Introduction

The oldest known fossils in Austria date back into the Ordovician. From this time on a broadly continuous fossil record is preserved up to the Holocene. Since an encyclopaedic or monographic presentation is impossible within this volume, nine case studies of different stratigraphic levels (Fig. 1) were selected to call attention to this remarkably good fossil documentation. These case studies include records on invertebrate fossils from several time slices from the Late Palaeozoic to the Miocene, as well as on vertebrates from the Miocene and Pleistocene and on plant fossils from the Devonian and Early Miocene. This selection was based on several aspects, which are of palaeoecological, palaeobiogeographic, evolutionary, or stratigraphic importance or a combination of these disciplines.

Devonian Calcareous Green Algae

Two major occurrences of Devonian calcareous green algae are discernible within Austria: in the Palaeozoic of Graz and in the Carnic Alps (Fig. 2). In both areas, the Devonian green algae appear in discrete layers often associated with accumulations of reef-building organisms (corals and stromatoporoids), or are concentrated in well-defined patches within some layers. Despite these prominent occurrences, Devonian green algae are not well-known. Most previous studies focused on the description of mound-building Carboniferoïds to Permian calcareous algae from the Carnic Alps (HOMANN 1972, FLÜGEL & FLÜGEL-KAHLER 1980).

In the Graz Palaeozoic nappe complex calcareous green algae are known from Emsian to Eifelian limestones within the uppermost tectonic nappe. They are well-preserved and locally make up the major part of the rock (HUBMANN 1990). Besides Zeapora gracilis, distinguished by large rounded cortical filaments, Pseudolitanaia graecensis and Pseudopalaeoporella lummatonensis occur (Fig. 3). Pseudolitanaia graecensis is built up of straight thalli containing club-shaped filaments and Pseudopalaeoporella lummatonensis is characterized by a typically poorly-calcified medullar zone and delicate cortical filaments.

There are two localities known with autochthonous algal occurrences in the Graz Palaeozoic. One is characterized by Pseudopalaeoporella lummatonensis with dispersed thalli of Pseudolitanaia. Contrary to all expectations, these algae are found in marly lithologies suggesting very bad environmental conditions for phototrophic organisms. The other locality exhibits Zeapora mass occurrences within carbon-rich limestones (HUBMANN 1993, 2000).

Comparable occurrences in the Carnic Alps are not known. Algae are found scattered in pure limestones, here. Austria’s oldest halimedaean green algae occur in Lochkovian strata (PALLA 1966, 1967; HUBMANN 1994): Paralitanaia carnica, together with the typically bowl-shaped laniuloïd Lanciculella gortani and Quasilancicula wolffi (Fig. 3). From Eifelian to Givetian limestones we know examples of Pseudopalaeoporella lummatonensis. The latter is the only algal taxon which is in common in both the Carnic Alps and the Graz Palaeozoic (HUBMANN & FENNINGER 1993), suggesting biogeographic relations during Middle Devonian times. The two areas are disconnected today by the most prominent fault system of the Eastern Alps, the Periadriatic Lineament, separating the Southern Alpine from the Austro-Alpine Zone.

The occurrence of Pseudopalaeoporella lummatonensis may be of importance to large-scale biogeographic correlations. Both Austrian occurrences, those of the Carnic Alps and the Graz Palaeozoic, are interpreted as remnants of shallow marine environments with algal life belonging either to the northern shelf areas of Gondwana or to peri-Gondwanan terranes. With the exception of the Cantabrian moun-
Fig. 1
General chronostratigraphic overview of the Phanerzoic (not to scale) and more detailed chronostratigraphic frame of the Miocene to Lower Pliocene, with indication of the nine case studies (by authors) presented within this chapter.

Fig. 2
Devonian green algae of Austria. Reconstructions of complete individual algal plants showing their internal anatomy in cut parts. Note differences in colour. Blue coloured specimens belong to the “Southalpine Flora” of the Carinic Alps and green coloured to the “Austroalpine Flora” of the Graz Palaeozoic. Arrows point to main algal type locations on a simplified geological map of Austria.
Fig. 3
Microphotographs of Austria’s Devonian green algae. Scale bar: 1 mm.

Pseudolitanaia graecensis (HUBMANN 1990), Zeapora gracilis PENECKE 1894, Pseudopalaepoarella lummatonensis (ELLIOTT 1961) in cross sections. Specimens originate from the Barrandei-Limestone (Eifelian) of the Graz Palaeozoic.

tains, several other findings of *Pseudopalaeporella lummatonensis* belong to similar environments at the northern margin of the Rheic Ocean (i.e., Rhenovernian Zone, Russian platform). This suggests that the depositional basins of the Carnic Alps and the Graz Palaeozoic were interconnected, and implies a biogeographic association of North Gondwana with the ancient northern hemisphere during the Devonian.

Late Palaeozoic Fusulinaceans from the Carnic Alps (Holger C. Forke)

Soon after the Variscan orogeny the eastern part of the Southern Alps was flooded by a shallow, tropical sea. Following this transgression a group of larger benthic foraminifera, the fusulinaceans, colonized the area. They flourished and rapidly evolved in this westernmost part of the Palaeotethys during the Late Carboniferous and Early Permian, some of them reaching a large size (up to 3 cm in length). At the end of the Early Permian tectonic movements led to a regression of the sea and it was only during the Late Permian that the fusulinaceans had a short comeback in the Southern Alps before they died out completely close to the P/T boundary.

Their rapid evolution, wide distribution and frequency in the shelf sediments of the Late Palaeozoic make the fusulinaceans a preferential group for biostratigraphic subdivisions. The distinct palaeobiogeographic distribution patterns of families and genera help to improve plate tectonic reconstruction during the Carboniferous and Permian.

Due to the well-preserved and rich fossil fauna, the fusulinaceans of the Carnic Alps were already objects of investigation in the last century. Starting with the first discovery by Süss (1870), brief descriptions given by Stach (1874) and Gortani (1906) followed and a classical monograph was written by Schellwien (1898). Later on, the study of fusulinaceans of the Carnic Alps was intimately connected with the names of Franz and Gustava Kahler, documented in more than 60 years continuous work (for full references, see Flügel & Mortl, 1997). They were the first to describe the foraminifers from measured stratigraphic sections. They elaborated a biozonal scheme for the Late Palaeozoic sediments of the Carnic Alps (Kahler, 1986) and tried to correlate them with fusulinacean faunas of Middle Asia, the Southern Urals and the Donets basin (Kahler, 1939, 1974, 1984, 1992).

Palaeobiology, Palecology

The fusulinaceans are characterized by a multilayered, microgranular wall and a commonly planispirally involute arrangement of chambers. The wall is composed of equidimensional, subangular grains of calcite and seems to be rather secreted than agglutinated (Green et al., 1980; Hagemann & Kasler, 1998). The test shape is variably discoidal or globular, but predominantly spindle-shaped (fusiform). Their external structures are rather poor and uniform. Axial, sagittal and sometimes tangential sections are necessary to study their internal features, which are essential for the determination of taxa.

The life cycle of the fusulinaceans is still not well understood, but megaspheric forms predominate in most genera. Few microspheric specimens are reported in some genera, characterized by their skew-coiled inner volutions.

The ecological requirements are difficult to assess, because the fusulinaceans are exclusively Palaeozoic in age. Comparisons with Recent foraminifers like the alveolinids, having similar size and shape, can be misleading. The possible mode of life is deduced from accompanied facies analysis. Different groups within the fusulinaceans can be related to various environments ranging from clastic influenced near shore habitats to lagoonal, outer shelf or bioclastic facies types (e.g., Ross, 1969). From these data, an episodic life in shallow water is inferred and a symbiosis with algae is discussed (Ross, 1972).

Biostratigraphy

In the Late Palaeozoic sediments of the Southern Alps the fusulinaceans take the leading role as index fossils for biostratigraphy, because other important groups, like conodonts or ammonoids are rare or absent. Furthermore, some large and characteristic fusulinaceans can be easily distinguished with a hand lens in the field, serving as a powerful tool for mapping geologists.

The biostratigraphic subdivision of the sediments in the Carnic Alps is based on three major intervals recognizable in the evolution of the family Schwagerinidae (Fig. 4). The phylegetic lineage from Protriticites-Montiparites-Raussertes (characterized by the developing keriothecal wall structure, the gradual loss of tectoria and increasing size of the test) and their coexistence with other fusulinacean genera enables us to establish several faunal assemblages in the lower part of the Auernig Group (Davydov & Kainer, 1999, Forke & Samankassou, 2000). The upper part of the Auernig Group and the lower part of the Rattendorf Group (Lower *Pseudoschwagerina* Limestone, LPL) is dominated by large schwagerinids with irregularly folded septa belonging to the genus Daixina. Their test shape tends to change from elongated fusiform species in the Auernig Group to inflated, almost globular species in the LPL, separated as subgenus Daixina (Busbytauella). Additionally, the first appearance of species of the Rugosofusulina stabili group, of the genera Rugosochusenella and "Occidentoschwagerina" is characteristic for the LPL (Figs. 4, 5) (Kahler & Kainer, 1993, Forke et al., 1998). These genera become widespread in the third interval, and are accompanied by a peculiar fauna of highly inflated Schwagerinidae, probably belonging to several independent lineages (Figs. 4, 6). This third interval comprises the Grenzland Fm., Upper *Pseudoschwagerina* Limestone and Trogkofel Limestone.

During the latest Carboniferous and Early Permian (Rattendorf Group) the fusulinaceans underwent a rapid diversification and occupied different ecological niches. Careful examination of all stratigraphic horizons within the sections are necessary to obtain insight into the whole fossil fauna and to establish a refined biozonal scheme. Several faunal assemblages of the three intervals are closely related to specific facies types and the appearance of species and genera then merely depends on changes of the depositional environment.

The next major step in the evolution of the fusulinaceans, with the first appearance of ancestral and early representa-
Fig. 4
Ranges of fusulinocean genera in the Upper Carboniferous to Lower Permian sediments of the Carnic Alps, Austria/Italy.
Palaeontological Highlights of Austria

Schulterkofel section

Fig. 5
Distribution of fusulinacean assemblages in the Lower “Pseudoschwagerina” Limestone of the Schulterkofel section, Carnic Alps, Austria/Italy (data from FORKE et al. 1998). HST: highstand systems tract; TST: transgressive systems tract; LST: lowstand systems tract.

Palaeogeography
During the Late Carboniferous and Early Permian several palaeobiogeographic provinces developed, depending on how geographic or palaeoclimatic barriers evolved through the time.
this time (Fig. 7). The most extensive and complex one is the Palaeotethys Province. The Franklinian and Uralian Province stretches along the western, northern and eastern shelf of the Euramerican craton and is connected with the Palaeotethys Province along the Pre-Urals trough. The third is the Midcontinent-Andean Province, formed by the southern part of North America and the northern parts of South America. A fourth province encloses some displaced ter-
Fig. 7
Palaeogeography of the Late Carboniferous and faunal relationships of fusulinaceans from the Carnic Alps, Austria/Italy.
ranes along western North America, probably located somewhere within Panthalassa during the Late Palaeozoic (Ross 1967).

The Carnic Alps were situated in the westernmost part of the Palaeotethys Province. The fusulinacean fauna were located in the lower part of the Late Carboniferous strata (Kasimovian) and are closely related to the fauna of the Cantabrian Mountains and Middle Asia (Villa et al. in press) and, to a lesser degree, also to the fauna of the Russian Platform. During the Gzhelian and Asselian widespread faunas occur, which migrated up to the Northern Urals and Spitsbergen and perhaps even to North America. During the Sakmarian the faunal connections with the Urals ceased. This could have been caused either by the closure of the Pre-Urals trough in the south or by the northward shift of Pangaea. The migration of the fusulinacean faunas from and to the Carnic Alps then becomes restricted to the Palaeotethys.

Austria as the World Famous Window to Triassic Tropical Sealife

Parallel to the collision of the two landmasses of Gondwana and Laurasia in Late Palaeozoic time the Tethys ocean was born as a palaeogeographic, palaeoclimatic and especially palaeobiogeographic entity. When introducing this name in 1893, the great Austrian genius of geology E. Suess referred primarily to Neumayr’s ideas on the “Centrales Mittelmeer” (Central Mediterranean Sea). But one of the major arguments for the Tethys was the astonishing similarity between Austrian and Himalayan Triassic ammonite faunas. However, what was then believed as a continuous oceanic realm between Gondwana and Laurasia from the Palaeozoic till the late Mesozoic is now seen in a very different way. The Permo-Triassic Tethys alone has a remarkable and, for the non-specialised reader, confusing plate tectonic history. Within its proper limits, a so-called Neotethys ocean was created at the expense of the Palaeotethyan one (Fig. 8). New seafloor spreading south of the northdrifting Gondwana-fragmented Cimmerian blocks led to the subduction of the Palaeotethys ocean beneath Laurasia (Sengor 1984, Stampfli et al. 1991). Two fundamentally different Triassic Tethyan margins are the important result of this tectonic history, a narrow active margin to the north and northeast, respectively (= A of Fig. 8) and a wide passive one along the southern and western shore (= P of Fig. 8). According to currently popular reconstructions (Dercourt et al. 1993, Besse et al. 1998), the Neotethys ocean extended from less than 25° south of the equator to about 30° north. It had an elongated shape of more than 10,000 km length and about 3,000 km width. During the Triassic, the sea-level reached an all-time low and the earth is generally recognised as having had a warm and extremely arid climate indicated by the extensive deposition of evaporites far from the equator. Uniform tropical conditions therefore prevailed in the Tethys ocean with 25-30 °C sea surface temperatures. Bottom water temperatures must have been well above 10 °C, if the assumption of an island barrier diminishing bottom water exchange between Tethys and Panthalassa ocean is correct. All these points may explain the high degree of faunal similarity, as well as of biotic diversity...
Throughout the Tethys, both in the shallow water reef, as well as the pelagic (Hallstatt) environments.

Austria's Northern Calcareous Alps together with the Southern Alps and the Dinarids formed an up to 300 km wide and approximately 500 km long shelf strip at the western Tethys end (red spot of Fig. 8). Along this, as well as other parts of the Tethyan passive margin, belts of marine sedimentation were arranged in a characteristic shore-parallel fashion. They are illustrated below by classical Upper Triassic Alpine sedimentary environments (Fig. 9) and, in more detail, in MAN (this volume). The near-shore zone was the Keuper belt, which served as the deposition site of hypersaline or extreme shallow marine siliciclastics. Seaward followed broad Dachstein carbonate platforms flanked by reefs towards open shelf basins. The Dachstein reefs produced large masses of skeletal and non-skeletal carbonate detritus, which were deposited mostly along the platform margins and on the attached basin floors. Further offshore only a small amount of periplatform sediments. The reefs are mainly preserved as accumulations of allochthonous or subautochthonous reef blocks or rubble of reef biota. For the first time in earth history, scleractinian corals make up an important part of the former reef framework, however, sponges are even more dominant in many localities (KIELSLING et al. 1999). Besides these dominant biota a great diversity of reef dwellers like foraminifera, molluscs, brachiopods, echinoids, and solenoporacean algae occur; the major representatives of the binder guild are microbial mats.

In the Late Norian - Rhaetian, concurrent with the formation of siliciclastic intraplatform Kössen basins (Fig. 9), the carbonate platforms open and are widely covered by coral (Retephyliia div. sp.) biostrutures and in some localities mud mounds and smaller reefs occur (SCHAER 1979, SEDIBAR-DARYAN 1980, BERNECKER et al. 1999). The most famous (textbook) examples are the Steinplatte near Waidring (Fig. 10), representing, however, a rather complicated setting (OHLEN 1959, PILLER 1981, STANTON & FLÜGEL 1989), and the reef in Adnet near Salzburg (BERNECKER et al. 1999). With these Rhaetian buildups the first scleractinian dominated reefs in earth history were created. Parallel to the formation of the terrigenous Kössen basins, the Znambach marls were deposited within the Hallstatt facies (Fig. 9). Excellent preservation of allochthonous reef biota occurs within these marls (e.g., RONIEVICZ 1989).

Hallstatt facies

The Hallstatt facies of Austria consists mostly of red, subordinately also whitish to grey bedded wackestones rich in filaments (juvenile shells of pelagic bivalves) and echinoderms (microcrinoids). It accumulated a thickness of 100 m with a mean sedimentation rate of 3 m per million years (Ma) over a period of 35 Ma, from Middle to Late Triassic. This "normal" type of Hallstatt limestone deposition is widespread and remarkably poor in megafauna, especially cephalopods. Biostratigraphy is based on frequently occurring conodonts and many Triassic conodont taxa originated from it (HUCKREIDE 1958, MÖSCHER 1986). Rich cephalopod faunas usually dominated by ammonites are found in another type of Hallstatt limestone. It consists of red bioclastic limestone layers that are only centimetres thin and laterally often discontinuous with corroded and Fe-Mn-oxid coated surfaces. Most of the frequent cephalopod shells are fragmented, but the rare complete ones are excellently preserved and due to their thin black Mn-coating, often extractable in nearly perfect condition. As long as sediment accumulation is not below 10–20 cm per Ma, these limestones may record a sequence of several ammonite zones in less than one meter thickness still without stratigraphic condensation (KRISTYN 1991). This is the famous fossil-rich Hallstatt facies known from many Alpine mountain chains between
Fig. 9
Schematic Upper Triassic (Norian-Rhaetian) facies reconstruction of the Northern Calcareous Alps (after Mandl this volume).
Palaeontological Highlights of Austria

BAD ISCHL

Fig. 11
Location map showing the most important Hallstatt Limestone fossil sites in Austria.

The specific stratigraphic importance of the cephalopod-rich Hallstatt facies of the Salzkammergut is due to the fact that stratotypes or references to Upper Triassic chronostatigraphic and biostratigraphic subdivisions are designated herein (KRYSYN et al. 1971a, b, KRYSYN & SCHLAGER 1971). All Upper Triassic substages, except that of the Lower Carnian, are defined in the Salzkammergut. Of currently 13 Upper Triassic Tethyan ammonoid zones in use, 10 are described from the Salzkammergut. The region is also the richest source of Upper Triassic ammonites in the world. Centred around the Hallstatt lake within a radius of about 15 km, there is a bulk of fossil localities (DIENER 1926, KRYSTYN et al. 1971a), such as e.g. Siriuskogel, Millibrunnkogel, Schneckenkogel including the world famous localities of the Feuerkogel near Bad Aussee and the Sommeraukogel near Hallstatt (Fig. 11). Together with the nearby Steinbergkogel, Sommeraukogel is important further as the type locality for the Hallstatt formation.

The Feuerkogel, about 15 km to the east of Hallstatt, has delivered more than 500 ammonoid species of Carnian to Norian age (MOJSISOVICS 1873-1902, DIENER 1921, 1926). This location is by far the richest in ammonoid fauna of any single place in the world! From the Sommeraukogel, located above the town of Hallstatt (Fig. 12), close to a famous saltmine, active since prehistoric times (Hall = Celtic word for salt), another 100 Norian ammonoid species have been named by MOJSISOVICS (1873-1902) in his spectacular monograph. Compared on a genus level, the Austrian input to the knowledge of Upper Triassic ammonites is even larger. Of roughly 140 Tethyan ammonoid genera known in the early 1980's (TOZER 1981, 1984), 90 or nearly two third of the genera (65%) have been described from the Hallstatt Limestones of the Salzkammergut; the Himalayas follow next with 25 genera (20%). Half of the remaining 15% have been found in the Hallstatt facies of Timor (Indonesia) and only 7% (10 genera) have been described from the other 20,000 km of Tethyan strands. The study of the Austrian Hallstatt faunas is still not finished, with many new taxa yet to be described. Their documentation will further enlarge the faunal record of the Salzkammergut, as well as extend our knowledge of the pelagic life of the Triassic.
Fig. 12
View of Hallstatt with Upper Triassic ammonites from the Hallstatt Limestones of the Salzkammergut (scale = 5 cm).
1) Cyrtopleurites bicrenatus (HAUER), Bicrenatus zone (S) – 2) Juvavites stoliczkai (MOJSISOVICS), Magnus zone (S) – 3) Austrotrachyceras triadicum (MOJSISOVICS), Austriacum zone (F) – 4) Ectolites pseudobarens MOJSISOVICS, Hogarti zone (S) – 5) Tropites subbulatus (HAUER), Subbulatus zone (F) – 6) Parathisbites scaphiformis (HAUER), Hogarti zone (S) – 7) Guembelites philostrati DIENER, Jandianus zone (F) – 8) Halohtes macer MOJSISOVICS, Macer zone (S).
Localities: S = Sommeraukogel, F = Feuerkogel. – 1, 4, 6, 8: Geological Survey Coll. Vienna, others Institute of Palaeontology Coll., University of Vienna.
Deciphering the Gosau Group – A Challenge for Cretaceous Palaeontology
(Herbert Summesberger, Diethard Sanders, Heinz A. Kollmann)

The mixed siliciclastic-carbonatic Gosau Group – named after the village Gosau in Upper Austria (Fig. 13) – is renowned for its fossil content all over the world. Monographs on corals by Reuss, Felix and Oppenheimer, on bivalves by Zittel, on ammonites by Hauer and Redtenbacher, on gastropods by Zekel and on vertebrates by Bunzel have contributed to this reputation (Kollmann & Summesberger 1982). On a world-wide scale, the spectrum of depositional environments and fossil assemblages render the Gosau Group one of the keys for understanding the relationship among tectonic movements, sedimentology, palaeoecology, evolution and biostratigraphy in the Upper Cretaceous/Paleogene interval.

The Gosau Group was deposited in extension- and strike-slip controlled depocenters on top of the northern, accretionary margin of the Austroalpine microplate (Wagreich & Faupl 1994). The highly fossiliferous Lower Gosau Subgroup (Upper Turonian to Campanian; Fig. 14) consists of terrestrial to deep neritic deposits. The Upper Gosau Subgroup (Santonian to Eocene) is composed of bathyal to abyssal deposits.

The Gosau Realm – A Tethyan-Boreal Transition Area?

During the Late Cretaceous, the area of the Austroalpine tectonic unit was situated at 30°-32° N (Mauretisch & Becke 1987). This extrapolates to a distance of approximately 1,800 km from its present position, which is about 47° N. It was part of a climatic belt with monsoonal atmospheric circulation (Parrish & Curtis 1992, Price et al. 1995). Sediments and fossils of the Lower Gosau Subgroup indicate prevalent tropical to sub-tropical, humid to sub-humid atmospheric conditions. Small-scale cycles in non-marine successions record short-term climatic changes.

Gastropod assemblages of the inner shelf shallow water environments of the Lower Gosau Subgroup containing ac-taeonellid and nerineacean gastropods are typically Tethyan (Sohl 1987, Kollmann 1992). The diversity is comparable to other Tethyan occurrences (Kollmann et al. 1998). In contrast to this, the rudist fauna, which generally is understood as a Tethyan element, is impoverished, compared to the South Tethyan realm (peri-Adriatic carbonate platforms and those of Southern France and the Pyrenees), benthic foraminiferal assemblages of the Lower Gosau Subgroup are impoverished. Common Tethyan elements (e. g., Dicyclina, Rhapy-dionina, Pseudocyclamina, Accordiella, Broeckinella, Spi-rocyrina) are absent. Finally, middle shelf and neritic assemblages of foraminiferal composition indicate a co-occurrence of Tethyan and Boreal mollusc taxa (see Kollmann 1992, Dhondt 1987, Sanders et al. 1997, Christensen 1997, 1998).

The rich and diverse fauna of planktic foraminifera of the hemipelagic mists of the Upper Gosau Subgroup is Tethyan in its composition (Herm 1962). Nevertheless, rare findings of Belemnitella in slope and transitional deposits indicate a migration of boreal elements (Christensen 1997) into deepwater environments and therefore a restricted vertical reproduction of realms.

The Lower Gosau Subgroup – A Wealth of Fades

The sequence development during deposition of the Lower Gosau Subgroup was mainly controlled by fault-induced subsidence related to the dynamics of the Alpine accretionary wedge (Sanders et al. 1997). Its exceptionally wide range of facies and diversity of fossil assemblages (Wagreich & Faupl 1994) is due to several factors: The articulated morphology of the older substratum, facies compartmentalisation in the terrestrial to marine shelf environment, high rates of both subsidence and sediment accumulation, mixed siliciclastic-carbonate deposition and environmental changes. Patterns of sequence development of the Lower Gosau Subgroup and change of biotic assemblages within a sequence stratigraphic frame have been described by Sanders et al. (1997). Two shelf types with different depositional history have been distinguished (Fig. 15):

Type A shelves are characteristic of the early development of the Lower Gosau Subgroup, and show little direct evidence for syndepositional faulting. Commonly, they were relatively steep, wave-dominated, with a siliciclastic sedimentation. Mainland beaches and barrier beaches in front of restricted-marine to freshwater marshes (Fig. 15a) or of fan deltas occurred. In open lagoons, nerineids, actaeonellids, radiolitids, sponges, calcareous green algae, mollusk, and litulolacean foraminifera thrived. In areas of intermittent reduced siliciclastic input of the inner shelf, coral-rudist mounds and -biostromes accumulated locally. On the outer shelf to upper slope, mainly silts and muds with ammonites, epifaunal and infaunal non-rudist bivalves (inoeramids, nuculaceans) and with planktic and benthic foraminifera were deposited (Sanders et al. 1997).

Rocky shores and gravelly carbonate beaches developed along transgressive coasts without river deltas or fan deltas. In areas of low siliciclastic input, regressive carbonate shelves developed (Fig. 15b). Their inner shelf facies belt shows a development of skeletal mounds (hermatypic soleractinians, rudists) and rudist biostromes. It is followed landwards by a dissipative shore zone of bioclastic dunes, an open lagoon with rudist biostromes and, at their landward end, narrow microtidal marshes (Sanders et al. 1997). Biostromes of hippocliitids and/or of radiolitids are common
Fig. 13
Sketch map of the Austrian occurrences of the Gosau Group (Strobl-W. = Strobl-Weissenbach).

INTERBASINAL CORRELATION OF THE GOSAU TRANSGRESSION

Fig. 14
The age of the transgression of the Gosau Group (SUMMESBERGER & KENNEDY 1996); (Strobl-W. = Strobl-Weissenbach; B. Ischl = Bad Ischl).
Planktic foraminifera
Ammonites, Inoceramids

Acteonella
assemblage

Turritella
assemblage

Nuculid
assemblage

Aporrhaidae

Solitary corals

Hermatypic corals

Rudists

Pyrgulifera, Melanopsis
Centroceras
Nerineaceae
Parasimplothyris
Naticaeces
Potamididae
Veneridae
Trochacteon

Fig. 15
Reconstruction of the fossil assemblages of type A of the Lower Gosau Subgroup at the a) siliciclastic shelf (top) and b) at the carbonate shelf (bottom) (SANDERS et al. 1997).
both within successions deposited from carbonate shelves and from siliciclastic lagoonal to inner shelf environments (SANDERS & PONS 1999). SANDERS et al. (1999) have further recorded a reef of densely packed, large scleractinians of Santonian age. In the mid to outer shelf environment contemporaneous to the carbonate shelves, mainly siliciclastic silts and muds were deposited.

Assemblages of scleractinian corals are represented by both colonial and solitary forms. Corals are either constituents of biostromes and skeletal mounds to more than 10 meters thick or occur, typically in high abundance as isolated specimens in siltsstones to marls that have been deposited in an open lagoonal to inner shelf environment (BEAUVAIS 1982, HöFLING 1985, BARON-SZABO 1997). The coral assemblages are similar to those of the North Tethyan shelves of southern France and the Pyrenees, as well as to the South Tethyan realm in Slovenia and Serbia (TURNSEK 1997, BEAUVAIS 1982, BARON-SZABO 1997).

Type B shelves (not figured) are characterized by a rocky to gravelly shore. It slopes steeply over a narrow shoreface into a deep, muddy shelf. The shore deposits of these shelves contain abundant fragments of coralline algae, echinoids, branched bryozoans, articulate brachiopods, epibenthic ostraeans and lagenid foraminifera. Rudists and particularly hermatypic corals are very rare to absent. Organic-rich, muddy silts to siltys that have been deposited in an open lagoonal to inner shelf environment. Fossil assemblages contain infaunal and epifaunal bivalves (nuculids, exogyrids, large flat inoceramids), echinoids, gastropods (naticids, turritellids), ammonites, rare crinoids, both benthic and planktic foraminifera, and siliceous sponges.

Type B shelves developed in late stages of of the Lower Gosau Subgroup. Commonly, they were preceded by subaerial exposure and karstification, faulting and deep erosional truncation. Both the substratum and the successions show direct evidence for syndepositional faulting. Shortly afterwards, a marked acceleration of subsidence led to deposition of the Upper Gosau Subgroup.

The Upper Gosau Subgroup - a Story of Drowning

The Upper Gosau Subgroup consists of deep-water clastics and hemipelagic slope deposits. The boundary towards the Lower Gosau Subgroup is diachronous. The biostratigraphic position of the boundary varies between Upper Santonian and uppermost Campanian within an interval of 12 Ma. It is characterized by an unconformity and a small but significant stratigraphical gap in some basins.

Hemipelagic marts are rich in planktic foraminifera (>90%). They occur together with benthic foraminifera of the upper to middle bathyal zone (FAULP & WAGREICH 1992).

Turbiditic deep water associations were intermittently deposited below the local CCD (WAGREICH & FAULP 1994). In other localities marly limestones which are rich in planktic foraminifera indicate a deposition above the CCD.

In K/Pg boundary sites within deep water facies of the Gosau group a well-developed boundary clay (PFISINGER et al. 1986, LAHODYNSKY 1988) is present.

The Gosau Group in the Global Network of Biostratigraphy

The fossils of the Gosau Group (see examples in Fig. 16) provide palaeobiogeographical and palaeoecological and biostratigraphic evidence. The most common biomarkers of the outer to middle shelf environments are ammonites, inoceramids, planktic foraminifera and nannoplankton (SUMMESBERGER et al. 1999). Typically, several groups of biomarkers are present. Their biostratigraphic resolution is commonly at biozone to substage level.

Shallow-water carbonates have yielded assemblages of benthic foraminifera and rudists. Initial results in dating the terrestrial to marginal-marine successions of the Lower Gosau Subgroup by means of palyynomorphs are promising. They provide good evidence of a Campanian age of the diverse, angiosperm-dominated flora of Grünbach and the dinosaur fauna of Muthmannsdorf both situated in the basin of Neue Welt (Fig. 13; DRAXLER 1997).

Lower Miocene Seacows from Austria

(PETER PERVESLER, REINHARD ROETZEL, DARYL P. DOMNING)

The seacow *Metaxytherium krahuletzi* DEFERET, 1895, was a haliternine dugongid which populated shallow marine areas with seagrasses in the Central Paratethys and adjacent Lower Miocene seas of Europe. With reference to the molar patterns and the size of the tusks this plant-eating mammal was not only feeding on leaves, but also on shallow buried rhizomes of seagrasses and was probably an ecological generalist (DOMNING & PERVESLER in press). The deflection of its rostrum is comparable to that of the bottom-feeding Recent Dugong and indicates the same feeding strategy as for the *Metaxytherium krahuletzi*. The type material and nearly all known specimens have been collected from outcrops in the shallow marine Burgschleinitz Formation of the Eggenburg Bay (Fig. 17) (ABEL 1904, DAXNER-HÖCK 1971, PERVESLER et al. 1995, 1998) and are of Late Eggenburgian age.

Upper Oligocene to Lower Miocene sediments are widespread along the eastern border of the Bohemian Massif in Lower Austria. These sediments are terrestrial to marine in origin and are erosive residuals of a former closed sediment cover on the eroded crystalline basement. Tertiary tectonics (active to the present day) reactivated old fracture systems within the crystalline and created small basins (e.g., Horn Basin, Eggenburg Bay).
Fig. 17
Skeleton (bottom) and occurrences of Lower Miocene *Metaxytherium krahuletzi* in the Eggenburg Bay and palaeogeographic reconstruction of the Mediterranean and Paratethys (top).
The Burgschleinitz Formation consists of alternating, poorly sorted medium to fine sands with intercalated gravels. Sedimentary structures such as cross-bedding, lamina- tion and current ripples, as well as typical molluscs and trace-fossils of the Ophiomorpha type indicate deposition in intertidal to shallow subtidal areas. Frequent coquinas, escape structures, hummocky cross-stratification and crystalline block layers, mostly containing bones of vertebrates, can be interpreted as the result of heavy storm events. The sediments of the Burgschleinitz Formation are primarily the result of a wave dominated, storm influenced shallow marine facies deposited in bays sheltered by islands formed of crystalline rock.

The Burgschleinitz Formation in the Kührring sandpit consists of silty medium to fine sands deposited in the shallow marine sublittoral environment of a narrow bay open to the northwest. The foraminifera and molluscs in these sands are typical settlers on marine sandbottoms with seagrass. The top of this formation is a coarse clastic facies with bones of Metaxytherium krahuletzi, Schizodelphis sulcatus, Brachydus onoideus, Tapirus sp. and teeth of crocodiles, breams and sharks like Galeocerdo cuvier. These sands are typical settlers on marine sandbottoms open to the northwest. The foraminifera and molluscs in these sands are typical settlers on marine sandbottoms with seagrass.

Metaxytherium krahuletzi is best represented by leaves, cupules and pollen from the intertidal or shallow subtidal. Heavy storm events could have caused the death of these herbivorous animals by damaging their food resource.

Oberdorf N Voitsberg (Styria, Austria) – a Key Section in the Vegetation History of Early Miocene European Continental Deposits (JOHANNA KOVAR-EDER)

The Köflach-Voitsberg lignite area is situated at the northwestmost margin of the Styrian Basin, 30 km W of Graz (Fig. 18). Oberdorf, the last Austrian open cast mine in operation, was subject to detailed, joint geoscientific investigations. The basin fill there has a thickness of about 300 m and is part of the Köflach-Voitsberg Formation (Fig. 18d). According to the sedimentological results, the deposits are exclusively of fluvial/lacustrine origin (HAAS 1998, 1999). The largely xilo-devitric and detritus-xylitic main seam of about 30 m thickness originated in a non-marine lowmoor (KOLCON & SACHSENHOFER 1998, 1999). Vertebrate assemblages at roughly 100-105 m have been dated to the Early Miocene, Otnangian (Central Paratethys stage), MN 4 (Neogene mammal zone). The polarity change 13 m above the main seam was therefore correlated to C5O5r/C5N5d of the Geomagnetic Polarity Time Scale, 17.6 Ma. (DAXNER-HOCK et al. 1998, MAURITSC & SCHOLGER 1998). A tuffite at the base of the main seam seems to derive from mass mortality events and is part of the “Lower Rhynolite Tufts” in the Pannonian Basin, indicating a (Late) Egyenburgian/Early Otnangian age of this part of the sequence (HAAS 1999).

Assemblages of dispersed plant organs (leaves, fruits/seeds, and pollen/spores) were preserved in different parts of the sequence. The detailed palaeoenvironmental reconstruction is partly based on the systematic evaluation of the plant assemblages at all fossiliferous levels (HAAS et al. 1998).

A number of plant species have never been described before, e.g., some members of the tea family (KOVAR-EDER & MELLER 2000). Others are reported from Austria for the first time, e.g., Magnolia liblarensis (magnolia), Cephalotaxus (plum-pine), several laurel species and Viola (violet). In the case of certain woody plants such as Trigonobalanopsis (beech family) and Ceridiphyllum (Katsura), vegetative and reproductive organs are preserved.

In the sediments assemblage at the base of the main seam, Trigonobalanopsis is best represented by leaves, cupules and pollen (KOVAR-EDER et al. 1998a, MELLER et al. 1999). These evergreen trees were probably common in the species-diverse hinterland forests.

Mass occurrences of Ceridiphyllum (KATSURA) leaves are bound to the hanging wall sediments, where they are frequently associated with fruits (Fig. 19a, c). Even fragments of twigs with adherent short shoots have been discovered in the fossil state for the first time (Fig. 19b); pollen grains of Ceridiphyllum have also been determined (KOVAR-EDER et al. 1998b).

The plant assemblage from the tuffite at the base of the main seam partly resulted from a volcanic eruption that coincided with the season in which many woody plants were flowering; deciduous ones were leafless or in the state of opening their buds; fruits and seeds had not yet developed. Buds/bud scales, lumps of immature pollen and leaves of evergreen woody species were stripped off their mother plants and quickly deposited in a backswamp together with ash and lapilli. Other plant material already accumulated in the backswamp previous to the tephra fall out (KOVAR-EDER et al. a, submitted; Fig. 20).
In the lowlands around Köflach-Voitsberg, extensive wetlands of marginal fluvial facies developed during the depositional phase. Swampy facies (Fig. 21) are best documented in clayey/lignite sediments. Generally only few woody taxa prevail. *Glyptostrobus europaeus* (swamp cypress family, Fig. 19h) and *Quercus rhenana* (an evergreen oak relative, Fig. 19d) are most characteristic. They are accompanied by *Myrica* (wax myrtle, Fig. 19g), *Nyssa* (tupelo), *Rubus* (blackberry), and a few others (Kovar-EDER 1996, MELLER 1998).

Sandy and silty/marly sediments from the main seam parting in the western sub-basin and the hanging wall in the eastern sub-basin offered the best insight into the composition of riparian forests (Kovar-EDER & MELLER 2000 and in press): *Sequoia, Cercidiphyllum, Ainus* (alder), *Fraxinus* (ash tree, Figs. 19e, f), *Acer* (maple), *Salix* (willow), *Pterocarya* (wingnut), and *Prunus* (prune) are important trees and shrubs here. Aquatic plants, both submerged forms and

Fig. 19
a) and c) *Cercidiphyllum crenatum* (KATSURA), a leaf, c fruit. - b) *Cercidiphyllum* twig fragment with a short shoot bearing several growth rings. - d) Lower leaf surface of *Quercus rhenana* (evergreen oak relative), a characteristic swamp element in Oberdorf (fluorescence microscopy). - e) Leaflet of *Fraxinus ungarai* (ash tree). - f) *Fraxinus* winged fruit. - g) Leaf of *Myrica joannis* (wax myrtle). - h) Twig of *Glyptostrobus europaeus* (swamp cypress family). Scale bar 1 cm except in d) where it is 100 μm.
those with floating leaves, as well as plants with reed-like associations, are generally rarer and species poorer in Oberdorf than in other European lignite areas. However, those discovered in the hanging wall sequence are indicative of ponds and lakes: *Potamogeton* (pondweed) and Characeae.

Frequent fusain fragments in many horizons indicate forest fires, as known from sub-tropical and tropical swamps today.

While the plant assemblages of the Oberdorf sequence distinctly trace facial changes within the wetland area during the depositional time, the composition of the hinterland forests remains virtually unchanged.

Species diverse, mostly evergreen forests covered natural levees and hills surrounding the Köflach-Voitsberg lowlands, as the Alpine orogen had not yet fully evolved. The sediments from the base of the main seam show a distinctly stronger allochthonous influence versus the greater autochthonous influence in the seam partings and the hanging wall sediments. Therefore the species spectrum of the hinterland forests is better represented in the plant fossil record at the base of the main seam than in any other part of the sequence. The laurel family is documented by eight species; others, such as the Symplocaceae and Juglandaceae (walnut family) are similarly diverse. Members of the Fagaceae (beech family), Ulmaceae (elms), Mastixiaceae (related to the dogwood family), Rutaceae (citrus family), Theaceae (tea family), Sapotaceae (sapote family), Ebenaceae (ebony family), and Sterculiaceae (chocolate family) were components of these forests. They provide first evidence for rich Younger Mastixioioid vegetation from Austria (MELLER et al. 1999, ZETTER 1998). These hinterland forests show a close relationship to those described from Bohemia, Bavaria and Saxony of the Early/Middle Miocene.

The different wetland and hinterland biotopes were favourable habitats for amphibians, lizards, snakes, mammals and birds. Their teeth and bones have been found in the hanging wall sequence. Interesting representatives include rhino, pig, cervids and flying squirrels (DAXNER-HÖCK et al. 1998, HAAS et al. 1998, Fig. 21). The latter required high trees for gliding. Generally, forest dwellers prevail, supporting the interpretation of the plant fossil record.

These forest communities required warm, humid, sub-tropical climatic conditions similar to those occurring today in the ecotone between the mixed mesophytic forest and the evergreen broad-leaved forest region of E- and SE-Asia, with climatic conditions of 14-17 °C mean annual temperature and 1,000 to 2,000 mm annual precipitation (DAXNER-HÖCK et al. 1998).

The comparison of Oberdorf with other Early/Middle Miocene European lignite deposits revealed an even higher floristic variability of peat-forming plant associations than thus far expected (KOVAR-EDER et al. b, submitted).

Acknowledgements: The investigations were financed by the Austrian Science Fund, project 10337 GEO.
Fig. 21
Reconstruction of a swamp forest biotope with big Glyptostrobus europaeus trees (swamp cypress family), rhino, cervids and flying squirrels (plant reconstructions by W. Lumpe, Dresden; animal reconstructions from DAXNER-HÖCK et al. 1998).
Badenian (Middle Miocene) Ecosystems

(WERNER E. PILLER, MATTHIAS HARZHAUSER)

The Vienna Basin, located between the Eastern Alps, the West Carpathians and the western part of the Pannonian Basin (Fig. 22), is embedded in the very complex tectonic evolution of the east Alpine area (DECKER 1996, DECKER & PERSSON 1996) and represents one of the best studied pull-apart basins of the world (ROYDEN 1985, 1988, WESSELY 1988). Besides its importance from a tectonic point of view the Vienna Basin was – similar to other European Tertiary Basins (e.g., Paris Basin, London Basin, Mainz Basin) – the focus of early geological studies particularly due to its rich fossil content (e.g., STÜTZ 1807, PREVOST 1820, SUSS 1885, SCHAEFFER 1907). Another important aspect, which distinctly enhanced our stratigraphic, sedimentologic and tectonic knowledge involved the large hydrocarbon reservoirs, which were explored during the last 60 years.

The Vienna Basin is part of the Paratethys, which formed together with the Mediterranean Sea after the disappearance of the Tethys ocean (see STEININGER & WESSELY, this volume). Due to its isolated position for most of the time a regional stratigraphic stage system different from that of the Mediterranean had to be established (e.g., RÖGL & STEININGER 1983, SÉNES & STEININGER 1985, STEININGER et al. 1988, 1990, RÖGL 1998).

The pull-apart mechanism became active during the Karpatian (STEININGER et al. 1986, SEIFERT 1992, DECKER 1996). Older sediments (Eggenburgian – Ottnangian) at the base of the northern part of the Vienna Basin belong to an earlier piggy-back basin of the Molasse cycle (STEININGER et al. 1986, PILLER et al. 1996, DECKER 1996). Between the Karpatian and Pannonian (comp. Fig. 1) the subsidence in the central Vienna Basin reached up to 5.5 km (WESSELY et al. 1993). The interplay of highly active synsedimentary tectonics with rapid changing trans- and regression cycles (RÖGL & STEININGER 1983, RÖGL 1998) produced a complex pattern inside the basin, depending on distance from land on position of particular tectonic blocks.

The basement of the basin is built by those Alpine-Carpathian nappes bordering the basin on the surface (comp. block diagram in Figs. 23-25). The Neogene sediment fill of the basin reaches a thickness of up to 6,000 m. At the base mainly clastic sediments are developed representing fluvial facies. A fully marine development over the entire basin was established only in the Early Badenian (Lower Lagenid Zone). These sediments consist not only of clastics, but also carbonates were deposited. This facial development with local coral reefs and widespread coralline algal limestones is restricted to the Badenian since during the Sarmatian a reduction in salinity and/or increase in alkalinity (RÖGL...
Fig. 23
Typical Badenian biota of the sandy facies (Gainfarn Sands), particularly of the western margin of the Vienna Basin (red ellipse in the basal block diagram of figure). The front face of the block diagram represents the section between S' Baden and Eisenstadt (marked in Fig. 22) and is a reconstruction of the Vienna Basin during the Badenian after KOLLMANN et al. (1982). The Miocene sediments are shown in yellow (central basin), light blue (Leitha Limestone at the western flank of the Leithagebirge) and pink (sandy facies along the western margin – red ellipse). All other signatures represent rocks of the Alpine – Carpathian nappe systems forming the basement of the basin (1: Northern Calcareous Alps, 2: Greywacke Zone, 3: Mesozoic of the Central Alps, 4: Crystalline of the Central Alps, 5: Crystalline of the Carpathians).
V. E. PILLER, G. DAVIER-HÖCK, D. P. DOMING, H. C. FORKE, M. HAHNHAUSER, B. HUBMANN, H. A. KOLLMANN

1998) already started leading to non-marine and subsequently continental conditions in the Pannonian – Pontian. Although tectonic subsidence was high, the basin was rapidly filled due to the short distance to the source of clastic sediments; the basin cycle is therefore limited to the Middle Miocene.

The general biostratigraphic subdivision (PAPP et al. 1978) into Lower Badenian (Lower and Upper Lagendorf Zone), Middle Badenian (Spiroplectammina Zone) and Upper Badenian (Bullimina-Bolivina Zone, Rotalia Zone) is based on typical foraminiferal assemblages, reflecting in fact an ecosтратigraphic sequence. This sequence documents a salinity reduction in the uppermost Badenian. The zonal scheme works well in central basinal sections, in marginal positions, however, reliability is limited. Besides these assemblages, planktic foraminifers and certain benthic taxa are also of special importance, e.g., uvigerinids, these assemblages, planktic foraminifers and certain benthic taxa are also of special importance, e.g., uvigerinids, bolivinids and to some extent calcareous nannoplankton (e.g., STEININGER 1977, FUCHS & STRADNER 1977, PAPP et al. 1978, HAUNOLD 1995).

Due to the major marine transgression at the beginning of the Middle Miocene (ROGL & STEININGER 1983, 1984, ROGL 1998), subtropical biotas entered the Paratethys. Within the Vienna Basin, facial and biotic development roughly reflects a distinction between marginal and central basin facies.

The most complex facies pattern is developed along the basin margins in dependence on the hinterland and coastal morphology. In general, siliciclastics and carbonates can be differentiated, both exhibiting a rich facial and biotic diversity. The western border of the southern Vienna Basin is highly influenced by the clastic sediment input from the Northern Calcareous Alps. Around the Leithagebirge (Fig. 22), which was an island, a chain of islands or a shoal during the Badenian, autochthonous carbonate sediments dominate (irrespective of sometimes thick basal transgressive deposits).

The coastal development along the western margin shows strong fluvioglacial influence at some locations, expressed by thick conglomerates dominated by material derived from the Northern Calcareous Alps as well as the Fließ Zone. The conglomerates and their components sometimes contain biota such as pebble-incrusting coralline algae, oysters, balanids and corals (Fig. 23). In some places, steep rocky shores with large boulders are also preserved, exhibiting dense settlement by boring bivalves. Wide coastal or marginal areas are covered by sands (Gaianforn Sands) with a rich and excellently preserved fauna (Fig. 23) dominated by molluscs such as Cerithium, Xenophora, Pinna and Strombus, partly reflecting sea-grass settlement. The soft bottom of the sandflats was inhabited by a vast number of infaunal clypeasterids, glycymerids and the index fossil Megacardita venerids, and other carnivorous snails associated with infaunal bivalves and thin-shelled pectinids and reflects soft-bottom communities in deeper circum littoral environments. A marked decrease in herbivorous forms probably indicates a reduction in light-intensity. In these habitats of weak agitation and fine sedimentation muriid snails display remarkable fragile ornamentations. The depositional depth of this fine-clastic material can be interpreted as being not deeper than 50-200 m (PAPP & STEININGER in: PAPP et al. 1978, TOLLMANN 1985). Although subsidence of the basin during the Badenian was very rapid, the relatively shallow water depth can be explained by a high sedimentation rate leading to a sediment accumulation of approx. 1,500 m in the central basin during the Badenian (e.g., WESSELY 1988).

The most widespread facies unit along the Leithagebirge and the Ruster Höhenzug, as well as at certain sites along the western margins of the Vienna Basin with reduced terrigenous input (e.g., around Wöllersdorf), is the Leitha Limestone. The name of this unit was already established by KEFERSTEIN (1828) and is also well-known outside the Vienna Basin. The unit was redefined by PAPP & STEININGER in: PAPP et al. (1978), who considered the broad facies. Due to its high abundance of coralline red algae (Fig. 25), this Leitha Limestone is also well-known as Nullipora or Lithothamnium Limestone. The first description of a fossil coralline red alga out of this limestone – Nullipora ramosissima REUSS 1847 – is historically important. The original material of this taxon was recently rediscovered and the species was assigned to the genus Lithothamnium (PILLER 1994). In general, the limestone is characterized by the occurrence of coralline algae in various growth forms (Fig. 25), ranging from rhodolith dominated types to branching facies (maerl). Coral buildups of limited size are developed only locally. Such buildups are rare along the western margin of the Vienna Basin due to the high terrigenous input and are represented only by small patch reefs. The best-developed coral buildups are present at the southern tip of the Leithagebirge, where the limestones reach the greatest spatial extent and the thickest sequences (about 50 m). Due to the island position no major terrigenous influx restricted coral growth here. Particularly at the southern tip of the Leithagebirge water currents or relatively strong waves favoured their growth. The corals are represented mainly by various taxa of Porites, accompanied by Tarbellastrea, Caulastrea, Acanthastrea and Stylopora (PILLER & KLEEMANN 1991) (Fig. 25).

Additionally, typical faunal elements of the Leitha Limestone are thick-shelled bivalves such as Macropholithus nodosiformis (SERRES) and ostreids, forming beds up to five meters thick. Among echinoids infaunal clupeasterids, which lived shallowly burrowed in the loose algae debris are
Fig. 24
Typical Badenian biota of the muddy facies (Baden Tegel) of central basinal sediments (red ellipsis in the basal block diagram of figure). For further explanations see Fig. 23.
Fig. 25
Typical Badenian biota of the carbonate facies (Leitha Limestone), particularly at the western margin of the Leithagebirge (red ellipsis in the basal block diagram of figure). For further explanations see Fig. 23.
common, as well as large shark remains (Fig. 25) and crustaceans (BACHMAYER & TOLLMANN 1953).

An exceptional “Fossillagerstätte” occurs at St. Margarethen in Burgenland (Fig. 22), where an excellently preserved fish fauna occurs (SCHULTZ 1993, CHANET & SCHULTZ 1994) in fine-grained, partly laminated, marly limestones. Besides scorpenids (Fig. 25), the oldest known parrot fish is also recorded from here (BELLWOOD & SCHULTZ 1991). The depositional environment was recently interpreted as very shallow marine, partly representing a flooded intertidal flat (PILLER et al. 1996).

Miocene Primates from Austria

Catarrhine primates came from Africa and appeared for the first time in Europe at the end of the Early Miocene. They had a wide distribution across Western and Central Europe and Southwest Asia during the Middle and Late Miocene.

In Austria their existence has been demonstrated in the Molasse Zone in Upper and Lower Austria, as well as from the Vienna basin northeast and southeast of Vienna, and in the “Lavanttal” (Carinthia) and Aflenz Basin (Styria), which
<table>
<thead>
<tr>
<th>Miocene Primates from Austria</th>
<th>age</th>
<th>locality</th>
<th>lithology</th>
<th>figure</th>
<th>collection</th>
<th>main references:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pliopithecidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliopithecinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliopithecus platyodon</td>
<td>Badenian</td>
<td>Göriach, Styria</td>
<td>lignite</td>
<td>fig. 1/1</td>
<td>NHMW, MJOG, PIUW, PMBE, NHMB</td>
<td>ANDREWS et al. 1996 and ZAPFE 1969</td>
</tr>
<tr>
<td>ZAPFE 1961</td>
<td>MN 6 ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hylobates antiquus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plesiopliopithecus locken</td>
<td>Badenian</td>
<td>Trimmelkam, Upper Austria</td>
<td>lignite</td>
<td>fig. 1/2</td>
<td>MHNS</td>
<td></td>
</tr>
<tr>
<td>ZAPFE 1961</td>
<td>MN 6 ?</td>
<td>(type locality)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliopithecus (Plesiopliopithecus) locken</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crouzeliinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anapithecus hennyaki</td>
<td>Pannonian</td>
<td>Götzendorf, Lower Austria</td>
<td>sand</td>
<td>fig. 1/3</td>
<td>NHMW,</td>
<td></td>
</tr>
<tr>
<td>KRETZI 1975</td>
<td>MN 9</td>
<td>fluvial</td>
<td></td>
<td></td>
<td>SCHW</td>
<td></td>
</tr>
<tr>
<td>Dryopithecus brancoi (SCHLOSSER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZAPFE 1989</td>
<td></td>
</tr>
<tr>
<td>Hominidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryopithecinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griphopithecus darwini</td>
<td>Badenian</td>
<td>Klein Hadersdorf, Lower Austria</td>
<td>sand</td>
<td>fig. 1/4</td>
<td>PIUW</td>
<td></td>
</tr>
<tr>
<td>(ABEL 1902)</td>
<td>MN 6 ?</td>
<td>delta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austriacopithecus weinfurteri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austriacopithecus abeli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryopithecus carinthiacus</td>
<td>Sarmatian</td>
<td>St. Stefan, Carinthia</td>
<td>lignite</td>
<td>fig. 1/5</td>
<td>LMKK</td>
<td></td>
</tr>
<tr>
<td>MOTTI 1957</td>
<td>MN 8 ?</td>
<td>(type locality)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryopithecus fontani carinthiacus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryopithecus carinthiacus</td>
<td>Pannonian</td>
<td>Mariathal, Lower Austria</td>
<td>sand</td>
<td>fig. 1/6</td>
<td>PIUW</td>
<td></td>
</tr>
<tr>
<td>MOTTI 1957</td>
<td>MN 9</td>
<td>fluvial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryopithecus brancoi (SCHLOSSER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:
- NHMW - Naturhistorisches Museum, Wien (A)
- NHMB - Naturhistorisches Museum, Basel (CH)
- MHNS - Haus der Natur, Salzburg (A)
- MJOG - Landesmuseum Joanneum, Graz (A)
- MOUL - Montanuniversität, Leoben (A)
- SCHW - Coll. Schwengersbauer, Mannsdorf (A)
- PIUW - Paläontol. Inst., Univ., Wien (A)
- LMKK - Kärntner Landesmuseum, Klagenfurt (A)
- PMBE - Paläontologisches Museum, Berlin (D)

© Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at und www.biologiezentrum.at

first description
are two intramontane basins in southern and central Austria (Fig. 26/1-6, Table 1). Six Austrian vertebrate faunas have been recorded from lignite mines, river sediments and delta deposits, which yielded fossil primate remains. There is some evidence that only one species is present in each site. The lignite deposits from Trimmelkam, Göriach and St. Stefan represent swampy forest areas, in which pliopithecids or hominids lived. The sands of Klein Hadersdorf are interpreted as delta sediments. They contained hominid limb bones. The faunas of Götzendorf and Mariahilf yielded pliopithecid and hominid remains, respectively. These were imbedded in sands, which characterize a marginal fluvial environment. Special mention must be given to two famous primate localities of Devinska Nova Ves (Neudorf a. d. March) from Slovakia, which are situated close to the easternmost border of Austria (Fig. 26/7). The type locality of Pliopithecus vindobonensis stems from this area. It is the well-known fissure “Neudorf Spalte”. A few teeth of Pliopithecus antiquus and Griphopithecus darwini were located in the marine sands of “Neudorf-Sandberg”, which is a second site of the Devinska Nova Ves area (Andrews et al. 1996).

In Austria some primate species are represented by isolated teeth only: Anapithecus henyaki from Götzendorf and Dryopithecus carinatus from Mariahilf. Dryopithecus carinatus from St. Stefan and Plesiopliopithecus lockeri from Trimmelkam have been identified by jaws, while Pliopithecus platyodon from Göriach is based on an extensive collection of jaws, skull fragments and isolated teeth which originated from at least ten individuals (Zapfe 1969). Although postcranial hominid remains are generally rare, Griphopithecus darwini from Klein Hadersdorf is documented by a humerus and an ulna only.

According to the European record, the extinct primates – the pliopithecins, the crouzeliins and the dryopithecins – ranged in Austria from the Middle to the Late Miocene. Their first records were in the Badenian, i. e., Pliopithecus platyodon from Göriach, Plesiopliopithecus lockeri from Trimmelkam and Griphopithecus darwini from Klein Hadersdorf. Dryopithecus carinatus from St. Stefan is of Sarmatian age. Anapithecus henyaki from Götzendorf and Dryopithecus carinatus from Mariahilf were recorded for the last time in the Pannonian.

The Cave bear: Gentle Giant of the Alps
(Doris Nagel, Gernot Rabeder)

Large quantities of fossil teeth and bones have been found in caves throughout Europe, from the Pyrenees to the Ural and from the Abruzzes to the Harz mountains. They belong to a type of bear, which differs from the living brown bear in many aspects and was classified in 1794 as Ursus spelaeus – the cave bear.

The cave bear is mainly a European speciality. More than 30 cave bear sites are known in Austria alone (Doppes & Rabeder 1997; Fig. 27) and some of these caves are situated at an altitude of 2,000 m or more (Salzofen, Ramesch-Knochenhöhlen, Brettsstein, Brigiersberg, Schreiberwand-Höhlen, etc.).

The coincidence of cave bears with Palaeolithic stone artefacts left by humans only proves a mutual interest in caves as a shelter and it is unlikely that the caves were inhabited simultaneously. The excavations of over 20 caves in Austria, with thousands of fossil teeth and bones revealed no evidence so far to substantiate the “cave bear cult” (Bächler 1923, 1940, Pacher 1997).

References
Abel, O., 1904: Die Sirenen der mediterranen Tertiär bildungen Österreichs. – Abh. Geol. Reichsanst., 19/2, 1-223.
Fig. 1: Fossil sites of the cave bear and its ancestors.
- Ursavus (1-Voitsberg, 2-Göriach, 3-Steiregg, 4-Leoben, 5-Hollabrunn, 6-Leiding bei Pillten)
- Ursus etruscus (7-Deutsch-Altenburg 2 und 4)
- Ursus deningeri (Deutsch-Altenburg 4, Hundsheim, Repolusthöhle)

Fig. 27
Fossil sites of the cave bear and its ancestors in Austria.

Fig. 28
Reconstruction of a cave bear. Original in the Bündner Naturmuseum, Chur, Switzerland (Copyright Bündner Naturmuseum, Chur).
Belemnitella from Chanet, B. & Schultz, O., 1994: Pleuronectiform fishes from the
Baron-Szabo, R. C, 1997: Die Korallenfazies der ostalpinen Krei­
Bachmayer, F. & Töllmann, A., 1953: Die Crustaceen-Fauna aus
Diener, C, 1926: Die Fossillagerstätten in den Hallstätterkalken
Diener, C, 1921: Die Faunen der Hallstätterkalke des Feuerkogels
Decker, K. & Persson, H., 1996: Tertiary kinematics in the Alpine-
Decker, K., 1996: Miocene tectonics at the Alpine-Carpathian junc­
Davydov, V. I. & Kraner, K., 1998: Fusulinid assemblages and
Besse, J., Torco, F, Gallet, Y, Ricou, L. E., Krystyn, L. & Saïdi, A.,
Davies, R., 1982: Revision systematique des Madrepores des
Besse, J., Torco, F, Gallet, Y, Ricou, L. E., Krystyn, L. & Saïdi, A.,

STUTZ, A., 1807: Mineralogisches Taschenbuch. Enthaltend eine Diorographie von Unterösterreich etc. – 394 pp., Wien-Triest (Geistinger).

© Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at