,8| 4 | 1,5 |155| 497|459
TT-5 2785.4-2786.3 16 3 |103| 90 [ 17 | 40 | 30 | 100 | 21 | 148|132 |33,5/ 203 |16,1| 4 | 1,8 |10,6| 495 | 44,2

Average 17 3 |110| 99 (17 | 42 | 59 (131 | 22 |151 |127 | 33 (207 | 16 | 4 1 11 | 483 | 45

Trace element (ppm) (cont.)
Ce | Pr | Nd | Sm|Eu | Gd| Tb | Dy |Ho| Er | Tm| Yb | Lu | Hf | Ta| Tl | Pb | Th | U

SB-1 997-1006 96,7| 11 [36,6|7,08/1,33/556| 1 |554|1,13/3,56/0,56|3,46| 05| 7,1|1,46|0,72| 18 | 19 |3,56
SB-1(A) |997-1006 84,2|19,74|336| 68 [1,37/569/1,01|544| 1,1 |335 05| 3 |042] 48 |1,28/0,89| 28 |18,8|3,16
SB-3 12016 83 |9,52|32,9|6,74| 1,34/ 5,39|0,96| 5,06(1,03| 3,17|0,46|2,86|0,41| 6,8 | 1,22/0,71| 18 | 16,4| 3,06
SB-5  |3020-3021 80,4(/9,45/31,9|6,54|1,33|5,37|0,95| 5,1 (1,03|3,14|0,46|2,76|0,41| 6,5 1,14/ 066| 22 | 155|265

SN-1 1277.5-1278.5 90 |10,5/36,3|7,38/1,51| 6,3 | 1,1|5,83(1,16|3,34/0,51| 3,2 |0,45| 55 |1,28/0,84| 27 | 18,1| 3,04
SN-1 A |1282.5-1283.5 95 | 11 |38,2|7,74/1,57|6,61|1,19|6,63|1,34|4,04|/0,63|3,97|0,55| 7,5 [1,42/0,66| 16 |18,4] 3,23
SN-1 B |1285.5-1286.5 93,1/10,8(37,5|/7,51|1,55|6,36|1,14| 59 |1,16| 3,39/ 0,51|3,21|0,45| 5,9 | 1,32|0,85| 28 | 19,4|3,29
SN-2 1570.9-1571.9 90 [10,5/36,3/7,38/1,51| 6,3 | 1,1|5,83(1,16|3,34|0,51| 3,2 |0,45| 5,5 [1,28/0,84| 27 | 18,1| 3,04
SN-2A |1575.9-1576.9 |87,3/10,2|352| 7,2 [1,52]/6,19/1,09|563|1,11| 3,2 |0,49(3,06/043| 52 |1,24|0,87| 27 |17,6|2,92
SN-5 2313-2314 95 | 11 |38,2|7,74|1,57/6,61(/1,19/6,63|1,34|4,04|0,63|3,97|0,55| 7,5 |1,42|0,66| 16 | 18,4| 3,23
TT-2 2318.3-2318.9 93,5| 11 |37,9|7,66|1,49|6,54|1,14|591|1,17|3,42/0,62|3,26(/0,46| 6,6 | 1,26|/0,85| 72 | 18 | 3,18
TT-3 2716.2-2716.8 90,5(10,7(37,3|7,49(1,59|6,46| 1,1 |591|1,16|3,36/0,51|3,15|044| 7 |1,24|0,76| 28 |17,4| 2,97
TT-3A |2717-2718 93,6/10,9|38,2|7,88| 1,64/ 6,52| 1,13|596| 1,14|3,38|/0,51| 3,2 (0,45| 6,1 |1,29|0,84| 27 | 17,8/ 2,91
TT-4 2736.9-2737.8 |89,9|10,6(36,9|7,21|1,56|6,08| 1,06|543|1,09|3,21/0,52|3,17|0,45| 4,9 | 1,33|0,92| 35 |19,2| 2,89
TT-5 2785.4-2786.3 |89,2|10,5(36,4|7,37|1,56|6,45|1,13|5,94|1,18| 3,39/ 0,51(3,13|0,43| 6,2 | 1,3 |0,85| 28 | 17,5/ 2,99

Average 90 | 10 | 36 | 7 1 6 1 6 1 3 1 3 0 6 1 1 28 |18 | 3
SB-1 |SB-1(A) SB-3 | SB-5 | SN-1 |SN-1 A|SN-1B| SN-2 |SN-2A| SN-5 | TT-2 | TT-3 | TT-3A| TT-4 [ TT-5
Euw/Eu* 065 | 067 | 068 | 069 | 067 | 068 | 069 | 069 | 068 | O,70 | 0,64 | 0,70 | 0,70 | 0,72 | 0,69
(La/Lu)en 10,30 | 10,04 | 10,03 | 10,02 | 9,39 | 10,43 | 10,95 | 10,68 | 10,54 | 10,67 | 10,58 | 10,57 | 10,82 | 10,64 | 10,80
La/Sc 235 | 241 286 | 326 | 247 | 264 | 261 289 | 269 | 244 | 2,78 | 266 | 2,61 219 | 2,76
Th/Sc 0,90 1.1 117 | 1,29 | 092 | 105 | 1,06 | 1,21 1,06 | 0,98 1,06 | 1,02 | 0,99 | 0,91 1,09
La/Co 235 | 256 | 3,08 | 3,01 290 | 264 | 261 289 | 229 | 274 | 295 | 3,01 2,76 | 230 | 2,60
Th/Co 0,90 | 1,18 126 | 1,19 | 1,08 | 105 | 1,06 | 121 0,91 1,10 1,13 | 1,16 | 1,05 | 0,96 1,03
Cr/Th 579 | 585 | 488 | 645 | 543 | 570 | 497 | 515 | 497 | 568 | 500 | 632 | 618 | 625 | 514
La/Th 259 | 218 | 244 | 2,52 | 268 | 2,51 245 | 239 | 253 | 249 | 262 | 260 | 264 | 239 | 253
Cr/Ni 2,2 1.4 4,0 3,3 2,5 2,3 2,3 3,3 2,3 2,5 2,3 2,8 2,2 24 2,3
Lan/Yby 9,63 | 9,21 945 | 9,57 | 839 | 949 | 987 | 975 | 967 | 969 | 978 | 9,70 | 993 | 9,78 | 9,54
ZIREE 223 197 193 188 228 186 211 219 213 207 221 215 222 213 21

Bengal Basin (For well locations see Fig.1). SB=Shahbazpur-1, SN=Shalda Nadi-1, TT=Titas-11; 1,2,3,4, 5....= core1, core2, core3, core4, core5
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Mean major elemental composition of the Neogene shales
of the Surma Group is in fair concurrence with that of the
average shale described by Wedepohl (1971), NASC (North
American Shale Composite, Gromer et al., 1984), UC (the
upper crust, Taylor and McLennan, 1985) with the exception
of the low content of CaO (Table 2) but compared with PASS
(Post-Archaean Shale, Taylor and McLennan, 1985), the Neo-
gene shales are little depleted in Al,O, content. The SiO,/Al,O,
ratios (~3.9) of the Neogene shales which is similar to that of
PASS and NASC. But K,0/Na,O ratios for the Neogene shales
are slightly lower than those of NASC (Gromer et al., 1984),
PASS (Taylor and McLennan, 1985) but close to UC (Taylor
and McLennan, 1985). The CaO depletion of the Neogene
shales is related to the scarcity of calcic minerals (after Da-
bard, 1990) which is reflected partly in the low carbonate
content (average 1.7 %) in the Neogene shales in the north-
eastern Bengal Basin (Sylhet Trough) (Rahman and Faupl,
2003). The Neogene shale samples show no clear difference in
major chemical composition with burial depth. The negative cor-
relation of SiO, with most major and trace elements is due to
size sorting and quartz dilution during transport of these sedi-

ments. In the present samples, TiO, concentrations increase
with Al,O,, suggesting that TiO, is probably associated with phyl-
losilicates especially with illite (after Dabard, 1990); Fe,O,+MgO
are also well correlated with ALLO,. The latter correlation implies
that these oxides are associated with phyllosilicates, particular-
ly in matrix chlorites (after Dabard, 1990). X-ray diffraction pat-
terns also reveal that Neogene shales of the Surma Group
comprise illite-chlorite rich clay minerals.

4.2 TRACE ELEMENTS
Trace element concentrations of the Neogene shales of the
Surma Group are compared with average upper continental
crust (UCC), PASS and NASC. The Neogene shales are en-
riched in V (~110), Cr (~99), Co (~17), Ni (~42) and deple-
ted in Sr in compared to UC but are in good agreement with
those of the PASS and the NASC (Fig. 3). The trace element
data of the Neogene shales show variations. The Neogene
shales from the Sylhet Trough (northeastern Bengal Basin)
are relatively rich in V (~136 ppm), Cr (~136 ppm) and Ni
(~61ppm) content than those of the eastern, central and sou-
thern parts of the Bengal Basin. The behavior of trace ele-
ments during sedimentary processes is variable because of
weathering, sorting, adsorption, provenance, diagenesis and
metamorphism (review by Nyakairu and Koeberl, 2001).
Strontium and barium mostly reside in plagioclase and k-
feldspar respectively (Puchett, 1972). Clear positive correla-
tions between K contents and the abundances of Al, Cs, Ba,
total REE, Th and U in the Neogene Surma Group shales
suggest that concentrations of these trace elements are
controlled by clay minerals and mica (after McLennan et al.,
1983). A significant correlation between Ba and K,O suggests
that Ba is mainly associated with a feldspar component. High
field strength elements (e.g., Zr, Nb, Hf, Y) generally show
consistent inter-relationships. Also, ferromagnesian trace ele-
ments (Cr, Ni, V, Co, and Sc) in the Neogene Surma Group
shales show strong inter-relationships. These trace element
relationships illustrate the chemical coherence and uniformity
of the sediments. The Co and Sc
in the Neogene Surma group sha-

Wit% Bengal Sylhet Trough NASC PASS Wedepohl ucC les show significant positive corre-
S eminloanital g‘;’r:;hjag’;i::) lation with Ni, V and ALO, inferring
southern most | (n=20) that for the Surma Group shales
part) (n=15) S:Rahr‘gg(g‘)d Co and Sc are partly controlled by

aupl, .

Si0; 6093 60.01 64.80 62.80 58.9 66.00 chlorite and other accessory non-

TiO, 0.82 0.88 0.70 1.00 0.78 0.50 aluminous silicate minerals.

AlzO3 15.79 17.14 16.90 18.90 16.7 15.20

Fe,03 6.78 7.09 5.65 7.22 6.91 5.00

MnO 0.09 0.09 0.06 | 0.1 0.09 0.08 4.3 RARE EARTH ELEMENTS

MgO 2.60 2.79 2.86 2.20 2.6 2.20 REE concentrations of the Neo-

Ca0 1.37 1.19 3.63 1.30 22 4.20 gene shales from the Surma Group

Na,O 1.49 1.53 1.14 1.20 1.6 3.90 . .

K20 305 304 3.97 3.70 36 340 are shown as chondrite-normalized

P,0s 0.14 0.14 0.13 0.16 0.16 - patterns in Figure 4. The Neogene

LOI 6.55 6.39 6.00 6.3

TABLE 2: Average composition of the Neogene shales from the Surma Group in the Bengal ba-

shales show REE content ranging
between 186-228 with an average

sin and compared with those of PASS (Post-Archaean Shale, Taylor and McLennan, 1985), NASC

(North American Shale Composite, Gromer et al., 1984), UC (Upper Crust, Taylor and McLennan,

1985) and Wedepohl (1971).

of 208 which is above than of ave-
rage UC (143, Tayler and McLenan,



1985). Compared to UC and NASC, the REE concentrations
of the samples are enriched but are in accordance with those
of PASS. The Neogene shales have similar values of La,/Yb,
(~9.6) and Eu/Eu*(~0.68) as compared to PASS (Taylor and
McLennan, 1985) and UC. Despite the differences in the
abundance, the samples show similar REE pattern as UC.
The Neogene shales show slight LREE-enriched and relati-
vely flat HREE patterns with negative Eu anomaly. The nega-
tive Eu anomalies are pronounced with Eu/Eu*=0.62-0.72.Eu
anomalies are chiefly controlled by feldspars, particularly in
felsic magmas (Rollinson, 1993; p. 138). The Eu anomaly
parallels the depletion in Na,O and CaO, suggesting that it
developed at least partially in response to plagioclase wea-
thering, where most of the Eu is hosted (Nyakairu and Koe-
berl, 2001).

5. DiIscuUssIiaN

5.1 PROVENANCE AND TECTONIC SETTING

Several classification schemes have been proposed to dis-
criminate from various origins and tectonic settings (Maynard
et al.,, 1982; Bhatia, 1983, 1986; Roser and Korsch, 1986,
1988). The classification of Roser and Korsch (1988) is based
on major element discriminant functions. Four provenance
groups can be distinguished: mafic (P1: first-cycle basaltic and
minor andesitic detritus); intermediate (P2: dominantly ande-
sitic detritus); felsic (P3: acid plutonic and volcanic detritus);
and recycled (P4: mature polycilic quartzose detritus. To infer
provenance, unstandardised discriminant function scores of
the samples (F1 and F2) for major elements (after Roser and
Korsch, 1988) were plotted following the boundaries between
fields (P1-P4), as proposed by Roser and Korsch (1988) (Fig.
5). Most of the shales of the Surma Group of the Bengal Ba-
sin are located within the P4 field, which represents a recy-
cled mature polycyclic quartzose detritus. Recycled sources
represent quartzose sediments of mature continental prove-
nance and the derivation of the sediments could be from a
highly weathered granite-gneiss terrain and/or from a pre-
existing sedimentary terrane as in the case of the Greenland
Group of New Zealand (Roser and Korsch, 1988). SiO, con-
tent and the ratio of K,0/Na,O of the samples (Fig. 6) were
used to decipher their tectonic setting (Roser and Korsch,
1986). All the data points plot into the active continental mar-
gin field.

The shales of the Surma Group of the Bengal Basin were
derived from an active margin setting related to recycled
sources (after Roser and Korsch, 1986, 1988). The recycled
nature of the provenance area of the Neogene Surma Group
is also reflected in the sandstone composition.

Bhatia (1985) suggested that immobile trace elements (e.g.
La, Th, Nb, Y, Zr, Sc) preserve the signatures of source rocks
and tectonic setting in mudrocks. He differentiated four major
tectonic provenances on the basis of Th, U, Nb, La, Cr, Ni
concentrations and on the ratio of Th/U, Zr/Th, Zr/Nb, Nb/Y,
La/Sc, Sc/Ni, Rb/Sr and Ba/Sr. Based on Bhatia’s (1985) mo-
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FIGURE 4: Chondrite-normalized rare earth element plots for the
Neogene shales.

del, the trace elements of the samples suggest diverse tec-
tonic setting ranging from continental island arc to active con-
tinental margin to passive margin (Table 3). The content of
Nb and La concentrations and the ratio of Zr/Nb, La/Sc can
be approximately compared with that of an active margin set-
ting. The Cr and Ni concentrations seem to be more compa-
rable with those of passive margin, whereas the ratios of Rb/
Sr and Ba/Sr are closer to a continental island arc. McCann
(1991) found that the specified trace elements pertaining to
tectonic settings of Bhatia (1985) were not definitive for all
four tectonic settings. According to Bhatia (1985), the active
continental and passive margin mudrocks are discriminated
from other mudrocks by their significantly higher Th, Nb and
Nb/Y, and lower Zr/Th and Zr/Nb ratio. The active continental

# Bengal Basin

S A Sylhet trough —
(Rahman and Faupl, 2003)

I ! I ! | !
-10 5 0 5 10

F1

FIGURE 5: Plot of discriminant functions F1 and F2 for the shales
from the Neogene Surma Group of the Bengal Basin. Provenance
fields are after Roser and Korsch (1988). P1 = mafic and lesser inter-
mediate igneous provenance; P2 = intermediate igneous provenance;
P3 = felsic igneous provenance and P4 = recycled-mature polycyclic
quartzose detritus.
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FIGURE 6: Tectonic discrimination diagram for shales from the Neo-
gene Surma Group of the Bengal Basin. Boundaries are after Roser and
Korsch (1986).

and passive margin mudrocks are similar in most immobile
trace elements, and may be distinguished from each other by
higher Rb/Sr, Ba/Sr and higher Cr and Ni abundance for the
passive margin setting. The increase in the Cr and Ni abun-
dance for passive margin mudrocks is due to the enrichment
and adsorption of these elements with the increased phyllo-
silicate content. Decreasing in Rb/Sr and Ba/Sr is due to the
loss of Sr and feldspar with increasing weathering and recyc-
ling (Bhatia, 1985).

The concentrations of Rb (mean ~151 ppm), Sr (~127), Sm
(~7.0) and Nd (~36) of the Neogene Surma Group shales in
the Bengal Basin are in accordance with those of High Hima-
laya sedimentary series (France-Lanord, 1993).

The high-field-strength elements (HFSE) such as Zr, Nb, Hf,
Y, Th, and U are preferentially portioned into melts during crys-
tallization (Feng and Kerrich, 1990), and as a result these ele-
ments are enriched in felsic rather than mafic sources. These
elements are thought to reflect provenance compositions as a

consequence of their generally immobile behavior (Taylor and
McLennan, 1985). REE, Th and Sc are quite useful for infer-
ring crustal compositions, because their distribution is not sig-
nificantly affected by diagenesis and metamorphism and is
less affected by heavy mineral fractionation than that for ele-
ments such as Zr, Hf, and Sn (Review by Armstrong-altrin,
J.S. et al., 2004). REE and Th abundances are higher in fel-
sic than in mafic igneous source rocks and in their weathered
products, whereas Co, Sc, and Cr are more concentrated in
mafic than in felsic igneous rocks and in their weathered pro-
ducts. The ratios such as Eu/Eu*, (La/Lu)cn, La/Sc, Th/Sc,
La/Co, Th/Co, and Cr/Th are significantly different in mafic
and felsic source rocks and can therefore provide informa-
tion about the provenance of sedimentary rocks (Review by
Armstrong-altrin, J.S. et al., 2004). In this study, Eu/Eu*, (La/
Lu)en, La/Sc, Th/Sc, La/Co, Th/Co, and Cr/Th values of the
Neogene Surma Group shales are similar to the values for
sediments derived from felsic source rocks than those for ma-
fic source rocks (Table 4), suggesting that these shales were
likely derived from felsic source rocks. On Sc-Th scatter dia-
gram (Fig. 7), most of the shale samples plot in the field of
felsic composition although few samples occupy a field that
bears the characteristics of intermediate composition. The
higher LREE/HREE ratios and negative Eu anomalies of the
Surma Group shales also bears the characteristics of felsic
source rocks (after Taylor and McLennan 1985; Wronkiewicz
and Condie, 1989). The ferromagnesian trace elements Cr,
Ni, Co, and V show generally similar behavior in magmatic
processes, but they may be fractionated during weathering
(Feng and Kerrich, 1990). In the studied samples, Cr and Ni
are enriched with respect to the average composition of the
Upper continental crust (UCC). This enrichment in Cr and Ni
may suggest some basic input from the source terrane.
Garver et al. (1996) suggested that elevated Cr (>150 ppm)
and Ni (>100 ppm) and a ratio of Cr/Ni between 1.3 - 1.5 are
diagnostic of ultramafic rocks in
the source region. In comparison,

Element || Bengal Basin | Sylhet Trough OlA CIA ACM PM Cr concentrations ranges from 80
Nb 16 13 37 9 16.5 15.8 to 120 ppm (average 99 ppm) and
Zr/Nb 14.7 15 38 21 11 10 Ni concentrations ranges from 20
Nb/Y 05 0.43 0.17 0.35 0.5 0.54 to 80 ppm (average 42 ppm) and
Rb/Sr 13 1.29 0.29 1.31 29 5.8 Cr/Ni ratios range from 1.3 to 4.0,
Th 18 B 55 16.2 28.0 220 b.ut mostly above 2.0. This ?ompa-
Zt/Th 13.3 : 28.0 12.0 7.0 7.0 ”fs‘;” SuggeStT that t:e e’f‘_'s/telnce
Ba/Sr 39 43 25 63 8.7 176 of huge complexes of mafic/ultra-
mafic rocks were most unlikely in

Cr 99 137 39 55 58 100 )
the source region. The occurrence

Ni 42 62 15 18 26 36 )

of lower amounts of detrital chro-

La 45 47 18 24 42 34 ) s
me spinel within the sandstones
La/Sc 23 22 1 18 25 1.9 of the Surma Group, as revealed
Sc/Ni 04 0.34 1.7 0.96 0.75 0.45 from heavy mineral data, is in good

TABLE 3: Trace element geochemical parameters for the Neogene shales (n = 15) from the
Bengal Basin; (n = 19) from the Sylhet Trough (north-eastern Bengal Basin (Rahman and Faupl,

agreement with this finding. The
derivation from the Indo-Burman

2003) and values for trace element characters of mudrocks from OIA (Oceanic Island Arc), CIA

(Continental Island Arc), ACM (Active Continental Margin) and PM (Passive Margin) after Bhatia

(1985).

Ranges could also be possible in
part, e.g. ophiolitic detritus could



be derived from the suture zone of the Indo-Burman Ranges
as it was suggested by Uddin and Lundberg (1998).

20
5.2 WEATHERING IN THE SOURCE AREA [

In deciphering the weathering history of sedimentary rocks, 15 [ [ )
Nesbitt and Young (1982) proposed the CIA value (Chemical = [ Upper Crugt (Th/Sc=1)
Index of Alteration) using molecular proportion of some bulk = [

10 |

elements. The chemical index of alteration (CIA) monitors the
progressive alteration of plagioclase and potassium feldspars

25 rr——————————————

Continental signature
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Basalt (Th/Sc=0.5)
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to clay minerals. The CIA value was calculated using the 5 _ Mafic signature

equation CIA= [Al,O,/ (Al,O,+Ca0*+Na,0+K,0)]*100, where L

CaO* represents the amount of CaO incorporated in the sili- X :. A
cate phases. High values (i.e.76-100) indicate intensive che- 0 5 10 15 20 25 30

mical weathering in the source areas whereas low values (i.e.,
50 or less) indicate unweathered source areas. CIA values for
the Neogene Surma Group shales vary from 52 to 78 with an
average 68 indicating significant weathering at the source
areas. The obtained average CIA value (~68) is higher than
that of the CIA value (50) of upper continental crust. The cal-
culated CIA values for the Neogene Surma Group shales are
very much similar to the CIA values of the Yamuna River Sys-
tem sediments in the Himalaya (~51 to 69; average ~60) (Da-
lai et al., 2002a). The CIA values are also plotted in Al,O,-
(CaO*+Na,0)-K,0 (A-CN-K) diagram (Fig. 8). The obtained
CIA values are indicative of the weathered nature of some of
the minerals incorporated in shales. From the relation, Na,O/
K,0<1, the shales seem to be mature.

Th/U in sedimentary rocks is of interest as weathering and
recycling typically result in loss of U, leading to an elevation
in the Th/U ratio. The Th/U ratio in most upper crustal rocks
is typically between 3.5 and 4.0 (McLennan et al., 1993). In
sedimentary rocks, Th/U values higher than 4.0 may indicate
intense weathering in source areas or sediment recycling.
The Th/U ratios in the Neogene Surma Group shales range
from 5.3 to 6.6, with an average of 5.9, indicating the deriva-
tion of these sediments from the recycling of the crust. The
Th/U versus Th plot for the Neogene Surma group shales
(Fig. 9) shows a typical distribution
similar to the average values of fine-

Sc

FIGURE '7: Sc-Th plot for Neogene shales of the Surma Group.

rence of high quartz, little amounts of feldspar of the sandsto-
nes as well as illite and chlorite rich clay assemblages of the
shales (Rahman and Faupl, 2003) indicates that minerals are
predominantly detrital and reflect their source material cha-
racter (after Weaver, 1958). The huge pile up of interbedded
sandstones and mudrocks could have been result from rapid
erosion of fast rising Himalayas and Indo-Burman Ranges.
The presence of granitic plutons, Mesozoic flysch deposits,
ophiolite rocks, and Tertiary molasse sediments are common
in the Eastern Himalayan structural belt (Gansser, 1964). In
the Indo-Burman Ranges, thick Eocene to Oligocene turbidite
successions and Upper Miocene to Pleistocene molasse se-
diments (Uddin and Lundberg, 1998) are the significant rocks
successions. The low temperature Ar-Ar ages of detrital white
mica from the Neogene sandstones of Surma Group are dia-
gnostic of the youngest cooling events which can be corela-
ted with early cooling ages from High Himalayan Crystalline
rocks (Rahman and Faupl, 2003). Based on sand petrogra-
phy and lithofacies maps, it is suggested that the Miocene
sediments were transported from the immediate east, inclu-

grained sedimentary rocks reported Elemental | Range of the Neogene Range of Range of Upper
by Taylor and McLennan (1985) and Ratio shales from the Surma sediment from sediment from | Continental
y tay Group, Bengal Basin felsic sources® mafic sources? Crust®
follows the normal weathering trend
(McLennan et al., 1993). It is most Eu/Eu 0.62-0.72 0.40-0.94 0.71-0.95 0.63
likely that the sources for the Neo- La/Lu)cn 9.39-10.95 3.00-27.0 1.10-7.00 9.73
gene Surma Group sediments were
. La/Sc 2.19-3.26 2.50-16.3 0.43-0.86 2.21
recycled sediments and have under-
gone significant weathering. The Th/Sc 0.90-1.29 0.84-20.5 0.05-0.22 0.79
presence of plagioclase (~9%) in the
La/Co 2.29-3.08 1.80-13.8 0.14-0.38 1.76
shales (Rahman and Faupl, 2003)
may indicate insignificant chemical Th/Co 0.90-1.26 0.04-3.25 0.04-1.40 0.63
weathering during sedimentation in
19 curing CriTh 4.88-6.45 4.00-15.0 25-500 7.76
the basin (Einsele, 1992, p. 364),

whereas the CIA values of shales
are indicative of the significant wea-
thering in their source. The occur-

* Cullers (1994, 2000); Cullers and Podkovyrov (2000); Cullers et al. (1998)
* McLennan (2001); Taylor and McLennan (1985)

TABLE 4: Range of elemental ratios of the Neogene shales of the Surma Group in this study com-
pared to the similar elemental ratios derived from felsic rocks, mafic rocks, and upper continental crust.
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FIGURE 8: CIA ternary diagram, Al,0,-CaO*+Na,0-K,0O (after Nesbit
and Young, 1982); CaO* = CaO in silicate phase.

ding the Indo-Burman Ranges as well and yield a clear record
of unroofing of the eastern Himalaya/Indo-Burman Ranges
(Uddin and Lundberg, 1998, 1999).

It is most likely that Himalayan terrain, particularly Eastern
Himalaya could be recognized as the principal source area of
the Neogene Surma Group sediments of the Bengal Basin.
Recycled sediment material from the flysch successions of
the Indo-Burman Ranges could also be mixed with the sedi-
ments of Himalayan origin within the deltaic system.

6. CONCLUSIONS

Mean major elemental composition of the Neogene shales
of the Surma Group is consistent with that of the average
shale described by Wedepohl (1971), NASC (North American
Shale Composite, Gromer et al., 1984), UC (the upper crust,
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FIGURE 9: Plots of Th/U versus Th (after McLennan et al., 1993).

Taylor and McLennan, 1985) with the exception of the low
content of CaO (1.37 wt%) but compared with PASS (Post-
Archaean Shale, Taylor and McLennan, 1985), the Neogene
shales are little depleted with Al,O, content. The Neogene
shales are enriched with V, Cr, Co, Ni and are depleted in Sr
in compared to UC but are in agreement with those of PASS
and NASC. Eu/Eu*, (La/Lu)cn, La/Sc, Th/Sc, La/Co, Th/Co
and Cr/Th ratios and the higher concentrations of the REE
and REE patterns indicate the derivation of these shaless
from felsic source rocks. The existence of huge complexes
of mafic/ultramafic rocks was most unlikely in the source re-
gion. The CIA values for the Neogene shales from the Surma
Group vary from 52 to 78 with an average 68 indicating signi-
ficant weathering at the source areas.

The geochemical characteristics suggest the active conti-
nental margin setting for the Neogene Surma Group shales
and preserve the signatures of recycled provenance field that
have undergone significant degrees of weathering. Having
identified the sources as recycled detritus, the source region
such as the most of the Himalayan rocks are made of recyc-
led material and hence it could be a dominant supplier. Re-
cycled sediment material from the flysch successions of the
Indo-Burman Ranges could also be mixed with the sediments
of Himalayan origin within the deltaic system.
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