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ABSTRACT

A procedure is presented for merging in a Bayesian framework growth 

projection estimates from a nonlinear diameter growth model with monitored 

growth from survey plots. Essentially, the procedure is a feedback system 

which provides a means for increasing the precision of growth estimates. 

The procedure was implemented and evaluated using growth data from the 

Pacific Northwest, U.S.A.

Keywords: Bayesian, feedback, growth projection system, sequential

estimation.

INTRODUCTION

Contemporary forest growth projection systems for analyzing and updat

ing forest survey plots (i. e., Lanford and Cunia 1977, and Hahn et al. 

1979) are often developed for large geographic regions. These forest 

growth projection systems vary in their construction, but in general they 

consist of a series of models for projecting, on either an individual tree 

or stand basis, the forest dynamics of growth, mortality, regeneration, 

and removal. Often these models are highly nonlinear. In the development 

of these models, the steps of model specification, parameter estimation, 

verification, and revision are usually based on data collected over a 

large geographic region for a number of years. Developed in this way, a 

forest growth projection system will only furnish broad-scale regional 

estimates, and will not necessarily provide adequate estimates for sub- 

regions within the overall region, i. e., counties, forest districts,
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stands, etc. The primary reason for this is that at the current state of 

development, regional growth models do not fully account for subregional 

site quality and stocking variability, genotypic variability, interaction 

between trees, local climatic fluctua-tions, etc. (Turnbull 1977). For 

regional estimates, these unexplained factors will usually average out, 

but for subregional estimates, they may not, hence resulting in subregion

al estimates that may be biased.

Operational fall-down is also another important source of unexplained 

variability (Bruce 1977) which can lead to bias projections. Many growth 

project systems have been calibrated with data acquired from research plots 

that are located in uniform stands that are undamaged and of very high 

quality. When these systems are used to project stands that are not main

tained under the same optimal conditions as reseach plots, predicted growth 

is commonly found to be higher than observed growth. To compensate for 

operational fall-down, often rudimentary approaches are used to adjust the 

growth projection estimates so they will not over-predict growth.

In time, region growth models will be formulated with the capabilities 

to explicitly account for these different factors. In the meantime, a means 

for implicitly accounting for these sources of unexplained variability is to 

monitor the different forest components in a subregion and then adjust or 

localize the regional estimates to the subregion.

There are a number of approaches that can be used to adjust projection 

estimates (i.e. Stage 1973, and Smith 1981). One possible approach is to 

use a Bayesian procedure which provides a feedback function between the 

model and the forest. A feedback function is a function which tends to keep 

a certain relationship between a predicted attribute and an observed attri

bute. By using the difference between growth projection estimates and 

observed growth dynamics as a control, monitored deviations can be fed back 

into the system such that the difference approaches zero by appropriately 

adjusting the regional parameters of a growth projection model. With the 

Bayesian procedure, the degree of adjustment of the regional parameters will 

depend not only on the difference between the predicted attribute and 

observed attribute from the subregion, but also on both the relative quality 

and quality of new information from the subregion in comparison to the prior
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information from the overall region. As would be intutitive, if the 

difference between the observed and predicted attribute is large, the 

adjustment will be large only if the number of observations from the 

survey of the subregion is relatively large in comparison to the number of 

observations used to parameterized the regional model, and/or if the 

variance of the estimated attribute based on the survey of the subregion 

is relatively small in comparison to the variance of the predicted 

attribute from the regional model. Even if the difference is large, the 

adjustment will be relatively small if the number of observations from the 

survey is relatively small, and/or if the variance of estimated attribute 

based on the survey is relatively large.

Conceptionally, there is a very appealing aspect to using Bayesian 

methods for analyzing and updating forest resource information. In a 

well—planned forest survey, one objective, that is often aimed for, is to 

minimize the relative cost per unit of Information. Information about the 

growth and yield has been obtained for the most part from very costly on- 

the-ground-survey plots. Amassed in a forest growth projection system is 

a large amount of past or prior information which is relatively inexpens

ive to access. The Bayesian procedure provides a statistical foundation 

for combining prior estimates from a forest growth projection system with 

estimates obtained from survey plots. It is possible to demonstrate that 

the combined estimates, usually referred to as posterior estimates, will 

be of equal or greater precision than the estimates based solely on 

survey data (Meditch 1969). With the increase in precision of the 

estimates, the number of survey plots needed to be measured and maintain

ed can be decreased if the objective is to minimize cost for specified 

level of precision. As more information is incorporated into a forest 

growth projection system through model refinement and data base enlarge

ment, the tracting ability of the growth projection system should 

continually improve. The need for survey plots should gradually lessen, 

for there should be a progressive decrease In extractable new Information 

that can be obtained from the survey plots.
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METHODOLOGY

Consider the case where it is of interest to adjust a linear model for 

only one time period. Suppose for the linear case regional observations 

Y q i > Y q 2 , . . . ,  were postulated as having arisen from a model such

that Y q = XQ Bq + eQ (1)

where YQ ' = (YQ1 , YQ2,... Y0m) is a vector of m regional observations,

V  = (B01’ B02 *’ * * * B0u»* * *» B0q) is a vector of <1 regional 
parameters, u = 1, 2, q,

X Q(mxq) is a matrix of independent variables,

eo' = ^e01’ e02 * * * *’ eom^ vector of errors.
If ordinary least squares is used to estimate the regional parameters B q , 

the standard assumption usually made are

e0 ~ N (0,I<j2) B 0 ~ N (0,V)

COV (B0 ,e0 ) = 0

where I(mxra) is an identity matrix, a2 is the constant variance of the e0, 

V(qxq) is the covariance of Bfl, 0 is the expected value of B q , and both B q 

and eQ are normally distributed.

Suppose after estimating the regional model a random sample is taken 

from the subregion, Y^'^lYjj, Y 12, Y im]» where the number of obser

vations, m, from the subregion need not be the same as from the overall 

region. If the regional parameter estimates can be assumed to be random, 

then Baye's theorem can be used to combine prior parameter estimates from 

the region with estimates from the subregion. Baye's theorem is of the 

form

£(B0 /Yi>-
£(B0)

- f ( Y j / B 0) f ( B 0)

where f(BQ) is the prior probability density function of random parameter

Bq obtained from fitting the growth function over the entire region, 

fCY^/Bg) is the conditional probability density function of observations 

taken from the subregion given the parameter Bq , 

fCBp/Y^) is the posterior distribution of parameter B q given Y^.

This function contains information from the entire region f(B0), 

as well as subregion fiY^BQ).
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If measurement error of the new information has a mean of zero and a 

constant variance, and is additive, independent and normally distributed, 

then the adjusted or posterior estimate b^ can be obtained by maximizing 

fCBg/Yj^) by taking the derivative of in respect to B Q. The

resulting equation for obtaining the posterior estimate is then 

bx = Bq + P1X1 ,(Y1 - Xj B0)o"2 (2a)

where Pj = [((X1 Xj)_1of)-1+P0_1P 1 (2b)

and b j  is a posterior estimate of B q ,

PQ is the estimate of the covariance BQ ,

Pj is the estimate of the covariance of B p  and

X^mxp) is a matrix of independent variables from the subregion.

In practice, bQ , the regional estimate is used in the place of B q . The 

revised parameter values can be substituted back into the original model, 

Eq. 1, to obtained adjusted predictions.

The size of the adjustment of the regional parameter estimate will 

depend on the size of 1) the residual or difference between the sub

regional observations and predicted observations based on the regional 

parameter estimates, e = (Y^ - X jB q ), 2) the covariance of the estimate of 

b1 based solely on the subregional data, ( X ^ X ^ -1̂ ,  and 3) the covari

ance of B q , Pq . The adjustment will be large if e is large and the rela

tive size of (Xj'Xj )“l<jj is large in comparison to PQ. The magnitude of 

Pq will depend roughly on the size of the sample used to parameterize the 

regional model and the predictive power of the model based on the regional 

parameter estimates. PQ will usually be large when sample size is small 

or the quality of the model is poor. Similarly, the same holds true for 

(Xĵ X j )-1^ .  The size of the covariance will depend roughly on the size 

of the sample from the subregion and the fit of the model if only the sub

regional data is to be used to parameterize the model. Even if e is 

large, the adjustment will be small if (X^'X^)- * ^  is large in compar

ison to P q .  This is because little weight is given to the subregional 

data because of the lack of quantity or quality of the new information 

relative to the old information.
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In its present form, Eq. 2 can be only used to adjust the parameters 

of a linear model for only one period in time. Eq. 2 can be easily extended 

to adjust sequentially for one or more time periods the parameters of a 

nonlinear model (Gertner 1982). In short, this can be done by linearizing 

the non-linear model with a Taylor series and generalizing Eq. 2 such that 

at time t, prior information at time t-1 would be information from the 

overall region as well as from the subregion in past periods. The 

sequential equation can be expressed as

bt-bt-1 + PtXt'CYt-Xtbt-^at”2

where Pt=[(Xt ,Xt)-1at2)-1+Pt_i-1J”1

and t is a subscript for time.

APPLICATION

In a recently completed study, the Bayesian procedure was employed to 

sequentially adjust over four time periods the regional parameters of the 

nonlinear diameter increment model used in the Stand and Tree Evaluation 

and Modeling System - STEMS (USDA - FS, 1979). STEMS is a distance 

independent individual tree based growth projection system calibrated for 

the North Central and Northwest regions of the U.S.A. The diameter incre

ment model used for the study was of the form:

ADG =[b1(l-e^2CR)e^3DBH][b^SI] [1 (e-BsN &DBH ?BA 8)] 
where

ADG = annual diameter growth,

b^, b2 ,...,bg = regional parameter estimates,

BA = stand basal area,

CR = crown ratio (crown length/total height),

DBH = diameter at bresent height,

N = number of trees per unit area,

SI = site index

The model consists of three components. Enclosed within the first brackets 

after the equals sign is the potential diameter function, within the second 

brackets is the site reduction function, and within the third brackets is the 

competition reduction function.
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The regional parameters used for the diameter increment model were for 

unmanaged second growth Douglas-fir (Pseudotsuga raenziess [Mirb.] Franco) 

located in western Oregon (Shifley and Fairweather 1981). A total of 2762 

growth observations were used to calibrate the regional model. Data to 

localize the model came from a permanent plot measured at two-year inter

vals for ten years, resulting in four growth measurements for each tree1.

Figure 1 shows the movement of the parameters for each time period.

The regional parameter estimates correspond to period 0. The parameters of 

the potential and the site reduction function, b^ through b^, show rela

tively little movement, while the parameters of the competition reduction 

function, b5 through bg , changed significantly. Notice that each of the 

last four parameters tends to reach an asymptote, indicating that addition

al observations in time would not provide any more information about the 

stand. Presented in Figure 2 are the residual mean and residual mean 

square for the unadjusted and adjusted models. The residual means for the 

unadjusted model were all negative for each of the periods, indicating that 

the unadjusted model was over estimating diameter growth, while the resid

ual means of the adjusted model were all close to zero for each period, 

indicating little bias. By using the sequential method, the residual mean 

squares were nearly halved in comparison to the unadjusted estimates.

CONCLUSION

The Bayesian procedure is not only a means for localizing a regional 

model, but also is a way to incorporate information from a growth 

projection model with conventional inventory information. A large amount 

of historical information is incorporated within a forest growth projection 

system. This information is relative inexpensive in comparison to informa

tion obtained from conventional inventories. By merging growth projection 

estimates with conventional inventory estimates, it is possible to obtain 

estimates that are more precise than if estimates are based solely

!The data was kindly provided by the Regional Forest Nutrition Project 
which is sponsored by the College of Forest Resources, University of 
Washington.
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Figure 2. Residual means and residual mean squares of the unadjusted and 

adjusted model for each period.
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on growth projections or conventional inventories. Essentially, the use of 

the Bayesian procedure in conjunction with a computer growth projection 

system can be considered to be the first stage in the development of a 

system that can learn through experience.
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