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ABSTRACT

Mathmatical models are very important in forest research for
the development ot yield tables, for precalculations etc. In
this paper we will show, how causal orientated growth models
can be used -~ by means of mathematical as well as of
empirical analysis - to get an idea of the structure of the
dynamics behind the growth process.

First we will formulate a simple model of accumalation and
circulation as the main reasons for growth of whole stands
and of single trees. We will give some heuristic
interpretation of the model parameters and the used
differential equations, with the requirement that these
parameters should be directly measurable. A partial model for
thinning will be added to the basic model. Examples show that
the models are reasonable but have to be modified. As a
further extension we will take into account the process of
nutrient intake by the rootsystem, so that the model gets a
spatial structure.

ZUSAMMENFASSUNG
Waldwachstum als ein Akkumulations und Kreislaufsystem

Mathematische Modelle sind ein filir die forstliche Forschung
sehr bedeutsames Handwerkzeug, 1insb. bei der Erstellung von
Ertragstafeln, zu Prognosezwecken etc. In diesem Paper soll
veranschaulicht werden, wie durch kausale Modellans&tze die
Struktur der Wachstumsdynamik sowohl mathematisch-analytisch
als auch empirisch untersucht werden kann,

Zundchst wird ein einfaches Akkumulations- und Kreislauf-
modell sowohl filir das Bestandes- als auch fiir das Einzelbaum-
wachstum erldutert. Es werden anschauliche Interpretationen
flir die Modellparameter und die verwendeten Differential-
gleichungen gegeben. Die direkte MeBbarkeit der Parameter
wdre flir Anwendungen erforderlich. Das Basismodell wird um
einen "Durchforstungsterm"” erweitert. An Beispielen wird ver-
deutlicht, daR die Modellansétze sinnvoll sind, aber
modifiziert werden miissen. Danach wird der ProzefR der
Ndhrstoffversorgung lber das Wurzelsystem mit einbezogen. Das
Modell erh&dlt dadurch einen "r&umlichen" Charakter.

Keywords: causal growth model, thinning model, rootsystem
model, stand growth, single tree growth
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1. INTRODUCTION

In today's literature we find quite a number of attemtps to
approach growth models for forestry stands and for their
individual trees from a causal point of view. We shall
mention here, amongst others, the works of KILMI (1967), of
TAKEUCHI (1981) and of HOZUMI (1980), but also the allready
classical work of MITSCHERLICH (1919) concerning some "laws
of plant growth". Classical models concerning crop yields are
not primarily orientated in this way, but rather, because of
the specific problems they deal with, they are interested in
adaption graphs by means of which data series (e.g. dia-
meters, heigts, ete.) can be fitted. Approaching the
modelling of growth processes causally means first of all to
deal with the growth processes themselves, after which
mathematical models in the form of differential or difference
equations are derived. It 1is therfore natural that the
processes themselves are reflected quantitatively in the mo-
del parameters. This makes it easy to react to changes of
these entities in the real system from inside the model. A
primarily causal approach would therefore be of great
importance for forestry, because it is there that the growth
processes we want to observe occupy long ranges of time of up
to a hundred years and more. Changes of causalities, as a
result of the various natural phases that mark the growth of
trees, or as a result of environmental changes because of
pollution etc., play an important role and therefore ought to
be incorporated into any models yet to be developed.

2. CAUSAL MODELLING WITH REGARD TO A MODEL FOREST

We shall attempt to develop a causally orientated model for
growth processes in stands taken from a '"model forest" which
is detined in its behaviour by certain postulates, in such a
way that the models which are to be discussed may be derived
from them in a "natural" manner.
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Postulates concerning general growth behaviour
1. The stand consists of a totality of individuals.

2. Each individual consists of three functional
components:

a) Photosyntesis apparatus (leaves)
b) Accumulation apparatus (stem, branches)
¢) Apparatus for taking in nutrient (roots)

3. In all of the functinal components, the respective
processes behave "proportionally", which make it
sufficient to be acquainted quantitatively with one
process only.

4. The individual tree accumulates various nutritional
substances in fixed proportions.

5. Part ot the substances (or substance conglomerates)
accumulated is returned to the environment (soil etc.)
by the individual tree.

In the long run the circuit system defined by postulate 5.
leads to a certain kind of stability, as can be observed for
instance in natural forests.

Special postulates concerning growth dynamics

6. At a time t, the stand takes in a quantity a(t) of
a substance or conglomerate per unit time.

7. Of this quantity, a(t), an individual tree receives
a proportional share.

8. The individual tree returns to the soil a certain

percentage b(t) of the substance or conglomerat
accumulated.

In a real forest, of course, these postulates will never be
fulfilled with such rigidity. In order to use them in a
concrete application, those parts of the model implied by the
postulates would have to be changed or adapted accordingly.
For forming a causal model, however, the assumptions about
the real system that formally determine the causality are
indispensible.

3. MODEL CONSTRUCTION
Postulates 6., 7., and 8. in particular, are suited for the

construction ot the following two differential equations for
stand growth and for individual tree growth:
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3G (t)

(stand) T a(t)=-b(t)G(t)

8Fi(t) a(t)Fi(t)

3t IF (2)
3

(individual i)

= b(t)Fi(t)

Because G(t) = ZFj(t) we arrive at the two equations
3

G (t)

T a(t)=b(t)G(t)

oF , (t)
i a(t) _

These two 1linear differential equations of first order have

the following analytic solutions if a(t)=za and b(t)=b

-b(t-t )
G(t) =2 - e ° g - a(t))]
Fi(to)
Fi(t) = TETE;T— G(t)

Fig. 1
and

G(t) approximates asymptotically the constant a/b.
presents some of the solutions for G(t) for a/b=1000.

various values of a corresponding to given values of b

(G(20)=140.).

FLg. 1t Hﬁcth.tlecL curves of stand volume GIL),
with some asymptotllc volue o/b=1000.
(curves from bottem to \‘o?, stortlng with

e b=0.00S Ln steps of 0.005

.0

G(T) Ln cublc meters
0.0

As we will see in fig. 2, stand growth will behave in a man-
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ner similar to that of G(t). The solutions for volume growth
of individual trees, however, do not correspond to obser-
vations. They grow nearly exponentially, an effect which we
will try to explain now.

4, INTRODUCTION OF A THINNING TERM

Indeed not all single trees continue to grow indefinitely,
but an elimination of trees takes place, partly by natural
death, partly by thinnings etc. Therefore we now introduce
into the stand equation a thinning term D(t):

aG (t)
ot
The number of stems 1in a stand frequently develops in a

negative~exponential manner, i.e,

= a-D(t)-bG(t)

- IN(t
N(t) = ae Bt ME) - -mw(e)
where N(t) is the number of stems at time t, with A
corresponding to the number of stems at time t=0. B

corresponds to the proportion of N(t) taken away per unit
time in the course of the "thinning".

Now think of a steady thinning process where medium-sized
trees of volume G(t)/N(t) are removed. This means that per
unit time a quantity of accumulated substance

G(t)
N (o) BN(t)

is taken from the total stand. If we make the additional

assumption that smaller trees are eliminated, rather than
medium sized trees, one obtains

D(t) c(t)BG(t) where c¢(t) <1

Let us again suppose that a(t)=a, b(t)=b and c(t)=c are
constant with respect to time. We then get +the differential
equations

2%%31 = a-{cB+b]G(t)
AF, (t)

i _ a .

5t gy PlFi(e)
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and the corresponding analytic solutions
—(cb+b)(t-to)r

G(t) = 5w ~ © lzevp ~ O(%) ]
F.(t)) cB(t=-t )
=1 0O o
Fil8) = gy e(ve

Thus the solution of G(t) has not changed its form. But F; (t)
now grows exponentially for large values of t - a phenomenon
that could be observed in nature, if the trees did not age.
In order to visualize the theoretical results, we have
chosen the following parameter values for model graphs, on
the basis of WIEDEMANN's yield tables (fir, moderate
thinning, 1st yield class) (1)
a 25.

b 0.08 to 0.005 (from bottom to top
in steps of 0.01, last step 0.005)

c 0.7
B 0.02
G(20) 4o.
FLg. 21 Hypothetlcal curves of stand volums Ln the case .
L end 3 TL0R Surves frow glatd vebtee (HIEDEPRN Fig. 3: stand model curves
i and GUTTENBERG) & adapted from GUTTENBERG
e ' =
5 /
. 5 v A4
it . ARNSE
Ba I A / 1
E| g =
uE ™ / // 4/
é; - /i //r/v/ L1
— " /
z . %
Q ! L—
19| ° //
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Fig. 5. Holzmassen pro Hektar.

The bottom marked curve in fig. 2 depicts the yield table
values of cubic metre volume of the remaining stand from the
yield table mentioned for b=0.03. The model graph does indeed
approximate asymptotically the yield table values. The other
two marked curves refer to stand values from GUTTENBERG

1) in: SCHOBER (1975)



(1915) (2). Fig. 3 shows model curves used by GUTTENBERG.

In fig. 4 and 5, three unmarked single tree model curves are
shown in each figure in comparision to the empirical data
(marked curves)., The four empirical sets of data in fig. U4
are from stem analyses by GUTTENBERG (1915) (3). The two
empirical sets of data in fig. 5 were taken by ATHARI (1980)
from a yield category similar to the yield table mentioned

above,
Flg. #1 Hypothetlcal ourves of alngle tres volume Ln the Flg. 31 H Loal curves of slngle iree vol ln the
9 e':: of thinntng, vith 3 rd‘fffonn\ ameler sets 9 m thinnlng, wlith 3 E'rm _l.-" sots
and 4 emplrical volume ourves from G and 2 rical voluse curves from 1 (olml-
a q lar to yleld table mentloned abovel

s
ll.E

2.0
.0

FIT) Ln cublc matere
1.5

FIT) in cublc wmeters
L5

1.0
e

0.0
Y-

From all comparisons carried out so far it becomes clear
that in the first few years the model curves in question are
steeper than the empirical ones. To obtain satisfactory
models, the parameters a,b and ¢ should probably not be hand-
led as constants but rather as functions of time. Possible
reasons for that would for instance be a not yet fully de-
veloped root system (intake rate a(t) would initially be a
monotonically growing function) and a high crown-percentage

(high "return percentage", decreasing) in young stands etc.

2) pp. 45
3) p. 85 (Beilage 2)
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5. SUGGESTION FOR ROOT SYSTEM MODELLING

Finally we shall therfore put forward some ideas, modelling
the developement of the root volume as intake apparatus. Let
x§X be a point in the root space X of a certain stand. Call
f;(t)the amount of roots per unit volume of soil that the
i-th tree in x has at its disposal. Let g, (t) be the
corresponding total amount of root apparatus of the stand at
x. Furthermore 1let the development of the roots of the i-th
tree at x be proportional to size F; (t) of the i-th tree and,
for example, reversly proportional to the square of the
distance ri(x) between x and the i-th tree. We now want to
moael the development of the total amount of root material gx
(t) as a function of root density, thus for example arriving

at a system of four differential equations of the following
kind:

3g, (t)
ST = [ax-bxgx(t)]gx(t)
TR R
, a_ g (t
afi(e) XX ol .
5T CUF = byg, (e} 1-£(%)
Z—J———fi(t)
J'rj(x
3F (t) i
I r— = }J;fx(t)dx - bFi(t)
3G (t)

e - égx(t)dx - bG(t)

Supposing that root turnover takes place very fast compared
to the developement of the volumes Fi(t) of individual trees
(in which case the Fi(t) may be considered constant provided
that the time intervalls are sufficiently small). The second
equation, for instance, leads us to realize that individual
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trees have a tendency to form well-defined disjunct "root

districts", Unfortunately we do not up til now Kknow of any

such root system models and hence lack appropriate data.

is why the suggestions

This

we have put forward here should be

seen as a stimulus for further discussion.
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