DIE BEEINFLUSSUNG PHYSIOLOGISCHER PROZESSE DER FICHTE DURCH EINE WINTERBEGASUNG MIT SO₂

IDN 4824

Von

KELLER Th.

Eidg. Anstalt für das forstliche Versuchswesen Birmensdorf

ZUSAMMENFASSUNG

Zwei Fichtenklone (je 10 vertopfte Pflanzen pro Behandlung) wurden während der Vegetationsruhe (entweder 2.10.78 - 3.1.79 oder 3.1.-3.4.79) in der Birmensdorfer Freilandbegasungsanlage kontinuierlich begast (Nullprobe; 0.025 ppm; 0.075 ppm; 0.225 ppm SO₂). Am Ende der 3-monatigen Begasung, z.T. zusätzlich nach weiteren 3 Monaten in sauberer Luft, wurden physiologischbiochemische Messungen vorgenommen.

Auch diese winterlichen SO2-Immissionen können sich als Belastung für die Fichte auswirken, selbst wenn keinerlei Symptome eines Schadens auftreten. Nur die höchste SO2-Konzentration führte in diesem Versuch zu einem Abfallen noch grüner, symptomloser Nadeln. Die CO2-Aufnahme wurde mit zunehmender SO2-Konzentration zunehmend gedrosselt. Eine S-Anreicherung war in den Nadeln festzustellen und die Peroxidase-Aktivität wurde gesteigert. Der Nadelgehalt an Ascorbinsäure sank durch die Begasung und die Frostschädigung nahm entsprechend zu.

Schlüsselworte: SO₂, CO₂-Aufnahme, Peroxidase, Ascorbinsäure, Fichte

SUMMARY

Potted spruce grafts (10 replicates for each treatment) were fumigated continuously (control; 0.025 ppm; 0.075 ppm; 0.225 ppm $\rm SO_2$) during "dormancy" (either 2.10.78-3.1.79 or 3.1.-3.4.79). At the end of the 3-months fumigation (in part additionally after further 3 months) physiological and biochemical measurements were done.

Also these winter fumigation were found to stress spruce, even in the absence of any symptoms of injury. Only 0.225 ppm SO2 caused in this experiment a drop of green needles without any other symptom. CO2 uptake was increasingly impeded with increasing SO2 concentration. Needles accumulated S and peroxidase activity was increased. Needle contents in ascorbic acid were lowered by the fumigation and frost injury was increased.

EINLEITUNG

Der Winter gilt als Ruhezeit der Vegetation, d.h. als die Zeit, während welcher metabolische Prozesse eine geringe Aktivität entfalten (z.B. KOZLOWSKI und KELLER, 1966). Dies wird mit als Grund angesehen, dass die Vegetation im Winter weniger empfindlich für Luftverunreinigungen ist als im Sommer (KATZ, 1949; GARBER, 1967). Immerhin ist wiederholt gezeigt worden, dass die Immergrünen auch im Winter SO2 aufnehmen. Die winterlichen Luftverunreinigungen werden in Immissionsgebieten als wichtiger Schädigungsfaktor für Wälder (MATERNA, 1974) bzw. für Gras (BELL und CLOUGH, 1973) angesehen. Dabei ist zu berücksichtigen, dass die Waldungen in Agglomerationen v.a. im Winter relativ hohen SO2-Konzentrationen ausgesetzt sind. Diese sind in großem Ausmaß auf Hausheizungen zurückzuführen, deren Emissionen in den Inversionen gefangen bleiben.

Aus der Überlegung heraus, dass die immergrüne Vegetation möglicherweise in der 1. bzw. 2. Winterhälfte auf Luftverunreinigungen unterschiedlich reagiert, haben wir anläßlich einer Begasung diese beiden

Quartale unterschieden.

Im allgemeinen gelten Luftverunreinigungen als unschädlich für die Vegetation, sofern keine Schädigungssymptome hervorgerufen werden, womit der gerade für die Forstwirtschaft wichtige Bereich der "latenten" Schädigung (KELLER, 1977a) vernachlässigt wird. Wieweit eine winterliche Belastung mit SO₂ physiologische Auswirkungen zur Folge hat, ist praktisch nicht bekannt.

So haben wir uns folgende Fragen gestellt:

- Reagiert die Fichte physiologisch auf eine winterliche SO₂-Belastung und ist in der physiologischen Reaktion der Fichte ein Unterschied feststellbar, ob die SO₂-Belastung in der 1. oder 2. Winterhälfte auf die Pflanzen einwirkt?
- 2. Treten gar sichtbare Schädigungen auf?
- 3. Sind "latente" Schädigungen feststellbar, z.B. in der Aufnahme von CO₂ oder SO₂, in der Aktivität des Enzyms Peroxidase oder im Gehalt von Ascorbinsäure?
- 4. Besteht ein Zusammenhang zwischen der Spätfrostanfälligkeit der Fichte und einer vorangegangenen SO₂-Begasung?

MATERIAL UND METHODEN

An Pflanzenmaterial standen uns für das 1. und 2. Winterquartal je 40 4-jährige Fichten-Pfropflinge eines ca. 65-jährigen Mutterbaumes und eines ca. 100-jährigen Mutterbaumes zur Verfügung, welche in 10 1-Töpfe gesetzt worden waren. Zusätzlich konnten je 10 gleiche Fichtenpfropflinge ausserhalb der Begasungskabinen im Freiland gehalten werden, um festzustellen, ob sich allenfalls bei den Nullproben ein Kabineneinfluß bemerkbar mache, da es in den Kabinen ca. $2^{\rm OC}$ wärmer war als im Freiland.

Die Pflanzen beider Klone wurden in den Freiland-Begasungskammern (KELLER, 1976) während 3 Monaten, entweder 2.10.78-3.1.79 oder 3.1.79-3.4.79, kontinuierlich mit SO₂ begast. Dabei wurden folgende SO₂-Konzentrationen verwendet:

O (normale Außenluft)

0,025 ppm SO₂ (ca. 65 μ g SO₂/m³) 0,075 ppm SO₂ (ca. 195 μ g SO₂/m³) 0,225 ppm SO₂ (ca. 585 μ g SO₂/m³).

Die Einhaltung dieser Konzentrationen wurde in den Kronen der Baumchen

mit einem Philips-Monitor überwacht.

Für die Messung der CO₂-Aufnahme mit einem URAS wurden die Topfpflanzen ins Labor geholt und unter einem vergleichbaren Lichtregime gemessen. Es wurde stets die $\rm CO_2$ -Aufnahme des ganzen Sprosses erfaßt (KELLER, 1977b).

Die weiteren Üntersuchungen erfolgten an vorjährigen Nadeln des drittobersten Astquirls, und zwar an einer Mischprobe von je 2 Bäumen.

Gemessen wurden:

Schwefelgehalt (Bariumchloranilatmethode nach Verbrennung im Schönigerkolben nach SCHWAGER und KELLER, 1976).

Peroxidase-Aktivität (Paraphenylendiamin-Methode; KELLER und SCHWAGER, 1971).

Ascorbinsauregehalt (Dichlorophenol-Indophenol-Methode; KELLER und SCHWAGER, 1977).

RESULTATE

Der Einfluss auf die CO₂-Aufnahme

Tabelle 1 zeigt den Einfluß einer 3-monatigen SO2-Begasung außerhalb der Vegetationsperiode auf die CO2-Aufnahme. Beide Klone reagierten mit einer deutlichen Abnahme mit zunehmender SO2-Konzentration. In diesem Versuch zeigte sich der Einfluß in Serie II (Begasung 3.1.-3.4.) stärker als in Serie I (Begasung 2.10.-3.1.), vermutlich wegen der tieferen Minimaltemperaturen im 2. Winterquartal. Interessant ist der Umstand, dass sich die SO2-bedingte Depression auch noch nach 3-monatiger "Regeneration" in sauberer Luft zeigte (hinterste Kolonne).

Tabelle 1: Der Einfluß der SO₂-Konzentration auf die stündliche CO₂-Aufnahme/ Spross beider Fichtenklone (Mittel von je 10 Messwerten) am Ende der 3-monatigen, kontinuierlichen Begasung, bzw. nach 3-monatiger Erholung (mg CO₂ h-1)

Behandlung (SO ₂ -Konz.)	Serie I Messung 29.12.78	Serie II Messung 4.4.79	Serie I Messung 4.79
Freiland	14.5	45.5	-
Nullprobe	29.0	36.0	48.5
0.025 ppm SO ₂	22.5	28.0	43.5
0.075 ppm SO ₂	20.2	14.8	34.5
0.225 ppm SO ₂	12.5	1.0	33.5

Die CO₂-Aufnahme anfangs April zwischen den Freilandpflanzen und den Nullproben in den Kabinen war statistisch nicht signifikant verschieden.

Der Einfluss auf den Schwefelgehalt der Nadeln

Tabelle 2: Der Einfluß der SO₂-Konzentration auf den Schwefelgehalt (ppm im Trockengewicht der Vorjahresnadeln) am Ende der 3-monatigen, kontinuierlichen Begasung, bzw. nach 3-monatiger Erholung.

Behandlung (SO ₂ -Konz.)	Serie I Messung 1.79	Serie II Messung 4.79	Serie I Messung 4.79
Freiland Nullprobe	1014 1349	1110 1036	- 1387
0.025 ppm SO ₂	1884	1386	1696
0.075 ppm SO ₂	2720	1678	2257
0.225 ppm SO ₂	3510	2156	2355

Nachdem im Winter der allgemeine Stoffwechsel reduziert ist, kann angenommen werden, dass die SO2-Aufnahme gedrosselt ist. Aus Tabelle 2 geht hervor, dass in der 2. Winterhälfte (Serie II) in unserem Versuch wesentlich weniger SO2 in die Nadeln aufgenommen wurde als in der 1. Winterhälfte (Serie I). Möglicherweise ist dies auf die tieferen Minimaltemperaturen zurückzuführen. Auch die CO2-Aufnahme war ja im gleichen Zeitabschnitt stärker gedrosselt. Der Unterschied zwischen den Nullproben in der Kabine und jenen im Freiland war statistisch nicht gesichert.

Aus der hintersten Kolonne lässt sich schliessen, dass der in der 1. Winterhälfte aufgenommene Schwefel mobil bleibt. Jedenfalls zeigen diese Werte eine drastische S-Gehaltsabnahme nach 3-monatigem Aufenthalt in sauberer Luft. Neben der Translokation in andere Gewebe und Auswaschung durch Niederschläge dürfte bei dieser Begasung aber der Umstand wichtig gewesen sein, dass nach der 1. Ernte (Serie I) ein Nadelfall grüner Nadeln einsetzte. Vermutlich fielen gerade jene schwefelreichen Nadeln ab, welche so viel SO2 aufgenommen hatten, dass sie abgetötet wurden.

Der Einfluss der Peroxidase-Aktivität

Nachdem mit der Messung der Aktivität dieses Alterungs- und Entgiftungsenzyms bereits früher gute Erfahrungen gemacht worden waren (KELLER et al., 1976), wurde diese Enzymaktivität erneut gemessen.

Tabelle 3: Einfluss der SO₂-Begasung auf die Peroxidase-Aktivität in den vorjährigen Fichtennadeln (Extinktion bei 485 mm x 1000 pro Minute und pro g Trockengewicht)

Behandlung (SO ₂ -Konz.)	Serie I Messung 1.79	Serie II Messung 4.79	Serie I Messung 4.79
Freiland	158	268	-
Nullprobe	179	237	202
0.025 ppm SO ₂	262	318	279
0.075 ppm SO ₂	554	527	432
0.225 ppm SO ₂	547	843	656

Tabelle 3 zeigt einen starken Aktivitätsanstieg mit zunehmender SO2-Begasung, wobei das 2. Winterquartal (II) eine stärkere Reaktion ergab als das 1. Quartal (I). Eine "Regeneration", d.h. eine Verminderung nach dem Abklingen des Begasungsstresses durch 3-monatigen Aufenthalt in sauberer Luft, war nicht nachweisbar, wie die hinterste Kolonne zeigt. Die Nivellierung bei Serie I von 0.075 auf 0.225 ppm ist wohl darauf zurückzuführen, dass bei 0.225 ppm die Aktivität toter, aber noch grüner Nadeln miterfasst wurde, welche nachher abfielen.

Der Einfluss auf den Gehalt an Ascorbinsäure

Tabelle 4 zeigt, dass unter unseren Versuchsbedingungen auch im Winter ein deutlicher Abfall des Ascorbinsäuregehaltes bei SO_2 -Belastung festzustellen war. Interessanterweise blieb die starke Wirkung auf Serie I auch nach 3-monatigem Aufenthalt in sauberer Luft weitgehend erhalten. Der Abfall war jedoch bei Serie II viel schwächer.

Tabelle 4: Einfluss auf den Gehalt an Ascorbinsäure in den vorjährigen Fichtennadeln (ppm im Trockengewicht)

Behandlung (SO ₂ -Konz.)	Serie I Messung 1.79	Serie II Messung 4.79	Serie I Messung 4.79
Nullprobe	5222	5820	7224
0.025 ppm SO ₂	5148	5906	6900
0.075 ppm SO ₂	3382	5380	6202
0.225 ppm SO ₂	2284	4787	4461

Die Abnahme des Gehaltes an reduzierender Ascorbinsäure durch SO₂ ist mit der Ausbreitung von Frostschäden in Immissionsgebieten in Zusammenhang gebracht worden (KELLER, 1978). Da die Nachtfröste anfangs Mai viele Triebe von Serie II erfrieren liessen, wurde der Prozentsatz der erfrorenen Triebe ermittelt. In Tabelle 5 ist dieser Prozentsatz der erfrorenen Triebe dem einige Wochen vorher bestimmten Ascorbinsäuregehalt der Nadeln gegenübergestellt. Diese Darstellung zeigt, wie mit abnehmendem Ascorbinsäuregehalt die Frostanfälligkeit der Fichte steigt.

Tabelle 5: Einfluss auf Ascorbinsäuregehalt der Nadeln (ppm) und auf die Frostmortalität der Fichtenserie II

Behandlung Behandlung	Ascorbinsäure- gehalt (Nadeln)	Frostmortalität (Fichte) %
Nullprobe	5820	36.5
0.025 ppm SO2	5906	35
0.075 ppm SO ₂	5380	45.5
0.225 ppm SO ₂	4787	51.5

Aus Tabelle 5 geht hervor, dass die Spätfröste auch bei den Nullproben rund 1/3 der Triebe erfrieren liessen; mit zunehmender winterlicher SO₂-Belastung stieg der Prozentsatz jedoch auf über die Hälfte. Offenbar verringerte die Belastung die Vitalität der Fichten; möglicherweise ist der Ascorbinsäuregehalt ein Indikator für die Vitalität.

SCHLUSSFOLGERUNGEN

Die Versuche zeigen, dass sich unter unseren Bedingungen auch winterliche SO₂-Immissionen als Belastung für die Fichte auswirken können. Die untersuchten SO₂-Konzentrationen verursachten zwar keine sichtbaren Symptome wie Chlorosen oder Nekrosen. Sie führten aber bei der höchsten Konzentration zu einem Abfallen noch grüner Nadeln.

Als unsichtbare, "latente" Schädigung, d.h. als ein Abweichen von

Als unsichtbare, "latente" Schädigung, d.h. als ein Abweichen von der Reaktion der Nullproben, erwies sich der Abfall der CO₂-Aufnahme mit zunehmender SO₂-Konzentration. Diese Reaktion war in beiden Winterquartalen feststellbar, war aber in der 2. Hälfte mit tieferen Minimaltemperaturen ausgeprägter. Zudem zeigte sich, dass die Depression der CO₂-Aufnahme auch noch nach 3 Monaten festzustellen war.

Diese Versuche bestätigen die winterliche Absorption von Luftverunreinigungen wie SO₂. Auch wenn der Schwefelgehalt der Nadeln während eines 3-monatigen Aufenthaltes in sauberer Luft wieder drastisch abfiel, bleibt die Eignung der immergrünen Koniferennadeln für den Immissionsnachweis mit

Nadelanalysen unbestritten.

Die Peroxidase-Aktivität der Nadeln erwies sich wie die CO₂-Aufnahme als Indikator einer als "latente" Schädigung eingestuften Belastung. Die in vitro-Aktivität dieses Entgiftungs- und Alterungsenzyms wurde durch das SO₂ der Luft während der "Vegetationsruhe" gesteigert. Ein späteres Absinken der Aktivität auf den Wert der Nullprobe war nicht festzustellen.

Es zeigte sich erneut, dass SO₂ als Luftverunreinigung den Gehalt der Nadeln an Ascorbinsäure herabzusetzen vermag, sogar im Winterhalbjahr. Es scheint jedoch, dass die Besonnung der Nadeln einen stärkeren Einfluss auf deren Ascorbinsäuregehalt ausübt als das SO₂. Es zeigte sich eine deutliche Beziehung zwischen dem Ascorbinsäuregehalt der Nadeln und der Frosthärte der Fichten. So erbrachte die Begasung 3. Januar – 3. April den experimentellen Nachweis, dass die Frostschädigung der Fichte mit der SO₂-Konzentration der vorangegangenen Begasung zunahm, dass eine belastende Luftverunreinigung also die Frostgefährdung erhöhte.

24.6.1980

LITERATUR

- BELL, J.N.B., CLOUGH, W.S., 1973: Depression of yield in ryegrass exposed to sulphur dioxide. Nature 241, 47-49.
- GARBER, K., 1967: Luftverunreinigung und ihre Wirkungen. Borntraeger, Berlin-Nikolassee.
- KATZ, M., 1949: Sulfur dioxide in the atmosphere and its relation to plant life. Ind. Eng. Chem. 41, 2450-2465.
- KELLER, T., 1976: Auswirkungen niedriger SO₂-Konzentrationen auf junge Fichten. Schweiz. Z. Forstwes. 127, 237-251.
- KELLER, T., 1977a: Begriff und Bedeutung der "latenten Immissionsschädigung". Allg. Forst- u. Jagdztg. 148, 115-120.
- KELLER, T., 1977b: Der Einfluss von Fluorimmissionen auf die Nettoassimilation von Waldbaumarten. Eidg. Anst. Forstl. Versuchswes. Mitt. 53, 161-198.
- KELLER, T., 1978: Forstschäden als Folge einer "latenten" Immissionsschädigung. Staub-Reinhalt. Luft 38, 24-26.
- KELLER, T., SCHWAGER, H., 1971: Der Nachweis unsichtbarer ("physiologischer") Fluor-Immissionsschädigungen an Waldbäumen durch eine einfache kolorimetrische Bestimmung der Peroxidase-Aktivität. Eur. J. For. Pathol. 1, 6-18.
- KELLER, T., SCHWAGER, H., 1977: Air pollution and ascorbic acid. Eur. J. For. Pathol. 7, 338-350.
- KELLER, T., SCHWAGER, H., YEE-MEILER, D., 1976: Der Nachweis winterlicher SO₂-Immissionen an jungen Fichten. Eur. J. For. Pathol. 6, 244-249.
- KOZLOWSKI, T.T., KELLER, T., 1966: Food relations of woody plants. Bot. Rev. 32, 293-382.
- MATERNA, J., 1974: Einfluss der SO₂-Immissionen auf Fichtenpflanzen in Wintermonaten. IX. Internat. Tagung Luftverunreinigung und Forstwirtschaft, Marianske Lazne, p.107-114. VUHLM, Zbraslav.
- SCHWAGER, H., KELLER, T.,1976: Zur Mikrobestimmung des Gesamt-Schwefels in Pflanzengewebe. Internat. J. Environ. Anal. Chem. 4, 275-284.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Mitteilungen der forstlichen Bundes-Versuchsanstalt</u> Wien

Jahr/Year: 1981

Band/Volume: <u>137 1 1981</u>

Autor(en)/Author(s): Keller Th.

Artikel/Article: <u>Die Beeinflussung physiologischer Prozesse der Fischte</u> durch eine Winterbegasung mit SO2 115-120