An illustrated and annotated checklist of *Jamides* Hübner, 1819, taxa occurring in the Indonesian provinces of North Maluku and Maluku (Lepidoptera: Lycaenidae)

Andrew Rawlins, Alan Cassidy, Chris J. Müller, Stefan Schröder and W. John Tennent

Andrew Rawlins, 392 Maidstone Road, Rainham, Kent, ME8 0JA, England; acrawlins@hotmail.com (corresponding author)
Alan Cassidy, 18 Woodhurst Road, Maidenhead, Berkshire, SL6 8TF, England; accessidd@yahoo.com
Chris J. Müller, Honorary Associate, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia; chrismuller@mail.com
Stefan Schröder, Auf dem Rosenhügel 15, D-50997 Köln, Germany; ste.schroeder@gmx.net
W. John Tennent, Scientific Associate, Department of Life Sciences, Division of Terrestrial Invertebrates, the Natural History Museum, London, SW7 5BD, England; john.tennent@hotmail.co.uk

Abstract: This paper recognises 55 taxa (21 species) of the polyommatine lycaenid genus *Jamides* Hübner, 1819, occurring on the islands of the Indonesian provinces of Maluku and North Maluku. Nine new subspecies are described: *Jamides seminiger richardi* ssp. n. (holotype = HT male, BMNH), *J. amarague amandae* ssp. n. (HT male, BMNH), *J. cyta stevei* ssp. n. (HT female, BMNH), *J. fractilinea saraharum* ssp. n. (HT male, BMNH), *J. aratus vignei* ssp. n. (HT male, BMNH), *J. aratus roberti* ssp. n. (HT female, BMNH), *J. aratus samueli* ssp. n. (HT male, BMNH), *J. halus carnegii* ssp. n. (HT male, CMNH) and *J. artai sabina* ssp. n. (HT male, BMNH). A lectotype is designated for *Lampides buruana* Holland, 1900 (male, in CMNH), a junior synonym of *Lycaena alecto* C. Felder, 1860. Numerous new island records are introduced, new synonyms are proposed (see checklist at the end) and some errors and areas of confusion in the literature are discussed and resolved as far as possible. All known taxa are illustrated in colour and maps show all the islands mentioned in the text.

Keywords: Lepidoptera, Lycaenidae, Jamides, new taxa, new locality records, Indonesia, Maluku.

Introduction

This paper provides an illustrated and annotated checklist of all species and subspecies of the genus *Jamides* Hübner, 1819 (Lycaenidae, Polyommatinae) known to occur in the Indonesian provinces of North Maluku and Maluku, together with their known ranges. It includes a large number of island locality records presented here for the first time.

Jamides is a complex genus, and some classification issues have resulted in significant confusion in the literature. Where these issues affect Maluku taxa they are discussed and clarified as far as possible. Synonyms are included where they are directly relevant to Maluku and new synonymy is introduced where appropriate.

We describe 9 new subspecies and recognise 55 taxa, comprising 21 *Jamides* species, as occurring in the Maluku area. Following the main checklist, we summarise all Maluku *Jamides* taxa and provide detailed island distribution maps within Maluku, incorporating all Maluku islands named in the text. Where available to the authors, photographs of both surfaces of both sexes of each taxon are provided.

Predictably, some “loose ends” remain unresolved and are likely to remain so pending availability of additional material and further research. Dates of some Fruhstorfer publications have been subject to confusion—for accurate dates, see Lamas (2005).

In preparing this checklist, we have relied heavily on the collections of the Natural History Museum, London. Collections in the Naturhistorisches Museum Basel and the Carnegie Museum, Pittsburgh, have also been examined, as have a number of private collections.

Definition of Maluku and biogeography

There is some potential for confusion between our use of the name “Maluku”, the Indonesian provincial names of Maluku and North Maluku, and some of the geographical terms we will use in this paper including “northern Maluku” and “central Maluku”.

We use the term *Maluku* to incorporate the two Indonesian provinces of North Maluku and Maluku (see Map 1), together often referred to as the “Moluccas” or the “Spice Islands”. For the sake of clarity, since use of these terms by different authors has been occasionally inconsistent, we provide detailed description of our terminology as follows (Maps 2a, 2b):
The political province of North Maluku (Maluku Utara) comprises:

1. The Sula Islands of Taliabu, Mangole and Sanana, which lie midway between Sulawesi and Maluku and are faunistically included in the “Sulawesi Region” by Vane-Wright & de Jong (2003).

2. The islands that we refer to as “northern Maluku”: Morotai, Halmahera, Ternate, Kayoa, Bacan, Kasiruta, Mandioli and their associated smaller islands. The islands of Obi and Gebe were included in northern Maluku by Peggie et al. (1995, 2005). For reasons outlined below we treat them separately.

3. The island of Obi, though traditionally grouped with northern Maluku, is biogeographically intermediate between the islands of the remainder of northern Maluku and central Maluku (see below). It has a notably high level of endemism at the subspecies level (over 50% of Papilionidae, Pieridae and Nymphalidae), in addition to at least 5 endemic butterfly species.

4. Gebe Island lies between Halmahera and the offshore islands of West Papua Province, with which the fauna has clear affinities. Most butterfly species that occur on Gebe are widespread species that are also found in northern Maluku as well as in the New Guinea Region, albeit often in different subspecies. No endemic butterfly species are known from Gebe although there are many endemic subspecies. A significant percentage of Gebe species also occur in the New Guinea Region but not in northern Maluku (e.g., Delias gambiae (Boisduval, 1832), Neptis brebissonii (Boisduval, 1832), and Ornithoptera priamus (Linnaeus, 1758) [in northern Maluku this is replaced by Ornithoptera croesus (Wallace, 1859)], suggesting a closer affinity with New Guinea than with northern Maluku. Very few species occur both on Gebe and in northern Maluku but not in the New Guinea Region. Those that do so include Appias placidia (Stoll, 1790) (hitherto unpublished record for Gebe), Parantica cleona (Stoll, 1782), and Danaus ismare (Cramer, 1780).

The political province of Maluku comprises:

1. The islands we refer to as “central Maluku”. They include the islands recognised as central Maluku by Peggie et al. (1995, 2005) — excepting that we exclude the Banda Islands (see below) and add Ambelau, a small island about 15 km off southeastern Buru. Thus we consider central Maluku to include: Buru, Ambelau, Manipa, Kelang, Buano, Seram, Ambon, Haruku, Saparua, Nusa Laut, Geser and Seram Laut. Geser and Seram Laut lie fewer than 10 km southeast of the southeastern tip of Seram. They are included within the eastern limit of central Maluku by Peggie et al. (2005), who stated: “Reasons for accepting Seram Laut as this eastern limit include the presence, on the Gorong group, of species such as Papilio aegaeus (Donovan, 1805) (not known from Seram Laut, Geser or Seram: D’Abera 1990), and the change in colour pattern and mimicry complex centred on Euploea luctostictos (Gmelin, 1790).” The Gorong Islands, the next group to the southeast, are a further 30 km distant.

2. The Gorong, Watubela and Tayandu (including Kur) island groups which lie to the southeast of Seram between Seram (and its offshore islands of Geser and Seram Laut) and the Kei Islands.

3. The Banda Islands; included by Peggie et al. (1995, 2005) within their definition of central Maluku. We
of this area is still hotly debated (Hinschberger et al. 2005, Hill 2012). The synformal geometry of the arc and deep marine troughs are in part explained by slab rollback and associated delamination of the continental crust (Spackman & Hall 2010). Seram is comprised of Tertiary and Mesozoic carbonates and clastics, with a Paleozoic basement of schists and gneiss (Darman & Reemst 2012). The islands of Seram, Ambon and Buru (part of what we term “central Maluku”) have been rotated and/or displaced over a long tectonic history dating back to at least the Mioce­ ne, more than 15 million years ago. Conversely, the Ban­ da Islands, including Gunung Api, are relatively recent volcanic islands that have formed in situ within the Banda Arc (Hill 2012). The Bandas consist of more than 10 small volcanic islands with, collectively, a total land area of only 180 km² arising out of 4–6 km deep ocean bed. The islands form part of the Ban­ da Sea Islands moist deciduous forests ecoregion, which reaches east to the Tanimbar and Kei Islands. Two of the three Jamides species known from the Bandas occur as subspecies distinct from those of central Maluku.
4. The Kei Islands — Kei has no endemic butterfly species, but like most island groups in Maluku, support many endemic subspecies. There are a number of species which are, within Maluku, restricted to Kei, Aru and Gebe, as well as occurring in the New Guinea Region, reflecting Kei’s relatively close faunal links to Aru and New Guinea. Examples include *Elymnias agonias* (Boisdruval, 1832), *Mymes geoffroyi* (Guerin-Ménéville, 1831) and *Phaedyma shepherdii* (Moore, 1858).

5. The islands of Southwest Maluku (District), also known as the Western Daya Islands or Maluku Barat Daya — these are the islands that extend beyond Timor and the Lesser Sunda Islands from Wetar eastwards to, but not including, the Tanimbar Islands. The Southwest Maluku Islands include Wetar, Roma, Damar, Kistar, Leta, Moa, Lakor, Sermata Islands and Babar Islands.

6. The Tanimbar Islands, which lie at the end of the island chain extending from the Lesser Sunda Islands east through the Southwest Maluku Islands. They represent the most eastern limit of the range of a number of butterfly species that occur from Timor eastwards, such as *Pachliopta liris* Godart, [1819], *Delias timorensis* de Jong, 1992 recognised 57) of species recorded from Maluku. There are approximately 60 described species (Hirowatari 1992) we divide the genus into two species groups: the *bochus-* and *celeno-*groups, with the *celeno-*group further divided into seven subgroups. There are approximately 60 described species (Hirowatari 1992 recognised 57) of *Jamides* occurring across the Oriental, Australian and Pacific regions. Here we record 21 species from Maluku, and following Hirowatari (1992) we divide the genus into two species-groups: the *bochus-* and *celeno-*groups, with the *celeno-*group further divided into seven subgroups.

7. The Indonesian western half of the Island of New Guinea with its associated offshore islands, which has been previously variously known as Irian Jaya or West Irian (= Irian Barat), now consists of two provinces: West Papua and Papua. The term “New Guinea” is used in this paper in its geographical sense meaning the whole island including both Indonesian provinces of West Papua and Papua, and the State of Papua New Guinea.

Abbreviations used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>and.</td>
<td>antennal length.</td>
</tr>
<tr>
<td>BMNH</td>
<td>The Natural History Museum (formerly British Museum [Natural History]), London, U.K.</td>
</tr>
<tr>
<td>CARR</td>
<td>coll. Andrew Rawlins, Rainham, Kent, U.K.</td>
</tr>
<tr>
<td>CASS</td>
<td>coll. Alan Cassoy, Maidenhead, Berkshire, U.K.</td>
</tr>
<tr>
<td>CMNH</td>
<td>Carnegie Museum of Natural History, Pittsburgh, USA.</td>
</tr>
<tr>
<td>CSSK</td>
<td>coll. S. Schröder, Köln, Germany.</td>
</tr>
<tr>
<td>fw.</td>
<td>forewing.</td>
</tr>
<tr>
<td>fwl.</td>
<td>forewing length.</td>
</tr>
<tr>
<td>GP [no.]</td>
<td>genitalia preparation [no.].</td>
</tr>
<tr>
<td>HT[s]</td>
<td>holotype[s].</td>
</tr>
<tr>
<td>hw.</td>
<td>hindwing.</td>
</tr>
<tr>
<td>LT[s]</td>
<td>lectotype[s].</td>
</tr>
<tr>
<td>NHMB</td>
<td>Naturhistorisches Museum Basel, Switzerland.</td>
</tr>
<tr>
<td>PLT[s]</td>
<td>paralectotype[s].</td>
</tr>
<tr>
<td>PT[s]</td>
<td>paratype[s].</td>
</tr>
<tr>
<td>ST[s]</td>
<td>syntype[s].</td>
</tr>
<tr>
<td>uns.</td>
<td>underside.</td>
</tr>
<tr>
<td>ups.</td>
<td>upperside.</td>
</tr>
<tr>
<td>ZSM</td>
<td>Zoologische Staatssammlung München (Munich), Germany.</td>
</tr>
</tbody>
</table>

Jamides Hübner, 1819

The type species of *Jamides* Hübner, 1819, selected by Scudder (1875), is *bochus* Stoll, 1782.

There are approximately 60 described species (Hirowatari 1992 recognised 57) of *Jamides* occurring across the Oriental, Australian and Pacific regions. Here we record 21 species from Maluku, and following Hirowatari (1992) we divide the genus into two species-groups: the *bochus-* and *celeno-*groups, with the *celeno-*group further divided into seven subgroups.

The bochus species-group

Hirowatari (1992) listed 12 species in this group, of which three occur in Maluku.

Jamides bochus *(Stoll, 1782)*

Papilio bochus Stoll (1782 [in Cramer & Stoll] 4: 210, pl. 391, figs. C, D); TL: S. India.

Range: Widespread in the Oriental, Australian and Pacific Regions including Sri Lanka, India, Nepal, Bangladesh, Burma (= Myanmar), Andaman and Nicobar Islands, Thailand, Laos, Vietnam, southern China, Hainan, Taiwan, the Malay Peninsula, Philippines, Palawan, Borneo, widespread in Indonesia, Christmas Island, New Guinea, Palau, Federated States of Micronesia (Vane-Wright & de Jong 2003, Rawlins 2007). Other closely associated species of the *bochus* species-group occur further east on some islands of Polynesia and Micronesia (Tennent 2006).
Notes: Parsons (1998, often cited as 1999, but see Tennent 2004) stated: “About 22 races of bochus are known.” However, as Tennent (2009) observed: “This is a particularly difficult group of butterflies to identify and reliably assign geographical distribution.” With this in mind, we recognize 6 subspecies in Maluku and present one new synonym.

The name pulchrior Grose Smith, 1895 was based on what were said to be a pair from Pura and α from Halmahera. Grose Smith compared the taxon to J. pulcherrima Butler, 1884, stating that the α ups. “differs from J. pulcherrima BUTL. in having the black marginal band on the anterior wings broader, and on the posterior wings in the absence of the black outer-marginal band of that species” and was of the opinion that pulchrior closely resembled astraptes Felder, 1860, but that the ζ of pulchrior had the ups. blue area more restricted than the astraptes ζ (Grose Smith 1895: 510).

We have examined ζ and ζ pulchrior specimens bearing Grose Smith’s handwritten labels, declaring type status, in the BMNH, each of which carries the same locality label: “Pura, Oct. 1891, W. Doherty.” These specimens are similar to, but clearly different from bochus toscius from Halmahera. We believe Grose Smith included Halmahera in error, and here restrict the distribution of J. bochus pulchrior to its type locality — Pura Island — and some nearby islands in the Lesser Sundas.

Jamides bochus phaidon (Fruhstorfer, 1916)

(Pl. 1, Fig. 1: ζ Taliabu, Fig. 2: ζ Sulawesi.)

Lampides bochus phaidon (Fruhstorfer 1916: 37); TL: Sulawesi.

Note: This is the first record of *J. bochus* from the Sula Islands.

Jamides bochus toscius (Fruhstorfer, 1916)

(Pl. 1, Figs. 3–5: ζ HT, Halmahera; Fig. 6: ζ Halmahera; Fig. 7: ζ Bacan.)

Lampides bochus toscius Fruhstorfer (1916: 37); TL: Halmahera.

Range: endemic to northern Maluku: Halmahera, Ternate, Bacan (BMNH) and new records from Morotai (2 ζ, vi. 2006) and Mandioli (1 ζ, xi. 2006) (CARR).

Jamides bochus polassar (Fruhstorfer, 1916), stat. rev.

(Pl. 1, Figs. 8–10: ζ HT, Obi; Fig. 11: ζ Obi.)

Lampides bochus polassar Fruhstorfer (1916: 37); TL: Obi Island.

Range: Obi (BMNH).

Note: Fruhstorfer described only the ζ of *polassar* but a ζ bearing a Fruhstorfer collection label is illustrated here (Pl. 1, Fig. 11). He compared the ζ to *astraptes* Felder, 1860, saying *polassar* was paler in colour on both surfaces and that the upperside black borders were not as wide in his specimens from Ambon. Seitz (1923: 902) followed Fruhstorfer in treating *polassar* as a valid subspecies of *bochus*.

D’Abreuera (1971 [et seq.]) listed *polassar* as a synonym of *astraptes* without explanation. There is little to separate the ζ HTs of each taxon, but the ζ *polassar* clearly differs from both *toscus* and *astraptes*, particularly in the extent of the upperside forewing purple patches, in which respect *polassar* is intermediate between the other two, but closer to *toscus*. This feature is consistent in series of *astraptes* and *toscus*. We therefore follow Fruhstorfer and retain *polassar* as the subspecific name for *J. bochus* from Obi, stat. rev.

Jamides bochus astraptes (C. Felder, 1860)

(Pl. 1, Figs. 12, 13: ζ HT, Ambon; Fig. 14: ζ Seram; Fig. 15: ζ Seram; Figs. 16–17: ζ; Fig. 18: 2 ζ; Fig. 19: ζ Kur; Fig. 21: ζ Kur; Fig. 22: ζ Banda; Fig. 23: ζ Banda.)

Lycaena astraptes: C. Felder (1860: 456); TL: Ambon.

= *Lampides bochus soarchad* Fruhstorfer (1916: 37), syn. n., see note 1; TL: Kei Islands.

Range: Buru, Seram, Ambon, Nusa Laut, Geser (labelled Gisser), Seram Laut, Gorong Islands (Gorong, labelled Goram Laut), Watubela Islands, Tayandu Islands (Kur, Tayandu & Taam), Kei Islands (Kei Kecil & Kei Besar), Aru Islands (Wamar) — see note 2 (BMNH), and new island records from central Maluku; Manipa (1 ζ, Tomalehu Barat, 18. ix. 1993), Kelang (5 ζ, xi. 2003; 1 ζ, viii. 2008), Kasa Island, off Seram (3 ζ, xx. 2004), Haruku (4 ζ, 1 ζ, x. 2006) and Bandana Islands (1 ζ, Banda Besar, 30. v. 1998; 1 ζ, Naira, 4. t. 1991, see note 3) (CARR).

Note 1: Fruhstorfer (1916), in describing *soarchad*, wrote: “The ζ differs from grata [Grose Smith, 1895] and herdonius [Fruhstorfer, 1816] in having distinctive black markings on the upperside of hw. Its underside is darker with more prominent black marginal spots.” He did not compare *soarchad* to *astraptes*. D’Abreuera (1971) listed “J. bochus soarchad” (sic) and recorded the range as “Kai (Evab).” We have examined BMNH specimens of “soarchad” from the Watubela Islands, Tayandu Islands and Kei and cannot identify any features to separate them from specimens of *J. bochus* from central Maluku (Ambon, Seram).

Note 2: Neither D’Abreuera (1971) nor Parsons (1998) mentioned Aru in the range of *bochus*. However there are 2 ζ and 3 ζ from Aru in the BMNH. Fruhstorfer (1916) listed specimens from Aru as “L. bochus subspec. nova. Aru-Inseln” without providing a name, suggesting it was the same as “Plebeius campianulata var. Ribbe, Iris 1886, p. 85”. Ribbe (1886) merely listed specimens he found on Aru and included “Plebeius Campianulata Butler var.” in his lycænid list, noting that it was rare. The type locality of *campianulata* Butler, 1884 is Fiji (see Tennent 2006: 165–167, note 91) and the name is synthesised with *candrena* Herrich-Schäffer 1869 (TL: Fiji) (Hironowari 1992, Tennent 2006).

We have examined specimens from Aru and find them clearly different from Fiji *candrena* material. They are also unlike *J. bochus* grata from Tanimbar and easily separable from specimens from Fakfak (= Kapauer) in West Papua Province on the main island of New Guinea. New Guinea ζ and ζ are distinctly more purple, with less sheen than the more royal blue colour of Aru (which matches Kei and central Maluku) specimens. New Guinea ζ are also more tinged with purple than those from Aru.

Parsons (1998) noted the occurrence of *J. bochus* on New Guinea, acknowledging it was probably an unnamed subspecies. New Guinea specimens in the BMNH are placed above a label saying “J. bochus ssp.” and we agree with Parsons that this material probably represents an undescribed subspecies. However, Aru *bochus* in the BMNH are provisionally treated as *astraptes*, a placement with which we agree, as we cannot identify any consistent differences between *bochus* specimens from Aru and those from central Maluku and Kei/Kur (see Pl. 1, Figs. 12–19, 20–21).

Note 3: There are no specimens of *bochus* from the Banda Islands in the BMNH but we have seen 1 ζ (Banda Besar Island, 30. v. 1998; Pl. 1, Fig. 22) in good condition provided by K. Nagai, who reported the species was not uncommon on the islands. Apart from its small size (2.2 cm wingspan), this ζ is very similar to *bochus* from central Maluku (♂ wingspan usually 2.5–3 cm). In addition we have one faded ζ (Naira Island, 4. t. 1991; Pl. 1, Fig. 23), which is also relatively small (2.4 cm) and has slightly broader upperside forewing marginal black borders than typical central Maluku *astraptes*. It is otherwise similar. On the basis of these two specimens we provisionally place *bochus* from Banda with *J. bochus* *astraptes*. ©Entomologischer Verein Apollo e.V. Frankfurt am Main
Plate 1, Figs. 1–32: Subspecies of *Jamides bochus*. — Figs. 1–2: *J. bochus phaidon*, 1: ♂, ups./uns., Taliabu (i. 2005; CARR); 2: ♀, ups./uns., Sulawesi (Makassar, 1896, W. Doherty). — Figs. 3–7: *J. bochus toscius*. Figs. 3–5: ♂ "type", Halmahera; 3: ups.; 4: uns.; 5: label. Fig. 6: ♂, ups./uns., Halmahera (viii. 1892, W. Doherty). — Figs. 8–11: *J. bochus polassar*. Figs. 8–10: ♂ HT, Obi; 8: ups., 9: uns., 10: label. Fig. 11: ♀, ups./uns., Obi (FRUHSTORFER coll.; BMNH Accessions). — Figs. 12–23: *J. bochus astraptes*. Figs. 12–13: ♂ HT, Ambon; Fig. 12: ups./ uns.; Fig. 13: label. Fig. 14: ♂, ups./uns., Seram (Manusela, 6000ft, x.–xi. 1919, C. F. & J. Pratt). Fig. 15: ♀, ups./uns., Seram (n. 2009; CARR). Figs. 16–17: ♂, Aru (v.–vi. 1896, Webster); 16: ups., 17: uns. Figs. 18–19: ♀, Aru (Dobo, 5. iii. 1911, C. B. Kloss); 18: ups., 19: uns. Figs. 20–21: *J. bochus astraptes* (formerly soarchad). Fig. 20: ♂, ups./uns., Kur (13. vii. 1898, H. Kühn). Fig. 21: ♀, ups./uns., Kurb (29. vii. 1898, H. Kühn). Fig. 22: ♂, ups./ uns., Banda (Banda Besar, 30. v. 1998; CARR). Fig. 23: ♂, ups./uns., Banda (Naira Island, 4. i. 1991; CARR). — Figs. 24–25: *J. bochus herdonius*. Fig. 24: ♂, ups./uns., Wetar (v. 1892, W. Doherty). Fig. 25: ♀, ups./uns., Wetar (v. 1892, W. Doherty). — Figs. 26: *J. bochus ssp.* ♂, ups./uns., Leti (1885, H. O. Forroas). — Figs. 27–32: *J. bochus grata*. Figs. 27–29: ♂ HT, Tanimbar (v.–vi. 1892, W. Doherty); 27: ups., 28: uns., 29: label. Figs. 30–32: ♀ PT, Tanimbar (v.–vi. 1892, W. Doherty). 30: ups., 31: uns., 32: label. — All specimens deposited in BMNH, if not indicated otherwise. — Scale bar (top centre) for all specimens = 1 cm (= ca. 1.2 times natural size; labels may differ).
Jamides bochus herdonius (Fruhstorfer, 1916)
(Pl. 1, Fig. 24: ♂ Wetar; Fig. 25: ♀ Wetar.)

Lamptides bochus herdonius Fruhstorfer (1916: 37); TL: Wetar.

Range: Timor, Wetar (Rawlins 2007).

Note: The BMNH also has 1 ♂ bochus (Pl. 1, Fig. 26) from the island of Leti which has significantly broader black forewing marginal borders than typical *herdonius*. We illustrate this but hesitate to ascribe subspecific status based on only one specimen.

Jamides bochus grata Grose Smith, 1895
(Pl. 1, Figs. 27–29: ♂ ST grata, Tanimbar; Figs. 30–32: ♀ ST, Tanimbar.)

Jamides grata: Grose Smith (1895: 510); TL: Tanimbar.

Range: endemic to the Tanimbar Islands: Larat, Yamdena (BMNH).

Jamides seminiger Grose Smith, 1895

Jamides seminiger: Grose Smith (1895: 509); TL: Bacan.

Range: endemic to Maluku.

Note: D’Abera (1971, 1986) accorded species status to *seminiger, porphyris and tiglath*. Hirowatari (1992) placed both *porphyris and tiglath* as subspecies of *seminiger* and we follow that here. Cassin (2003) subsequently described a fourth subspecies of the species, *vanlithi*, and below we describe a fifth.

All five subspecies occur in Maluku.

Jamides seminiger tiglath (Fruhstorfer, 1916)
(Pl. 2, Figs. 33–34: ♂ HT, Mangole; Fig. 35: ♂ Mangole; Fig. 36: ♀ Mangole.)

Lampides bochus tiglath: Fruhstorfer (1916: 37); TL: Mangole, Sula Islands.

Range: only known from Mangole in the Sula Islands (BMNH).

Note: D’Abera (1971) recorded the range as the Sula Islands, illustrating a ♂ and stating that the ♀ was unknown. In fact there are 2 ♀♀ in the BMNH with the labels: “Sula Mangoli, Oct [18]99, (W. Doherty)”. We have not seen any specimens from the other Sula Islands.

Jamides seminiger seminiger Grose Smith, 1895
(Pl. 2, Fig. 37: ♂ Bacan; Fig. 38: ♀ Bacan; genitalia: Figs. 45, 47 [see below under ssp. *richardi* n. ssp.]).

Jamides seminiger: Grose Smith (1895: 509); TL: Bacan.

Range: endemic to northern Maluku; Halmahera, Bacan (BMNH), Morotai (new island record: 3 ♂♂ in the van Groenendael collection in the Natural History Museum, Amsterdam University (now incorporated with the Naturalis Biodiversity Center, Leiden), all with the same collection data in Dutch language. At the time of his publication Cassin assumed that “Teoer” was a village in “Klein-Kei” (= Kei Kecil, = Small Kei). Although this is possible, we can find no record of such a village in Kei and believe these may have been “group location” labels meaning Kei Kecil and/or Tioor (historical spellings include Teoor and Teoer) Islands. Tioor is one of the two main islands in the Watubela Island group to the northwest of Kei. There are 2 ♀♀ in the BMNH main collection from Tioor which match photographs of the *vanlithi* type and this confirms the presence of *vanlithi* there. There is also 1 ♀ which we illustrate for the first time.

Note: There is a short series of specimens, 1 ♂ from Aru and 4 from Kei, of an undescribed taxon associated with a label reading “Jamides sp...” in the BMNH. They clearly belong to the *bochus* species-group but differ from known subspecies of *seminiger* and *soemias* Druce, 1891. Based on phenotype it is difficult to assign specific status. We have examined the genitalia of the ♂ from Aru and one of the Kei ♀♀ and conclude that they represent a new subspecies of *seminiger*, described below. We have not seen a ♀. This new subspecies differs from its nearest geographical relative, *vanlithi*, in a number of external characters as described below.

Jamides seminiger richardi ssp. n.
(Pl. 2, Figs. 43–44: ♂ HT, Kei; Figs. 46, 48: genitalia.)

Holotype ♂: Indonesia, Maluku, Kei, Little Kei [Kei Kecil], H. Künn, Rothschild bequest B.M. 1939-1 GP. Rhopalocera vial number 8969 (BMNH).

Etymology: named for Richard Gnas, friend of the first author.

Range: Kei (Kei Kecil, Kei Besar) and Aru Islands (BMNH).

Diagnosis

♂ (Pl. 2, Figs. 43–44): Fwl. 12.5 mm, antl. 6.5 mm (HT). Fw. ups. with ground colour deep lustrous blue (darker and less iridescent than *J. s. vanlithi*), termen broadly black, approximately 1 mm in width, cilia black; fw. ups. uniform grey-brown; an adjacent terminal and subterminal band of similar colouring and each approximately 0.5 mm wide, edged with white (less distinctly than in *J. s. vanlithi*) and darkening towards the inner margin; a postmedian band parallel to termen approximately 1.5 mm wide, edged with white (less distinctly than in *J. s. vanlithi*), distinctly stepped at vein 3 and angled towards tornus below this vein; an additional band 1.5 mm wide at end of cell (wider than in *J. s. vanlithi*), edged white. Hw. ups. deep lustrous blue (darker and less iridescent than *J. s. vanlithi*), broadly grey-brown at costa above vein 7; termen narrowly black (<1 mm wide) (broadly black in *J. s. vanlithi*); a subtoral spot in space 2; a faint subterminal band, cusp-shaped between veins inward of the tornal spots between the inner margin and vein 4 (band more prominent in *J. s. vanlithi*, and extended to inner margin as pale chevron mark in space 1b); inner margin broadly grey, cilia dark grey; hw. ups. uniform...
grey-brown; an adjacent terminal and subterminal band of similar colouring, each approximately 1 mm wide, cusp-shaped between veins, edged with white; terminal band replaced with large black tornal spot approximately 1 mm diameter in space 2, conspicuously rimmed with orange except along termen, where it is faintly marked with pale iridescent blue; a postmedian band similar to ground colour, approximately 1 mm wide, edged white and distinctly stepped at vein 4 and at vein 7, between inner margin and vein 3 this band is arcuate between veins; a band 1 mm wide at end of cell (wider than in J. s. vanlihi), edged white, strongly oblique to termen; an additional band 1 mm wide at base, subparallel to termen.

♂ genitalia (Pl. 2, Figs. 46, 48) (BMNH Rhopalocera vial number 8969): The ♂ genitalia are typical of *Jamides seminiger*, which were illustrated in *Hirowatari* (1992: figs. 20A–D). For comparison, and with that author’s kind permission, we show the uncus, valvae and phallos of nominotypical *seminiger* from Bagan, as drawn by *Hirowatari*, in Figs. 45, 47 (Pl. 2). The equivalent structures of *richardi* from Little Kei and Aru are shown in Figs. 46 and 48.

♀: unknown.

Notes: In Pl. 2, Figs. 49–56, we present images of *Jamides soemias parpura* Gross Smith, 1894, from Humboldt Bay and Simbang in New Guinea, and of *Jamides soemias soemias* Druce, 1891 from the Solomon Islands. The ♂ GP of *seminiger* and *soemias* confirm that these two species are closely related. Current knowledge suggests that the eastern limit of the distribution of *J. seminiger* is Aru and that *J. soemias* does not occur as far west as Maluku.

Jamides amarauge Druce, 1891

Jamides amarauge Druce (1891: 366, pl. 31, figs. 20, 21); TL: Alu (Solomon Islands).

Range: mainland New Guinea, Bismarcks, many of the Solomon Islands and Darnley Island in Torres Strait (Parsons 1998, Tennyent 2006) and Aru and other islands off West Papua — see notes.

Notes: *Druce* (1891) described *amarauge* from Alu Island in the west of the Solomons Archipelago; *J. a. hepworthi* Tennyent, 2001 was subsequently described from Nendo and Vanikoro in the north of the New Hebrides Archipelago.

Neither Parsons (1998) nor D’Abera (1971) included Aru in the species range. However Hirowatari (1992: 45) misquoted Druce stating Aru instead of Alu. A single ♂ from Aru in the BMNH, together with additional Aru specimens received from K. Nagai, represent the first published record of *J. amarauge* from Maluku.

A note in G. E. Trer’s handwriting accompanies *amarauge* specimens from New Guinea and reads: “ssp. from New Guinea. The dark margins are narrower and the green ground colour less brilliant than in true *amarauge* from the Solomons.” We have examined these specimens and agree with Trer that New Guinea specimens differ from Solomon Islands (= nominotypical) specimens (Pl. 2, Figs. 63–64) in two notable features. Firstly, the ground colour of Solomons ♀♂ is a paler shade of blue (Trer calls it green), verging on blue-green and is more lustrous, and secondly, Solomons ♀♂ and ♀♀ have significantly broader ups. fw. dark borders. BMNH specimens from the Indonesian islands of Misool, Waigeo, Aru, Numfoor (labelled Mefo) and Supiori (labelled Korrido) closely match the New Guinea mainland phenotype described below.

Jamides amarauge amandae ssp. n.

(Pl. 2, Figs. 57–58: ♂ HT, Aru; Figs. 59–60: ♀ PT, Aru; Fig. 61: ♂ PT, Humboldt Bay; Fig. 62: ♀ PT, Humboldt Bay)

Etymology: named for Amanda, the sister of the second author.

Diagnosis

♂ (Pl. 2, Figs. 57–58): FwL. 14 mm (HT), antennae missing [therefore not measured]; fw. ups. ground colour shining pale sky blue (deeper blue, less lustrous than nominotypical *amarauge*); termen broadly black (narrower than nominotypical *amarauge*), increasing in width from 3 mm at tornus to 7 mm at apex, boundary between border and ground colour diffuse; cilia black; uns. uniformly grey; an adjacent terminal and subterminal band of similar colouring, each approximately 1 mm wide, edged with white; a postmedian band parallel to termen also approximately 1 mm wide, incrementally stepped towards base from costa, edged with white; additional band 1 mm wide at end of cell, edged white.

Hw. with tails missing; ups. shining pale sky blue, tinged with brown at costa above vein 6; termen narrowly black (<1 mm wide); a row of subterminal black spots, each between veins and ringed with pale blue and outwardly broadly with dark brown; inner margin broadly grey, cilia black; uns. uniformly grey; an adjacent terminal and subterminal band of similar colouring, each approximately 1 mm wide, cusp-shaped between veins, edged with white, above vein 6 vestigial and darkened; terminal band replaced with prominent black, rectangular tornal spot approximately 1.5 mm in width in space 2, conspicuously rimmed with orange except along termen, where it is faintly marked with pale iridescent blue; a postmedian band similar to ground colour, approximately 1 mm wide, edged white and distinctly stepped at vein 4 and at vein 7; between inner margin and vein 3 this band is arcuate between veins; 1 mm wide band at end of cell, edged white; additional 1 mm wide band at base, distinctly stepped at either side of cell.

♀ (Pl. 2, Figs. 59–60): FwL. 15 mm, antennae missing; Fw. ups. with ground colour shining pale sky blue, ter-
men broadly black (narrower than nominotypical amara), increasing in width from 3 mm at tornus to 6 mm at apex and 2 mm along costa; boundary between border and ground colour diffuse; cilia black; fw. uns. uniformly grey; an adjacent terminal and subterminal band of similar colouring and each approximately 1 mm wide, edged with white; a postmedian band parallel to termen approximately 2 mm wide distinctly stepped at vein 3 and angled slightly towards tornus below this vein; an additional band 1 mm wide at end of cell, edged white.

Hw. ups. shining pale sky blue, tinged with brown at costa above vein 6; termen narrowly black (<1 mm wide); a row of subterminal black spots, each between veins and ringed with pale blue and outwardly broadly with dark brown; inner margin broadly grey, cilia black; hw. uns. uniformly grey; an adjacent terminal and subterminal band of similar colouring, each approximately 1 mm wide, cusp shaped between veins, edged with white, above vein 6 vestigial and darkened; terminal band replaced with large black, oblong-shaped tornal spot approximately 1.5 mm diameter in space 2, conspicuously bordered orange except along termen, where it is faintly marked with pale iridescent blue; a postmedian band similar to ground colour, approximately 1 mm wide, edged white and distinctly stepped at vein 3 and at vein 7, between inner margin and vein 1b; this band is arcuate between veins; a band 1 mm wide at end of cell, edged white; an additional band 1 mm wide at base, distinctly stepped at either side of cell.

The celeno species-group

Hirowatari (1992) subdivided the celeno species-group into seven subgroups, of which six occur in Maluku.

The cyta subgroup

Hirowatari (1992) listed seven species in this subgroup, to which J. titei Tennent & Rawlins, 2012 is added. Two species of this subgroup occur in Maluku.

Jamides cyta (Boisduval, 1832)

Catachrysops cyta: Boisduval (1832: 87); TL: New Ireland.

Range: Burma (= Myanmar), Thailand, Malay Peninsula, Sumatra, Java, Lesser Sunda Islands, Borneo, Palawan, Philippines, Sulawesi Region, northern Maluku, New Guinea region, northern Australia (Vane-Wright & de Jong 2003).

Notes: Parsons (1998) noted “about 22 races” and included “Solomons” in the distribution of _J. cyta_ (as _J. cytus_). _J. cyta_ has not been reported from the Solomon Islands (Tennent 2002).

Seven subspecies occur in Maluku.

Jamides cyta hallada (Fruhstorfer, 1916)

(Pl. 2, Fig. 65: ♂ Mangole; Fig. 66: ♀ Sanana.)

Lympha amphissa hallada: Fruhstorfer (1916: 28); TL: Sula Islands.

Range: endemic to the Sula Islands: Mangole, Sanana (Vane-Wright & de Jong 2003), Talabu (new island record: 1 ♂, t. 2005; 1 ♀, h. 2008; CARR).

Jamides cyta amphissa (C. & R. Felder, 1860)

(Pl. 2, Fig. 67: ♂ Bacan; Fig. 68: ♀ Bacan.)

Lycaena (Catachrysops) amphissa: C. & R. Felder (1860: 244); TL: Bacan.

Range: endemic to northern Maluku; Halmahera, Ternate, Bacan (BMNH). We add new island records from Morotai (1 ♂, v. 2003; 1 ♂, 1 ♀, x. 2004; 1 ♂, 1 ♀, 2006; 3 ♂♂, Daeo, 17. v. 1995, x. 2002, x. 2004), Kasiruta (4 ♂♂, 1 ♀, m. 2003) and Mandioli (1 ♂, 2 ♀♂, 11. x. 2006) (CARR).

Note: J. cyta amphissa specimens in the BMNH said to be from Obi are disregarded (see notes following _J. cyta megdora_, below).

Jamides cyta megdora (Fruhstorfer, 1916)

(Pl. 2, Fig. 69: ♂ Obi; Fig. 70: ♀ Obi.)

Lycaena amphissa megdora: Fruhstorfer (1916: 28); TL: Obi Island.

Range: Obi (BMNH).

Note: There is a series of both sexes of _J. megdora_ from Obi in the BMNH with data labels from a number of sources including Doberty and Foest. There is also a series of 5 ♂♂ and 1 ♂ of _J. cyta amphissa_, each bearing the same typed labels: “Obi, ex J. Watterstradt 1904, ex Oberthür Coll. Brit Mus. 1927-3”. These, and other similar labels concerning other taxa in this paper, are believed to be erroneous, as Tennent & Rawlins (2012) explained. A drawer label in the BMNH questions the accuracy of these Watterstradt labels associated with _J. cyta amphissa_ and, in researching the present paper, the authors encountered identical labels on specimens of _J. titei pseudocyta_ and _J. schatzi schatzi_, neither of which are otherwise known to occur on the island of Obi. It is strongly suspected that all are from Bacan but we are confident that, whatever their true provenance, none originated on Obi. See also note following _J. phillatus enmetallicus._

Jamides cyta madara (Fruhstorfer, 1916)

(Pl. 2, Fig. 71: ♂ Kei; Fig. 72: ♀ Kei.)

Lympha amphissa madara: Fruhstorfer (1916: 28); TL: Kei Islands.

Range: Tayandu Islands (Kur), Kei Islands (Kei Kecil) (BMNH).

Note: D’Asbéra (1971) noted the range as “Kai (Ewab) Island”. Ewab is an old name for Kei.

Jamides cyta nemea (C. Felder, 1860)

(Pl. 3, Figs. 73–75: ♂ HT, Ambon; Figs. 78–80: ♀ PT, Ambon; Fig. 76: ♀ Ambon; Fig. 77: ♂ Ambon.)

Lycaena nemea: C. Felder (1860: 453); TL: Ambon.

= _Plebeius callinicus_ Röber (1886: 58, pl. 4, fig. 15), syn. n.; see notes 1 and 2; TL: Seram.

Range: Seram, Ambon, Saparua, Gorong Islands (Manowaka; labelled Manovoka) (BMNH), Buru (see note 1 below), Haruku (new island record: 1 ♀, x. 2006, CARR).

Note 1: Röber (1886) described and illustrated _callinicus_ from a ♀ from Seram. He then described the ♂ based on a specimen from Bacan and another from Nias (off the west coast of Sumatra) and noted they differed from each other. We have not been able to examine these ♀♀, or pictures of them, but note that it is highly unlikely that the same _cyta_ subspecies occurs on islands over 3000 km apart, with a number of different subspecies in between. We cannot comment on whether either or neither of the ♀♀ mentioned by Röber were correctly associated with the ♂♂ of _J. c. nemea_. Fruhstorfer (1916) considered _callinicus_ a subspecies of _philatus_ Snellen, 1878 from Seram, and Seitz (1923: 910) followed this. Röber’s illustration appears typical of _cyta_ and shows the uns. fw. postdiscal band moved basal forward of vein 6, which is usual in _cyta_ but not in _philatus_, where it is in line with spaces 4 and 5. We therefore consider _callinicus_ to be a junior synonym of _nemea_.

© 2014 by Entomologischer Verein Apollo e. V., Frankfurt am Main
Note 2: Holland (1900) noted “a few males and more numerous females” from Buru under the name Lamprimes callinica. We have examined these specimens in the Carnegie Museum, Pittsburgh, and confirm that they are indistinguishable from J. c. nemea from Ambon. Holland also listed 2♂♂ of “Lamprimis nemea” from Buru, but expresses some doubt as to their diagnosis. We deal with these in the section below on Jamides halus.

Jamides cya aruanus (Röber, 1886)

(Pl. 3, Fig. 81: ♂ Aru; Figs. 82–83. ♀ Aru.)

Plebeius aruanus: Röber (1886: 57, pl. 4, fig. 12); TL: Aru Islands.

= *Jamides aruanus*: Swinhoe (1915: 175), syn. n. (Pl. 3, ♂ HT, Aru, Figs. 84–86); see note; TL: Aru.

Range: endemic to the Aru Islands; Wamar Island (BMNH) and Range: _de cya_, and also matches Röber's

The holotype of _Jamides aruanus_ Swinhoe, 1915, is in the BMNH and is clearly a subspecies of _cya_, and also matches Röber's description of _aruanus_ (see Pl. 3, Figs. 81 & 84–85).

Jamides cya stevei ssp. n.

(Pl. 3, Figs. 87–88: ♀ HT, Tanimbar.)

Holotype: Indonesia, Tanimbar, Yamdena Island, 20 miles N of Saumlaki, xii. 2006 (BMNH). — No paratypes.

Etymology: named for Steve Clare, friend since University of the first author.

Range: Tanimbar; known from just 1 ♀ from Yamdena Island.

Note. Despite having only one specimen available, it is so distinctive that we feel it appropriate to describe it as a new subspecies.

Diagnosis

♀ (Pl. 3, Figs. 87–88): Fwl. 16 mm, antll. 7.5 mm (HT). Fw. ups. with ground colour shining light sky blue (much brighter and more lustrous than _J. c. madara_), termen broadly black, increasing in width from 1 mm at tornus to 4 mm at apex, boundary between border and ground colour diffuse; clia black; fw. ups. pale grey; adjacent terminal and subterminal band of similar colouring, each approximately 1 mm wide, broadly edged with white; postmedian band parallel to termen approximately 1 mm wide stepped at vein 3, broadly edged with white (unlike ♀ of _J. c. madara_), diffuse on basal margin below vein 3; an additional band 1 mm wide at end of cell, edged white.

Hw. ups. shining pale sky blue (much brighter and more lustrous than _J. c. madara_), tinged with brown at costa above vein 7; termen very narrowly black hairline width (unlike broad margin of _J. c. madara_); a row of indistinct subterminal brown spots, each between veins; hw. uns. pale grey; an adjacent terminal and subterminal grey band each approximately 0.5 mm wide, arrow shaped between veins, broadly edged with white, inner row darker grey, above vein 7 represented as dark irregular spot, approximately 1 mm diameter; terminal band replaced with large black, arrow-shaped tornal spot approximately 1 mm diameter in space 2, with arrow-shaped orange patch on basal side and bordered narrowly by blue scales; additional small black spot at tornus, similarly bordered with orange and blue (orange and blue scaling much more restricted than in _J. c. madara_ and only vestigial towards costa beyond vein 3); postmedian band darker than ground colour, approximately 0.5 mm wide, broadly edged white and distinctly stepped at vein 3 and at vein 7, between inner margin and vein 7 this band is arculate between veins and between veins 6 and 7 is strongly oblique to the costa; a band 1 mm wide at end of cell, edged white; an additional band 1 mm wide at base, distinctly stepped at either side of cell.

♂: Unknown.

Jamides titiei Tennent & Rawlins, 2012

Jamides titiei: Tennent & Rawlins (2012: 140, figs. 1–7); TL: Halmahera.

Range: endemic to northern Maluku.

Note. Tennent & Rawlins (2012) stated that the species was phenotypically like _Jamides cya_ Boisduval, 1832, and that the male genitalia also appeared typical of the _cya_ subgroup.

Plates

2. Figs. 33–48: *Jamides seminiger*. — _Figs. 33–36_: _J. seminiger_ giglogith. _Figs. 33–34_: ♂ HT, Mangle (x.–xi., Doherty); 33: ups./uns.; 34: label. _Fig. 35_: ♂, ups./uns., Mangle (x. 1897, W. Doherty). _Fig. 36_: ♀, ups./uns., Mangle (x. 1897, W. Doherty; BMNH accessions). — _Figs. 37–38_: _J. seminiger_ seminiger. _Fig. 37_: ♀, ups./uns., Bacan. _Fig. 38_: ♂, ups./uns., Bacan (iii. 1892, W. Doherty). — _Figs. 39–40_: _J. seminiger_ porphyris. _Fig. 39_: ♂, ups./uns., Buru (North Coast, xi. 1897, W. Doherty). _Fig. 40_: ♀, ups./uns., Obi (Laiwui, ix. 1897, W. Doherty). — _Figs. 41–42_: _J. seminiger_ variabilis, Tior (Toor, 6. x. 1899, H. Kühn). _Fig. 41_: ♂, ups./uns. _Fig. 42_: ♂, ups./uns. (BMNH accessions). — _Figs. 43–44_: _J. seminiger richardi_ ssp. n., ♂ HT, Kei (Little Kei, H. Kühn). _Figs. 45–46_: _J. seminiger_ giglogith. _Figs. 45–46_: _J. seminiger_ richardi ssp. n., ♂ HT, Kei (Little Kei, H. Kühn) and other specimen, Aru; _Fig. 46_: lateral view of armature; 48: phallos. — _Figs. 49–52_: _Jamides soemias_. — _Figs. 49–52_: _J. soemias purpurata_. _Figs. 49–51_: ♂ HT, Humboldt Bay, Papua (ix.–x. 1892, W. Doherty); 49: ups.; 50: uns.; 51: label. _Fig. 52_: ♀ PT, Papuasia, Buru. _Fig. 53–56_: _J. soemias soemias_, Solomon Islands (NW Bay, Malaita Island). _Figs. 53–55_: ♀ HT; 53: ups.; 54: uns.; 55: label. _Fig. 56_: ♂ PT, Papuasia. — _Figs. 57–64_: _Jamides amargre_. — _Figs. 57–62_: _Jamides amargre amargre_ ssp. n. _Figs. 57–58_: ♂ HT, Aru (Hewitson coll. 79-69); 57: ups.; 58: uns. _Fig. 59–60_: ♀ PT, Aru (Tragan Island, Taberfane, 18. xiv. 1994, K. Nagai; CARR); 59: ups.; 60: uns. _Figs. 61–62_: Humboldt Bay, Papua (ix.–x. 1892, W. Doherty); 61: ♂ PT, Papuasia; 62: ♀ PT, Papuasia. — _Figs. 63–64_: _Jamires amargre_ amargre, Solomon Islands. _Fig. 63_: ♀, ups./uns., Guadalcanal, v. 1910, A. S. Meek). — _Figs. 63–64_: _Jamides amargre_. — _Figs. 65–66_: _J. cyto heliada_. _Fig. 65_: ♂, ups./uns., Mangle (x. 1897, W. Doherty). _Fig. 66_: ♀, ups./uns., Bacan (x. 1897, W. Doherty). — _Figs. 67–68_: _J. cyto amphissus_, Bacan (ex J. Waterstradt, 1904). _Fig. 67_: ♂, ups./uns. _Fig. 68_: ♀, ups./uns. — _Figs. 69–70_: _J. cyto megadora_. _Fig. 69_: ♂, ups./uns., Obi (ex coll. Hamilton Druce, 1919). _Fig. 70_: ♀, ups./uns., Obi (Laiwui, ix. 1897, W. Doherty). — _Figs. 71–72_: _J. cyto madara_. _Fig. 71_: ♂, ups./uns., Kei (Tual, x. 1896, H. C. Webster). _Fig. 72_: ♀, ups./uns., Kei (Wallace). — All specimens deposited in BMNH, if not indicated otherwise. — Scale bar (top centre) for all specimens = 1 cm.
Jamiades titei titei TENNENT & RAWLINS, 2012
(Pl. 3, Figs. 89–90: ♂ HT, Halmahera; Figs. 91–92: ♀ PT, Halmahera.)

Jamiades titei: TENNENT & RAWLINS (2012: 140, figs. 1–7); TL: Halmahera.
Range: Morotai and Halmahera.

Jamiades titei pseudocyta TENNENT & RAWLINS, 2012
(Pl. 3, Figs. 93–94: ♂ HT, Bacan; Figs. 95–96: ♀ PT, Bacan.)

Jamiades titei pseudocyta: TENNENT & RAWLINS (2012: 140, figs. 8–11); TL: Bacan.
Range: Bacan and Mandoli.
Note: A pair of J. titei pseudocyta in the BMNH labelled: “Obi, ex J. Waterstradt 1904, ex Oertel’s Coll. Brit Mus. 1927-3” are almost certainly wrongly labelled (see notes following J. cyta megdora).

The celeno subgroup

Hirowatari (1992) included three species, celeno Cramer, 1775, fracticilina Tite, 1960 and pura Moore, 1886, in this subgroup. The status of the taxon butleri Rothschild, 1915 is in doubt and though it may be a subspecies of celeno we have tentatively placed it as a distinct species (see discussion under J. butleri). We therefore recognise four species in this subgroup, all of which occur in Maluku.

Jamiades celeno (Cramer, 1775)

Papilio celeno Cramer (1775: 51, pl. 31, figs. C, D); TL: Surinam [Sumatra]; see note 1.

Range: Widespread in the Oriental and Australian Regions from southern China, India and Sri Lanka to Vanuatu, including Indonesia, Palawan, Philippines, the New Guinea region and the Solomon Islands, but absent from Australia (Parsons 1998, Vane-Wright & de Jong 2003).

Note 1: Cramer, and subsequently Fabricius, erroneously gave the type locality as “Surinam”, where the species does not occur. Its true source is now widely accepted to be Sumatra.

Note 2: Parsons (1998) stated: “f. celeno is represented by about 17 spp. throughout its range.” In Maluku we recognise three subspecies. Subpopulations of celeno from Sulawesi and the Sula Islands are similar, and in order to correctly assign Sulawesi populations, the many celeno subspecific names associated with Sulawesi populations are considered here in some detail.

Jamiades celeno optimus (Röber, 1886)
(Pl. 3, Fig. 98: ♂ Sanana; Fig. 99: ♀ Sanana; Figs. 100 & 102: ♂♂ Sulawesi; Fig. 101: ♀ Sulawesi.)

Plebeius optimus Röber (1886: 56, pl. 4, fig. 16); TL: Tombugu, East Sulawesi – see note 2.

= _Lampides kalawarus punctatus_ Ribbe (1926: 90); TL: Kalawara, Sulawesi – see note 5.

= _Plebeius griseus_ Röber (1886: 60, pl. 4, fig. 18), syn. n.; TL: Tombugu, East Sulawesi – see notes 2 & 3.

= _Lampides griseus kalawarus_ Ribbe (1926: 90), syn. n.; TL: Kalawara, Sulawesi – see note 5.

= “_Lampides miniscalus_ Ribbe, nomen nudum”: Takanami (1989: 50, nomen nudum; see note 7).

= “_Lampides flavonaculata_ Ribbe, nomen nudum”: Takanami (1989: 50, nomen nudum; see note 7).

Range: Talaul, Sulawesi, Tukangbesi and Peleng (Vane-Wright & de Jong 2003, see note 1), Sula Islands (Mangole and Sanana) (BMNH), see note 5.

Note 2: Röber (1886) described _Plebeius optimus_ and gave the type locality as: “Malacca (Preak) und Ost-Celebes (Tomboegeo)”. Malacca is in West Malaysia where _J. celeno aelianus_ Fabriusius, 1793 occurs. Röber also described a _♀_ form of _optimus_ which he called var. _obscurus_. Takanami (1989: 48) designated a _♂_ LT of _optimus_ from Tombugi. A further _♂_ specimen from Tombugi, Sulawesi, with the same collection data as the lectotype exists in the Courvoisier collection at the NHMB (Cassidy 2013).

Note 3: Later in the same paper Röber described _Plebeius griseus_ from an undeclared number of _♀_ giving the type locality as “Ost-Celebes (Tomboegeo)”. His illustration of _griseus_ shows a _♀_ with a uniformly grey-brown ups. Throughout Sulawesi the majority of _celeno _♀_ are of this uniformly grey-brown phenotype, and _griseus_ is clearly synonymous with _optimus_. Fruhstorfer (1916) was aware of this and considered “griseus Rö.” to be one of two _♀_ forms of _optimus_. It should be noted that a minority of _♀_ do not conform to the usual phenotype and have distinctly paler areas in the middle of the fw. ups. Takanami (1989: 65) stated “The _♀_ of _optimus_ is entirely dark brown on the ups. of both wings.” We note that this matches Röber’s description and illustration of _griseus_. Vane-Wright & de Jong (2003) made no mention of _griseus_.

Note 4: Bridges (1988) created further confusion. He listed _grisea_ [sic] Röber, 1886, stating that it was published by Röber in Band [volume] 1, part 1, page 60. There is no page 60 in this part, and we have found no other source document combining _grisea_ with _Plebeius, Lampides or Jamiades_. He implied that _grisea_ was first described under _Lampides_ but listed it as a subspecies of _Jamiades celeno_. He also listed the taxon _griseus_ Röber, 1886 correctly citing Band [volume] 1, part 3, page 60, and stating it was originally described in the genus _Plebeius_ [sic] and retaining it as “_Plebeius_(_♀_ griseus)”. In his 1994 edition, Bridges correctly transcribed the original genus as _Plebeius_, while still referring to the current genus as “_Plebeius_(_♀_ griseus)”. Takanami (1989: 65) stated “The female of _optimus_ is entirely dark brown on the ups. of both wings.” We note that this matches Röber’s description and illustration of _griseus_.

Vane-Wright & de Jong (2003) noted two subspecies occurring in Sulawesi itself – _optimus_ and _kalawarus_ (see below); they did not mention _griseus_.

Note 5: We have examined a long series of _jamiades celeno_ from both north and south Sulawesi and observed variation in the width of the fw. and hw. dark marginal areas of _♀_ throughout the island. In addition, some specimens have darkened ups. fw. discocellular veins, a form which Ribbe (1926) named “_Lampides kalawarus punctatus_ (n. subs.)*, referring to it as “ab. punctatus” later in the same paragraph. Takanami (1989) synonymised _punctatus_ with _kalawarus_.

Ribbe (1926) described the taxon _kalawarus_ from “Kalawara, Celebes” (Kalawara is near Palu, central west Sulawesi). He said that the _kalawarus _♀_ has much broader borders on both wings than _griseas _♀_ and more heavily blackened veins. Takanami (1989: 50, 65) designated a _♂_ LT and noted of _♂_ : “The specimens which occur around Palu at the base of the Minahassa Peninsula are remarkable in having much wider marginal borders, which cover almost a third of the wings.” We have seen the photograph of Takanami’s LT (1989: 56, fig. B-21) and it is only a marginally more extreme dark form than the specimen from north Sulawesi we illustrate (PL 3, Fig. 100). We consider that _kalawarus_ is merely an extreme form of the subspecies _optimus_.

Note 6: Vane-Wright & de Jong (2003) noted an unnamed subspecies of _J. celeno_ from Mangole and Sanana in the Sula Islands based on specimens in the BMNH. However, we can see no con-
sistent differences between these specimens and those from Sulawesi. The 8 ♂♂ from the Sula islands are very consistent in their markings and are similar both to Takanami’s optimus LT and the paler Sulawesi specimens (Pl. 3, Fig. 102). The 4 ♂♂ in BMNH are uniformly grey-brown matching the “usual” Sulawesi ♀ form and we include them with optimus.

Note 7: Takanami (1989: 50) published the names minisculus and flavomaculata in relation to 2 ♂♂ Jamides specimens from Kalawa, Sulawesi, held in the Senckenberg Naturhistorische Sammlungen (formerly Staatliches Museum für Tierkunde) in Dresden. Both specimens bear labels apparently written by Ribbe, identifying them as minisculus and flavomaculata. Takanami appears to have believed both names had been published by Ribbe without adequate description (i.e., nonima nuda). However, neither name appears in Ribbe’s 1926 paper (in which he first raised the name kalawurus), nor have we been able to find these names in any other of Ribbe’s publications. We suspect that both names were actually manuscript names and that they became nonima nuda — attributed to Takanami — on publication of Takanami’s paper. Takanami referred both specimens to kalawurus Ribbe, 1926; in accordance with our synonymy of “griseus kalawurus” with celeno optimus, above, the names are placed here.

Jamides celeno sundaya (FRUHSTORFER, 1916)

(Pl. 3, Fig. 103: ♂ Gebe; Fig. 104: ♀ Gebe; Pl. 4, Fig. 105: ♀ Ambon; Figs. 106, 107: ♂ ST sundaya, Halmahera; Fig. 108: ♀ ST, Halmahera; Fig. 109: ♀ ST Aru; Fig. 110: ♂ Aru.)

Range: Halmahera, Ternate, Bacaan, Obi, Seram, Ambon (see notes following J. butleri), Aru (Wamar, Kobroor; see note) (BMNH) and new island records from Morotai (3 ♂♂, 3 ♀♀, v. 2006; 1 ♂, Daeo, 20. v. 1999; 1 ♂, Buho Buho, 8. xii. 1990), Kasiruta (1 ♂, xi. 2007), Mandioli (4 ♂♂, 2 ♀♀, Waya, 11. xi. 2006), Gebe (4 ♂♂, 1 ♂, 20. x. 2010), Manipa (1 ♂, iv. 2009) and within Aru, Maikoor (1 ♂, 1 ♂, Gardeau, 30. iii. 1995) (CARR) and Trangan Island (K. NAGAI, pers. comm.).

Note: ♂ of a series of celeno from Aru appear more typical of the darker sundaya phenotype (Pl. 4, Fig. 110). D’ARRERA (1971) recognised J. celeno lucianus RÖBER, 1886 as the celeno subspecies occurring in Aru and stated “Smaller than sundana [sic, recte sundara], but with more contrasted markings of the verso surface.” However, the name lucianus is a synonym of butleri. FRUHSTORFER, 1886, a subspecies of aratus STOLL, 1781, and will be discussed under that species.

Jamides celeno sundara (FRUHSTORFER, 1916)

(Pl. 4, Fig. 111: ♂ Tanimbar; Fig. 112: ♀ Tanimbar; Figs. 113–115: ♂ ST sundara, Banda; Fig. 116: ♀ ST, Banda.)

Lampides celeno sundara: FRUHSTORFER (1916: 6); TL: Banda.

Range: Buru (see note 1), Banda (Banda Besar, labelled Greater Banda), Watubela Islands (Tioor, see note 2), Tanyan Island group (Kur, labelled Koer), Kei, Alor, Sema, Timor, Southwest Maluku Islands (Wetar, Kisar, Roma, Lebi, Moa, Damar, Sermata, Wetaen, Babar), Tanimbar (Selaru, Yamadena, Larat), New Guinea, Bismarck and Solomon Islands (RAWLINS 2007; BMNH). New island records from Naira (1 ♂, 1 ♀, 2. ix. 1991; 2 ♂♂, 11. xii. 1998) in the Banda group, Kei Kecil (1 ♂, Tual, x. 2001; 1 ♂, viii. 2010) and Kei Besar (1 ♂, Yamtimur, 7. 1. 1991; 1 ♂, 1 ♀, Yamtimur, v. 2002) in the Kei Islands and Tandula (5 ♂♂, 1 ♀, iv. 2008) and Molu (3 ♂♂, 3 ♀♀, x. 2008) in the Tanimbar Islands (CARR).

Note 1: The ♂ and ♀ syntypes of sp. sundara (wrongly referred to as “sundana” by D’ARRERA throughout his work) at the BMNH bear handwritten labels stating “Banda”. FRUHSTORFER gave the distribution of sundara as Banda and Buru, and the 11 ♂♂ and 2 ♀♀ from Buru in the BMNH have been included with subspecies sundaya. However, although ♂♂ of both subspecies are indistinguishable, the respective ♂ STs of sundaya and sundara are clearly different, with the main distinguishing feature being the extent of brown colouration on the ups. hw. anterior margin. In the sundara ♂ ST this is restricted to space 6 (unfortunately the ♂ ST photograph in Pl. 4, Fig. 116 does not show this as the hw. is set overlapping hw. space 6) whereas in the sundara ST it extends also to include space 7. The two small Buru ♂♂ lack the brown shading in both spaces 6 and 7 and quite possibly represent a distinct subspecies, but for now we provisionally include the Buru celeno population with sundara. TennenT (2002: 99) erroneously gave the TL of sundara as Buru.

Note 2: As mentioned earlier, ♂♂ of sundaya and sundara are difficult or impossible to separate. There are 3 ♂♂ and 1 ♂ in the BMNH from Tioor Island within the Watubela Group. The only ♀ available appears intermediate between the two taxa but is more typical of sundara, with which it is provisionally included here.

Jamides butleri (ROTHSCHILD, 1915)

(Pl. 4, Figs. 117–118: ♂ ST butleri, Seram; Fig. 119: ♂ Tioor; Fig. 120: ♀ Seram.)

Lampides butleri: Rothschild (1915: 138); TL: Central Seram.

Range: Obi, Buru, Seram, Ambon, Haruku, Saratua, Nusa Laut, Gorong Islands (Gorong, labelled Gorom Laut) and Watubela Islands (Tioor, labelled Toor), Misool, New Guinea (BMNH) and new island records from Mentawai (1 ♂, 2 ♀, 4. xi. 2005), Ambelau (1 ♂, 1 ♀, xi. 2012) and Manipa (5 ♂♂, ix. 1993; 1 ♂, iv. 2009) (CARR).

Note 1: Butleri described butleri from 1 ♂ and 2 ♀. In describing the sole ♂, ROthsCHILD gave “Hw. without marginal spots” as a diagnostic feature, but whilst this is true of the ♂ ST (Pl. 4, Fig. 117), many butleri ♂♂ do have hw. black marginal spots (Pl. 4, Fig. 119).

Note 2: The status of the taxon butleri remains uncertain. ROthsCHILD (1915) considered butleri to be a species of Lampides, a genus now considered monobasic for Lampides boeticus. The taxon was not included in FRUHSTORFER’s (1916) Lampides revision and hence is also not mentioned in SEITZ (1923). D’ARRERA (1971) and KATO (1982) both considered butleri to be a distinct species whereas BRIDGES (1988) listed it as a subspecies of celeno. HIROWATA (1992) did not mention butleri in his list of Jamides species, and we assume he considered it to be a subspecies of celeno. The uns. is indistinguishable from that of celeno sundaya and celeno sundara but the ups. in both sexes clearly differs from both in several features (see Pls. 34), and the butleri ♂ is immediately separable from any subspecies of J. celeno. The butleri phenotype appears stable across its entire range.

Examination of ♂ genitalia of specimens of butleri from Seram and Ambon show them to be indistinguishable from those of celeno from northern Maluku, suggesting that butleri and celeno may be conspecific. However, overlapping distribution of butleri and celeno phenotypes suggests otherwise. The situation is something of an enigma, as the following discussion of the distribution of the three taxa J. celeno sundara, J. celeno sundaya and J. (celeno?) butleri within Maluku illustrates.

In northern Maluku sundaya is a widespread and commonly encountered butterfly throughout the islands with many historical and contemporary records; this appears to be its geographical centre. In contrast, butleri has not been recorded from northern Maluku, although there are specimens in the BMNH of both butleri and celeno sundaya from the island of Obi, which lies between northern and central Maluku.

We have not seen contemporary specimens of celeno from any of the three largest central Maluku islands of Seram, Buru and Ambon. The only recent celeno record from central Maluku we know of is a ♂ received by S. SCHÖNER purportedly from Manipa.
(between Buru and Seram). We also have recent records of *butleri* from Manipa. However, there are a number of historical specimens of *celeno sandhya* from Ambon (9♂♂, 8♀♀) and Seram (1♂), and *celeno sundara* from Buru (11♂♂, 2♀♀) in the BMNH. Many, but not all, bear the same label. For example, of the 9♂♂ and 8♀♀ Ambon specimens, 6♂♂ and 6♀♀ have the identical label: “Amboina, September, H. Frühstorfer”. The authors have seen in excess of 150 contemporary specimens of *butleri* from Seram and Ambon. Likewise Kato (1982) recorded 42 specimens of *butleri* but none of *celeno* during three short separate visits to Ambon at different times of the year. There are too many historical records of *celeno* from central Maluku to dismiss them, but it remains the case that the species appears to be now either absent or very rare on those islands.

We have seen specimens of both *butleri* and *celeno sundara* from the Watabela islands, and one *butleri* ♀ from Mangole in the Sula islands where *celeno optimus* is widespread. In the BMNH there is also one specimen of *butleri* from New Guinea, where *celeno sundara* is widespread.

The absence of *butleri* in northern Maluku suggests it is not a form of *celeno*. So far as we are aware, all subspecies of *celeno* are typically widespread lowland butterflies as is *butleri*. It will be seen therefore that *butleri* and *celeno* phenotypes appear to be sympatric on many islands, and we believe that the absence of any hybrid specimen suggests that they are distinct species, despite closely similar male genitalia. That said, we consider it unusual that, apart from one Manipa specimen, we have not seen any recent *celeno* specimens from central Maluku. For the purposes of this paper, we tentatively place *butleri* as a distinct species but note its very close affinity to *celeno*. Perhaps molecular analysis of fresh specimens will resolve this issue in the future.

Jamides pura (Moore, 1886)

Jamides pura: Moore (1886: 41); TL: Mergui.

Range:

Jamides pura spitiemenes (Frühstorfer, 1916)

(Pl. 3, Fig. 97: ♀ HT; Obi; Pl. 8, Fig. 256: genitalia.)

Lampides suis spitiemenes: Frühstorfer (1916: 7); TL: Obi.

Range:

Obi.

Notes:

Frühstorfer (1916) described *spitiemenes* from Obi and placed it as one of 10 subspecies of the Philippine species *Lampides suis* C. & R. Felder, 1865. He also compared it to *aetherialis*, which is unlike *suis*. He did not record how many specimens he examined and only described the ♀. Following Frühstorfer, Seitz (1923: 906) said of *spitiemenes*: “it has a conspicuous white blue upper surface with a dull mother-of-pearl lustre. Upper surface without markings except two small very faint anal spots. Under surface pale grey with very distinct white transverse strokes” (Seitz 1923, in translation). Hirowatari (1992) did not include *spitiemenes* in his *Jamides* species list but included *suis* in the *alveus* subgroup.

In his paper describing *spitiemenes*, Frühstorfer (1916: 3) noted that a number of the “interesting” specimens are from the Courvoisier collection in the NHMB. This collection does include a number of ex-Frühstorfer butterflies bearing “Type” labels. Cassidy (2013) visited the NHMB and located a single ♀ specimen labelled “spitiemenes, Type, Obi 1909 Fried.”. The specimen was dissected (Pl. 8: genitalia, Fig. 256), and comparison with other *Jamides* taxa indicated a close affinity with *J. pura*. This specimen is considered to be the holotype by monotypy and was labelled accordingly (Cassidy 2013).

The immaculate upper surface of *spitiemenes* corresponds much more closely with *pura* than with *celeno* which is always quite heavily marked on the termen of both wings of the ♀. The subspecies of *pura* geographically closest to Obi are *J. pura tenus* Frühstorfer, 1916, from Borneo and *J. pura eordaea* Frühstorfer, 1916, from Palawan. In external appearance, *spitiemenes* differs from *tenus* by lacking the darker ground colour between the submarginal striae on the uns. of the hw. and by having a larger orange crown to the tornal black spot. It differs from *eordaea* by having the ups. ground colour slightly more blue, with finer marginal borders on the hw. and by the absence of marginal striae in spaces 1a and 1b of the hw. On the uns., *eordaea* has an even larger, and quite distinctive, orange crown in the tornal area than *spitiemenes*.

Although we treat *spitiemenes* as a subspecies of *J. pura*, we have seen no other specimen of *spitiemenes*, and it is noted that *J. pura* has yet to be recorded from any locality between Borneo, Palawan, Balabac and eastern Indonesia. It appears to be unknown from the Sulawesi Region and, with the exception of this one specimen from Obi, anywhere else in Maluku. The possibility of the specimen being wrongly labelled is not discounted, and until further material becomes available, its presence on Obi is regarded as requiring confirmation.

Jamides fractilinea Tite, 1960

Jamides fractilinea: Tite (1960b: 335, figs. C, F, G); TL: Sula­wesi.

Range: Sulawesi and the Sula Islands (Mangole) (BMNH).

Jamides fractilinea fructilinea Tite, 1960

(Pl. 4, Figs. 121–123: ♀ HT, Sulawesi; Figs. 124–126: ♀ PT, Sulawesi.)

Range: Sulawesi (BMNH).

Notes:

In his original description, Tite (1960b) noted that *fractilinea* was similar to *aratus lunata*, especially on the ups., and specified some minor, but diagnostic, differences in the ups. hw. markings. He went on to discuss the ♀ GP and stated: “The ♀ armature [of *fractilinea*] points to kinship with *Jamides celeno Cramer*, and shows no affinities at all with the externally similar *J. aratus lunata*.” He designated a ♀ HT and ♀ alloctype (i.e., PT), both from Macassar, Celebes (Sulawesi), and included a ♀ from Mangole (Sula Islands) in a list of “Other material examined”. Tite (1960b) made no comment on the differences between the Sulawesi ♀♂ and the Mangole specimen. He did examine the genitalia of the latter, considering it to be conspecific with the Sulawesi ♀♂ and the Mangole specimen.

© 2014 by Entomologischer Verein Apollo e.V., Frankfurt am Main
Jamides fractilinea saraharum ssp. n.

(Pl. 4, Figs. 127–128: ♂ HT, Mangolé.)

Etymology: Named for Sarah MILLER and Sarah SONLEY, friends and colleagues of the first author.

Range: The Sula Islands (Mangolé).

Diagnosis

♂ (Pl. 4, Figs. 127–128): Fwl. 17.5 mm, antl. 8.5 mm (HT). Head grey; labial palpus grey-cream, eye ringed with grey-cream; antenna black, ringed with white. Thorax and legs grey-cream. Abdomen deep grey dorsally, ventrally grey-cream.

Fw. with termen straight between vein 4 and inner margin (slightly convex in *J. f. fractilinea*), fw. ups. with ground colour very pale blue-white, termen narrowly black, consistently < 0.5 mm in width (much broader margin, widening towards tornus, in *J. f. fractilinea*); cilia deep grey; uns. uniform deep grey-brown (paler than in *J. f. fractilinea*); an adjacent terminal and subterminal band of similar colouring, each approximately 1 mm wide; a straight postmedian band oblique to termen approximately 1.5 mm wide (in *J. f. fractilinea* this band is subparallel to termen and slightly disjunct at veins), completely offset towards tornus from costa at vein 3, edged with white; additional band 1.5 mm wide at end of cell, edged white.

Hw. ups. very pale blue-white; termen narrowly grey-brown (hairline width); a narrow row of vestigial subterminal grey-brown spots between veins (significantly less pronounced than in *J. f. fractilinea* which has an additional row of heavily marked subterminal spots); cilia black; hw. ups. uniform grey-brown (paler than in *J. f. fractilinea*); an adjacent terminal and subterminal band of similar colouring, each approximately 1 mm wide, arrow-shaped inwardly and sharply edged with white; terminal band replaced with large black, rounded tornal spot approximately 1.5 mm diameter in space 2, heavily rimmed with orange except along termen, where it is faintly marked with pale iridescent blue, orange is also present on inner side of subterminal band in space 1b, in spaces 6 and 7 the subterminal band is replaced with large dark spots approximately 1.5–2 mm in diameter; a postmedian band similar to ground colour, approximately 1 mm wide, edged white and distinctly stepped at veins, distinctly separate from subterminal row of spots by up to 1.5 mm (the postmedian band is connected to the subterminal band in *J. f. fractilinea*); in space 1b the V-shaped postmedian band is consistent in width (pinched and narrowed markedly along the axis in *J. f. fractilinea*); a band 1.5 mm wide at end of cell, edged white; an additional irregular band 1 mm wide at base, extending from vein 1b to vein 8.

♀: Unknown.

The aratus subgroup

Two of the four species in this subgroup occur in Maluku: *aratus* STOLL, 1781 and *aetherialis* BUTLER, 1884.

As there has been much confusion over the status and range of these two species we feel it necessary to discuss this in some detail even though this takes us, in part, outside Maluku.

D’ABRERA (1971) considered that *aetherialis* and *aratus* were conspecific and listed *aetherialis* as a subspecies of *aratus*. HIROWATARI (1992) stated “real aratus occurs from Peninsular Malaya eastwards to the Moluccas”. He went on to give the distribution of *aetherialis* as “East Moluccas, New Guinea, Bismarcks, Solomons” and stated that “this species is easily distinguished from aratus by the shape of its valva”. He did not specify a geographical boundary between the two species and gave no indication as to which of these two species the taxon *sesus* FRUHSTORFER, 1916 (TL: Timor; but see notes under *J. aratus sestus*) belonged. HIROWATARI further stated that FRUHSTORFER (1916) “treated these species correctly.” However, FRUHSTORFER placed *sesus* with *aetherialis*, whereas RAWLINS (2007) included *sesus* as a subspecies of *aratus*. Genitalic dissection of the *sesus* HT (Pl. 5, Figs. 159–160; genitalia: Pl. 8, Fig. 246) located at the NHMB (see CASSDY 2013) reveals it belongs to *aratus*. However, to complicate matters further, the *sesus* HT (TL supposedly Timor) is dissimilar to *aratus* specimens from Timor and South West Maluku Islands but is very similar indeed to *aratus* specimens from Tanimbar. We thus consider Tanimbar to be the true type locality of *sesus*; see notes following *J. aratus sestus*.

PARSONS (1998) stated: “The ranges of the 2 species overlap on certain Moluccan islands.” He continued: “For example, SEITZ (1923) pointed out that *aetherialis* flies together with *aratus* on Sumba and Sumbawa Islands.” In fact neither of these islands are part of the Moluccas (i.e., Maluku). SEITZ (1923: 909, 910) (following FRUHSTORFER 1916; see below) placed *masu* DOHERTY, 1891 as a subspecies of *aratus* from Sumba, Sumbawa, Flores and Timor, and placed *anops* DOHERTY, 1891 (TL: Sum­ba) as a subspecies of *aetherialis* “from Sumba and Sumbawa, where it flies beside *aratus masu*”. He placed *sesus* as a subspecies of *aetherialis* from Timor claiming, by implication, sympathy with *aratus masu*. It is noted that SEITZ accepted FRUHSTORFER’s (1916) classification, and made no changes to the group in his subsequent work (SEITZ 1923). BRIDGES (1988) mistakenly assigned the name *masu* to DRUCE instead of DOHERTY.
Doherty (1891) described and illustrated *anops* (as *Lampides anops*). He noted it was “confined to the mountain-forests above 2000 feet” on Sumba and made no mention of it occurring on Sumbawa. Frühstorfer (1916) considered *anops* a subspecies of *aetherialis* noting that it came from Sumba and Sumbawa. The present authors have not seen any material of *anops* from Sumbawa (there are 11♂♂ and 2♀♀ from Sumba and none from Sumbawa in the BMNH), and suspect that Frühstorfer’s inclusion of Sumbawa was based merely on the title of Doherty’s paper. This error has subsequently been perpetuated by other authors (e.g., D’Abrera 1986, Hirowatari 1992).

A handwritten note by Tite in the BMNH states “J. anops has quite different genitalia than *aetherialis* and *aratus*”, and Hirowatari (1992) likewise considered *anops* (Pl. 5, Sumba, ♂ Fig. 167; ♀ Fig. 168) a distinct species and placed it in the *aleuas* subgroup based on ♂ genital morphology, illustrating the ♂ GP of *aetherialis*, *anops* and *aleuas* (Hirowatari 1992: 85, 86). We agree with Hirowatari (1992) in recognising *anops* as a distinct species, as evidenced by its very different appearance and genitalia compared to *aratus* or *aetherialis*.

Doherty (1891) described “*Lampides masu*” without indicating whether it came from Sumba or Sumbawa, or both. He compared the ♂ to *anops* and *subdisus Moore*, 1886, which he said was “very close to *amphissa Felder* from Ambon”, comparing the ♀ to *aratus* from Ambon. Later that year, de Niceville (1891) placed *masu* as a synonym of *aratus*, without explanation.

Dissection of ♂ GP of “*masu*” from Sumba (Pl. 8, ♂ genitalia Fig. 245) and Flores (specimen and GP in coll. S. Schröder) shows them both to be typical *aratus*. We have compared a series of specimens of “*aratus masu*” with nominotypical *aratus* from Ambon and Seram and consider they warrant recognition as a distinct subspecies (see Pl. 5), effectively restricting the range of nominotypical *aratus* to central Maluku and Obi (see below). The BMNH has typical “*aratus masu*” specimens from Sumba (Pl. 5, Figs. 153–154), Sumbawa, Flores and Adonara; and S. Schröder has a specimen from Lomblen which is also of the *masu* phenotype.

Specimens of *J. aratus* from Alor appear intermediate between subspecies *masu* and *samueli* ssp. n. (see below), which occurs from Timor eastwards as far as Babar. Since examination of the genitalia of the *sestus* type shows this to be a subspecies of *aratus* and not *aetherialis* (see above), we conclude that only *J. aratus* occurs on the Lesser Sunda Islands, extending eastwards to the Timor and probably genitalia dissection to establish whether they are *aratus* or *aetherialis*.”

The BMNH has specimens from Seram Laut (Pl. 5: ♂ Fig. 143; ♀ Fig. 144), the Gorong Islands (Pl. 5: ♂ Fig. 145) and the Watubela Islands (Pl. 5: ♀ Fig. 146). We have been unable to obtain specimens for genitalic dissection but as can be clearly seen from the illustrations on Pl. 5 they are phenotypically indistinguishable from nominotypical *aratus*, and distinct from nominotypical *aetherialis*. They have the duller and whiter upper ground colour typical of nominotypical *aratus* compared to the more lustrous blue of nominotypical *aetherialis*.

As might be predicted the same taxon occurs on Geser and Seram Laut as on Seram and it seems that *aratus* occurs through the Gorong Islands at least as far southeast as the Watubela Islands. Although we have not seen any *aratus/aetherialis* from the Tayandu group, these islands almost always share the same taxa with the Kei Islands (a notable exception being the presence of *Cethosia lamarkii Godart*, 1819 on the Tayandu Islands, but not on Kei), and so consider that if either is present there, it is highly likely to be *aetherialis*. Therefore, from Seram to Kei the *aratus/aetherialis* species boundary is likely to lie between the Watubela and Tayandu Island groups. We have found no island on which both species occur, and expect the two species to be allopatric.

To the east of northern Maluku it has not previously been clear where the boundary between the two species lies. *J. aratus* occurs in northern Maluku and Misool, whereas *aetherialis* is present on Waigeo, Batanta and mainland New Guinea. We have examined the genitalia of one of a short series of ♀♂ captured in ix. 1991 on Kofiau Island (Pl. 8, genitalia Fig. 252) and confirm that this population is *aetherialis*. We have not seen any *aratus/aetherialis* specimens from Salawati but with *aetherialis* confirmed as occurring on Kofiau, Waigeo, Batanta and the New Guinea mainland, it is very likely that the population there will also be found to be *aetherialis*.

As discussed in detail below, we have dissected the genitalia of a ♀ from Gebe, identifying it as *aratus*. Travelling east from northern Maluku, Gebe marks the eastern end of the range of *aratus*. We believe *aratus* and *aetherialis* are allopatric species — the boundary between them is illustrated on Map 3.

In summary we consider:

- *J. anops* (see Pl. 5, Figs. 167–168) is a distinct species endemic to Sumba and not a subspecies of *aetherialis* (or *aratus*).
- *J. aratus* and *J. aetherialis* are almost certainly allopatric with the boundary between them as discussed and illustrated (Map 3, red).
- The taxon *masu* Doherty is a distinct subspecies of *aratus* occurring on the Lesser Sunda Islands of Sumba, Sumbawa, Flores, Adonara and Lomblen. It is not a synonym of nominotypical *aratus*.
- The taxon *sestus* is a subspecies of *aratus*, not of *aetherialis*.

© 2014 by Entomologischer Verein Apollo e. V., Frankfurt am Main
The population from Ambelau (see later) may represent a distinct subspecies of *J. a. batjanensis*; cilia black; fw. ups. uniform deep grey-brown; an adjacent terminal and subterminal band of similar colouring, each approximately 1 mm wide, widening to 2 mm at inner margin; a postmedian band subparallel to termen approximately 2 mm wide, completely offset towards tornus at vein 3 from costa, edged with white; an additional band 1.5 mm wide at end of cell, edged white. Hw. ups. very pale blue-white; termen very narrowly grey-brown (hairline width); a row of very faint subterminal grey-brown spots between veins; prominent spots in spaces 1b and 2; the latter irregular and wavy, subparallel to termen; cilia black; hw. ups. uniform grey-brown; adjacent terminal and subterminal bands of similar colouring, each approximately 1 mm wide, arrow-shaped inwards and sharply edged with white; terminal band replaced with large black, rounded tornal spot approximately 1.5 mm diameter in space 2 heavily rimmed with orange except along termen, where it is faintly marked with pale iridescent blue, orange is present on inner side of subterminal band between tornus and halfway between veins 3 and 4; between vein 6 and costa the subterminal band is replaced with large dark spots approximately 1.5 to 2 mm in diameter; a postmedian band similar to ground colour, approximately 1 mm wide, edged white and distinctly stepped at veins; a band 1.5 mm wide at end of cell, edged white; an additional irregular band 1 mm wide at base, extending from vein 1b to vein 8.

\[\varphi \text{ (Pl. 4, Figs. 131–132): FwL 16 mm, antl. 7 mm. Fw. ups. with ground colour very light grey, termen broadly grey-brown (overall, ups. is much darker than that of } \]
a. batjanensis), up to 7 mm at tornus and apex and 4 mm along centre of termen; cilia grey-brown; fw. uns. uniform grey-brown; an adjacent terminal and subterminal band of similar colouring and each approximately 1 mm wide, very broadly edged with white and increasing in width towards inner margin; a postmedian band subparallel to termen approximately 1.5 mm wide, completely offset towards base at vein 3 from costa, edged with white; an additional band 1.5 mm wide at end of cell, edged white.

Hw. ups. pale blue-grey; termen very broadly grey-brown, occupying at least three quarters of the wing area; a row of conspicuous cusp-shaped subterminal pale grey spots between veins, with that between veins 2 and 3 more prominent; cilia light grey, darkened along veins; hw. uns. uniform grey-brown; an adjacent terminal and subterminal band of similar colouring and each approximately 1 mm wide, cusp-shaped inwardly and sharply edged with white; terminal band replaced with large black, rounded tornal spot approximately 1.5 mm diameter in space 2, heavily rimmed with orange except along termen, where it is faintly marked with pale iridescent blue; an additional small black spot at tornus, similarly bordered with orange and blue; a postmedian band similar to ground colour, approximately 1 mm wide, edged white and distinctly stepped at vein 3 and at vein 7; a band 1.5 mm wide at end of cell, edged white; an additional irregular band 1 mm wide at base, extending from vein 1b to vein 8.

Jamides aratus batjanensis (Röber, 1886)

(Pl. 4, Fig. 133: ♀ Bacan; Fig. 134: ♀ Bacan; Fig. 135: ♀ Halmahera; Fig. 136: ♀ Halmahera.)

Plebeius batjanensis: Röber (1886: 54, pl. 4, fig. 10); TL: Bacan.

= *Plebeius lucianus*: Röber (1886: 54, pl. 4, fig. 11); TL: Bacan; see note 1.

= *Lampides aetherialis vuniya*: Fruehstorfer (1916: 23), syn. n.; see note 2; TL: Halmahera.

Range: Halmahera, Bacan (BMNH) and new island records from Ternate (1 ♀, 1. ii. 1985), Kasiruta (1 ♀, iii. 2003) and Mandoli (2 ♀♂, 1 ♀, Waya, 11. xi. 2006) (CARR).

Note 1: Röber (1886) described lucianus immediately after batjanensis, saying it was found on Aru and Bacan. The taxa were synonymised by Takano (1989: 50), who designated LTs for both and wrote: "The Sts of lucianus found in SMT [= Staatliches Museum für Tierkunde, Dresden, Germany; now Senckenberg Naturhistorische Sammlungen Dresden] include a ♂ from 'Batjan', which is figured in the original description, and a ♀ from Aru though both are the same species as aratus. The locality of lucianus was given as 'Aru Is.', but Röntgen figured a ♀ from 'Batjan', and only attached a name label to that specimen." D'Arrêta (1971) mistakenly assigned lucianus to *J. celeno*, stating that it occurred in Aru.

Note 2: Having examined long series of both Bacan and Halmahera specimens of *J. aratus* we can see no consistent differences between them. In addition we have compared a series of Bacan ♀♀ and ♀♂ with the ♀ and ♂ vuniya types from Halmahera in the BMNH. We have also compared a series of Halmahera ♀♀ with the photograph of the ♀ LT of *batjanensis* (designated by Takano 1989: 65) from Bacan and found no consistent differences, though it should be noted that the LT has an unusually restricted hw. darkened area (the "almost black hw." of Fruehstorfer, see below). Fruehstorfer (1916) separated vuniya from *batjanensis* on the basis of the ♀ vuniya having a broader fw. margin than *batjanensis*, together with an almost black hw.; this is not — aside from the LT — supported by our own observations.

Jamides aratus minthe (Fruehstorfer, 1916)

(Pl. 5, Fig. 137: ♂ Sula; Fig. 138: ♀ Sanana.)

Lampides aratus minthe: Fruehstorfer (1916: 22); TL: Sula Islands.

Range: restricted to the Sula Islands (Mangole, Taliabu and Sana) (Vane-Wright & de Jong 2003).

Jamides aratus roberti ssp. n.

(Pl. 5, Figs. 139-140: ♀ HT, Gebe; Pl. 8: ♂ HT, Gebe, genitalia, Fig. 254.)

Holotype ♀: Indonesia, Maluku, Gebe, x. 2010 (BMNH).

Paratype: 1 ♀, same data as HT (CARR).

Etymology: named for a friend of the third author, the late Robert Smith, Sydney, Australia, who died some years ago of leukemia.

Range: Gebe Island.

Note: We have examined 2 ♀♀ from Gebe which show consistent markings. Phenotypically they appear mid-way between *aratus batjanensis* to the west and *aetherialis caeruleina* to the east but clearly differ from both. Unfortunately we have not been able to examine any ♂♂ but we have dissected the genitalia of one of the ♀♀ and compared them to known *aratus* and *aetherialis* ♀ genitalia (see below) and find that they match *aratus* (Pl. 8, ♀♀ genitalia, Figs. 233-254). We consider the Gebe population to be a distinct subspecies of *aratus* which we describe here.

Diagnosis

♀ (Pl. 5, Figs. 139-140): Fwl. 16.5 mm, antl. 7.5 mm (HT).

Head grey; labial palpus grey-cream, eye ringed with grey-cream; antenna black, ringed with white. Thorax and legs grey-cream. Abdomen dark grey dorsally, ventrally grey-cream.

Fw. ups. with ground colour very pale blue-grey, termen broadly black (significantly narrower than that of *J. a. batjanensis* which is predominately grey above, while *J. a. roberti* is mostly blue-grey) up to 3.5 mm at tornus and apex and 2.5 mm along centre of termen and extending some distance along veins; cilia deep grey; fw. uns. uniform grey-brown; an adjacent terminal and subterminal band of similar colouring and each approximately 1 mm wide, very broadly edged with white and increasing in width towards inner margin (much broader than in *J. a. batjanensis*); a postmedian band subparallel to termen approximately 1.5 mm wide, completely offset towards base at vein 3 from costa, edged with white; an additional band 1.5 mm wide at end of cell, edged white.

Hw. ups. very light blue-grey; termen broadly grey-brown (but much narrower than in *J. a. batjanensis*); a row of prominent cusp-shaped subterminal pale grey spots between veins, with that in space 2 more prominent (subterminal spots in *J. a. batjanensis* are diffuse, and in space 6 absent); cilia light grey, darkened along veins; hw. uns. uniform grey-brown; an adjacent terminal and subterminal band of similar colouring, each approximately 1 mm wide, cusp-shaped inwardly and sharply edged with white; subapical spots in spaces 6
and 7 are pronounced and rectangular-shaped (rectangular and rounded basally in *J. a. batjanensis*); terminal band replaced with large black, rounded tornal spot approximately 1.5 mm diameter in space 2, heavily rimmed with orange except along termen, where it is faintly marked with pale iridescent blue; an additional small black spot at tornus and another in space 3, similarly bordered with orange and blue; postmedian band similar to ground colour, approximately 1 mm wide, edged white and distinctly stepped at vein 3 and at vein 7; a band 1.5 mm wide at end of cell, edged white; an additional irregular band 1 mm wide at base, extending from vein 1b to vein 8.

Unknown

♀ genitalia remarks: Hirowatari (1986) made a study on *Jamides* from the Malay Peninsula based substantially on the ♀ genitalia. He noted that the ♀ genitalia in *Jamides* are “very different from species to species and may be available for not only identifying the species but also considering the natural grouping of the latter”. His figs. 6H and 6J depict the caudal end of the ductus bursae and genital plate of *J. aratus adana* Drury, 1873. They show that the ductus bursae is strongly waisted near the junction with the ductus seminals. Posterior to this narrowing, there are two relatively large, anteriorly-angled, laterally disposed “arrowhead” processes.

Further in the posterior direction the ductus is enclosed by a long tapering sheath which in turns gives way to the spatulate apex. These characteristics are easily identifiable in the preparation of ♀ aratus from Ambon (Pl. 5, Fig. 253). They are also apparent in a specimen of *J. aratus lunata* from Sulawesi (CASS).

Hirowatari did not include *J. aetherialis* in his study because of its more easterly distribution. Genital preparations from 2 ♀♀ of *J. aetherialis* from Kei are shown in Fig. 255. Each shows a broad ductus bursae with little or no narrowing. The “arrowhead” processes are smaller and point laterally, while the posterior sheath is much shorter than in *aratus*, Fig. 254 shows the ductus bursae and papilla analis of the *Jamides ♀* from Gebe. The latter shows no significant variation from that illustrated by Hirowatari for *J. aratus adana*, while the former is waisted and has a long tapering posterior sheath as shown by Hirowatari and the Ambon ♀ of Fig. 253, confirming the Gebe specimen as a subspecies of *aratus*.

Jamides aratus aratus (Stoll, 1781)

(Pl. 5, Fig. 141: ♀ Ambon; Fig. 142: ♀ Seram; Fig. 143: ♀ Seram Laut; Fig. 144: ♀ Seram Laut; Fig. 145: ♀ Gorong Islands; Fig. 146: ♀ Watubela Islands; Fig. 147: ♂ Obi; Fig. 148: ♀ Obi; Pl. 8, Fig. 249: ♀ Ambon, genitalia; Fig. 253: ♀ Ambon, genitalia.)

Papilio aratus Stoll. (1781) [in Cramer & Stoll]: 144, pl. 395, figs. A (D); TL: Ambon.

Range: Obi (see note 1), Seram, Ambon, Saparua (see note 2), Nusa Laut, Geser, Seram Laut, Gorong Islands (Gorong [labelled Goram Laut] & Manawoka [labelled Manovolka]), Watubela Islands (Kasiui [labelled Kisooei]), Misool (7 ♀♀ and 8 ♂♂ are clearly nominotypical) (BMNH) and new island records from Buru, Ambon Laut; Fig. 144: ♀ Seram Laut; Fig. 145: ♀ Gorong Islands; Fig. 146: ♀ Watubela Islands; Fig. 147: ♂ Obi; Fig. 148: ♀ Obi; Pl. 8, Fig. 249: ♀ Ambon, genitalia; Fig. 253: ♀ Ambon, genitalia.)

1. **Note:** D’Abera (1971) recorded the range as “Ambon, Serang, Sapania”. We suspect “Sapania” refers to Saparua.

Jamides aratus ssp.?

(Pl. 5, Fig. 155: ♀ Ambelu; Fig. 156: ♀ Ambelu.)

Range: Ambelu.

1. **Note:** We have examined 3 ♀♀ and 1 ♀ from Ambelu Island (xiii. 2012). The ♀♀ are indistinguishable from nominotypical *aratus* but the one Ambelu ♀ we have examined has significantly broader ups. dark borders than nominotypical *aratus*, which occurs on most other islands of central Maluku, including Buru only 17 km or so distant. This specimen more closely resembles the ♀♀ of *J. aratus batjanensis* although the ground colour of the Ambelu ♀ is noticeably bluer (Pl. 5, Fig. 156). This population probably represents a distinct subspecies, but we await examination of further ♀♀ to confirm this.

2. **Note:** Despite its proximity to Buru there are some species and subspecies found on Ambelu that do not occur on Buru, e.g., *Hebomia glaucippe kazukoue Samusawa*, 1991. The species *Hebomia glaucippe Linnaeus*, 1758 is absent altogether from Buru and is replaced there by *Hebomia leucippe Leuckartia Wallace*, 1863.
J. aratus samueli ssp. n.

(Pl. 5, Figs. 163–164: ♂ HT, Damar; Figs. 165–166: ♀ PT, Damar; Pl. 8, Fig. 250: ♂ Moa, genitalia.)

Paratypes (1 ♂, 2 ♀): 1 ♂, as HT except 2. xi. [18]98; 1 ♀, as HT except 1. xi. [18]98; 1 ♀, as HT except 9. xi. [18]98 (all BMNH).

Etymology: named for Samuel, son of the fourth author.

Range: Timor (see notes following J. aratus seestus, above) and the Southwest Maluku Islands — Wetar, Roma, Moa, Damar, Wetan, Babar.

Note: Dissection of a ♂ from Moa (Kaiwatu, ii. 1998, CARR; Pl. 8, genitalia Fig. 250) confirms this to be a subspecies of aratus. This new taxon occurs between the aratus taxa maus to the west and seestus to the east. The ♂ most obviously differs from both in having considerably wider ups. marginal black borders.

Diagnosis

♂ (Pl. 5, Figs. 163–164, genitalia Fig. 250): Fwl. 16 mm, antr. 7 mm (HT). Head grey; labial palpus grey-cream, eye ringed with grey-cream; antenna black, ringed with white. Thorax and legs grey-cream. Abdomen blue-white dorsally, cream ventrally.

Fw. ups. with ground colour very pale blue-white, termen narrowly black, approximately 1 mm in width (much broader than terminal border of J. a. seestus); cilia black; fw. uns. uniform deep grey-brown; adjacent terminal and subterminal bands of similar colouring, each approximately 1 mm wide, widening to 2 mm at inner margin; a postmedian band subparallel to termen approximately 2 mm wide, completely offset towards tornus at vein 3 from costa, edged with white (narrower white edge than in J. a. seestus); an additional band 1.5 mm wide at end of cell, edged white.

Hw. ups. pale blue-white; termen very narrowly grey-brown (hairline width); a row of obscure subterminal grey-brown spots between veins; prominent spots in spaces 1b and 2, the latter irregular and wavy, subparallel to termen; a second row of subterminal grey-brown spots in spaces 1a, 1b and 2 (absent or vestigial in J. a. seestus); cilia black; hw. uns. uniform grey-brown; an adjacent terminal and subterminal band of similar colouring and each approximately 1 mm wide, arrow-shaped inwardly and sharply edged with white; terminal band replaced with large black, rounded tornal spot approximately 1.5 mm diameter in space 2, heavily rimmed with orange except along termen, where it is faintly marked with pale iridescent blue, orange is present on inner side of subterminal band between tornus and midway between veins 3 and 4; between vein 6 and costa the subterminal band is replaced with large dark spots approximately 1.5 to 2 mm in diameter; postmedian band similar to ground colour, approximately 1 mm wide, edged white and distinctly stepped at veins 3, 6 and 7, shifted greatly in a “V” shape towards termen in space 1b (not as exaggerated as in J. a. seestus); a band 1.5 mm wide at end of cell, edged white; an additional irregular band 1 mm wide at base, extending from vein 1b to vein 8.

♀ (Pl. 5, Figs. 165–166): As ♂, but fwl. 14 mm, antr. 6.5 mm. Fw. ups. with ground colour very pale grey, termen broadly grey-brown, up to 6 mm at tornus and apex and 2 mm along centre of termen; cilia grey-brown; uns. uniform grey-brown; adjacent terminal and subterminal bands of similar colouring, each approx. 1 mm wide, broadly edged with white and increasing in width towards inner margin; postmedian band subparallel to termen approx. 1.5 mm wide, completely offset towards base at vein 3 from costa, edged with white (narrower white edge than in J. a. seestus); an additional band 1.5 mm wide at end of cell, edged white.

Hw. ups. very pale blue-grey; costa broadly grey-brown above veins; two rows of conspicuous subterminal and
terminal pale grey spots, former cusp shaped, each between veins, that in space 2 prominent; cilia pale grey, darkened along veins; uns. like ♂.

Jamides aetherialis (Butler, 1884)

Lampides aetherialis butleri (1884: 195); TL: Kei.

Range: Kei, Aru and the New Guinea Region as far east as the Solomon Islands.

Note 1: As discussed previously, Sumba, Sumbawa and Timor have been erroneously included in the range of *J. aetherialis* (Map 3). We have examined 3 ♂♂ and 2 ♀♀ from Sumbawa that clearly differ from *caerulea* (see below) and we consider they represent an undescribed subspecies. However, as Sumbawa falls outside the boundary of Maluku we do not describe it here.

Two subspecies occur in Maluku.

Jamides aetherialis aetherialis (Butler, 1884)

(Pl. 6, Fig. 169: ♂ Kei; Fig. 170: ♀ Kei; Pl. 8: ♂ Kei, genitalia, Fig. 251; ♂ Kei, genitalia, Fig. 253.)

Lampides aetherialis butleri (1884: 195); TL: Kei.

Range: Kei Islands (Kei Basar and Kei Kecil) (BMNH).

Note: D’Abera (1971) mistakenly placed *aetherialis* as a subspecies of *aratus* and recorded the range as “Kai (Ewab) I.”.

Jamides aetherialis caerulea (Mathew, 1887)

(Pl. 6, Fig. 171: ♂ Aru; Fig. 172: ♀ Aru.)

Lampides caerulea Mathew (1887: 46); TL: Ugi, Solomon Islands.

Range: Aru, Waigeo (dissected ♂ genitalia confirms *aetherialis*), Batanta, Biak, New Guinea mainland, outlying islands in PNG, the Bismarcks and the Solomon Islands. New Aru Island records from Wambar (1 ♂, Dobo, v. 1997) and Maikoor (1 ♂, Farajuring, 22. vln. 1999) (CARR). K. Nagai (pers. comm.) also found the species on Kobroor and Trangan.

Notes: Parsons (1998) synonymised *cyta* fruhstorferi, 1916 (TL: Triton Bay, Fak-Fak, Schneegebirge) and *davanasi* fruhstorferi, 1916 (TL: Dampier) with *caerulea*, giving the extended distribution of *caerulea* as above. He did not include Aru. D’Abera (1971) considered *caerulea* and *aetherialis* as subspecies of *aratus*, and also made no mention of Aru. Fruhstorfer (1916) noted the occurrence of *caerulea* on Aru and correctly believed that it belonged to *aetherialis* and not *aratus* with which Rücker had placed it. As already indicated, Röber (1886) described *lucianus*, giving the locality as the Aru Islands and Bacoan. Takanami (1989: 48, 63) synonymised *lucianus* with *batjanensis* to which Aru material actually bears little resemblance. Examination of specimens from Aru suggests they are clearly referable to *caerulea*.

The *aleuas* subgroup

Hirowatari (1992) included seven species within this subgroup; three occur in Maluku.

Jamides aleuas (C. & R. Felder, 1865)

Lycaena aleuas: C. & R. Felder (1865: 268, pl. 33, figs. 15, 16); TL: Misool.

There are several subspecies, one of which occurs in Maluku.

Jamides aleuas sarsina (Fruhstorfer, 1916)

(Pl. 6, Fig. 173: ♂ Aru; Fig. 174: ♀ Aru, PT [“allotype”].)

Lampides aleuas sarsina fruhstorferi (1916: 31); TL: Aru.

Range: endemic to Aru (BMNH, unspecified islands); new Aru island records from Wambar (1 ♂, Dobo, v. 1997) and Trangan (2 ♂♂, Taberfane, iv. 1997) (CARR). K. Nagai (pers. comm.) reported the species on Maikoor, Kobroor and Wokam.

Note: Cassamy (2013: 140) designated and illustrated a ♂ LT of *sarsina* in NHMB.

Jamides philatus (Snellen, 1878)

Cupido philatus: snellen (1878: 21, pl. 1, fig. 5); TL: Sulawesi.

Three subspecies occur in Maluku.

Jamides philatus philatus (Snellen, 1878)

(Pl. 6, Fig. 175: ♂ Sanana; Fig. 176: ♀ Sanana.)

Cupido philatus: snellen (1878: 21, pl. 1, fig. 5); TL: Sulawesi.

Range: Sulawesi, Peleng and Sula Islands (Sanana) (BMNH, Van-Velde & de Jong 2003)

Jamides philatus emetallicus (Druece, 1895)

(Pl. 6, Fig. 177: ♂ Bacan; Fig. 178: ♀ Bacan.)

Lampides emetallicus druece (1895: 582, pl. 32, fig. 18); TL: Bacan.

Note: The occurrence on Obi of *f. philatus emetallicus* raises an interesting question. As already mentioned (see notes following *f. cyta megdora*, above), provenance of specimens bearing labels “Obi, ex J. WATERSTRADT 1904, ex OBERTHÜR Coll. Brit Mus. 1927-3” is highly questionable. In the case of *f. philatus emetallicus*, ♀♀ bearing non-WATERSTRADT Obi labels (2 ♀♀ “Laiwui, Obi, Sept. [1897], W. DOHERTY”); 1 ♂ “Obi, W.J.C. FROST, 1918”) confirm the presence of the species on Obi, but ♀♀ and the only “Obi” ♀ seen (which matches Bacan & Halmahera ♀♀), bear the suspect “WATERSTRADT” labels, and are considered quite likely to be from Bacan. ♀♀ from Bacan appear indistinguishable from those accepted as being from Obi. We have not seen any confirmed Obi ♀♀ so the phenotype of ♀ *philatus* on Obi is unknown but for now, based on the similarity of ♀♀, we include Obi *philatus* here.

Jamides philatus stresemanni (Rothscheld, 1915)

(Pl. 6, Fig. 179: ♂ Gorong; Fig. 180: ♀ Gorong; Fig. 181: ♀ Buru; Fig. 182: ♀ Buru.)

Lampides stresemanni Rothscheld (1915: 137); TL: N. Seram.

Range: Buru (see note), Seram, Gorong Island (labelled Goram Laut) (BMNH) and Kelang (new island record: 1 ♂, xii. 2008, CARR).

Note: A series of *f. philatus* from Buru in the BMNH is associated with a drawer label reading “ssp. osiades Tox.”. We believe this is an unpublished Toxopeus manuscript name (= nomen nudum). We consider they represent an undescribed species and material from Seram and Gorong and ascribe the Buru population to subspecies *stresemanni*. © 2014 by Entomologischer Verein Apollo e.V., Frankfurt am Main
demetrias
Sulawesi. The BMNH contains a series of specimens from San
de
Fruhs	two “other pro
from Sulawesi and listed
argentiferus
Fruhstorfer (1916) introduced subspecies
flies on Ba
the TL as “Sula Islands?”. He stated that the locality was ques
Notes:
D’Abrera (1971) recorded
count Obi for reasons discussed below — see note 4 following no
Range:
Philippines (including Palawan), the Sulawesi Region,
J. schatzi schatzi
Note 1:
and Kasiruta (1 ♂, 1 ♀, xi. 2007) (CARR).
Range:
and Kasiruta (1 ♂, 1 ♀, xi. 2007) (CARR).
and Kasiruta (1 ♂, 1 ♀, xi. 2007) (CARR).
Range:
J. alecto batjana
Note 2:
from north
schildi
D’Abrera”. Takanami (1990) wrongly considered Hata
name when describing
aritai
Maluku, we have also examined one ♂
Note 1:
In addition to the specimens of
aritai
Maluku, we have also examined one ♂
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Note 1:
This description appeared in the 4th quarterly edition of
aritai
Hata
maluku.
Jamides aritai sabina ssp. *n.*

(Pl. 6, Fig. 191: ♀ HT, Seram; Fig. 192: ♂ PT, Seram.)

Paratypes: 6 ♀♀, 4 ♂♂, as HT (all BMNH).

Etymology: named for Sabina, the wife of the fourth author.

Range: central Maluku (Buru, Seram, Ambon).

Note: As discussed earlier, specimens from central Maluku were illustrated by D’Aubreia (1971) and given the name "rothschildi" but not described. Hayashi noted a number of differences between his Palawan aritai HT and Seram "rothschildi." In particular, referring to an observation of T. G. Howarth, he noted: "uns. fw. post-discal bar in space 3 of the specimens from Ceram [Seram] disjunct or mid-way between those in space 4, but this new subspecies [aritai] has it joined to inner bar." We have compared a series of central Maluku specimens with the type of aritai and other Philippine specimens (as well as with a series of aritai specimens from Sulawesi) and concur that this is a significant and consistent difference. Hayashi also described some additional distinguishing characters for aritai but we have not found these to be consistent.

In addition to different marking on the uns., 5 ♀♀ we have examined from central Maluku lack the fine dark border extending along the costa to the base of the ups. fw. present in a Philippine ♀ from Leyte photographed by Takaham & Shiki (2014) and in three Sulawesi ♀♀ (CASS). We therefore consider the central Maluku population to represent a distinct subspecies which we describe below.

Diagnosis

♀ (Pl. 6, Fig. 191): Fw. 17 mm, anat. 9 mm (HT). Head grey; labial palpus grey-green, eye ringed with grey-green; antenna black, ringed with white. Thorax dorsally grey, with blue scales, thorax beneath and legs grey-green. Abdomen dorsally blue-grey, beneath grey-green.

Fw. ups. ground colour sky blue, deeper blue nearer to apex, termen black, approximately 1 mm in width but increasing to 2 mm at apex; cilia black; fw. uns. uniform deep grey-brown (darker than in nominotypical aritai); an adjacent terminal and subterminal band of similar colouring and each approximately 1 mm wide, widening to 2 mm at inner margin; a postmedian band subparallel to termen approximately 2 mm wide, partly offset towards tornus at vein 3 from costa (completely offset in nominotypical aritai) such that the terminal edge of the band occupying space 3 lies midway to inner margin, where it is faintly marked with pale iridescent blue, orange is also marginally present on inner side of subterminal band between tornus and midway between veins 3 and 4; postmedian band similar to ground colour, approx. 1 mm wide, edged white and distinctly stepped at veins; a band 1.5 mm wide at end of cell, edged white; an additional irregular band 1 mm wide at base, extending from veins 1b to 8, offset at veins.

♂ (Pl. 6, Fig. 192): As ♀, but fw. 15.5 mm, antenna broken and therefore not measured.

Fw. ups., including costa, with ground colour very light sky blue (costa broadly brown-black in nominotypical aritai), termen broadly brown-black, up to 5.5 mm at tornus and apex and 2 mm along centre of termen; cilia grey-brown; fw. uns. uniform deep grey-brown (darker than in nominotypical aritai); adjacent terminal and subterminal bands of similar colouring, each approximately 1 mm wide, very broadly edged with white and increasing in width towards inner margin; postmedian band subparallel to termen approximately 1.5 mm wide, partly offset towards tornus at vein 3 from costa (completely offset in nominotypical aritai) such that the terminal edge of the band occupying space 3 lies midway to inner margin, where it is faintly marked with pale iridescent blue, orange is also marginally present on inner side of subterminal band between tornus and midway between veins 3 and 4; postmedian band similar to ground colour, approx. 1 mm wide, distinctly stepped at veins; a band 1.5 mm wide at end of cell, edged white; an additional irregular band 1 mm wide at base, extending from veins 1b to 8, offset at veins.

Diagnosis

between the same band in space 4, edged with white; an additional band 1.5 mm wide at end of cell, edged white. Hw. ups. very pale sky blue; termen broadly grey-brown; row of conspicuous cusp-shaped subterminal pale blue-white spots, each between veins, that near tornus more prominent; cilia light grey; hw. uns. uniform deep grey-brown (darker than in nominotypical arita); adjacent terminal and subterminal bands of similar colouring, each approximately 1 mm wide, sharply edged with white; terminal band replaced with large black, rounded tornal spot approximately 1.5 mm diameter in space 2, heavily rimmed with orange except along termen, where it is faintly marked with pale iridescent blue; additional small black spot at tornus, similarly bordered with orange and blue; postmedian band similar to ground colour, approximately 1 mm wide, edged white and distinctly stepped at veins 3, 6 and 7; a band 1.5 mm wide at end of cell, edged white; additional irregular band 1 mm wide at base, extending from vein 1b to vein 8, offset at veins.

Jamides pseudosias (Rothschild, 1915)
Lampides pseudosias: Rothschild (1915: 138); TL: Misool.
Range: Borneo (1 ♂, Sandakan; 1 ♂, Sarawak; BMNH), Sulawesi, Bacan, Halmahera, Seram, Obi, Misool, mainland New Guinea and certain outlying islands in PNG (Parsons 1998).

Jamides pseudosias pseudosias (Rothschild, 1915)
(Pl. 6, Figs. 193–194: ♀, HT [by monotypy] pseudosias, Misool; Figs. 195–196: ♂, Obi, HT [by monotypy] saunda; Fig. 197: ♂ Seram; Fig. 198: ♀ Seram; Fig. 199: ♂ Halmahera; Fig. 200: ♀ Halmahera; Pl. 7, Fig. 201: ♂ Obi; Figs. 202–203: ♀, HT [by monotypy] sanaya, Obi; Fig. 204: ♀ Bacan.)

Lampides pseudosias: Rothschild (1915: 138); TL: Misool.
= Lampides nemea sanaya: Fruhstorfer (1916: 29), syn. n.; see notes 1–3; TL: Obi Island.
= Lampides kondulana sanuda: Fruhstorfer (1916: 11); syn. n.; see note 4; TL: Obi Island.

Note 1: Rothschild described pseudosias from a solitary ♂ from Misool. We have examined this specimen and found it to be indistinguishable from a ♂ from Obi and a series of 23 ♂♂ from Seram. We have also compared Fruhstorfer’s ♂ sanaya HT from Obi with a series of 15 ♀♀ from central Seram in the BMNH and can see no consistent differences.

Note 2: 6 ♂♂ from Halmahera in the BMNH conform to the one Obi and 23 Seram ♂♂ examined. The only Halmahera ♂ (Pl. 6, Fig. 200) in the BMNH is much darker than the Obi ♂ sanaya HT and the series of 15 (“blue form”) Seram ♂♂. The only ♂ from Bacan in the BMNH (Pl. 7, Fig. 204) is also of the paler, “blue form”. We have also seen a “dark form” ♀ from Bacan (Babang, 20. xii. 1990) similar to the Halmahera ♀, ♀♀, at least on Bacan, appear to be dimorphic. No intermediate forms have been seen.

Note 3: Fruhstorfer compared sanaya to echeilea, saying: “Hw. submarginal band much less developed than in echeilea.” However, we note that the width of the dark borders of both fw. and hw. of northern Maluku ♀♀ vary significantly. It is possible that echeilea is synonymous with pseudosias, but we have not been able to examine sufficient material to confirm this.

Note 4: Fruhstorfer described sanuda as a subspecies of [Jamides] kondulana Felder, 1862 from Obi. Riley & Corbet (1938) considered the taxon kondulana a subspecies of aleco found on the Nicobar Islands, and this view appears to be generally accepted. D’A&reea (1977) and Bridges (1988) listed saunda as a subspecies of elpis Godart, 1824 (TL: Java). We have examined the sanuda and pseudosias ♀ HTs at the BMNH (Pl. 6, Figs. 193–196) and can see no significant differences between them, beyond the fact that the sanuda HT is smaller. There is one further small ♂ from Obi labelled saunda which also conforms to this phenotype, and we consider sanuda to be a junior synonym of pseudosias, as does Y. Takamani (pers. comm.).

Jamides pseudosias echeilea (Fruhstorfer, 1916)
(Pl. 7, Fig. 205: ♂ Taliabu.)

Lampides nemea echeilea: Fruhstorfer (1916: 29); TL: North Sulawesi. — For spelling, see Note 1.

Range: Sulawesi (Yane-Wright & de Jong 2003) and the Sula islands (new island record: Taliabu, 1 ♂, t. 2005, CARR).

Note 1: The name first appeared in Fruhstorfer’s paper with the spelling “echilea”, an obvious typographical error; it was spelled “echeilea” in the following paragraph, and thereafter. It is noted that Bridges (1988) used the spelling “echilea”.

Note 2: We have only seen 1 ♂ from Taliabu, which is indistinguishable from echeilea from Sulawesi. However, ♀♀ of nominotypical pseudosias andssp. echeilea appear inseparable. We have examined 6 ♀♀ from Sulawesi (2 at BMNH, 4 CASS); all have consistent markings and are very similar to the dark form of pseudosias ♀♀ from northern Maluku. It is possible that echeilea and pseudosias are synonymous, but without access to further material an objective assessment is difficult. We therefore provisionally include the Taliabu subpopulation with echeilea, largely for biographical reasons.

Jamides halus Takanami, 1994
Jamides halus: Takanami (1994: 8, figs. 5–8, 11); TL: Sulawesi.
Range: South and Central Sulawesi (type series); Buru (new record).

Jamides halus carnegii ssp. n.
(Pl. 7, Figs. 206–207: ♀ HT, Buru; Fig. 208: ♀ PT, Buru; Pl. 8, Fig. 248: ♂ PT, genitalia.)
= “Lampides nemea Felder” sensu Holland (1900: 76), see Note 1.

Holotype ♂: Indonesia, “Bourou” [Buru], W. Doherty, Holland Collection, CMNH.
Paratypes (1 ♂, 1 ♀): 1 ♂, as holotype (CMNH). 1 ♀, Buru, iv. 2002 (CARR).
Etymology: Named after the Carnegie Museum, Pittsburgh.
Range: Buru.

Diagnosis
♂ (Pl. 7, Figs. 206–207): Fwl. 16 mm, antl. 7.5 mm. Ups. of both wings pale sky blue, lighter in colour and with less sheen than the nominotypical subspecies. The black margins on the fw. termen much more distinct below vein 5 and increasing to 1.5 mm at the tornus. Dark brown shading in the costal region of space 12 extending basally anterior to the cell (absent in nominotypical halus). Dark marginal and submarginal striae on the hw. as in nominotypical halus. Underside ground colour with a slight reddish tint compared to nominotypical halus, although this may vary slightly between individuals. Striae on both wings as in the nominotypical subspe-
cies, but the blackish submarginal spots and lunules are consistently somewhat narrower on both wings. Genitalia (Pl. 7: Fig. 248) are indistinguishable from those illustrated by Takanami (1994: 9, fig. 11) in his description of the species.

♀ (Pl. 7, Fig. 208): FwL 16 mm, antl. 7 mm. Ups. of both wings with extensive caerulean blue areas from the base to well beyond the cell. This contrasts strongly with the nominotypical ♀ which has only a pale grey-blue area in the basal halves of spaces 1 to 3 and the lower half of the cell, as well as a uniformly grey-brown hw. A black marginal region on the fw. increasing from 2 mm wide at the dorsum to 3 mm at the apex, this area inwardly shaded with black scales in spaces 5 to 7 and continued along the costa to the base, at a width of 1 mm or less. Hw. with similar marginal and submarginal striae and lunules to the ♀. On the uns., the ground colour is again richer than in the Sulawesi ♀, and there is the same narrowing of the darker row of submarginal lunules.

Note 1: The 2 ♂♂ in CMNH were listed by Holland (1900) as "Lampides nema", and Holland's simple annotation read: "It is with some doubt that I refer the two specimens before me to this species." This new description is the first record of Jamides alecto halus outside Sulawesi, reinforcing a faunistic link between Sulawesi and Central Maluku and suggesting that the species may occur more widely there.

Note 2: The differences between ♂♂ in Sulawesi and Buru are small but consistent. The ♀♀ — albeit only one from each location — show a marked difference in their ups. markings, the Sulawesi ♀ being overall much more brown coloured. This melanic characteristic is also notable in Sulawesi ♀♀ of J. celeno and J. fraxtilinea.

Jamides alecto (C. Felder, 1860)

Lycaena alecto: C. Felder (1860: 456); TL: Ambon.

Two subspecies occur in Maluku.

Jamides alecto batjana (Tofoupeus, 1930)

(Pl. 7, Fig. 209: ♂ Bacan; Fig. 210: ♀ Bacan.)

Lampides alecto (drom[icus]) batjana: Tofoupeus (1930: 140, pl. 3A, fig. 8); TL: Bacan (see note).
Range: Halmahera (one unusually small ♂), Ternate, Bacan (BMNH).

Notes: Tofoupeus (1930) appeared uncertain whether to attribute batjana to alecto (i.e., Jamides alecto) or to dromicus (i.e., Jamides elpis dromicus Frusti, 1910, from Taiwan). Biogeographically, the latter makes little sense.

D’Aubrera (1971) considered batjana a synonym of alecto. Although we have examined Tofoupeus’ (1930) monochrome photograph of the ♂ of batjana, we have been unable to locate the actual specimen. Many alecto subspecies have similarly marked ♂♂ and it is not possible to separate batjana from nominotypical alecto based only on this photograph. However, we have examined a series of specimens from Bacan in the BMNH, which appear consistent in their markings, and can identify clear differences from nominotypical alecto, particularly in the ♀♀ (Pl. 7, Figs. 209–224).

Both sexes of alecto from northern Maluku are generally larger than typical nominotypical alecto and the ♀ ups. fw. dark border is consistently wider, uniformly darker, and lacks the scalloping generally present in nominotypical ♀♀, though it is noted that the latter are prone to individual variation — see note 1, below, following J. alecto alecto.

Jamides alecto alecto (C. Felder, 1860)

(Pl. 7, Figs. 211–212: ♂ HT [see note 5] tertius, Seram; Fig. 213: ♂ Ambon; Figs. 214–215: ♀♀ Ambon; Fig. 216: ♀ Seram; Fig. 217: ♂ LT buruana, Buru; Figs. 218, 224: ♀♀ Buru; Fig. 219: ♂ Gorong Islands; Fig. 220: ♀ Kei; Fig. 221: ♀ Obi; Figs. 222–223: ♀♀ Obi.)

Lycaena alecto: C. Felder (1860: 456); TL: Ambon.
= Lampides buruana: Holland (1900: 76), syn. n.; see note 4; TL: Buru.
= Lampides tertius: Rothschild (1915: 138), syn. n.; see note 5; TL: Central Seram.

Range: Obi, Buru, Boano, Seram, Ambon, Geser, Gorong Islands (Goram Laut), Kei (Kei Kecil), Aru (BMNH), Haruku (new island record: 1 ♀, x. 2006, CARR).

Note 1: ♀♀ are quite variable particularly with respect to the extent and darkness of the ups. fw. subapical border, and both sexes vary widely in size, see Pl. 7. ♂♂ from these localities all match the phenotype of alecto specimens from Ambon, the type locality, and ♀♀, although variable, all lie within the range of variation exhibited by specimens from Ambon. We have seen 3 ♀♀ from Buru; two (one of which is illustrated on Pl. 7: Fig. 218) fall within the range of variation of Ambon alecto specimens. The third (Pl. 7: Fig. 224) appears to be an unusually small aberrant specimen with broad ups. fw. black marginal borders.

Note 2: There is only one specimen from Obi, a ♀, in the BMNH and we have also examined a second ♀ and 1 ♂ from that island (see on Pl. 7: Figs. 221–223). The ♂ has narrower ups. hw. submarginal markings than batjana and alecto (Pl. 7: Figs. 209–220) and the ♀♀ appear intermediate between the two taxa with regard to the extent of the ups. fw. dark apical markings. However, this is a variable feature in alecto and we provisionally place Obi material with nominotypical alecto.

Note 3: Aru is included in the range of nominotypical alecto on the basis of a solitary ♀ in the BMNH, labelled "Arow." The specimen is ex coll. BOSDVAUL and ex coll. ONERTHUS and is similar in appearance, although significantly larger, to a ♀ from Kei (Pl. 7: Fig. 220). “Arow” is historically an alternative name for “Aru”, and we have no reason to question the provenance of the specimen.

Note 4: Holland’s taxon Lampides buruana has been largely overlooked since its description in 1900. We located a series of ♂♂ in CMNH. Whilst Holland mentions 6 examples of each sex, there remain from his collection 9 ♂♂ and 7 ♀♀, all from Buru and with Holland collection labels. The ♂♂ are clearly the same as those of nominotypical alecto. The ♀♀ differ only in the extent of the brown subapical shading on the ups. of the hw. and we accord this no taxonomic significance. One of the adult ♂♂ also has a label handwritten by Holland stating “Burana sp. n.” and we designate that specimen as the lectotype: Lampides buruana Holland/ Lectotype Cassidy 2013 [typed]/ Buru DOHERTY [handwritten]/ Buruana sp. n. [handwritten]/ Holland Collection (typed). Its fwL is 17 mm. The remainder of this series (8 ♂♂, 7 ♀♀), all of which bear the same labels as the LT (with the exception of the handwritten Holland label) thereby automatically become PLTs. A PLT ♂♀ has been dissected and confirms that buruana is conspecific with J. alecto.

Note 5: In his description of Lampides tertius from Seram, Rothschild mistakenly presented the HT [by monotypy] as a ♀ and compared the specimen with the taxon masu, which we place as a subspecies of J. aratus. We have examined the HT (Pl. 7: Figs. 211–212) in the BMNH and can find no significant differences between it and typical ♂♂ of nominotypical alecto from Seram, Ambon and elsewhere in central Maluku, and we place tertius as a
The euchylas subgroup

Hirowatari (1992) included four species in this sub-group; two occur in Maluku.

Jamides euchylas (Hübner, 1819)

Papilio euchylas: Hübner (1819: 71); see note 2; TL: Ambon?
= Papilio hylas: Stoll (1781 [in Cramer & Stoll]: 142, pl. 363, figs. E, F); nom. praecoc., see note 1; TL: Ambon?
= Jamides gamblea: Swinhoe (1916: 209); see note 3; TL: Seram.
= Pepliphorus hylas ab. plumbeus: Rothschild (1915: 138); see note 4; TL: Seram.

Range: endemic to central Maluku.

Note 1: Frühstorfer (1915) stated that even though the name hylas Esper, 1777 (p. 45, pl. 45, fig. 3 – a synonym of Polyommatus dorylas [Denis & Schiffermüller, 1775]) had been transferred to Lycaena, he was replacing “Cramer’s hylas” with Hübner’s name euchylas, in order to avoid any confusion. Due to common usage we also consider it appropriate to continue using the name euchylas.

Note 2: Tite (1960a) observed: “Hübner (1819) used the name euchylas for hylas Cramer [= Stoll] and referred to Cramer’s figure; no mention of a locality is made by either author, but fortunately the figure is sufficiently accurate to leave no doubt that it represents the Ceram-Amboina race.”

Note 3: Tite (1960a) said that the types of gamblea are in the BMNH and pointed out that the ♀ HT is euchylas but the ♀ “allo-type” (= PT) is definitely coritus Guérin-Méneville (1831: pl. 18, fig. 3). The taxon coritus is one of the four similar species in the euchylas subgroup and occurs in the New Guinea region.

Note 4: Tite (1960a) observed that the unusual colour of the type of “ab. plumbeus” in the BMNH was the result of discolouration due to damp or chemical action.

Jamides euchylas mimetica Tite, 1960

(Pl. 7, Figs. 225–227: ♂ HT; Figs. 228–230: ♀ PT [both specimens labelled as “holotype”, see note].)

Jamides euchylas mimetica: Tite (1960a: 322, pl. 21, figs. 1–4, text-fig. 2); TL: Buru.

Range: Buru (BMNH), Ambelau (new island record: 19♂♂, 6♀♀, xi. 2012; CARR).

Note: Despite Tite’s inadvertent labelling of both ♀ and ♂ as “holotype”, his text clearly states the ♀ to be the HT and the ♂ to be the allo-type (= PT).

Jamides euchylas euchylas (Hübner, 1819)

(Pl. 7, Fig. 231: ♀ Seram; Fig. 232: ♂ Seram.)

Pepliphorus euchylas: Hübner (1819: 71); TL: Ambon?

Range: Seram, Ambon, Saparua and Gesar (BMNH) and new island records from Maniipa (1♂, 2♀♀, Tomalehu Barat, 19. ix. 1993), Kelaŋ (1♂, 2♀♀, vi. 2003; 1♂, xi. 2008) and Haruku (6♂♂, 4♀♀, vi. 2006) (CARR).

Jamides aruensis (Pagenstecher, 1884)

Cupido euchylas var. aruensis: Pagenstecher (1884: 190); TL: Aru Islands.

Range: Kei, Aru, Waigeo, Misool, Salawati and mainland New Guinea (apparently only south of the Central Divide) (Parsons 1998).

Note: This taxon should not be confused with its junior homonym Jamides aruensis Swinhoe, 1915, a synonym of aruanus Rücker, 1886 (see notes following Jamides cyta aruanus, above).

Three subspecies occur in Maluku.

Jamides arusensis umbriel (Frühstorfer 1915)

(Pl. 8, Figs. 233–234: ♂ Gebe; Figs. 235–236: ♀ Waigeo)

Lampides arusensis umbriel: Frühstorfer (1915: 141); TL: Waigeo.

Range: Waigeo, Gebe (BMNH).

Note: Tite (1960a) and D’Abrera (1971) noted the range as Waigeo, but there is 1♂ in the BMNH from Gebe, labelled: “Moluques, Ilé Gébi, Chasseurs Malais de Waterstraat, 1903”. This specimen is similar to Waigeo ♂♂ and is the only Gebe specimen we are aware of. This is the first published record of this subspecies within the Maluku area.

Jamides arusensis ariel (Frühstorfer, 1915)

(Pl. 8, Figs. 237–239: ♂ PT, Kei; Figs. 240–242: ♂ PT, Kei).

Lampides arusensis ariel: Frühstorfer (1915: 141); TL: Kei Islands.

= Lampides euchylas gloriel: Hulstaert (1924: 80); syn. n.; see note; TL: Kei.

Range: Kei (Kei Besar and Kei Kecil) (BMNH).

Note: Both Tite (1960a) and D’Abrera (1971) stated that gloriel is “probably” a synonym of ariel. We have not seen Hulstaert’s (1924) type but his description, as also noted by Tite (1960a), was too brief for the formation of any precise opinion. Hulstaert noted that the gloriel ♀ only differs by its greater size, and the only ♀ was described as “Grande, sa bordure noire tres mince, de 1 cm seulement” [large, the black border very narrow, about 1 cm only]. A black border of 1 cm is “hardly conceivable”, as Tite put it, and there must be some mistake. He may have meant 1 mm. There are no known instances of two subspecies of one species occurring within the Kei Islands and we conclude that these two taxa are synonymous.

© 2014 by Entomologischer Verein Apollo e. V., Frankfurt am Main
Jamides aruensis aruensis (Pagenstecher, 1884)
(Pl. 8, Fig. 243: ♂ Aru; Fig. 244: ♀ Aru.)
Cupido euchylas var. aruensis: Pagenstecher (1884: 190); TL: Aru Islands.

Range: endemic to the Aru Islands, Wamar, Kobroor (BMNH) and
new Aru records from Wokam (1 ♂, iii. 2000) and Maikoor (1 ♂, 2 ♀♀, Fatujuring, v.ii. 1999) (CARR). In addition, K. Nagai reports
(pers. comm.) the species from Trangan Island.

Taxon of uncertain status not included in checklist

Jamides species (BMNH)

based on specimen(s) at the BMNH, noting the range as
the Sula Islands and the identity uncertain. Vane-Wright
(pers. comm.) thinks this listing was based on a series of
specimens, possibly ex Rothschild and set aside by Titte.
We have been unable to find them in the BMNH and this
remains a mystery.

Further, in the BMNH main collection there is 1 ♂
typical of the euchylas subgroup which carries two labels:
“Sula Is. Wallace” and “Godman-Salvin Coll. 1908-168”.
Beneath is a handwritten note saying: “This looks very
like poliamus from New Guinea and is probably wrongly
labelled as coming from Sula I.”. We have compared
the specimen to a series of poliamus Fruhstorfer, 1915,
from Salawati, Misool and New Guinea and can see no
diapercible differences. We accept that this is likely to be
a mislabelled specimen.

Note: Titte (1960a) considered poliamus to be a subspecies of aru-
ensis Pagenstecher and this is now generally agreed.

Summarised checklist of Maluku Jamides taxa
(subspecies) and their ranges within Maluku

Jamides bochus phaidon — Sula Islands (Taliabu).

Jamides bochus toscius — northern Maluku (Morotai, Halmahera,
Ternate, Bacan, Mandioli).

Jamides bochus polassar stat. n. — Obi.

Jamides bochus astropies — central Maluku (Buru, Manipa,
Kelang, Seram, Kasa, Ambon, Haruku, Nusa Laut, Geser, Seram
Laut), Banda Islands (Banda Besar & Naira), Gorong Islands
(Goring), Watubela Islands, Tayandu Islands (Kur, Tayandu, Taam),
Kei Islands (Kei Kecil, Kei Besar), Aru Islands (Wamar).

Jamides bochus herdonius — Southwest Maluku (Wetar).

Jamides bochus grata — Tanimbar Islands (Larat, Yamdena).

Jamides seminiger riglath — Sula Islands (Mangole).

Jamides seminiger seminiger — northern Maluku (Morotai, Halmahera,
Bacan).

Jamides seminiger porphyris — Obi, central Maluku (Buru, Seram,
Ambon).

Jamides seminiger vanlihi — Watubela Islands (Tioor).

Jamides seminiger richardi ssp. n. — Kei Islands (Kei Kecil, Kei
Besar), Aru Islands.

Jamides amarauge amandae ssp. n. — Aru Islands (Maikoor,
Kobroor, Trangan).

Jamides cyta hellada — Sula Islands (Taliabu, Mangole, Sanana).

Jamides cyta amphissa — northern Maluku (Morotai, Halmahera,
Ternate, Kasiruta, Bacan, Mandioli).

Jamides cyta megdora — Obi.

Jamides cyta nemea — central Maluku (Seram, Ambon, Haruku,
Saparua), Gorong Islands (Manawoka).

= Plebeius callinicus Röber, syn. n.

Jamides cyta madara — Tayandu Islands (Kur), Kei Islands (Kei
Kecil).

Jamides cyta stevei ssp. n. — Tanimbar Islands (Yamdena).

Jamides cyta aruanus — Aru Islands (Wamar, Wokam, Maikoor,
Kobroor, Trangan).

= Jamides aruensis Swinhoe, syn. n.

Jamides titei titei — northern Maluku (Morotai, Halmahera).

Jamides titei pseudocyta — northern Maluku (Bacan, Mandioli).

Jamides celeno optimus — Sula Islands (Mangole, Sanana).

= Plebeius griseus Röber, syn. n.

= Lamprides griseus kalavariusRibbe, syn. n.

Jamides celeno sandya — northern Maluku (Morotai, Halmahera,
Ternate, Kasiruta, Bacan, Mandioli), Obi, Gebe, central Maluku
(Manipa, Seram, Ambon), Aru Islands (Wamar, Maikoor, Kobroor,
Trangan).

Jamides celeno sundara — central Maluku (Buru), Banda Islands
(Banda Besar, Naira), Watubela Islands (Tioor), Tayandu Islands
(Kur), Kei Islands (Kei Kecil, Kei Besar), Southwest Maluku (Wetar,
Kisar, Roma, Leti, Moa, Damar, Sermata, Weta, Babar), Tanimbar
Islands (Molu, Larat, Yamdena, Tandula, Selaru).

Jamides butleri — Sula Islands (Mangole), Obi, central Maluku
(Buru, Ambelau, Manipa, Seram, Ambon, Haruku, Saparua, Nusa
Laut), Gorong Islands (Gorong), Watubela Islands (Tioor).

Jamides pura spitiamenes — Obi.

Jamides fractilinea saraharum ssp. n. — Sula Islands (Mangole).

Jamides aratus minthe — Sula Islands (Taliabu, Mangole, Sanana).

Jamides aratus vignei ssp. n. — northern Maluku (Morotai).

Jamides aratus batjanensis — northern Maluku (Halmahera, Ter-
inate, Kasiruta, Bacan, Mandioli).

= Lamprides aetherialis vuniya Fruhstorfer, syn. n.

Jamides aratus roberti ssp. n. — Gebe.

Jamides aratus aratus — Obi, central Maluku (Buru, Kelang,
Seram, Ambon, Haruku, Saparua, Nusa Laut, Geser, Seram Laut),
Gorong Islands (Manawoka, Gorong), Watubela Islands (Kasiu).

Jamides aratus ezon — Banda Islands (Banda Besar, Naira).

Jamides aratus sestus — Tanimbar Islands (Molu, Larat, Yamdena,
Tandula, Selaru).

Jamides aratus samueli ssp. n. — Southwest Maluku (Wetar, Roma,
Moa, Damar, Weta, Babar).

Jamides aetherialis aetherialis — Kei Islands (Kei Kecil, Kei Besar).

Jamides aetherialis caerulina — Aru Islands (Wamar, Maikoor,
Kobroor, Trangan).

Jamides aleuas sarsina — Aru Islands (Wamar, Wokam, Maikoor,
Kobroor, Trangan).

Jamides philatus philatus — Sula Islands (Sanana).

Jamides philatus emetallus — northern Maluku (Morotai, Halmah-
era, Bacan, Mandioli), Obi

Jamides philatus stresemanni — central Maluku (Buru, Kelang,
Seram), Gorong Islands (Gorong).

Jamides festivus bangkuia — Sula Islands (Mangole).

Jamides schatzi schatzi — northern Maluku (Morotai, Halmahera,
Ternate, Kayoa, Kasiruta, Bacan).

Jamides aritai aritai — northern Maluku (Morotai).
Jamides aritai sabina ssp. n. — central Maluku (Buru, Seram, Ambon).

Jamides pseudosias echeleita — Sula Islands (Taliabu).

Jamides pseudosias pseudosias — northern Maluku (Halmahera, Bacan), Obi, central Maluku (Seram, Ambon).

= Lampides neeme sawaya Friisstofrer, syn. n.
= Lampides kondulana saunda Friisstofrer, syn. n.

Jamides halus carnegii ssp. n. — central Maluku (Buru).

Jamides alecto bajiana — northern Maluku (Halmahera, Ternate, Bacan).

Jamides alecto alecto — Obi, central Maluku (Buru, Boano, Seram, Ambon, Haruku, Geser), Gorong Islands (Gorong), Kei Islands (Kei Kecil), Aru Islands

= Lampides bursana Holland, syn. n.
= Lampides tertius Rosaeheld, syn. n.

Jamides eucharis mimetica — central Maluku (Buru, Ambelau).

Jamides eucharis eucharis — central Maluku (Manipa, Kelang, Seram, Ambon, Haruku, Saparua, Geser).

Jamides aruensis umbrie — Gebe.

Jamides aruensis ariell — Kei Islands (Kei Kecil, Kei Besar).

= Lampides eucharis gloriel Hulsbeek, syn. n.

Jamides aruensis aruensis — Aru Islands (Wamar, Wokam, Mai-koor, Kobroor, Trangan).

Extra-limital synonymy

Jamides aratus musu Doherty, 1891 — Sumba, Sumbawa.

Lamkides aratus pseudaratus Friisstofrer, 1915; “Obi”, syn. n.

Acknowledgements

The authors are grateful to the following: K. & M. Nagai supplied distribution data and specimens from the Aru and Banda Islands; Yusuke Takanami and Hiromi Detani gave insights and advice; Toshiya Hiroiwarai of Osaka University gave permission for reproduction of genitalia drawings; Daniel Burckhardt provided access to the collections and allowed genital dissection of some type specimens at the Naturhistorisches Museum Basel, Switzerland. We would also like to thank staff at the BMNH including Geoff Martin, Blanca Huertas, Martin Honey, John Chainey and David Lees for access to the collections and the BMNH for agreement to take and use photographs of specimens.

References

Plate 8, Figs. 233–244: Jamides aruensis. — Figs. 233–236: J. aruensis umbriel. Figs. 233–234: ♂, Gebe (1903, Chasseurs Malais de WATERSTRADT); 233: ups.; 234: uns. Figs. 235–236: ♀, Waigeo (H. FRUHSTORFER); 235: ups.; 236: uns. — Figs. 237–242: J. aruensis ariel, PTs, Kei (Tual, ROHDE). Figs. 237–239: ♂ PT; 237: ups., 238: uns.; 239: labels. Figs. 240–242: ♀ PT; 240: ups., 241: uns.; 242: labels. — Figs. 243–244: J. aruensis aruensis, ups./uns. 243: ♂, Aru (1907, C. PRATT); 244: ♀, Aru (Dobo, Wamari Island, 1883, C. RIBBE). — All specimens deposited in BMNH, if not indicated otherwise. — Scale bar (top centre) for all specimens = 1 cm; not valid for genitalia. — Figs. 245–256: various Jamides genitalia. — Fig. 245: J. aratus masu ♂, GP, Sumba (near Tarimbang, 9.viii. 2011; CARR). Fig. 246: J. aratus sestus ♂, HT, GP, “Timor” (see notes (1911, STAJSUDINGER; NHMB). Fig. 247: J. aratus vignei ♂, PT, GP, Morotai (Daeo, x. 2002; CARR). Fig. 248: J. halus carnegii ♂, PT, GP, Buru (DOHERTY, HOLLAND coll.; CMNH). Fig. 249: J. aratus vignei ♂, PT, GP, Morotai (Daeo, x. 2002; CARR). Fig. 250: J. aratus samueli ♂, GP, Moa (Kaivatu, 25. iii. 1998; CARR). Fig. 251: J. aetherialis aetherialis ♂, GP, Kei (Ohoililir, 3. iv. 1995; CARR). Fig. 252: J. aetherialis ssp. ♂, GP, Kofiau (6. ix. 1991; CARR). Fig. 253: J. aratus aratus ♀, GP, Ambon (Hila, 25. xii. 1990; CARR). Fig. 254: J. aratus roberti ♀, GP, Gebe (x. 2010; BMNH). Fig. 255: J. aetherialis aetherialis ♀♀, GP, Kei (Ohoililir, 3. iv. 1995 & Tual, 9. i. 1991; both CARR). Fig. 256: J. pura spitamenes ♂, HT, GP, Obi (1909, FRIED; NHMB).

Holland, W. J. (1900): The Lepidoptera of Buru. Part I. Rho ——

Hulstaert, R. P. G. (1924): Rhopalocères nouveaux des Indes hol­

Hübner, J. (1816–1826): Verzeichniss bekannter Schmetterlinge. —

Spackman, W., & Hall, R. (2010): Surface deformation and sub-mante ——

Tennent, W. J. (2002): Butterflies of the Solomon Islands. — Derham, Norfolk (Storm Entomological Publ.), 413 pp., 84 pls.

——— (1960b): Two new species of the genus *Jamides* (Lepidoptera: Lycaenidae). — Bulletin of the British Museum (Natural His­

Received: 4. iv. 2014

© Entomologischer Verein Apollo e. V., Frankfurt am Main, August 2014

ISSN 0723-9912

© 2014 by Entomologischer Verein Apollo e. V., Frankfurt am Main
Zeitschrift/Journal: Nachrichten des Entomologischen Vereins Apollo
Jahr/Year: 2014
Band/Volume: 35
Autor(en)/Author(s): Rawlins Andrew, Cassidy Alan, Müller Chris J., Schröder Stefan, Tennent John W.
Artikel/Article: An illustrated and annotated checklist of Jamides Hübner, 1819, taxa occurring in the Indonesian provinces of North Maluku and Maluku (Lepidoptera: Lycaenidae) 5-39