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In diesem Beitrag wird auf die Arbeiten von Suzuki im 
allgemeinen und im besonderen auf den bei dieser Tagung g e ­
haltenen Vortrag eingegangen. Besonders hervorgehoben wurde 
die Bedeutung der Ergebnisse von Suzuki im Fall der stocha­
stischen Beschreibung der gemeinsamen Entwicklung von Durch­
messer und Höhe als zweidimensionaler Vektor. Es besteht ein 
Bedarf an solchem Instrumentarium auch zur Fortschreibung 
der Bestandesschaftform. Im zweiten Teil dieser Arbeit wird 
mit Hilfe der Datenanalyse und aufgrund der speziellen, 
aber realitätsnahen Modellvorstellungen die Frage der 
Diffusionseigenschaft beim Wachstumsprozeß des verblei­
benden Bestandes untersucht. Die Analyse der Ansätze (9),
(10), die aus der stochastischen Differentialgleichung
(2) resultieren, ergaben bei umfangreicherem Datenmaterial 
offensichtliche Widersprüche. Dadurch wurden Korrekturen 
der Annahmen an den Restprozeß Y+. . in (3*) und (4) vor-

t O f t
genommen und deren Eigenschaften untersucht.

Ke y w o r d s : Growth dynamics, Growth prognosis, Stochastic
differential equations, Taper curve, Diffusions 
processes
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INTRODUCTION

It will be possible to arrange the contents of this 
paper roughly in three parts, which are the following:

1. Tribute will be paid to the wish of the organizer, to 
the effect that Suzuki's lecture will be dealt with.
In doing so, we shall develop some practical connections 
of these models to real-life forestry problems and to 
empirical data.

2. In the main chapter, our experiences with so-called 
diffusion processes used as stand growth models will
be put forward. Mainly, a brief methodological discussion 
of that kind of model will be presented.

3. On the basis of this methodological discussion and of 
comprehensive data material, we shall suggest some steps 
toward a gradual improvement of this model basis, 
especially with regard to predicting the prospective 
population of even-aged forest stand.

SOME REMARKS CONCERNING SUZUKI'S LECTURE

One of Suzuki's unquestionable merits is the consistent 
description of stand-growth processes (with regard to crop 
yield) by means of the analytic theory of stochastic 
processes. SUZUKI (1971) and SUZUKI-UMEMURA (1974) 
present models for describing the evolution of a homo­
geneous, even-aged stand for one dimension BHD. In these 
works, a calculation (p(t,x) of the initial probability 
density <p(t ,x) with <p(T,y) = /cp (t ,x) *p (t,x;t ,y) dx

O p  o
is achieved by means of solving the Kolmogorow-Suzuki 
partial differential equation p(t,x/x,y), whose input 
functions (drift, variance rate, death rate) characterize 
the stand. Through a special solution method the death
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process can be eliminated, which yields an evolution equation 
for the growth process of the remaining stand. This specific 
Kolmogorow forward equation describes the so-called diffusion 
processes. The realisations of such processes are known as 
Markow processes with continuous paths. For the transition 
probability or control function, the so-called Chapman- 
Kolmogorow equation applies, which would imply M a r k o w 's 
property, or loss of memory, of the "stand growth". For 
this chapter, see SLOBODA (1976, 1977), FROHN (1978) 
and SLOBODA (1981).

Suzuki's paper (1981) and today's lecture present an 
organic transfer of this theory onto the stochastic 
modelling of the two-dimensional growth process of the 
vector (BHD,HOEHE)~(Xfc,Yt ) . As a result the Kolmogorow 
equation for the two-dimensional diffusion process has 
been deduced, with the latter work concentrating 
especially on concrete suggestions for two-dimensional 
drift functions and diffusion functions. These methods 
are created in analogy with the derivation in the one­
dimensional case (SUZUKI (1974)), with the addition of 
the cross-covariance function, which plays a substantial 
role in constructing the so-called basic solution of the 
differential equation. To understand the assumptions that 
have been made about the covariance functions and cross­
covariance functions of the process for (BHD,H), thorough 
discussions with the author are required for the time 
being. This holds also for the possible effects of limit 
transitions carried out with integrands. Provided the 
above-mentioned difficulties can be dealt with satis­
factorily, and if the real process proves to be consistent 
with Markow's property, the solution thus obtained can be 
evaluated as a very important means for describing monetary 
growth. Our results show that the evolution of the overall 
taper curve can be expressed in the form of a stochastic 
process. To do this, it suffices to have a knowledge of 
the two-dimensional growth process ( X^rY^) and to make
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certain additional assumptions (SLOBODA,SABOROWSKI (1981), 
SLOBODA,SABOROWSKI (1981)). It should be noted, however, 
that compared to one-dimensional models, it will prove 
very much more difficult to put this method to a test 
with a "sufficiently large" amount of data. Reliable 
measurements of diameters and heights of individual 
trees growing in long-term experiment areas - measure­
ments which are required by the models in question - 
have not, to my knowledge, been carried out yet. In 
the one-dimensional case as well as in the two- 
dimensional one, questions remain to be answered 
with regard to estimation and interpretation of the 
parameters of input functions. In the case of the 
analytical approach, ML estimation of parameters is 
recommended (WOLF (1981)).

DIFFUSION PROCESSES AS MODELS FOR DESCRIBING TARGET STAND
GROWTH

For describing such processes, there is a purely 
stochastic analogy to the analytical method. The stochastic 
differential equation of the Itô type, with certain 
mathematical restrictions concerning drift function 
and diffusion function that are irrelevant in the present 
context, renders an explicit description of the diffusion 
processes. During research with data from several long­
time experimental cultures, the question rightly arose 
as to whether the stand growth can in fact be regarded 
as a diffusion process, and if not, what methods are 
available for correcting the models. The initial reason 
for asking that sort of question was the infavorable 
behaviour of model processes with regard to the 
correlation function R(s,t) of the residual process
Y, +. (defined below) , which is of importance in the 

9 ̂description of social behaviour of forest trees in a 
stand (Fig. 1, Hauersteig 4). This describes rank 
conservation (maintenance) of trees in the forest stand.
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The investigations reveal that for the drift function 
(direction field for stand growth) the linear function

(1) J3(t,Xt ) = A ( t)Xt+a(t)

can be presupposed. If we adopt, according to SUZUKI (1974) 
a(t,Xt )=B(t) (homogeneous state assumption), the stochastic 
differential equation of the respective diffusion process 
turns out to be

(2) dXt=[A(t)Xt+a(t)]dt+B(t)dWt

X. ~cp (t ,x) as initial condition 

W t~Wiener-Levy process.

The solution reads

t
(3) X. = $ ( t , t ) - X .  +$(t ,t) / $

<3' O tO 
t

+#(t ,t) / <£ 
fco

i .e.

(3,) X t ,t=$(to ' t),Xt +c(to ' t)+Yt o o
t

where $(t ,t)=exp[ /A(s)ds] and Y, , is a residual process
° t v *o

If one takes a look at the graphic representation of 
diameter measurements x fc (y axis) and x fc (x a x i s ) , we 
detect a linear relation between the momentary diameter 
x t and.the future diameter (Fig. 2). In other words, the 
structure of the prognostic equation (3') can be kept un­
changed in its tendency. The method in question is one of 
linear regression, where $(t ,t) and c(tQ ,t) form the 
regression coefficients (tQ and t fixed ). t represents

(tQ ,s)a(s)ds+ 

(tQ ,s) *B (s) dWs
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the error connected with the regression. Y . in (3') is
^o'a stochastic integral and Y fc t is stochastically independent

on X We obtain following equations for the moments:
to

t 2
(4) EY. =0; Var Y. ■■=^2 (t , t) = $ 2 (t ,t) • / *  (?) ds.

V *  V *  °  °  t c  $ Z ( t o , s )

Y is a Gaussian-process (SLOBODA (1977,1981)).
* 0 ' *

In the model, the following holds for the statistical 
moments of X

V

(5) EX. ,=$(t ,t)*EX +c(t ,t)
r o ' r  °  Z o  °

(6) Var X. = $ 2 (t ,t) -Var X. +Y2 (t ,t)
^o' o

By means of regression estimators, the functions
$(t ,t.), c(t ,t . ) / and the residual variance of Y .

0 . 1  O  1  u  t u
with Y^(to ,t^) for the various points of time t^,i=T,...,n 
can be estimated. The courses of ^ c , ^ 2 have been 
exemplified in figures 3a, 3b and 3c. These demonstrate 
that it is by all means possible to force the regression 
to run through origin, which means c=0. This procedure 
would have the advantage that the modelling of c(tQ ,t) 
can be dispensed with, especially since their courses 
cannot, without further ado, be described by a generally 
valid analytical model. For the Hauersteig 4 plot, the 
courses produced by this procedure for ^(tQ ,t), ^2 (tQ ,t) 
are shown in fig. 4a and 4b. The same tendency can be 
observed in other even-aged stands.

By reason of data analysis, it seems justified to 
use the following equations:

7 4

©Bundesforschungszentrum für Wald, Wien, download unter www.zobodat.at



(SLOBODA (1978)) and(7) $(to / t)-1"Le
-kt

1-Le"kt°

(8) Q 2 (t ,t)=p*(t-t )q t r (SABOROWSKI (1982))o o

Between functions <MtQ ,t) and ¥(tQ/t) and the input 
functions A(t) and B(t) we can, in the case of the 
diffusion process, derive the following relations from 
equation (3):

(9) [l n $ (tQ ,t )]'= A (t )

(10) y 2 ' (tQ ,t)-2'i'2 (to ,t) • A (t) =B2 (t)

Lke"ktAccording to (4), fitting $(t ,t) yields A(t)=------ t- t .
° 1-Le”Kt

^ ( t  ,t) and A (t) yield the diffusion coefficient B(t)
according to (5). According to (10) and (8) the courses of
B(t) depend on tQ , which contradicts the diffusion function
in the diffusion processes. The tendency detected her for 

2the course of V (tQ ,t), whose character seems to be one of 
general validity, makes it seem justified to think about 
alternatives with regard to diffusion.

Nevertheless, the theory of stand growth by way of
diffusion equations has led to a very simple and workable
approximation of growth prediction. Without the devices
that the theory of stochastic differential equations places
at our disposal, this would not have been possible. It is
possible to verify graphically the result in the form of
an approximation. The discrepancies between the diffusion
process and the method presented above lie in the somewhat
differentiated structure of the stochastic time process
Y. ,, and this is where we shall continue with our 

t o / rresearch work.
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CONSEQUENCES FOR FURTHER HANDLING OF SUCH MODELS

The findings presented above are valid not only for 
parcel 4 of the Hauersteig experimental area, which only 
served as an example; they have also been verified in 7 
other stands, among which are the three remaining Hauer­
steig parcels:

Stand 1 Bueren ("schwache Hochdurchforstung")
Registration age: 42, 47, 51, 55, 63, 67, 71, 75, 79, 85, 88 
Number of stems: 224

Stand 2 Bueren ("schwache Niederdurchforstung")
Registration age: see above, stand 1 
Number of stems: 345

Stand 3 Westerhof ("schwache Hochdurchforstung")
Registration age: 37, 41, 45, 49, 56, 60, 63, 67, 71, 75, 79, 81, 85 
Number of stems: 93

Stand 4 Westerhof ("schwache Niederdurchforstung")
Registration age: see above, stand 3 
Number of stems: 160

Stand 5-8 (Hauersteig parcel 1-4)
Registration age: 37, 40, 44, 48, 51, 56, 59, 64, 71, 76, 81, 84
Number of stems: parcel 1: 137, parcel 2: 163, parcel 3: 162, 

parcel 4: 138

Summing up, we admit that, strictly speaking, the BHD 
development in a stand cannot be seen as a diffusion process 
with drift and diffusion functions of type A(t)Xfc und B(t)
(what is more, a diffusion function of type B(t)Xt has also 
been dismissed), but a linear model of the form

x t ,t=4,(to't)xt +c(to ' t)+Yn 9 n
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is no doubt acceptable and reasonable. In this model, 
t is a process which, strictly speaking for each tQ 

on2y, is stochastically independent of X fc and (according 
to data analysis) nearly Gaussian with a mean function 0. 
If, however, a workable model is required, we want an 
analytic form of the functions $(tQ ,t) and c(tQ ,t), 
functions which so far have only been defined empirically, 
and we want this analytical form to be independent of any 
single stand. But this has not yet been achieved, for 
which reason we shall have to cope with the simplified 
model

X t-*(t0 ,t)-X +Y
o  o

which seems plausible on grounds of data analysis (fig. 2). 
This offers very good analytic models for

$(tQ ,t) and ¥ (tQ ,t)

(see (7) and (8), fig. 4 a,b). In this model, too, Y. .
t o / rcan be regarded as a centered, near-Gaussian process.

However, the independence of is no longer warranted,
as we have forced the regression line through zero
(fig. 2), with the result that according to the intercept
sign we obtain a positive or negative correlation between
residues and initial diameters at the age of t .^ o

The equation which follows holds for the covariance 
function of the simplified process:

Cov (X ,Xt)=E(X -EX ) (X.-EX ) 
o o T'o

= E(X -EXt)($(t ,t)(X -EX )+Y )
co o o o T"o

= $(t ,t)-Var Xt +Cov(Xt ,Y fc) 
o  o  uo '
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S o m e  t h o u g h t s  c o n c e r n i n g  
a p p l i c a t i o n  a s  a p r o g n o s i s  m o d e l

The application of the model for the purpose of growth 
prognoses can be thought of as follows. A stand is observed 
from the age of t to s; thus we estimate individually the 
values of the parameters L, k, p, r, q per stand and carry 
out an adjustment of the diameter distribution by means of 
a theoretical distribution. The diameter distribution must 
then be calculated, with the help of the model, up to the 
age of t. As the covariances of X and Y , vary according

t  t  f t
to t and s, we are obliged to neglect them; According to 
our model

X t=$(s,t)Xs+Y s,t

$ (s, t) 1 -Le 
1-Le

-kt
-ks

the diameter distribution at the age of t is derived from a 
convolution of the distribution of <p(s,t)Xg with a Gauss 
distribution which has the expected value zero and a 
variance of

P ( s , t ) = p ( t - s ) r .sq

In the case of positive covariances, therefore, we must 
be particularly prepared for an underestimation of the 
variance of X t . This error will be of importance in cases 
where Cov(Xs ,Ys t ) is high compared with Var X g , which is 
why, as examples for our prognosis, we chose two cases from 
the Bueren stand ("schwache Niederdurchforstung"), where 
the correlation between residual process and initial 
distribution was extremely high. In both examples the 
model parameters were estimated from the overall growth 
development between the ages of 42 to 8j}, in order to 
avoid as best as possible any errors that may arise from
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changes in the general conditions of growth. It is in this 
sense only that the examples can be called unrealistic, but 
for the same reason they are more suitable for testing the 
model. In example 1, the initial distribution at the age 
of 71 was adjusted by a Pearson distribution of type I and 
computed, as described, up to the age of 85. Here the 
neglected correlation had the exceptionally high value 
of .63. Fig. 5 presents a comparison between the empirical 
distribution function at age 85 and the predicted one. 
Example 2 (correlation .44) is a prediction on the basis 
of age 63 for age 75 (fig. 6); the model parameters are 
the same and a Pearson Type I initial distribution was 
used. In example 1 we observe, in addition to a mean 
error caused by an adjustment error of function $(s,t), 
some distinct deviations in the type of distribution and 
especially in the diameter variation, whilst in example 2 
it is mainly the expected underestimation of the variance 
that gives us reason for concern. In valuating these model 
errors it should be kept in mind that the examples, with 
regard to the mutual dependence of X g and Y s t , are utterly 
extreme cases taken from the considerable amount of material 
that we investigated.

The highest correlations observed are as follows:

itand s t correlation

1 79 88 0.67
2 75 88 0.66
3 71 75 0.41
4 71 81 0.58
5 76 84 0.45
6 81 84 0.43
7 81 84 0.52
8 37 59 0.50

79

©Bundesforschungszentrum für Wald, Wien, download unter www.zobodat.at



but as a rule one gets values that are considerably lower.
For instance, in 57 out of 66 possible stand transitions
(s,t) of Hauersteig 2, the correlations are below .3. Thus
fig. 1 shows that model adjustment is generally much better.
If one succeeds in incorporating into the model the temporal
change of this correlation between initial distribution and
residual process, it will of course also be possible to
calculate exactly the distribution of X fc as the distribution
of the sum of the dependent random variables X. and Y t .

o  r o '
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Fig. 1

Hauersteig 4 - Living Trees

Forecasting according to model (3')
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Fig. 5
EXAMPLE 1

DISTRIBUTION FUNCTIONo

DIAMETER

Fig. 6
EXAMPLE 2
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