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1. Introduction 

More than 3,500 mosquito species have been recorded worldwide and more than 40 species 

are known to be endemic in central Europe (Becker et al. 2010). In Austria, the Culicidae 

inventory consists of 39 published species belonging to 6 genera (Aedes, Anopheles, Culex, 

Coquillettidia, Culiseta and Uranotaenia) (Mohrig & Car 2002); since then three further 

species (Ochlerotatus (Ochlerotatus) nigrinus (Eckstein 1918), Aedes (Stegomyia) albopictus 

(Skuse 1894) and Anopheles (Anopheles) hyrcanus (Pallas 1771)) were reported by Seidel 

2012) and Walter (2011).  

Culicidae are endopterygotic insects belonging to insect order Diptera. They are divided into 

two subfamilies: Anophelinae and Culicinae (Fauna Europaea, 2011). Culicidae are mainly 

known as vectors for many medically important pathogens and parasites like viruses, 

bacteria, protozoans and nematodes and as transmitters of diseases like malaria, 

chikungunya, dengue and west nile fever and filariaris, among others (Eldridge & Edman 

2000; Clements 2012; Becker et al. 2010). After the disappearance of endemic malaria in 

Austria in 1950 (Wernsdorfer 2002), there was a lack of  interest in mosquito research, both 

in medical and natural sciences, although potentially culicid malaria vectors like Anopheles 

(Anopheles) maculipennis and Anopheles (Anopheles) claviger (Wernsdorfer 2002) are still 

present in Austria. Mosquito species distribution patterns and their ecology gain importance 

again, because global change favours the arrival of invasive mosquito species, followed by 

new emerging vector-borne diseases (European centre for disease prevention and control 

2012). This is shown by the distribution of two invasive mosquitoes, Aedes albopictus and 

Aedes (Stegomyia) aegypti (Linnaeus 1762) (Zell 2008). Ae. albopictus, currently considered 

as the most invasive mosquito in the world (Benedict et al. 2007), originated from Southeast 

Asia (Scholte 2007; Paupy et al. 2009, Medlock et al. 2012) and has nowadays been recorded 

in 20 European countries since its first record in Albania in 1979 (Medlock 2012). In contrast, 

Ae. aegypti originated from Africa and had been reported for the first time in Europe in the 

Netherlands in 2010 but has not established in Europe (Scholte et al. 2010, Medlock 2012). 

Populations of another invasive mosquito species, Ochlerotatus (Finlaya) japonicus 

(Theobald 1901) is widely spread in northern Switzerland (Schaffner et al. 2003, 2009) and 

southwest Germany (Werner et al. 2012). Currently lesser-known invasive mosquito species 

like Ochlerotatus (Ochlerotatus) atropalpus (Coquillett 1902) (Medlock et al. 2012) and 

Aedes (Finlaya) koreicus (Edwards 1917), which is a potentially transmitter of Dirofilaria 
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immitis and the Japanese encephalitis virus, have been reported from Europe recently 

(Capelli et al 2011). In the last decades, the Ecology of Culicidae has been poorly neglected 

except few investigations on population and community ecology of invasive mosquito 

species. Interspecific competition between Ae. albopictus and Ae. aegypti has been 

investigated in artificial containers in Brazil, where both species successfully established 

(Braks et al. 2003). A main effect of mosquito research was pest control; i.e. reduction of 

culicid populations by using methods like Bacillus thuringiensis Subsp. israelensis (Bti) to 

protect people from mosquito-borne diseases. Worldwide, 200 tonnes of Bti are used 

annually for mosquito control (Becker 1998). Since 1990 the effects of Bti on target 

(mosquitoes and black fly larvae) and non-target organisms were investigated (Boisvert & 

Boisvert 2000). The results showed that nematoceran species, such as Ceratopogonidae 

(Garcia et al. 1980), Chironomidae (Garcia et al. 1980; Miura et al. 1980; Kondo et al. 1995), 

Blephariceridae (Back et al. 1985), Dixidae (Becker & Margalit 1993) and Tipulidae (Garcia et 

al. 1980) are susceptible to Bti. Meanwhile it is known that the usage of Bti has negative 

effects on breeding success of birds, which is positively correlated with the intake of 

Culicidae and other Nematocera (Poulin et al. 2010). Bti treated and control sites were 

monitored for 3 years in the Camargue in southern France, where the clutch size and 

fledging survival was lower at the treated sites (Poulin et al. 2010). Ecological long-term 

effects of methropene and Bti on non-target organisms (zooplankton, insects and birds) 

were investigated in a 3 year study in wetlands of central Minnesota (Niemi et al. 1999). No 

negative trophic effects could be attributed to the change in the insect community, as the 

nest loss due to predation seems to be a greater limiting factor than the lack of mosquitoes 

(Niemi et al. 1999). These studies underline the need for long-term investigations to fully 

predict the consequences of mosquito control on effects of wetland communities. Despite 

increasing interest in mosquitoes there is a lack of information on species inventories, 

autecology and distribution patterns in Austria and the bordering countries (European 

Centre for Disease Prevention and Control 2012). The National Park Donau-Auen was chosen 

for this study, because it provides many different habitats for the larval development of 

mosquitoes. As one of the last remaining large wetlands in Central Europe, it serves both as 

a nature conservation zone and a recreational area which often leads to a conflict between 

human interests and species conservation. The goal of my study was to update the 

information on the species inventory, the ecology and the spatial distribution of mosquitoes 
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in the area of the National Park Donau-Auen, which serves as a basis for further 

investigations in this region. 

2. Material and Methods 

2.1 Study area 

The study area is situated in Orth an der Donau in the National Park Donau-Auen, Lower 

Austria. It is mainly influenced by the Pannonian climate with a precipitation of 500 to 700 

mm per year. The precipitation maximum is in summer and the minima in spring and 

autumn, resulting in low summer water levels of Danube floodplain waters (Fink and Moog 

1996). The sampling sites are situated in the Vienna basin (Pannonian plain and hills 

according to Illies 1987) and belong to the ecoregion Hungarian lowlands (Moog et al. 2001), 

and bioregion Eastern Regions and Lowlands (Moog et al. 2001). The latter extends from the 

cliff zone in the west to the March catchment in the east and from the Thaya catchment in 

the north to the Danube in the south. The bedrock consists of marine sedimentary rocks of 

the late tertiary (Fink et al. 2000). 

Major element of the National Park Donau-Auen is the Danube River. It is a ninth-order river 

and originates eastwards from Donaueschingen in Germany, where Brigach joins Breg 

(Schiemer et al. 1999). It is the second largest river of Europe with a length of 2 845 km and a 

catchment area of about 801 463 km2. At the Nationalpark the Danube’s catchment area 

amounts to more than 104000 km², with an average annual discharge of 1 950 m3s-1 , 

ranging from 900 to 5250 m3s-1 (Tockner et al. 1998). In Austria the Danube is approximately 

350 km long with a slope of approximately 0.45 ‰ and a flow velocity of approximately 2 

ms-1 (Tockner et al. 1998; Schiemer et al. 1999). The flow regime of the Danube is 

characterized by summer floods; however, floods can occur throughout the year (Fink et al. 

2000). 

The National Park Donau-Auen is situated in the east of Austria between Vienna and 

Bratislava and preserves one of the last major wetland environments in Central Europe. It 

has a total area of more than 9 320 hectares (Lazowski 1997) with a length of 38 km and a 

maximum width of 4 km. Approximately 65% of the National Park area are riparian forest, 

15% meadow, and more than 20 % is covered by water (Donau-Auen GmbH). In 1978 the 

Lobau was awarded the status of a nature protection zone, with the Lower Lobau being 

declared as UNESCO Biosphere Reserve. The Danube-March-Thaya wetlands were declared a 
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nature preserve in 1979, and the Danube-March wetlands and the Lower Lobau as Wetlands 

of International Importance under the Ramsar Convention in 1983. Not before, 1996 the 

Austrian Danube wetlands were given the status of a National Park and exists in its current 

form, as a Riverine Wetlands National Park, Category II, recognized by the IUCN since 1997 

(Donau-Auen GmbH). The National Park provides an enormous variety of different aquatic 

habitats, ranging from oxbow lakes, temporary side arms and sloughs to small water-filled 

tree holes (phytotelmata). Hence this area was chosen for the investigation of indigenous 

mosquito species and their ecological adaptions to different breeding habitats. 

2.2 Sampling sites 

20 sampling sites (Figure 1) were chosen in the National Park Donau-Auen in the area of 

Orth an der Donau at the northern shore of the Danube (Figure 1).  4 sample sites were 

located in the natural retention area for floodwaters and 16 sites were disconnected from 

the irregular flood regime of the Danube due to a bank. From March to September 2011 8 

sampling sites, located along side arms, Fadenbach (F1-F3), Große Binn (GB1), Kleine Binn 

(KB1, KB2) and the Wachtelgraben (S1, S2), 5 temporary stagnant water bodies (T1-T2) as 

well as 6 water filled tree holes, Phytotelmata (PT1-PT2) were examined for 245 days. 

 

  

Figure 1: Distribution of sampling sites located in the National Park Donau-Auen, Lower Austria 

(www.austrian-map.at). 
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2.2.1. Fadenbach (F1, F2 and F3) 

The Fadenbach (Figure 2) is a former subsidiary branch of the Danube, 30 kilometres long 

which originates in Mühlleiten. This slow flowing water body is connected to the Danube by 

the Wachtelgraben. At Orth an der Donau, 3 different sampling sites (F1, F2 and F3) were 

chosen for further investigations.  From May to September the Fadenbach was mainly 

covered by Lemna minor L. (1753). Bank vegetation at sampling sites consisted of Lythrum 

salicaria L. (1753), Lysimachia nummularia (Linnaeus 1753) and Phalaris arundinacea L. 

(1753). The water body was rarely shaded by Tilia cordata Mill. (1768) and Carpinus betulus 

L. (1753). At all three sampling sites Lemna minor L. (1753) was most abundant in July with 

Ceratophyllum demersum L. (1753) being abundant. Mean oxygen concentration was 5.39 

mgL-1 and pH ranged from 7.58 to 7.43 at all sampling sites at the Fadenbach (Table 1). 

From May to June Notonecta glauca (Linnaeus 1758) and larvae of Chaoborus  crystallinus 

(De Geer 1776) were the dominating invertebrates at site F1. From July to September Acilius 

sulcatus (Linnaeus 1758) (larvae and adults) as well as Nepa cinerea (Linnaeus 1758) and 

larvae of Hyphydrus ovatus (Linnaeus 1761) were dominating (Figure 2). At F1, a mean 

conductivity of 813 µScm-1 and a turbidity of 23.94 NTU were measured (Table 1). 

The second sampling site (F2; Figure 2) is slightly shaded when compared to F1. Larvae of 

Hyphydrus ovatus (Linnaeus 1761) were the dominating invertebrates in July, Nepa cinerea 

(Linnaeus 1758) and Notonecta glauca (Linnaeus 1758) from May to June and in lower 

abundance than F1. A comparatively low conductivity (mean = 523 µScm1) and a mean 

oxygen concentration of 7.12 mgL-1 were measured at this site.  

At site F3, larvae of Hyphydrus ovatus (Linnaeus 1761) occurred in early April and were 

abundant in July. Larvae of Acilius sulcatus (Linnaeus 1758) were present from April to early 

May, and larvae of Chaoborus crystallinus (De Geer 1776) were detected throughout the 

sampling period. This sampling site is characterized by a mean conductivity of only 524 

µScm-1 and relatively high nutrient values due to high evaporation rates (Table 1). 
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Table 1: Limnochemical parameters (arithmetic means with range) of sampling sites at the Fadenbach (F1-

F3). 

Parameter F1   F2   F3   

Water level (cm) 58 (24-110) 592 (7.20-95) 53 (18.90-85) 

Water persistence (d) 245 
 

245 
 

245 
 

Temperature (°C) 15.73 (10-21) 15.9 (10-22.6) 15.96 (10.4-23.1) 

Oxygen saturation (%) 62.39 (0.9-106) 77.2 (19-110) 79.26 (13-116) 

Oxygen concentration (mgl
-1

) 5.39 (9-10) 7.12 (1.60-10.5) 7.73 (0.90-10.8) 

Turbidity (NTU) 23.94 (8.84-54.03) 19.6 (9.18-142) 33.35 (12.05-119.9) 

pH 7.6 (7.4-7.8) 7.7 (7.4-7.9) 7.5 (6.5-7.8) 

Conductivity (µScm
-1

) 812 (453-1160) 523 (344-1080) 959 (469-1186) 

NH4 (mgl
-1

) 0.15 (0-1.11) 0.08 (0-0.74) 0.65 (0-2.54) 

Cl (mgl
-1

) 51.25 (16.73-80.3) 29.2 (14.41-75.2) 65.36 (26.20-80.51) 

NO3 (mgl
-1

) 7.78 (0.06-17.35) 1.09 (0.04-3.0) 15.95 (0.05-61.93) 

PO4 (mgl
-1

) 0.03 (0-0.12) 0.04 (0-0.12) 0.86 (0-26.2) 

SO4 (mgl
-1

) 110.8 (13-196.8) 50.6 (10.60-181.8) 130.8 (26.20-202.68) 

Water hardness (mmoll
-1

) 2.41 (2.34-2.7) 1.78 (1.62-1.98) 3.39 (2.70-5.58) 

Carbonate hardness (mmoll
-1

) 2.17 (1.98-2.52) 1.52 (1.44-1.80) 3.51 (2.52-4.86) 

 

 

Figure 2: Fadenbach sampling sites F1 (A; northern view), F2 (B; southern view) und F3 (C; western view); 

pictures were taken on 18 August, 2011. 

A 

B C 
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2.2.2 Große Binn and Kleine Binn  (GB1, KB1 and KB2) 

Große (Figure 3A) and Kleine Binn (Figure 3B, C) are subsidiary branches of the Danube with 

the former connected to the Fadenbach by the Wachtelgraben. Riparian vegetation 

consisted of Phragmites australis (Cav.)Trin. ex Steud. (1841) and Phalaris arundinacea L. 

(1753). Mean conductivity at the sampling sites was 531 µScm-1, mean oxygen concentration 

and nutrients were comparatively low (Table 2). Throughout the year, the Kleine Binn is a 

stagnant water body except in summer when higher current speeds were observed due to a 

higher discharge of the Danube. The water level of site KB1 (Figure 3B) fluctuated between 

45 and 99 cm and of KB2 (Figure 3C) between 20 and 107 cm (Table 2). Both sampling sites 

at the Kleine Binn were mainly covered by Phragmites australis (CAV.) Trin. ex Steud (1841) 

and Phalaris arundinacea  (L. 1753). Mean values of conductivity at KB1 (Figure 3B) were 602 

µScm-1, of oxygen concentration 9.2 mgL-1 and of pH 7.6, respectively. Turbidity was slightly 

increased (11.06 NTU) and nutrient concentration was low (Table 2). High abundances of 

Gerris sp. (Fabricius 1794) and Hydrometra stagnorum (Linnaeus 1758) were detected at the 

sampling sites of the Große and the Kleine Binn during the entire investigation period. 

 

Table 2: Limnochemical parameters (arithmetic means with range) of sampling sites at the Große (GB1) and 

Kleine Binn (KB1, KB2). 

Parameter KB1 
 

KB2 
 

GB1 
 

Water level (cm) 66 (45-89.9) 46 (20-107) 39 (25.50-51.50) 

Water persistence (d) 245 
 

245 
 

245 
 

Temperature (°C) 17.6 (13.1-23.4) 14.65 (13-22.1) 17 (12.10-21.70) 

Oxygen saturation (%) 101.7 (73-122.1) 99.31 (66-143) 96.7 (70.6-114) 

Oxygen concetration (mgl
-1

) 9.21 (7-11.4) 8.74 (5.8-14.5) 8.82 (6.51-10.10) 

Turbidity (NTU) 11.06 (2-32.8) 8.89 (2-40.36) 12.6 (2-30.4) 

pH 7.6 (6.5-8.3) 8.7 (7.5-9.2) 8.1 (7.6-9.6) 

Conductivity (µScm
-1

) 601 (359-800) 495 (359-701) 531 (355-762) 

NH4 (mgl
-1

) 0.02 (0.0-0.34) 0 (0.0-0.0) 0 (0.0-0.0) 

Cl (mgl
-1

) 17.12 (13.8-19.62) 18.03 (13.82-23.22) 16.9 (13.6-22.7) 

NO3 (mgl
-1

) 3.63 (0.15-7.55) 2.74 (0.01-7.87) 4.63 (0.01-8.55) 

PO4 (mgl
-1

) 0.02 (0.0-0.1) 0.02 (0.0-0.15) 0.02 (0.0-0.1) 

SO4 (mgl
-1

) 47.48 (20.8-69.13) 38.67 (20.1-60.3) 39.1 (21.22-61.52) 

Water hardness (mmoll
-1

) 2.92 (2.16-3.78) 2.86 (1.98-3.06) 2.65 (2.52-2.88) 

Carbonate hardness (mmoll
-1

) 2.55 (1.8-3.24) 2.1 (1.80-2.16) 2.08 (1.80-2.34) 
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Figure 3: Sampling sites at the Große Binn GB1 (A; north-western view on 23 March, 2011) and at the Kleine 

Binn KB1 (B; south-western view on 23 March, 2011) and KB2 (C; south-western view on 27 March, 2011). 

 

2.2.3. Wachtelgraben  

Two sampling sites were investigated at the Wachtelgraben, a smaller cove-like water body. 

The connectivity between these two sampling sites was interrupted from 26 to 29 March, 

from 7 to 13 April and on 1 May, 2011, when sampling site S2 fell dry. Sampling site S1 

(Figure 4) was subject to fluctuating water level (51-116 cm). The water body was slightly 

shaded by Tilia cordata (Mill.  1768) and Corylus avellana (L. 1753) and was mainly bordered 

by Phragmites australis (Cav.)Trin. ex Steud. (1841) and some isolated stocks of Phalaris 

arundinacea (L. 1753), Typha latifolia (L. 1753), Typha angustifolia L. (1753), Lythrum 

salicaria L.  1753) and Carex elata ALL. (1785). Lemna trisulca (L. 1753), Stratiotes aloides (L. 

1753) and Ceratuphyllum demersum (L. 1753) were detected in the water body. The most 

abundant invertebrates were Dytiscus marginalis (Linnaeus 1758) larvae, Nepa cinerea 

(Linnaeus 1758), Ranatra linearis (Linnaeus 1758), Ilyocoris cimicoides Linnaeus 1758) and 

A 

B C 
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larvae of Chaoborus  crystallinus (De Geer 1776). Mean conductivity was 822 µScm-1, mean 

oxygen concentration 5.78 mgL-1 and pH was 7.7 (Table 3).  

Sampling site S2 (Figure 5) was overgrown with Phragmites australis (Cav.)Trin. ex Steud. 

(1841), with some isolated stocks of Lythrum salicaria L. (1753) and Rubus caesius (L. 1753). 

Larvae of Dytiscus marginalis (Linnaeus 1758) and Chaoborus crystallinus (De Geer 1776) 

were detected in low abundances. Average water level was 6 cm from March to May, mean 

conductivity was 1176 µScm-1, and oxygen concentration was very low (mean = 2.87 mgL-1). 

However, nutrient concentrations were high due to high evaporation rates (Table 3). 

 

 

Figure 4: Wachtelgraben sampling site S1 (A, 23 March, 2011; B, 18 September, 2011; southern view). 

 

 

Figure 5: Wachtelgraben sampling site S2 (A, 23 March; B, 08 April; C, 04 May and D, 18 September, 2011; 

north-eastern view). 

 

  

A B 

A B C D

A 
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Table 3: Limnochemical parameters (arithmetic means with range) of the sampling sites at the 

Wachtelgraben (S1, S2). 

Parameter S1   S2   

Water level (cm) 98  (51.3-116) 6 (0-7) 

Water persistence (d) 245 
 

73 
 

Temperature (°C) 19.5  (15.4-26.6) 10  (9.2-11.3) 

Oxygen saturation (%) 63.7 (22-99.2) 31.5 (7.9-48) 

Oxygen concetration (mgl
-1

) 5.87  (6.7-8.1) 2.87 (7.2-7.7) 

Turbidity (NTU - Nephelometric Turbidity Unit) 7.46 (2.02-10.78) 8.15 (8.15-8.51) 

pH 7.7 (6.7-8.1) 7.5 (7.2-7.7) 

Conductivity (µScm
-1

) 822 (604-1048) 1176  (1310-1083) 

NH4 (mgl
-1

) 0 (0.0-0.0) 0 (0.0-0.0) 

Cl (mgl
-1

) 44.38 (39.62-47.92) 55.5 (53.4-58.5) 

NO3 (mgl
-1

) 0.83 (0.02-3.18) 0.14 (0.10-0.17) 

PO4 (mgl
-1

) 0.01 (0.0-0.05) 0 (0.0-0.0) 

SO4 (mgl
-1

) 92.53 (44.16-143.82) 159.9 (0.10-0.17) 

Water hardness (mmoll
-1

) 3.15 (3.06-3.78) 2.78 (2.70-2.88) 

Carbonate hardness (mmoll
-1

) 2.86 (2.52-3.06) 2.52 (2.52-2.54) 

 

 

 

2.2.4 Tree Holes (PT1-PT6) 

As phytotelmata (Figure 6) provide important habitats for Culicidae, 6 water-filled tree holes 

were investigated. These breeding sites undergo strong temperature fluctuation due to the 

small size of the water body (Table 4). As water persistence depends on the amount of 

precipitation, phytotelmata regularly dry out during periods of high evaporation, as it is 

common in summer. The water surface is usually shaded throughout the entire day. The 

bottom of the sampling sites PT1, PT4 and PT5 was covered by leaves and particular organic 

matter (POM). A high nutrient concentration due high evaporation was measured. Mean 

turbidity ranged from 12.93 to 499.24 NTU (Table 5) and pH-values were in the 6.7 to 7.4 

range. In addition, these sampling sites were characterized by variable oxygen 

concentrations averaging 3.5 – 12.6 mgL-1 (Table 5). From April to September Prionocyphon 

serricornis (P. W. J. Muller 1821) were detected in high abundances at PT3, PT4 and PT5.  
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Table 4: Estimated maximum water volume (ml), mean depth (cm) and water persistence (days; entire 

sampling period encompassed 245 days) of the investigated phytotelmata (PT1 – PT6).
 

Sampling Site (Species) Depth (cm) Water volume (ml) Water persistence (days) 

PT1 (Fraxinus excelsior L.1753) 10 32 156 

PT2 (Carpinus betulus L. 1753) 18 250 180 

PT3 (Carpinus betulus L. 1753) 7 852 172 

PT4 (Tilia cordata .Mill. 1768) 12.5 1358 181 

PT5 (Carpinus betulus L. 1753) 5.3 40 111 

PT6 (Carpinus betulus L. 1753) 3.9 55 142 

 

 

 

 

Figure 6: Phytotelmata P1 (A, picture taken on August 18, 2011), PT2 (B, picture taken on May 22, 2011), PT3 

(C, picture taken on March 26, 2011), PT4 (D, picture taken on August 18, 2011), PT5 (E, picture taken on 

August 18, 2011) and PT6 (F, picture taken on August 18, 2011). 

Table 5: Limnochemical parameters (arithmetic means with range) measured at the investigated 

phytotelmata (PT1-PT6). 

 

A B 

C D 

E F 
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Parameter PT1   PT2   PT3   

Water level (cm) 2.3 (0-9.1) 5 (0-15) 5 (0-12.5) 

Temperature (°C) 17.8 (12.1-32.2) 15.3 (12.2-20.5) 15.8 (12.3-21.4) 

Oxygen saturation (%) 73.3 (69.5-99) 64 (6.2-106.8) 41.6 (4.2-105.6) 

Oxygen concetration (mgL
-1

) 12.86 (5.7-22.8) 6.09 (3.4-8.67) 3.69 (0.27-8.8) 

Turbidity (Nephelometric Turbidity Unit) 454.5 (195.3-500) 134.5 (38.5-365.3) 164.1 (11-274.9) 

pH 7.3 (7.1-7.5) 6.7 (5.1-7.9) 7.1 (6.8-7.4) 

Conductivity (µScm
-1

) 287 (259-300) 217 (196-228) 429 (224-681) 

NH4 (mgl
-1

) 0.73 (0.0-4.97) 6.1 (1.49-27.75) 9.3 (1.55-21.73) 

Cl (mgl
-1

) 20.61 (2.61-54.4) 7.75 (2.2-15.23) 12.29 (7.09-24.14) 

NO3 (mgl
-1

) 5.03 (0.0.-9.69) 10.98 (0.01-32.31) 2.02 (0.01-7.93) 

PO4 (mgl
-1

) 4.73 (0.0-13.44) 2.41 (0.13-6.14) 3.9 (0.31-8.58) 

SO4 (mgl
-1

) 10.19 (2.3-18.6) 10.76 (4.2-19.3) 21.8 (3.93-63.90) 

Water hardness (mmoll
-1

) 1.71 (1.26-1.8) 1.65 (1.08-1.62) 3.97 (1.26-4.14) 

Carbonate hardness (mmoll
-1

) 1.53 (1.08-1.62) 1.27 (0.9-2.52) 2.38 (1.08-2.52) 

       Parameter PT4   PT5   PT6   

Water level (cm) 4.3 (0-12.2) 0.6 (0-6) 1 (0-8) 

Temperature (°C) 16 (12.1-27) 12.2 (12.2-12.8) 18.9 (16.1-21.1) 

Oxygen saturation (%) 54.6 (14-103) 67.5 (66.5-70.1) 43 (42.1-43.8) 

Oxygen concetration (mgL
-1

) 4.57 (1.20-8.30) 5.62 (4-9-5.68) 3.5 (2.4-3.8) 

Turbidity (Nephelometric Turbidity Unit) 89.05 (20.1-377.8) 12.93 (12.81-14.05) 499.2 (486-509.2) 

pH 6.9 (4.5-7.5) 7.2 (6.9-7.3) 7.4 (7.4-7.5) 

Conductivity (µScm
-1

) 551 (247-754) 247 (245-247) 536 (491-593) 

NH4 (mgl
-1

) 5.05 (0.0-10.53) 2.93 (0.38-9.03) 3.83 (2.87-5.53) 

Cl (mgl
-1

) 14.6 (7.15-54.4) 11.91 (7.45-12.4) 13.56 (10.5-18.75) 

NO3 (mgl
-1

) 9.16 (0-80.14) 6.08 (0.0-22.74) 1.29 (0.0-2.65) 

PO4 (mgl
-1

) 7.88 (0-29.26) 6.87 (0.03-25.17) 13.73 (5.93-16.51) 

SO4 (mgl
-1

) 14.01 (3.94-49.33) 32.45 (14.9-41) 13.71 (7.65-19.4) 

Water hardness (mmoll
-1

) 3.56 (2.16-3.96) 1.48 (1.26-1.62) 2.07 (1.98-2.16) 

Carbonate hardness (mmoll
-1

) 2.23 (1.80-2.34) 1.08 (1.08-1.09) 1.89 (1.8-1.98) 

 

2.2.5 Temporary stagnant water bodies (T1, T2, T3, T4 and T5) 

In temporary water body T1 (Figure 7A) water persisted from March to June; its surface area 

was 1.57 x 0.79 m in March. The bottom of this water body was mainly covered by leaves 

and branches. Impatiens parviflora DC. (1824), an East Asian neophyte, dominated the shore 

vegetation. The mean water level was 11 cm, mean conductivity 797 µScm-1 and mean 
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oxygen concentration 5.59 mgL-1. Turbidity was relatively high, averaging 166 NTU; on the 

other hand, nutrient concentration was rather low (Table 6). 

Sampling site T2 (Figure 7B) was a stagnant water body created by a windthrow and had a 

maximum surface area of 0.56 x 1.35 m at the beginning of the sampling period. Riparian 

vegetation consisted mainly by Impatiens parviflora DC. (1824).The bottom of the water 

body was covered with branches. It had a high conductivity (mean = 969 µScm-1) and a mean 

oxygen concetration of 5.27 mgl-1; in addition, relatively high nutrient levels were measured 

(Table 6).  

 

 

Figure 7: Temporary water bodies T1 (A, southern view; picture taken on 22 May, 2011) and T2 (B, western 
view; picture taken on 26 March, 2011). 

 

From early March to May sampling site T3 (Figure 8A) was filled with water (= 68 days), 

resulting in a mean water level of 11 cm (Table 6). Its maximum size was 1.52 x 3.15 m in 

March. Typha angustifolia (L. 1753) was highly abundant; Populus nigra (L. 1753), Populus 

alba (L. 1735), Salix alba (L. 1753), Alisma lanceolatum With. (1796) and Sparganium 

erectum L.s.l. (1753) were recorded in lower abundances. Mean conductivity was 779 µScm-1 

and mean oxygen concentration was relatively high (9.68 mgL-1) (Table 6).  

Sampling site T4 (Figure 8B) was located in the alluvial forest and had a mean water depth of 

17 cm (Table 6) and a maximum surface area of 3 x 2.5 m. It was deeply shaded by a dense 

canopy of Quercus petraea Liebl. (1784), Tilia cordata (Mill. 1768), Carpinus betulus (L. 1753) 

and Acer campestre (L. 1753). Aquatic vegetation was lacking. Mean conductivity was 

relatively low (475 µScm-1), and mean oxygen concentration was relatively high (7.66 mgL-1). 

Nutrient values were high (Table 6) due to high evaporation rates. This sampling site fell dry 

for a short period in July and September. 

A B 
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Figure 8: Temporary water bodies T3 (A, south-western view; picture dated 26 March, 2011), T4 (B, north-

eastern view; picture dated 04 May, 2011) and T5 (C, north-eastern view; picture dated 01 March, 2011). 

 

 

The water level at site T5 (Figure 8C) fluctuated between 8 and 9 cm and its surface area 

between 2 x 1.5 m in early March to 0.30 – 0.15 m at the end of April. This temporary water 

body received its water exclusively from precipitation. Site T5 was located in the alluvial 

forest, shaded by a dense canopy of Quercus petraea Liebl. (1784), Tilia cordata (Miller 

1768) and Carpinus betulus (Linnaeus 1753). The bottom of the temporary pond was 

covered with leaves and branches. Mean conductivity was 866 µScm-1 and mean oxygen 

concentration was 9.74 mgL-1 (Table 6). The high concentration of nutrients at the end of 

April was due to high evaporation rates in spring (Table 6). 

  

A B 

C 
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Table 6: Limnochemical parameters (arithmetic means with range) of investigated temporary water bodies 

(T1-T5) 

Parameter T1   T2   T3   

Water level (cm) 10.5 (0-41.5) 8 (0-29.8) 10.6 (0-16.2) 

Water persistence (d) 188 
 

172 
 

68 
 

Temperature (°C) 13.4 (11.9-19.2) 13.4 (9.5-19.7) 12.1 (11.8-12.9) 

Oxygen saturation (%) 58.98 (16.3-99.9) 54.6 (16.3-105.1) 98.89 (96.4-105.1) 

Oxygen concetration (mgl
-1

) 5.59 (1.63-10.1) 5.27 (1.63-9.04) 9.68 (9.04-9.94) 

Turbidity (NTU) 166.5 (32.38-748.9) 94.3 (32.38-267.9) 14.01 (14.01-15.3) 

pH 7.8 (7.6-7.9) 7.8 (7.5-8) 8.1 (7.99-8.2) 

Conductivity (µScm
-1

) 796 (357-959) 968 (788-1158) 978 (846-1032) 

NH4 (mgl
-1

) 0.38 (0.0-0.62) 1.77 (0.0-10.86) 0.15 (0.0-0.21) 

Cl (mgl
-1

) 19.11 (2.71-22.94) 32.6 (5.6-47.9) 29.25 (19.3-33.24) 

NO3 (mgl
-1

) 0.84 (0.03-5.78) 0.59 (0.01-3.67) 0.08 (0.01-0.11) 

PO4 (mgl
-1

) 0.12 (0.01-0.25) 0.65 (0.0-3.98) 0.06 (0.02-0.08) 

SO4 (mgl
-1

) 38.63 (9.4-58.9) 84.2 (9.2-122.9) 54.44 (9.2-72.54) 

Water hardness (mmoll
-1

) 2.09 (1.8-2.7) 2.42 (1.98-2.88) 1.62 (1.62-1.65) 

Carbonate hardness (mmoll
-1

) 1.08 (1.08-1.08) 1.05 (0.9-1.26) 1.44 (1.44-1.5) 

       Parameter T4      T5   

Water level (cm) 5.5 (0-13) 

 

 6.9 (0-9.2) 

Water persistence (d) 170 
 

 

 58 
 

Temperature (°C) 16.8 (12.5-22.2) 

 

 13.8 (12.1-15.2) 

Oxygen saturation (%) 70.51 (27-106) 

 

 92.73 (79.9-97) 

Oxygen concetration (mgl
-1

) 7.66 (3.6-10.1) 

 

 9.74 (9.62-10.3) 

Turbidity (NTU) 37.32 (4.5-135.9) 

 

 32.6 (10.2-40.1) 

pH 7.7 (7.5-8.4) 

 

 8 (7.4-8.1) 

Conductivity (µScm
-1

) 475 (355-675) 

 

 886 (547-886) 

NH4 (mgl
-1

) 1.34 (0.0-5.24) 

 

 0 (0.0-0.0) 

Cl (mgl
-1

) 25.27 (3.27-78.6) 

 

 45.36 (34.28-78.6) 

NO3 (mgl
-1

) 5.11 (0.14-14.41) 

 

 3.64 (0.05-14.5) 

PO4 (mgl
-1

) 0.04 (0.0-0.14) 

 

 0.04 (0.0-0.05) 

SO4 (mgl
-1

) 112.6 (15.39-210.6) 

 

 82.77 (46.03-193.0) 

Water hardness (mmoll
-1

) 3.07 (1.8-4.86) 

 

 2.94 (2.88-3.06) 

Carbonate hardness (mmoll
-1

) 2.15 (1.62-2.7)    2.7 (2.65-2.76) 

 

2.3.2 Artificial Pond 

A water-filled plastic container (80x35 cm, mean water depth = 20 cm) was used as an 

artificial pond (Figure 9). It was situated at the sampling site F1 and was investigated during 

the entire study period in order to get additional material of mosquito species breeding 
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close to human settlements. Species detected in this artificial breeding habitat were used for 

life cycle investigations only.  

 

 

Figure 9: This plastic tray (artificial Pond, AP1), served as an additional breeding habitat (picture taken on 24 

May, 2011). 

 

2.3 Methods and sampling design 

2.3.1 Sampling design and preservation of Culicidae  

From 1 March to 31 October, 2011 (245 days), 20 study sites, situated at Orth an der Donau, 

Lower Austria, were sampled on a regular basis. Culicidae and their potential predators were 

collected every third day using a catch per unit effort (CPUE) method:  an area of 1 m-2 was 

sampled for 1 minute with a handnet (20 cm in diameter, mesh size: 200 µm) at every study 

site in order to collect all developmental stages of aquatic mosquitoes (eggrafts, larvae and 

pupae). Adults were caught strictly at the breeding habitats with a handnet (20 cm in 

diameter, 200 µm) by moving the net back and forwards for 10 times. The phytotelmata 

were sampled at the same intervals as described above using a syringe (20 ml). 

Potential predators were sampled following the same CPUE method used for aquatic stages 

of mosquitoes. Larvae and pupae were preserved in vials containing ethanol (75%) for 

further investigations. Eggrafts were kept in a plastic container until hatching in order to get 

third and fourth larval instars for reliable identifications.  
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2.3.2 Sampling design of habitat parameters  

Abiotic parameters were measured every second week and additionally after flood and 

heavy rainfall at each sampling site. Dissolved oxygen, pH- value, electrical conductivity, 

water temperature and turbidity were measured in the field using a regularly calibrated Oxi 

330 (WTW), pH 330i (WTW), LF 330 (WTW) and a Turbiquant 1000IR (MERCK). Water 

samples of 100 ml were taken at each sampling site for titrimetric determination of total and 

carbonate hardness in the laboratory. Nutrients (sulphate, chloride, nitrate and phosphate) 

were photometrically analysed using a 761 CompactIC (Metrohm). In addition, connectivity, 

water level and persistence were checked. 

2.3.3 Laboratory rearings 

A water-filled container (80 x 35 cm, water depth = approx. 20 cm) was used as an additional 

breeding site to get a higher number of Culex pipiens individuals and other mosquito species 

breeding close to human settlements. Individuals from this additional pond were used for 

life cycle investigations only.  

2.3.4. Measurement of head capsule width and body length 

Head capsule widths and body lengths were measured to identify the four larval instars and 

to provide basic data for lifecycle reconstruction as well as for estimating the number of 

generations per year. The head capsule width was measured at the widest section of the 

head; body length was measured dorsally, from the head capsule to the eight abdominal 

segment, using a binocular microscope (Stereo Lumar.V12, Zeiss) This binocular was also 

used for photographic documentation of common standard characteristics from the egg to 

the adult (Camera: AxioCamErc5s, Zeiss in combination with image stacking software 

Combine ZM, Hadley (2008)). 

2.3.4. Statistical Analysis 

Biometrical data (head capsule widths and body lengths) were used to reconstruct life cycles 

of the detected species. Dyar’s rule (1890) was used to differentiate the 4 larval instars 

accurately, whereas the growth ratio was determined by dividing the mean head capsule 

widths of adjacent instars (McDonald et al. 1977). 

Environmental data (e.g. electrical conductivity, nutrients, water persistence) were analysed 

in order to characterize the breeding habitats using a cluster analysis [hierarchical 

classification, Wards method (SPSS for Windows)] based on euclidean distance. The gradient 
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lengths of species data were estimated using a Detrended Correspondence Analysis (DCA); in 

addition, a Canonical Correspondence Analysis (CCA, Software CANOCO for Windows 4.5) 

was employed as an unimodal method to explain species data by environmental data. 

Significant variables (p<0.05) were included into the CCA procedure. The quality of the 

unimodal model was checked by a Monte Carlo Permutation test.  

2.4 Identification of Culicidae 

The specimens sampled (pre-imaginal stages and imagines) were examined using a binocular 

microscope (Stereo Lumar.V12, Zeiss) and were identified using the key of Becker et al. 

(2010) and Zittra (2012). Genera and subgenera abbreviations follow Reinert (2001). 

2.4.1. Standard identification characteristics of mosquito larvae 

Larvae of Culicidae (Figure 10) are divided into three parts, a fully sclerotized head capsule, a 

thorax of three fused segments, which are wider than the head capsule, and the abdomen, 

which consists of ten segments (Cranston et al 1987, Becker et al 2010). Culicid larvae 

morphologically differ from other dipteran larvae due to their distinct labral brushes 

(exceptions are found in carnivorous larvae), the expanded thorax and the presence of a 

respiratory siphon (Becker et al. 2010), which is located at the ninth abdominal segment in 

all genera, but differs between Culicinae and Anophelinae (Cranston et al 1987, Becker et al. 

2010). In culicine species (Figure 11) the spiracular valves, an external opening of the 

metapneustic respiratory system, are located on the top of the long, tubular (e.g. genera 

Aedes, Culex, Culiseta) or cylindrical (e.g. genus Coquillettidia) siphon (Becker et al. 2010). In 

anopheline mosquito species the siphon is almost reduced to a so called spiracular plate 

(Becker et al. 2010) (Figure 12).  
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Figure 10: Standard characteristics of mosquito larvae. 

 

 

 

Figure 11: Standard identification characteristics situated at the larval abdomen – (Culicinae). 
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Figure 12: Standard identification characteristics situated at the larval abdomen - (Anophelinae). 

 

 

3.4.2. Standard characteristics of pupal mosquitoes 

The mosquito pupa (Figure 13) is comma-shaped and consists of two parts, the 

cephalothorax and the abdomen, which is further subdivided into 9 segments (Cranston et 

al. 1987). The last abdominal segment carries the terminal paddles, which are also used for 

identification (Cranston et al. 1987, Becker et al. 2010). Two respiratory trumpets, located at 

the cephalothorax, are usually long and cylindrical in culicine mosquito species, but broader 

and shorter in anophelines (Becker et al. 2010). 

 

 

 

Figure 13: Lateral view of an Aedes/Ochlerotatus mosquito pupa. 

 

©Nationalpark Donau-Auen GmbH, download www.biologiezentrum.at



23 
 

3.4.3. Standard characteristics of immature males and females 

The proboscis, which is always longer than the thorax, separates adult mosquitoes from 

other Nematocera (Cranston et al. 1987, Becker et al 2010). The females (Figure 14) have a 

pilose antenna, whereas a plumose antennae and long hairy maxillary palps are present in 

males (Cranston et al. 1987). Significant genus and species-specific characteristics are 

provided by the scales and setae of different shape, length and color at the head, thorax 

(Figure 15) and abdomen. Furthermore, legs, wings, veins and wing margins are typically 

covered with scales (Cranston et al. 1987; Becker et al. 2010). Males of mosquito species 

were further identified using the external genitalia, the hypopygium (Figure 16). It consists of 

a phallosome surrounded by the aedeagus. The pair of basal gonocoxites, each consisting of 

a basal lobus with a gonostylus and a gonostylar with a claw on its apex, was used as a 

further identification standard characteristic (Cranston et al. 1978; Becker et al 2010). 

 

 

 

 

Figure 14: Lateral view of a female mosquito. 

©Nationalpark Donau-Auen GmbH, download www.biologiezentrum.at



24 
 

 

Figure 15: Lateral view of mosquito thorax (pleurites, setation and scale patches). 

 

 

Figure 16: Standard identification characteristics of the male hypopygium of Aedes/Ochlerotatus. 
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3. Results 

3.1 Species inventory, abundance and phenology 

A total of 15 Culicidae species (including two morphologically difficult species pairs) were 

detected from March to October 2011 at 20 sampling sites at Orth and der Donau (Lower 

Austria). The species inventory consisted to 6 genera, Anopheles, Aedes, Ochlerotatus, Culex, 

Culiseta and Coquilletidia (Table 7). A total of 34 eggrafts, 1022 larval, 80 pupal and 221 

adult mosquitoes (3 males, 218 females) were collected in the study. Adults of Oc. 

geniculatus (40.3%) were most abundant during the sampling period, followed by Cx. pipiens 

(23.1%), Cx. richiardii (19.9%) and Cx. territans (10.4%) (Table 9). In the larval stage, Oc. 

geniculatus was most abundant (64.1%), followed by larvae of Cx. territans (18.7%), Cx. 

pipiens (6.9%) and Ae. vexans (2.8%) (Table 8). The remaining species represented 7.5 % of 

the total catch. Details on site-specific abundances are given in Appendix 1.  

 

Table 7: Culicidae species inventory collected from March to October 2011 at Orth an der Donau at 20 

sampling sites. 

Anopheles MEIGEN 1818 

     Anopheles maculipennis complex 

     Anopheles (Anopheles) plumbeus STEPHENS 1828 

Aedes MEIGEN 1818 

     Aedes (Aedes) cinereus MEIGEN 1818 / rossicus DOLBESKIN, GORICKAJA & MITROFANOVA 1930 

     Aedes (Aedimorphus) vexans MEIGEN 1830 

Ochlerotatus LYNCH ARRIBALZAGA 1891 

     Ochlerotatus (Finlaya) geniculatus OLIVIER 1791 

     Ochlerotatus (Ochlerotatus) cantans MEIGEN 1818/ annulipes MEIGEN 1830 

     Ochlerotatus (Ochlerotatus) cataphylla DYAR 1916 

     Ochlerotatus (Ochlerotatus) excrucians (WALKER 1856) 

     Ochlerotatus (Ochlerotatus) flavescens MÜLLER 1764 

     Ochlerotatus (Ochlerotatus) sticticus MEIGEN 1838 

     Ochlerotatus (Rusticoidus) rusticus ROSSI 1970 

Culex LINNAEUS 1758 

     Culex (Culex) pipiens LINNAEUS 1758 

     Culex (Neoculex) territans WALKER 1856 

Culiseta FELT 1904 

     Culiseta (Culiseta) annulata SCHRANK 1776 

Coquillettidia DYAR 1905 

Coquillettidia (Coquillettidia) richiardii FICALBI 1889 
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Table 8: Larval and pupal culicid species inventory (n and percentage) collected from March to October 2011 

at Orth an der Donau at 20 sampling sites. 

Species n (l/p) % Phenology 

Anopheles maculipennis complex 11/0 1.0 May – August 

Anopheles (Anopheles) plumbeus STEPHENS 1828 12/3 2.3 August 
Aedes (Aedes) cinereus MEIGEN 1818 / rossicus 
DOLBESKIN, GORITZKAJA & MITROFANOVA 1930 3/0 0.3 April 

Aedes (Aedimorphus) vexans MEIGEN 1830 30/0 2.8 June – July 

Ochlerotatus (Finlaya) geniculatus OLIVIER 1791 648/36 64.1 April – September 
Ochlerotatus (Ochlerotatus) cantans MEIGEN 1818/ 
annulipes MEIGEN 1818 27/0 2.5 March – April 

Ochlerotatus (Ochlerotatus) cataphylla DYAR 1916 2/0 0.2 March 

Ochlerotatus (Ochlerotatus) flavescens MÜLLER 1764 3/0 0.3 April 

Ochlerotatus (Rusticoidus) rusticus ROSSI 1970 3/0 0.3 March 

Culex (Culex) pipiens LINNAEUS 1758 65/9 6.9 April – September 

Culex (Neoculex) territans WALKER 1856 167/32 18.7 April – September 

Culiseta FELT 1904 6/0 0.6 May, July 

 

Table 9: Adult culicid species inventory (n and percentage) collected from March to October 2011 at Orth an 

der Donau at 20 sampling sites. 

Species n (m/f) % Phenology 

Anopheles maculipennis complex 0/1 0.5 May 

Aedes (Aedimorphus) vexans MEIGEN 1830 0/1 0.5 August 

Ochlerotatus (Finlaya) geniculatus OLIVIER 1791 0/89 40.3 March to September 

Ochlerotatus (Ochlerotatus) annulipes MEIGEN 1830 0/3 1.4 July – August 

Ochlerotatus (Ochlerotatus) cataphylla DYAR 1916 0/3 1.4 April 

Ochlerotatus (Ochlerotatus) excrucians WALKER 1856 0/2 0.9 May 

Ochlerotatus (Ochlerotatus) sticticus MEIGEN 1838 0/4 1.8 July 

Culex (Culex) pipiens LINNAEUS 1758 3/48 23.1 April-September 

Culex (Neoculex) territans WALKER 1856 0/23 10.4 April – September 

Coquillettidia (Coquillettidia) richiardii FICALBI 1889 0/44 19.9 June – August 

 

3.1.1 Anopheles maculipennis complex 

The Anopheles maculipennis complex consists of approximately 12 species which are 

reproductively isolated, but morphologically very similar; they can be identified using 

molecular methods (Becker et al. 2010). Anopheline species are characterized by a reduced 

siphon and the presence of a pecten plate (Figure 17A, arrow) (Cranston et al. 1987; Becker 

et al. 2010). Larvae of this species complex are separated from other anopheline mosquitoes 

by their spiculated antennae and long and pinnate frontal setae (Cranston et al. 1987; 

Becker et al. 2010). The inner clypeal setae are situated close together with long apical 

branches (Figure 17B, arrows). The palps of female anopheline species are as long as the 

©Nationalpark Donau-Auen GmbH, download www.biologiezentrum.at



27 
 

proboscis and the scutellum is evenly rounded. The scutum is dark brown with a longitudinal 

stripe and the wings are scaled in a species-specific pattern with dense scaling forming spots 

at some wing vein areas (Becker et al. 2010).    

A female of the Anopheles maculipennis complex was found on May 16, 2011 at sampling 

site KB1; Larvae were detected from May to early July at the same sampling site and at the 

additional breeding habitat AP1 from May to August. 

  

 

Figure 17: Anopheles maculipennis complex; A: reduced siphon with pecten plate (arrow); B: head capsule 

(arrows: inner clypeal setae).   

 

3.1.2 Anopheles (Anopheles) plumbeus (Stephens 1828) 

An. plumbeus is separated from other European anopheline mosquito species by the single, 

tiny frontal setae (Figure 18A, arrow). The antennae are straight and smooth and not 

covered by spicules when compared with larvae of the Anopheles maculipennis complex 

(Figure 17B, arrows) (Cranston et al. 1987; Becker et al. 2010). Larvae of An. plumbeus were 

abundant at phytotelmata PT2 (6 larvae) and PT4 (6 larvae and 3 pupae) during August 2011, 

together with larvae of Cx. pipiens and Oc. geniculatus. 

 

A B 
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Figure 18: Anopheles plumbeus; A: head capsule with single, tiny frontal setae (arrow); B: tip of abdomen.  

 

3.1.3 Aedes (Aedes) cinereus (Meigen 1818)/ rossicus (Dolbeskin, Goritzkaja & 

Mitrofanova 1930) (Figure 19) 

Larvae of Ae. cinereus and Ae. rossicus are very similar and differentiation is difficult. The 

siphonal tuft inserts well beyond the center of the siphon (Mohrig 1969). Larvae of Ae. 

cinereus/ rossicus were found in small numbers at sampling sites at temporary water bodies, 

T1 (1 larva) and T2 (2 larvae).  

 

 

Figure 19: Aedes cinereus/ rossicus; tip of abdomen with detached pecten spines (arrow). 

A B 
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3.1.4. Aedes (Aedimorphus) vexans (Meigen 1830) 

Ae. vexans can be distinguished from other mosquito species by a siphonal index of 2.3 to 

3.0, with a pecten consisting of 13 to 18 teeth where the apical 2 to 3 teeth are larger than 

the others and detached (Figure 20A, arrow) (Cranston et al. 1987; Becker et al. 2010). The 

siphonal tuft is small and situated distally of the siphon center. Comb scales vary from 7 to 

13 and are arranged in 1 to 2 irregular rows (Figure 20C, arrow) (Becker et al. 2010). Adults 

can be seperated from other species by the very narrow pale rings on the tarsi and white 

transversal basal bands on the terga, constricted in the middle (bilobed pattern) (Becker et al 

2010). Larvae of Ae. vexans were found at temporary water bodies from June to July; 30 

larvae at sampling site T1 and 2 larvae at T2 and T5. One female adult was collected at the 

Kleine Binn (KB1) in August.  

 

 

Figure 20: Aedes vexans; A: siphon with pecten spines (arrow); B: head capsule with mouthbrush; C: tip of 
abdomen (arrow: comb scales). 
 

3.1.5 Ochlerotatus (Finlaya) geniculatus (Olivier 1791) 

Larvae of Oc. geniculatus differ from all other indigenous Aedes/Ochlerotatus species by the 

presence of numerous stellate seta (Figure 21 C, arrows) spread over the thorax and the 

abdomen. The antenna is not covered with spicules (Mohrig 1969), and there is only a single 

antennal seta (Becker et al. 2010). Further standard identification characteristics are the 

unequally long anal papillae (Figure 21A, arrow) and the single row of large comb scales at 

the siphon (Figure 21 B, arrow). Adults are identified by white spots of the cerci, white 

B 

A 
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triangular lateral patches at the black-scaled terga (Figure 22B, arrow) and a narrow band of 

white scales around the eyes (Becker et al. 2010). The legs are dark with a white spot at the 

femora. Adults and aquatic stages of O. geniculatus were found exclusively at phytotelmata 

(PT1 to PT6) during the entire sampling period from March to October 2011. Adult Oc. 

geniculatus were collected in high abundances at PT4 and in low abundances at other 

phytotelmata. A total of 883 larvae, 36 pupae and 89 female adults were recorded from late 

March to late September 2011. Larvae and pupae were most abundant at sampling sites PT3 

and PT4. In the aquatic stages this species was associated with larvae of Cx. pipiens and An. 

plumbeus at PT4.  

 

 

Figure 21: Ochlerotatus geniculatus; A: tip of abdomen (arrow: anal papillae); B: siphon (arrow: comb scales); 

C: stellate seta (arrows).  

A 
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Figure 22: Oc. geniculatus; A: head and thorax; B: white patches of the abdominal terga (arrow). 

 

3.1.6 Ochlerotatus (Ochlerotatus) cantans (Meigen 1818) /annulipes (Meigen 1830) 

The close species pairs Oc. cantans/ Oc. annulipes has a saddle seta which is as long as the 

saddle, and the siphonal tuft is approximately as long as the siphon width at the insertion 

point (Figure 23A, arrow). Anal papillae are as long as or longer than the saddle, and the 

siphonal index is less than 3.0. The ventral brush of these two species consists of 4 to 6 

precratal setae and 10 to 20 cratal setae (Figure 23B, arrow) (Mohrig 1969; Cranston et al. 

1987). Larval stages of Oc. cantans and Oc. annulipes are difficult to separate from each 

other and were found exclusively at temporary ponds with high abundances at T2 and T5 

from early March to April. In addition, 3 female adults originating from Phytotelmata PT1 

could be identified as Oc. annulipes. 

 

 

Figure 23: Ochlerotatus cantans/ annulipes; A: pecten and siphonal tuft (arrow); B: tip of abdomen (arrow: 

precratal setae).  
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3.1.7 Ochlerotatus (Ochlerotatus) cataphylla (Dyar 1916) 

Oc. cataphylla has 10 to 30 (usually 25) comb scales arranged in 2 to 3 irregular rows. The 

siphonal index is around 3. The pecten is made up of 13 to 25 teeth with the last 2 to 4 

pecten teeth located beyond the siphonal tuft, which is located approximately at siphon 

center (Figure 24, arrow) (Becker et al. 2010). Two larvae were found at temporary pond T5 

on March 26, two females at T2 on April 19 and 1 female at the Wachtelgraben S1 on April 

21, 2011. 

 

 

Figure 24: Ochlerotatus cataphylla; tip of abdomen with siphonal tuft (arrow). 

 

3.1.8 Ochlerotatus (Ochlerotatus) excrucians (Walker 1856) 

Adults of Oc. excrucians have white rings on their palps. White subspiracular and 

postspiracular scales as well as a postprocoxal patch are present. The fore unguis is bent in a 

sharp angle (Mohrig 1969). Two females of Oc. excrucians were found at sampling site PT1 

on May 31, 2011. 

3.1.9 Ochlerotatus (Ochlerotatus) flavescens (Müller 1764) 

Larvae of Oc. flavescens have similar identification characteristics than Oc. cantans, but the 

anal papillae are half as long as the saddle and the siphonal index is ≥ 3.0. The saddle seta is 

nearly as long as the saddle, and the siphonal tuft is as long as the siphon width at the point 

of insertion (Becker et al. 2010). Larvae of this species were collected at temporary pond T1 

(3 individuals) on April 15, 2011.  
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3.1.10 Ochlerotatus (Ochlerotatus) sticticus (Meigen 1838)  

Proboscis and palps of adult Oc. sticticus are dark-scaled. The hypostigmal patch is absent, 

but subspiracular and postspiracular scale patches are present. Abdominal terga are dark-

scaled with pale basal bands (Becker et al 2010). Four adult females were found at sampling 

site PT1 on July 29, 2011. 

3.1.11 Ochlerotatus (Rusticoidus) rusticus (Rossi 1790) 

The number of comb scales of Oc. rusticus varies from 10 to 18 (Figure 25 B, arrow), usually 

arranged in 2 irregular rows. The siphonal tuft is located approximately at the center of the 

siphon (Figure 25A, arrow) (Becker et al. 2010). One to three of the pecten spines are 

detached. Three larvae were collected at temporary pond T5 on March 23, 2011.  

 

 

Figure 25: Ochlerotatus rusticus; A: siphon with siphonal tuft (arrow); B: pecten teeth (arrow). 

 

3.1.12 Culex (Culex) pipiens (Linnaeus 1785) 

The larval head of Cx. pipiens is wider than long. The siphonal index ranges from 4.8 to 5.0, 

with the siphon itself being slender (Figure 26B) and tapered toward the apex while the 

number of pecten teeth is 13 - 17. The species is further characterized by the presence of 

several paired basal siphonal tufts (Figure 26B, arrows) and the seta at the saddle is usually a 

single one. The number of the short comb scales at the last abdominal segment (Figure 26C, 

a) is about 40. The dorsal pair of anal papillae is approximately twice as long as the saddle 

(Figure 26C, b). The scutellum of females has narrow pale scales and dark setae (Figure 26D, 

arrow), white scales patches are situated at the mesepisternum, and postspiracular and 

prespiracular setae are rarely present. The abdomen is dark-scaled with mainly yellowish 

basal bands (expanding laterally) (Cranston et al. 1987; Becker et al. 2010). A total of 733 
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larvae, 9 pupae and 51 adults (48 females and 3 males) were collected during the entire 

sampling period from April to September at a variety of breeding habitats. 

 

 

Figure 26: Culex pipiens; A: eggraft; B: siphon with several siphonal tufts (arrows); C: comb scales (a) and anal 

papillae (b); D: scutellum of female (arrow). 

 

3.1.13 Culex (Neoculex) territans (Walker 1856) 

Cx. territans has about 50 comb scales (Figure 27A, a) and the siphonal index ranges from 6.0 

to 7.0 (Figure 27A). The siphon is long and slender, tapering to the apex (Cranston et al. 

1987; Becker et al. 2010), where it distingly expands (Figure 27A, b) in comparison with Cx. 

pipiens (Figure 26B). The larval head is distinctly broader than long and the antennae are as 

long as the head (Figure 27B, arrow) (Cranston et al. 1987; Becker et al. 2010). The abdomen 

of female Cx. territans is relatively narrow with no widening in the middle (Figure 27C) when 

compared with females of Cx. pipiens (Figure 26D). Cx. territans (89 larvae, 32 pupae and 23 

female adults) were found from early April to early September at 7 different sampling sites. 

Aquatic stages and adults were most abundant at the Kleine Binn (KB1 and KB2), mostly 

associated with species of the Anopheles maculipennis complex, and the Fadenbach (F1 and 

C 
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F2). Lower numbers were detected at the Wachtelgraben (S1) and at temporary ponds (T2 

and T4). 

 

 

 

Figure 27: Culex territans; A: tip of larval abdomen; B: head capsule with antennae (arrow); C: female adult. 

 

 

3.1.14 Culiseta sp. (Felt 1904) 

Larvae of Culiseta sp. differ from other mosquito genera by the siphonal tuft (Figure 28, 

arrow), which is situated at the base of the respiratory siphon (Mohrig 1969). Six larvae of 

this genus were detected at 4 sampling sites (T1, T2 and KB1) in May and early July, with one 

larva being identified as Culiseta annulata (Schrank 1776).  
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Figure 28: Culiseta sp.; A: tip of larval abdomen with siphonal tuft (arrow), B: respiratory siphon detail. 

 

 

3.1.15 Coquilletidia (Coquilletidia) richiardii (Ficalbi 1889) 

Adults of Cq. richiardii are characterized by a trilobed scutellum, an apically rounded 

abdomen with short, hardly visible cerci, broad and conspicuous wing scales and the 

absence of prespiracular and postspiracular setae at the thorax. The claws are simple and 

pulvilli are absent (Mohrig 1969). Adults of this species were present at temporary pond T4 

and at 4 phytotelmata (PT2, PT3, PT4 and PT6) from late June to early August.  

 

 

3.2 Life cycles 

Biometrical data (larval head capsule widths, body lengths) of the most abundant species 

(Cx. pipiens, Cx. territans and Oc. geniculatus) were measured to define larval instars for life 

cycle reconstruction. Size-frequency histograms for head capsule widths clearly separated 

the 4 larval instars of the three mosquito species and are shown in Figure 29.  

A B 
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Figure 29: Size-frequency histograms of larval head capsule width measurements of the three most abundant 

Culicidae species Cx. territans (A), Oc. geniculatus (B) and Cx. pipiens (C) collected at Orth an der Donau. 

Roman numerals indicate the larval instars. 
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Growth patterns of Culicidae reflect the interaction of the size increment per moult and the 

moulting frequency. In the three most abundant Culicidae species, the average head width 

increment per moult was proportionately constant at 33 – 56 % (Figure 30, Table 10); 

therefore Dyar’s rule was applicable. Average head capsule width increments, reflected by 

the growth ratios shown in Table 10, were 43-52 % in Cx. territans and 49-60% in Oc. 

geniculatus; lowest increments were observed in Cx. pipiens (31-34%). 

 

 

 

Table 10: Range of head capsule widths (mm) and growth ratios of the three most abundant mosquito 

species. 

 

Species Cx. territans 
Head capsule width 

Cx. pipiens 
Head capsule width 

Oc. geniculatus 
Head capsule width 

Instar range (mm) growth ratio range (mm) growth ratio range (mm) growth ratio 

1 0,26-0,40 

 

0,29-0,36 
 

0,25-0,37 
 

  
1.50 

 
1.33 

 
1.60 

2 0,47-0,52 

 

0,40-0,48 
 

0,40-0,54 

 
  

1.43 
 

1.34 
 

1.58 

3 0,56-0,86 

 

0,51-0,80 
 

0,58-0,80 

 
  

1.52 
 

1.31 
 

1.49 

4 0,89-1,37 
 

0,81-1,37 
 

0,82-1,36 

  

 

 

Head capsule widths were clearly separated (Table 10) and did not overlap within a given 

species. The ranges of larval head capsule widths of Cx. territans, Cx. pipiens and Oc. 

geniculatus vary slightly within each instar. The lowest head capsule width observed was 

0.25 mm, the highest was 1.37mm (Table 10).  

A total of 222 specimens (larvae, pupae and adults) of Cx. territans were used for life cycle 

reconstruction (Figure 31). Larvae were detected from April to June 2011 in high abundance, 

when compared to September (3 larvae). Larvae pupated in May and July in low 

abundances; adults were sampled from May to July 2011. The sampling sites dried up in 

October. This species most probably had 2 generations emerging in May/June and June/July.  
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Figure 30: Dyar’s rule was applicable for instar versus ln head width regressions in Ochlerotatus geniculatus 

(n=648) (A), Culex territans (n=167) (B) and Culex pipiens (n=741)(C). 
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Figure 31: Life cycle diagram of Cx. territans, showing the flight period (=Adults) and the percentage of larval 

instars 1-4 and pupae. The number of individuals sampled at each month is shown at the top of the diagram. 

Generations are indicated by straight lines.  

 

 

In Oc. geniculatus, a total of 868 individuals (larvae, pupae and adults) sampled from early 

March to the end of October 2011 were included in life cycle reconstruction. This species 

had 2 generations emerging in May and July/August. As sampling sites dried up at the end of 

September, a third generation was unable to emerge. Pupae were detected from April to 

May and from July to August; larvae were abundant from March to late September (Figure 

32). A total of 759 larvae, pupae and adults were collected in Cx. pipiens (Figure 33). Larvae 

were detected from March to September, a small number of pupae in March and from June 

to August. The flight time ranges from May to the end of July. Sampling sites dried up in 

September, terminating the development of larvae detected this month. Two generations 

emerged in May/June and July with the possibility of a spring generation in March/April.  
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Figure 32: Life cycle diagram of Oc. geniculatus, showing the flight period (=Adults) and the percentage of 

larval instars 1-4 and pupae. The number of individuals sampled at each month is shown at the top of the 

diagram. Generations are indicated by straight lines.  

 

 

Figure 33: Life cycle diagram of Cx. pipiens, showing the flight period (=Adults) and the percentage of larval 

instars 1-4 and pupae. The number of individuals sampled at each month is shown at the top of the diagram. 

Generations are indicated by straight lines. 
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3.3 Microhabitat characteristics 

In order to explore the effects of environmental parameters on spatial distribution of larval 

Culicidae of the Danube floodplain, a cluster analysis (hierarchical classification, Wards 

method) based on the euclidean distance was performed using the data listed in chapter 2.2 

(Figure 34). Four groups of habitats were extracted (Table 11).  

Group 1 (Table 11) consists of sampling sites PT5, S2 and temporary water bodies (T1-T5). 

Here the highest amount of larval mosquitoes with 1044 individuals out of 8 different 

species (Figure 35A) was found. The breeding sites are characterized by a low water level 

(0.50 to 10.53 cm), very low oxygen concentrations (0.80 to 10.10 mgL-1) and the highest 

loads of chloride (10.99 to 78.60 mgL-1) and sulphate (7.65 to 193.12 mgL-1) of all groups 

(Table 11).  

Phytotelmata (PT1-PT6) with exception of PT5 belong to group 2 (Table 11) which consists of 

temporary water bodies with a very low water level (only 3 - 9 cm), with the lowest electric 

conductivity (214 to 574 µScm-1) and the highest amounts of nitrate (1.22 to 32.44 mgL-1) of 

all groups (Table 11).  A total of 871 larvae were detected at these special breeding habitats. 

Larvae of Oc. geniculatus were found in high numbers at these sampling sites during the 

entire sampling period, and some larvae of Cx. pipiens and An. plumbeus occurred in autumn 

(Figure 35B). 

Group 3 (Figure 35C) combines sampling sites at the Kleine Binn (KB1 and KB2) and the 

Große Binn (GB1). The species inventory consists of Cx. territans (77 larvae), An. 

maculipennis (12 larvae) and Cs. annulata (1 larvae) at KB1 and KB2 and of one larva of Cx. 

territans at GB1 (larvae), but no mosquitoes were detected at GB1. GB1 and both KB1 and 

KB2 are permanent water bodies with a high water level when compared with groups 1, 2 

and 4. In addition, comparatively high oxygen concentrations ranging from 7.16 to 10.17 

mgL-1 and lower nutrient concentrations than at the breeding sites of group 1 were 

measured (Table 11). 

Group 4 (Table 11) consists of the sampling sites located at the Fadenbach (F1, F2, and F3) 

and one sampling site at the Wachtelgraben (S1). These sites were characterized by water 

persistence, a nearly constant water level during the entire sampling period, a high 

conductivity ranging from 408 to 999 µScm-1 and chloride concentrations ranging from 18.86 

to 68.44 mgL-1.  A high predator density (Dytiscus marginalis (Linnaeus 1758), Chaoborus 

crystallinus (De Geer 1776)) was detected in comparison to groups 1 to 2. Twenty-five larval 
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mosquitoes (Figure 35D) were detected at these breeding habitats, mostly Cx. territans and 

less Cx. pipiens. 

To detect habitat parameters associated with the distribution of Culicidae species, a 

Canonical correspondence analysis was performed, based on larval abundance and five 

environmental variables. Monte-Carlo permutation tests revealed that conductivity, water 

level, water persistence, pH and phosphate concentrations contributed significantly (P<0.05) 

to the model (Figure 36). The model explains in total 99.8 % of the variance of the 5 selected 

variables. The first axis discriminated between species in short-living temporary water 

bodies and species in stagnant water bodies, with Culex territans preferring stagnant water 

bodies with high water levels. In fact, aquatic stages of Culex territans were found in high 

abundances in stagnant water bodies (KB1, KB2 and F3) where water levels ranged from 46 

to 103 cm, and only in very low abundances in temporary water bodies. Ochlerotatus 

geniculatus and Anopheles plumbeus were exclusively found at phytotelmata sampling sites 

where concentrations of PO4 were high, ranging from 1.10 to 16.18 mgL-1. Larvae of 

Ochlerotatus annulipes/cantans and Aedes vexans are constricted to short-living temporary 

ponds. Cx. pipiens, on the other hand, is abundant at a variety of sampling sites, ranging 

from slowly-flowing running waters to phytotelmata and temporary water bodies. The 

results of the Canonical Correspondence Analysis of environmental variables versus sampling 

sites (Figure 36B) underline the results of the Cluster analysis (Figure 35) which split the 

sampling sites into four groups:  phytotelmata, temporary water bodies, Kleine and Große 

Binn and Fadenbach sampling sites.  
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Figure 34: Cluster analysis (hierarchical classification, Wards method), based on abiotic parameters given in 

chapter 2.2; showing euclidean distances of Culicidae sampling sites in Danubean floodplain water bodies 

within the Nationalpark Donau-Auen. 
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Table 11: Habitat characteristics of the Culicidae species sampled in Danubean floodplain water bodies 

within the Nationalpark Donau-Auen, based on cluster analysis. 

 

Parameter Group 1 Group 2 Group 3 Group 4 

          

Water level (cm) 0.50-10.53 3.50-9.16 34.05-74.33 46.10-103.53 

Water supply  (days) 58-245 114-181 245 245 

Conductivity (µScm
-1

) 247-1310 214-574 451-631 408-999 

O² (mgL-1) 0.80-10.10 1.50-22.80 7.16-10.17 3.44-8.11 

O² (%) 7.90-105.10 18-87 82.46-106.39 41.15-90.74 

pH 7.20-8.20 5.92-7.53 7.57-9.6 7.31-7.89 

Temperature (°C) 9.20-21.77 12.87-22.80 8.21-19.39 14.30-21.77 

NH4 (mgL
-1

) 0-5.43 0-10.60 0-0.05 0-0.89 

Cl (mgL
-1

) 10.99-78.60 2.61-28.51 15.22-18.30 18.86-68.44 

NO3 (mgL
-1

) 0-14.41 1.22-32.44 1.86-5.49 0.59-25.08 

PO4 (mgL
-1

) 0-16.18 1.10-16.18 0-0.04 0.01-4.15 

SO4 (mgL
-1

) 7.65-193.12 2.30-28.56 32.25-45.56 22.93-139.20 

Water hardness  
(mmolL

-1
) 

1.26-3.48 1.20-4.14 2.60-3.06 1.73-4.09 

Carbonate hardness 
(mmolL

-1
) 

0.95-2.84 1.02-2.52 2.01-2.67 1.51-3.65 

  
             

Mosquito species 
inventory 

Cx. pipiens An. plumbeus An. maculipennis 
complex 

Cx. pipiens 

 
Cx. territans Cx. pipiens Cx. territans Cx. territans 

 
Ae. vexans Oc. geniculatus Cs. annulata  

 
Oc. cataphylla    

 
Oc. geniculatus    

     
          

Sampling sites PT5, S2, T1, PT1, PT2, PT3 GB1, KB1, KB2 F1, F2, F3, S1 

 
T2, T3, T4, T5 PT4, PT6 
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Table 12: Arithmetic means of predator density (CPUE; m
-2

 min
-1

) of four groups of breeding habitats, 

grouped according to Cluster Analysis (+ = present; - = absent) 

 

Predator Group1  Group2 Group3 Group4 

  
      

Invertebrate Predators 
    Chaoborus crystallinus 0.25 0 0.06 15.23 

Asilius sulcatus 0.09 0 0 0.15 

Nepa cinerea 0 0 0.11 0.23 

Ranatra linearis 0 0 0 0.23 

Notonecta glauca 0.05 0 0.09 0.05 

Gerris sp. 0.78 0 0.39 0 

Hydrometra stagnorum 0.44 0 1.27 0 

Zygoptera 0.09 0 0.36 0 

Anisoptera 0.35 0 0 0 

Hyphydrus ovatus 0.04 0 0 0.15 

Ilyocoris cimicoides 0 0 0 0.09 

Dytiscus marginalis 0.3 0 0 0.12 

     

Newts + - - + 

Fish - - + + 

     

Range 0-0.78 0 0-1.27 0-15.23 

     

 

 

Figure 36 B highlights the high conductivity of the temporary waters due to high evaporation 

rates. Phytotelmata sampling sites, where Anopheles plumbeus and Ochlerotatus geniculatus 

were found, are characterised by high phosphate concentrations. Große and Kleine Binn as 

well as the Fadenbach sampling sites were mainly split according to water persistence, water 

level and pH. 
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Figure 35: Percentage of species of Group 1 (A), Group 2 (B), Group 3 (C) and Group 4 (D). 
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Figure 36: A; Canonical correspondence analysis biplot of five significant (P<0.05) environmental variables 

versus Culicidae species abundance. Arrows indicate environmental variables; Cond = Conductivity, watper = 

water persistence, watlev = water level, PO4 = phosphate; A.plum = Anopheles plumbeus, A.mac = Anopheles 

maculipennis complex, C.ter = Culex territans, C.pip = Culex pipiens, A.vex= Aedes vexans, O.gen = 

Ochlerotatus geniculatus, O.ann_can = Ochlerotatus annulipes/ cantans. B; Canonical correspondence 

analysis biplot of five significant (P<0.05) environmental variables versus sampling sites. Down triangles = 

Wachtelgraben sampling sites (S1, S8); up triangles = temporary water bodies (T1-T5); diamonds = 

phytotelmata; circles = Kleine Binn and Große Binn sampling sites; squares = Fadenbach sampling sites (F1-

F3). 

 

  

A B 
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4. Discussion 

4.1 Sampling methods 

A wide range of apparatus and techniques have been developed in the last years to collect 

mosquitoes. Different methods were used depending on whether the interest focuses on the 

ecology and population dynamics of mosquitoes or on pest controls. Most commonly used 

for collecting larval and pupal mosquitoes in a variety of habitats is the dipper (Silver 2008). 

The often-used standard pint dipper consists of a white plastic container (11cm in diameter; 

capacity: 350 ml) with an attached handle (Dixon and Brust 1972; Lemenager et al. 1986; 

Amerasinghe & Ariyasena 1990). In the case of our study, the usage of a CPUE method, 

performed with a handnet (chapter 2.3.1) was a better choice due to the low density of 

larval and pupal Culicidae. Both sampling methods, however, fail to sample aquatic stages of 

Coquillettidia richiardii. Species of this genus use their highly modified siphon to pierce the 

roots of a variety of macrophytes (Mohrig 1969, Cranston et al 1987, Becker et al. 2010) and 

are likely to be found at breeding sites with high abundances of Typha sp., Phragmites sp. 

and Juncus sp. (Sérandour 2010). Larvae and pupae of Coquillettidia are not detectable from 

the water surface (Brothers 2005, LaPointe 2007). The Morozow method, where larvae and 

pupae are collected manually from removed host plants is known to be effective in detecting 

aquatic stages of Coquillettidia, but this technique is not usable in a nature reserve such as 

the Danubean floodplain National Park. The newest method to monitor mosquito 

populations (e.g. for pest control) is the usage of carbon dioxide traps (e.g. BG-Sentinel, 

Biogents) which leads to higher capture rates of Culicidae than traditional trapping 

techniques (e.g. Light traps). The field efficiency of the BG-Sentinel Trap (BGS) used with 

carbon dioxide in combination with a lure is higher when compared with industry-standard 

traps (CDC light traps and gravid traps) for the invasive mosquito species Aedes albopictus 

(Farajollahi et al. 2009). Meanwhile, the BGS Trap is used in many mosquito surveillance 

programs and the high capture rates of this trapping technique are well documented (Azil et 

al. 2010; Krueger & Hagen 2007; Werner et al. 2012). The BGS Trap in combination with the 

BG-Lure (Biogents) as an additional attractant to carbon dioxide increases the detection of 

invasive mosquito species like Aedes aegypti and Aedes albopictus (Irish et al. Nguyen et al. 

2010; Whelan et al. 2011), and the usage of this trap is highly recommended for surveillance 

programs from institutions like the Armed Forces Pest Management Board (Dengue and 

Chikungunya Vector Control Pocket Guide 2012). Aside from high acquisition and running 
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costs of a carbon dioxide sampling trap, our sampling design (chapter 2.3.1) favoured the 

usage of a handnet to collect female and male mosquitoes during the sampling period. The 

traditional hand-netting method was easier to handle at 20 sampling sides which had to be 

investigated every third day. Moreover, the aim of the adult mosquito sampling was the 

detection of females using the sampling sites as breeding grounds. The handling of 

additional lures would have attracted females over long distances and, therefore, increased 

the possibility of flawing results.  

4.2 Species inventory, abundance and phenology 

In Austria 39 mosquito species belonging to 7 genera (Aedes, Anopheles, Culex, 

Coquillettidia, Culiseta, Ochlerotatus and Uranotaenia) are reported (Mohrig & Car 2002); 

three further species (Ochlerotatus nigrinus, Aedes albopictus and Anopheles hyrcanus) were 

detected by Seidel 2011 and Walter 2012. In our study, 15 species including two close 

species pairs (Aedes cinereus/rossicus and Ochlerotatus cantans/ annulipes) (Table 7) 

belonging to 6 genera were detected. Genus Uranotaenia and invasive mosquito species 

such as Aedes albopictus, Aedes aegypti and Ochlerotatus japonicus were not present in the 

study area. The recorded mosquito inventory basically is in line with previous studies. Rötzer 

(1995) detected 12 species out of 5 genera in the Danube Floodplain at Stockerau (Lower 

Austria) (Table 13). In this case floodplain species were predominant, with Aedes vexans 

(49.9 %) and Ochlerotatus flavescens (28.8 %) being abundant, followed by the 

phytotelmata-breeding species Ochlerotatus geniculatus (14.6 %). The most abundant 

species in the Danube Floodplain at Orth an der Donau were Ochlerotatus geniculatus (64.1 

%), Culex territans (18.7 %) and Culex pipiens (6.9%) (Table 8). 

Floodplain dynamics influence the mosquito species composition (Rettich et al. 2007; Becker 

et al. 2010; Strelková et al. 2012). This is confirmed by the results of the canonical 

correspondence analysis (Figure 36) where water level as well as water persistence were key 

factors for larval development in 2011 and species distribution. Therefore the low flooding 

frequency in 2011 consisting of one spring flood is considered to be responsible for the lack 

of typical flood-plain mosquitoes in 2011. Larvae of mosquito species predominant in 

frequently inundated areas, floodplains and temporary water bodies like Ae. vexans, Ae. 

sticticus, Ae. cinereus, Ae. rossicus, Oc. rusticus, Oc. annulipes and Oc. cantans (Becker 2003, 

Medlock 2006, Strelková 2012,) were detected in unexpected low numbers (5.9 % of total 

abundance). The most abundant species in the larval stage were phytotelmata species 
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(Ochlerotatus geniculatus, Anopheles plumbeus) (66.4 % of the total), followed by mosquito 

species associated with urban areas (Culex pipiens and Culex territans) (26.6 % of total larval 

abundance).  

Culicidae species richness and abundance of the Danubean floodplain in the area of Orth an 

der Donau are relatively low when compared with floodplain regions of other countries 

(Table 13). As in the National Park Donau-Auen, the South-Moravian region is mainly 

characterized by floodplain forests and meadows, influenced by annual floods of the rivers 

Morava and Dyje, thereby providing a variety of breeding habitats for mosquito 

development (Rettich et al. 2007, Sebesta et al. 2012a). Mosquito sampling of the flood plain 

regions of Bohemia and Moravia (Czech Republic) in 2005 and 2006 recorded 11 307 adults 

and 38 869 larvae belonging to 22 species and 6 different genera (Aedes, Anopheles, Culex, 

Culiseta, Coquillettidia and Ochlerotatus) (Rettich et al 2007). In the region of the Lower Dyje 

River Basin (Podyji) at the Czech-Austrian border, 30 mosquito species belonging to 7 genera 

(Anopheles, Aedes, Ochlerotatus, Coquillettidia, Culex, Culiseta and Uranotaenia) were 

detected in a 3 year study from 2009 to 2011. Two floodplain species, Aedes vexans (56.5 %) 

and Aedes sticticus (16.4 %) were most abundant, followed by Culex (Barraudius) modestus 

(Ficalbi 1890) (8.9 %), Culex pipiens (7 %) and Aedes rossicus (5.2%). Ochlerotatus 

geniculatus, the most prevalent mosquito species (44% of the total catch) in 2011 at Orth an 

der Donau was represented by only 0.19 % of the total catch in the Lower Dyje River Basin 

(Sebesta et al. 2012a). The high occurrence of flood-plain species the South-Moravian region 

might be explained by the higher frequency of floods between 2009 and 2011 (Sebesta et al. 

2012a), which are necessary for the development of Aedes vexans and further floodplain 

species (Kenyeres et al. 2011; Becker et al. 2010; Mohrig 1969). The mosquito species 

inventory and distribution of urban, wetland and forest habitats in Osijek (north-eastern 

Croatia) were investigated in a ten-year study from 1995-2004. This wetland region is 

located near the Nature Park Kopački rit, which is influenced by the floods of the Danube 

and the Drava River (Merdic 1993). In this study 207136 adult mosquitoes belonging to 20 

species and 7 genera were sampled: Aedes, Anopheles, Culex, Culiseta, Coquillettidia, 

Ochlerotatus and Uranotaenia. Most common species were Aedes vexans (75.6%) and 

Ochlerotatus sticticus (13.3 %), followed by species of the Culex pipiens complex (5.9 %) and 

the Anopheles maculipennis complex (1.9 %). This long-term study confirmed that seasonal 
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population dynamics were influenced by the water level of the Drava and Danube River 

(Sudarić Bogojević et al. 2009).  

The knowledge that 40 species have been imported to Europe in the last 40 years mainly via 

international trade with used tires and bamboo (Medlock et al. 2012), among them Aedes 

albopictus and Aedes japonicus (Seidel 2011; Werner 2012; Šebesta 2012) as well as 

Anopheles hyrcanus (Šebesta 2009; Walter 2012) in Austria and bordering countries, 

highlight the need to verify and revise the mosquito fauna inventory of Austria.  

 

Table 13: Synopsis of faunistic mosquito studies in Austria and other floodplain regions. A = Adult numbers; L 

= Larval numbers. 
1
 Rötzer (1995); 

2 
Sudarić Bogojević et al. (2009); 

3  
Rettich et al. (2007); 

4 
Strelková et al. 

(2012); 
5 

Sebesta et al. (2012). 

Genera Species Individuals  Study area 

5 12 296 (A)/ 3272(L) Danube Floodplain 1994-1995 
1
 

7 22 207 136 (A) Osijek (Croatia) 1995-2004 
2
 

6 22 38 869 (L)/ 11 307 (A) Bohemia & Morava (Czech Rep.) 2005-2006 
3
 

6 28 5864 (A) Morava River Basin (Slovakia) 2009-2010 
4
 

7 30 415 218 (A) South Moravia (Czech Rep.) 2009-2011 
5
 

6 15 1022 (L)/221 (A) Danube Floodplain 2011 

 

4.4 Life cycles 

Generally, life cycles of Culicidae are well studied. In the National Park Donau-Auen only 

three species were detected throughout the sampling period. Larvae of Ochlerotatus 

geniculatus were found from March to September, Culex pipiens and Culex territans from 

April to September.  

Ochlerotatus geniculatus is considered to be polycyclic (Mohrig 1969). A synchronized hatch 

was investigated in the Danube floodplain in the area of Stockerau, Lower Austria, whereby 

the simultaneous occurrence of different larval instars was explained by the increased food 

competition in the small breeding habitats (Rötzer 2005). Prolonged and asynchronous 

emergence patterns were explained as an adaption to dry periods (Mohrig 1969), whereas 

Rötzer (1995) detected that larvae and pupae of Ochlerotatus geniculatus were able to 

survive dry periods in the moist substrate. During the sampling period from March to 

October 2011 synchronous as well as asynchronous emergence were observed at the 

phytotelmata in the National Park Donau-Auen, depending on the sampling site. At two 

phytotelmata sampling sites (PT1 and PT4) only synchronous emergence was observed, 
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whereas more than one emergence peak was noticed at the remaining phytotelmata (PT2, 

PT3, PT5 and PT6). It was not possible to detect any larvae or pupae surviving dry periods in 

the substrate; this might be explained by extensive droughts which eliminated any moisture 

from the substrate. The second phytotelmata-inhabiting mosquito species, Anopheles 

plumbeus, is known to breed several generations per year (Kenyeres et al. 2012), but larvae 

were only found in August 2011. The high abundance of Ochlerotatus geniculatus with two 

generations in 2011 possibly influenced Anopheles plumbeus population size. Hard et al. 

(1989) showed that tree-hole species have different habitat requirements and responses to 

food quality and density. Given their different feeding strategies, with Oc. geniculatus being 

filter-feeders and An. plumbeus beeing browsers who feed on the microbial biofilm of the 

air-water interface (Becker et al. 2010), there is a significant effect on species density in the 

low water volume of these habitats ranging from 32 to 1358 ml (Table 4). Larvae of An. 

plumbeus were only present when the abundance of Oc. geniculatus decreased.  

Culex pipiens and Culex territans have the same life-cycle strategy (Kenyeres et al. 2012; 

Becker et al. 2010; Mohrig 1969). Both species hibernate exclusively as females and start to 

select their oviposition sites in early spring (Becker et al. 2010; Mohrig 1969), resulting in the 

first larvae being present as early as April 2011. Larvae of Culex pipiens were found in spring 

near their hibernation sites in houses and stables in Orth an der Donau: at the Fadenbach 

sampling sites, in the artificial pond and additionally in rain barrels. In late summer and 

autumn their breeding sites shifted to more remote areas in phytotelmata as well as 

temporary water bodies. Metamorphosis could not be observed during the investigation 

period. In contrast, Culex territans which is not bound to urban areas was mainly collected at 

the Große and the Kleine Binn, but also at temporary water bodies and the Fadenbach. The 

development of both species is not strongly correlated with floodplain dynamics, and 

suitable breeding sites were present from early spring to September. Therefore, two 

generations of Culex territans and Culex pipiens were observed in 2011. Rötzer (1995) 

reported only a low number of Culex territans in the Danubean floodplain in Stockerau 

(Lower Austria). When compared with our investigations in 2011, where Culex territans was 

one of the most abundant species. Culex territans is known to be polycyclic and the larval 

development usually starts in May or June (Mohrig 1969). Culex territans is likely to be found 

in shaded waterbodies (Mohrig 1969), often covered with Lemna minor L. (Becker et al. 

2010; Mohrig 1969), which is in line with our findings in the Danubean Floodplain. Rötzer 
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(1995) did not collect any Culex pipiens in the Danubean floodplain, but in artificial 

containers bordering the floodplain. Ochlerotatus cantans, Ochlerotatus cataphylla and 

Ochlerotatus rusticus were detected in temporary ponds in March. These three species had 

only one generation per year and were exclusively found in temporary water bodies; they 

share the same lifecycle strategy, hibernating as eggs and hatching after their breeding 

habitats get filled with water from snowmelt or rainfall. Data of Kenyeres et al. (2012) 

confirm these findings. Floodplain species like Aedes vexans and Aedes sticticus were found 

from June to July in low abundances in temporary water bodies, yielding to one generation 

in 2011 for both species; however, they are known to be bi- or multivoltine elsewhere 

(Kenyeres et al. 2012; Becker et al. 2010; Mohrig 1969). 

4.5 Microhabitat characteristics 

Ecological data of mosquito breeding habitats were mainly compiled in order to improve 

vector control measurements of the larval population (Brothers 2005; LaPointe 2007; Azari 

Hamidian 2011). Research focused, therefore, on species which are known to be a potential 

health risk such as species belonging to genera Anopheles, Aedes and Toxorhynchites 

(Sérandour 2010; Rey 2006; Clements 1999), vectors of dirofilariasis for (Azari-Hamidian 

2009) and invasive species like Ochlerotatus japonicus, Aedes albopictus and Aedes aegypti 

(Bartlet-Healy et al. 2012; Juliano and Lounibos 2005; Braks et al. 2003). Laboratory studies 

highlighted that breeding habitat selection is species-dependent and that different mosquito 

development strategies favour different microhabitats (Becker et al. 2003, Mohrig 1969). 

However, the study of natural habitat requirements were poorly neglected in Austria and 

the neighbouring countries in the last years. Regions where floods were followed by 

mosquito mass productions were observed in order to detect breeding habitats of species 

declared as a potential health risk (Clements 1999). Subsequently, such species were 

reduced using chemical and biological methods (Chandra et al. 2008). Besides water level 

fluctuations (Sudarić Bogojević et al. 2009), water surface area, presence of pondweed 

vegetation, water depth, water transparency and temperature of the breeding habitats were 

identified as basic indicators of larval mosquito distribution (Kenyeres 2011). Furthermore, 

floodplain species like Aedes vexans and Ochlerotatus sticticus as well as snow-melt species 

like Ochlerotatus annulipes, Ochlerotatus cantans and Aedes rossicus were associated with 

shallow, astatic, clear waterbodies (Kenyeres et al. 2011). These investigations confirm our 

results in the Nationalpark Donau-Auen, where these species were only collected in 
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temporary water bodies with water levels ranging from 0.50 to 10.53 cm. Aedes flavescens 

has been reported to avoid forests as breeding habitats (Mohrig 1969); nevertheless, Rötzer 

(1995) found larvae of Ae. flavescens in high abundances in the Danube floodplain due to a 

lack of adequate breeding habitats outside the alluvial forests. In contrast to Rötzer (1995) 

we collected only three larvae at temporary water body T1 which confirms the findings of 

Mohrig (1969). Ochlerotatus geniculatus was found in all phytotelmata sampled, a pattern 

also confirmed by Kapeszky (1938). In contrast, Anopheles plumbeus is known to breed 

primarily in tree holes of Quercus sp. (L. 1753) and Fagus sylvatica (L.)(Mohrig 1969); in the 

present study this species was also recorded in a water-filled tree hole of Carpinus betulus 

(L.) (PT2) and Tilia cordata (Mill. 1768) (PT4). The tolerance of both species to acidic pH 

values and high NH4 concentrations can be confirmed. Both species, An. plumbeus and Oc. 

geniculatus, were found in habitats with pH-values ranging from 4.5 to 7.9 and NH4 

concentration up to 27.75 mgl-1. These findings were also observed by Kapeszky (1938) who 

detected both species in water-filled tree holes with NH4 concentrations up to 30mgl-1. 

Although Oc. geniculatus was the most abundant species collected in our study, this species 

is not prone for mass production, because of their strictly limited breeding habitats (Mohrig 

1969). 

In the case of the relatively immobile aquatic stages of Coquillettidia richiardii (Laurence 

1960), vegetation cover is an important biotic habitat requirement in addition to abiotic 

parameters such as oxygen concentration and turbulence (Sérandour et al. 2010). These 

findings could not be confirmed in our study due to a lack of larvae and pupae of this highly-

adapted mosquito species. Coquillettidia richiardii was also lacking in the Wachtelgraben 

(S1), a permanent stagnant water body with dense stands of Typha latifolia (L. 1753) and 

Typha angustifolia which are reported to be favoured by this genus (Sérandour 2010). 

Nevertheless, 44 females of Cq. richiardii were detected from June to August 2011, 

belonging to the three most abundant species collected in the adult stage (19.9% of the total 

catch; Table 9) after Ochlerotatus geniculatus (40.3%) and Culex pipiens (23.1%). 

Intraspecific competition plays an important role in container-breeding mosquito species 

and is well-studied in invasive and indigenous Culicidae (Barbosa et al. 1972; Carpenter 

1983). The ability to survive at times of low food availability as a kind of larval competition 

was tested in three container species (Aedes aegypti (L.), Aedes albopictus (Skuse) and Aedes 

triseriatus (Say)) under laboratory conditions using decomposing leaf litter as a natural food 
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(Barrera 1996). In addition competition was tested in the invasive mosquito species Aedes 

albopictus and the indigenous container species Culex pipiens in Italy, showing that Ae. 

albopictus performed better in exploiting food resources than Cx. pipiens (Carrieri et al. 

2003). The phytotelmata sampling sites investigated in 2011 were not strongly variable in 

abiotic parameters; this is reflected by the results of the canonical correspondence analysis 

(Figure 36A). Furthermore, the lack of predators in water filled-containers and tree holes 

(chapter 3.3) as well as the high adaption of mosquito species inhabiting these waterbodies 

suggests that intraspecific competition might be a key factor influencing mosquito 

populations of such habitats. 

In the National Park Donau Auen Ochlerotatus geniculatus was found in high abundances in 

all phytotelmata sampling sites (PT1-PT6), together with low numbers of Anopheles 

plumbeus and Culex pipiens at two phytotelmata only (PT2 and PT4). Invasive species like 

Aedes albopictus, reported for the first time in the Czech Republic in Mikulov near of the 

Austrian border (Sebestá et al. 2012b) and meanwhile widely established in Italy as well as 

parts of France and Spain (Medlock et al. 2012), invades both water-filled containers as well 

as phytotelmata (Barrera 1996; Livdahl and Willey 1991). The latter species, breeding mainly 

in rural areas (Rey 2006), has the potential to replace our indigenous species. 

Aquatic stages of floodplain species (e.g. Aedes vexans) were mainly detected at temporary 

water bodies; this is in accordance with their lifecycle strategy where females select 

oviposition sites during dry seasons and larvae hatch after flooding. The small number of 

floodplain species can be explained by the unavailability of adequate breeding habitats in 

2011. In contrast, Culicidae species where hibernation takes place in the adult stage and 

which are strongly bound to human settlements (Becker et al. 2010) occurred in unexpected 

high abundances. The females select their oviposition sites like rain barrels and flower vases 

near the hibernation place in early spring. Larvae of Culex pipiens were found in early spring 

at sampling sites situated near human settlements shortly after snowmelt with adults being 

were detected in temporary water bodies (T1 and T2) at the end of March. Aedes vexans and 

Ochlerotatus sticticus were expected to be typical outbreak species, observed in high 

abundances (Aspöck 1969; Strelková et al. 2012; Vujić et al. 2010; Sudarić Bogojević et al. 

2009) in floodplains. One of the main reasons for the low numbers sampled were the low 

flood frequencies which significantly shortened water persistence of the breeding habitats. 

Previous studies also confirm these findings (Schäfer et al. 2004; Service 1977, Pritchard & 
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Scholefield 1983). In addition, the decreasing water volume and the increasing concentration 

of dissolved organic matter of temporary water bodies can result in a smaller size of 

emerging mosquitoes due to premature metamorphosis (Schäfer 2004; Juliano & Stoffregen 

1994). Subsequent studies revealed that decreasing larval density is the key factor for an 

earlier metamorphosis in drying habitats (Chodorowski 1969). Investigations of Schäfer and 

Lundström (2006) showed that floodplain species reacted differently when habitats dried up: 

in Ae. vexans the duration until metamorphosis increased whereas it decreased in Oc. 

sticticus. 

In the Anopheles maculipennis complex, collected in the Kleine Binn and in the artificial 

pond, the canonical correspondence analysis (Figure 36A) revealed that pH, water 

persistence and water level were key factors influencing habitat choice. In contrast, Sattler 

et al. (2005) did not identify any habitat requirements which influence the spatial 

distribution of Anopheles sp., since every stagnant open water body had been colonized by 

larvae. In our study, the Kleine Binn was populated by anopheline larvae when the mostly 

low-flowing water was cut off from the Danube and subsequently transformed into a short-

term stagnant water body.  

Predation pressure on mosquitoes is hardly detectable in field investigations. The results of 

our study show that the habitat groups were inhabited by different sets of aquatic predator 

species. In our CPUE sampling we recorded only aquatic predators (chapter 2.3.1) which are 

known to feed on mosquitoes and are used as biocontrol agents (Chandra et al. 2008). 

Numbers of predator were negatively correlated with mosquito abundance. Fadenbach and 

Wachtelgraben sampling sites (Group 4) were characterized by a high density of Chaoborus 

crystallinus (DeGeer 1776) and Dytiscus marginalis (Linnaeus 1758) resulting in only 25 

mosquito larvae sampled (Table 1). In habitat group 3 (Große and Kleine Binn sampling sites) 

also high density of Gerris sp. (Fabricius 1794) and Hydrometra stagnorum (Linnaeus 1758), 

but only 78 larval mosquitoes were detected (Figure 35). On the other hand, the highest 

larval mosquito density (n=1044; Figure 35) was recorded at temporary water bodies despite 

the presence of invertebrate predators. These findings suggest that also newts and fish 

might play an important role, since fish generally lack in temporary waters. In completely 

predatorless phytotelmata up to 871 Larvae were recorded; here the larval density is 

regulated by habitat size, water persistence and intraspecific competition, not by predator 

pressure. Laboratory studies of DuRant and Hopkins (2008) have shown that amphibians are 
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able to consume a large amount of mosquito larvae per day, indicating the important role of 

mosquitoes in the food chain as well as the role of amphibians in mosquito predation control 

(Brodman et al. 2003). Other laboratory studies stress the importance of many other taxa 

like Odonata (Kögel 1984), Corixidae (Kögel 1984), Hydrometra stagnorum (Purthi 1928), 

Chaoboridae (Chodourowski 1968, Skierska 1969) or Dytiscidae (Nelson 1977, Chandra et al. 

2008) as predators with the capacity of effectively reducing mosquitoes in large numbers. 

The influence of predators feeding on adult mosquitoes like dragonflies (Becker et al. 2010; 

Lamborn 1980), birds (Blotzheim 1985) or bats (Arnold et al. 1998) are hardly to examine in 

field studies, because flight-hunting predators have a wide activity range where the activity 

patterns of prey and predator overlap (Becker et al. 2010). Culicidae react by a number of 

avoidance strategies. Ovipositioning Culicidae, e.g. Culiseta (Allotheobaldia) longiareolata 

(Macquart 1838), Culex (Culex) laticinctus (Edwards 1913) and Anopheles gambiae (Giles 

1902) avoid predator-rich water bodies (Spencer et al. 2002; Kiflawi et al. 2003; 

Kershenbaum et al. 2011) because they are able to detect predator-released kairomones 

(Warburg et al. 2011). In fact, the active avoidance of water bodies with a high abundance of 

predators such as Notonecta maculata (Fabricius 1794) can strongly support a mosquito 

population (Warburg et al. 2011). 

Floodplain areas are dynamic systems with distinct mosquito species pools, but the yearly 

composition of the mosquito fauna varies, depending on hydrological conditions, weather 

(especially the amount of precipitation and possible dry seasons), water level fluctuations 

and flood frequencies (Schäfer et al. 2008, Sebesta et al. 2012; Sudarić Bogojević et al. 2009). 

Species abundance is further influenced by intraspecific competition and predator pressure 

(Sunahara et al. 2002). In order to fully elucidate these complex interactions, long-term 

studies in floodplain areas such as the National Park Donau-Auen are strictly necessary.  
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Abstract 

Mosquitoes are known as hosts for a variety of parasites and pathogens and are therefore 

considered as nuisance and as vectors of human diseases. Until recently not much attention 

had been paid to their ecology although they play an important but poorly understood role 

in food chains (Poulin 2010). In order to understand the ecological function of Culicidae in an 

ecosystem it is imperative to update information on culicid species distribution and to 

investigate the factors controlling it. We monitored abiotic parameters such as water level, 

nutrients, oxygen concentration and conductivity as well as biotic parameters (Culicidae and 

potential predators) from March to October 2011 at 20 sampling sites in the National Park 

Donau-Auen. A total of 34 eggrafts, 1927 larval, 80 pupal and 200 adult Culicidae were 

collected. We detected 15 mosquito species belonging to 6 genera (Anopheles, Culex, 

Culiseta, Coquillettidia, Aedes and Ochlerotatus), whereas Ochlerotatus geniculatus (68 %) 

and Culex territans (13 %) were most abundant, followed by Culex pipiens and Aedes vexans 

with approximately 5% and 4 % of total abundance. Biometrical data were used to 

reconstruct life cycles; at the study area Cx. pipiens and Cx. territans were bivoltine and Oc. 

geniculatus multivoltine. Based on abiotic and biotic parameters, sampling sites were 

grouped into 4 clusters. The results show that water level and persistence, pH, electric 

conductivity and phosphate concentrations had a significant influence on species 

distribution and that flood plain dynamics are a key factor for the seasonal and spatial 

distribution of mosquito larvae in the National Park Donau-Auen. 
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Zusammenfassung 

Stechmücken haben aufgrund ihrer human- und veterinärmedizinischen Bedeutung als 

Krankheitserreger sowie als Vektor einer Vielzahl von Parasiten und Pathogenen eine große 

Bedeutung und werden daher hauptsächlich als Gesundheitsrisiko und Plage 

wahrgenommen. Die Ökologie der Stechmücken und in Folge auch ihre wichtige und bisher 

spärlich untersuchte Rolle in aquatischen und terrestrischen Nahrungsketten wurde bisher 

stark vernachlässigt. Um die ökologische Funktion der Stechmücken innerhalb eines 

Ökosystems nachvollziehen zu können, ist es unerlässlich, den derzeitigen Wissensstand 

über die Artverteilung und die jeweiligen Einflussfaktoren zu erheben und zu aktualisieren. 

Abiotische Parameter wie Wasserstand, Wasserführung, Sauerstoffkonzentration und 

Leitfähigkeit sowie biotische Parameter (Stechmücken und deren Predatoren) wurden an 20 

Untersuchungsstellen im National Park Donau-Auen regelmäßig erhoben. Insgesamt wurden 

34 Eischiffe, 1927 Larven, 80 Puppen und 200 adulte Culicidae während der Untersuchung 

gesammelt. Es wurden 15 Stechmückenarten aus 6 Gattungen (Anopheles, Culex, Culiseta, 

Coquillettidia, Aedes und Ochlerotatus) bestimmt, wobei die häufigsten Arten Ochlerotatus 

geniculatus (68%) und Culex territans (13%), gefolgt von Culex pipiens und Aedes vexans mit 

5% und 4% der Gesamtabundanz darstellten. Biometrische Daten wurden verwendet, um die 

Lebenszyklen der abundantesten Arten zu rekonstruieren. Culex pipiens und Culex territans 

zeigten mit 2 Generationen einen bivoltinen und Ochlerotatus geniculatus mit 3 

Generationen einen multivoltinen Entwicklungszyklus. Basierend auf den erhobenen 

abiotischen und biotischen Parametern wurden die Untersuchungsgebiete in vier 

Habitatgruppen zusammengefasst. Die Resultate ergaben, dass Wasserstand, 

Wasserführung, pH, elektrische Leitfähigkeit und Phosphatkonzentration einen signifikanten 

Einfluss auf die Artverteilung ausüben und somit die Auendynamik einen Schlüsselfaktor für 

die saisonale und räumliche Verteilung von Stechmückenpopulationen im National Park 

Donau-Auen darstellt. 
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Appendix 
 

Tables 
 

Table 14: Number of mosquitoes sampled at the National Park Donau-Auen from March to October 

2011.. E= Eggraft; L=Larvae; P=Pupae; A=Adults. 

 

Mosquito species Sampling site E L P A 

      

Anopheles (Anopheles) maculipennis s.l. MEIGEN 

1818 AP1 0 36 0 0 

 

F3 0 11 0 0 

Anopheles (Anopheles) plumbeus STEPHENS 1828 PT2 0 6 0 0 

 

PT4 0 6 3 0 

Aedes (Aedes) cinereus MEIGEN 1818 / esoensis  

DOLBESKIN, GORITZKAJA & MITROFONA 1930 T1 0 1 0 0 

 

T2 0 2 0 0 

Aedes (Aedimorphus) vexans MEIGEN 1830  T1 0 30 0 0 

 

T2 0 2 0 0 

 

T5 0 2 0 0 

 

KB1 0 0 0 1 

Ochlerotatus (Finlaya) geniculatus OLIVIER 1791 PT1 0 77 3 6 

 

PT2 0 101 4 0 

 

PT3 0 238 8 4 

 

PT4 0 396 21 77 

 

PT5 0 11 0 0 

 

PT6 0 60 0 2 

Ochlerotatus (Ochlerotatus) cantans MEIGEN 1818 

/annulipes MEIGEN 1830 T1 0 9 0 0 

 

T2 0 23 0 0 
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T3 0 1 0 0 

 

T4 0 2 0 0 

 

T5 0 29 0 0 

 

PT1 0 0 0 3 

Ochlerotatus (Ochlerotatus) cataphylla DYAR 1916 T2 0 0 0 2 

 

T5 0 2 0 0 

 

S1 0 0 0 1 

Ochlerotatus (Ochlerotatus) excrucians WALKER 

1856 PT1 0 0 0 2 

Ochlerotatus (Ochlerotatus) flavescens MÜLLER 

1764 T1 0 3 0 0 

Ochlerotatus (Ochlerotatus) sticticus MEIGEN 1838  PT1 0 0 0 4 

Ochlerotatus (Rusticoidus) rusticus ROSSI 1790 T1 0 3 0 0 

Culex (Culex) pipiens LINNAEUS 1758 T1 0 31 1 6 

 

T2 0 3 2 0 

 

T4 10 1 0 12 

 

F1 0 36 0 7 

 

F2 0 0 0 4 

 

AP1 23 668 3 18 

 

PT1 0 4 0 0 

 

PT4 0 15 1 0 

 

T1 0 23 2 4 

Culex (Neoculex) territans WALKER 1856 T2 0 4 1 1 

 

T4 0 1 0 0 

 

F1 0 10 0 4 

 

F2 0 7 0 2 

 

KB1 0 7 3 3 

 

KB2 1 58 28 13 
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S1 0 2 0 0 

Culiseta (Culiseta) annulata SCHRANK 1776 T1 0 2 0 0 

 

T2 0 3 0 0 

 

KB2 0 1 0 0 

 

PT2 0 0 0 2 

Coquillettidia (Coquilletidia) richiardii FICALBI 1889 T1 0 0 0 1 

 

T2 0 0 0 2 

 

T5 0 0 0 2 

 

F1 0 0 0 1 

 

PT1 0 0 0 12 

 

PT2 0 0 0 2 

 

PT3 0 0 0 8 

 

PT4 0 0 0 8 

 

PT6 0 0 0 3 

Total:  34 1927 80 217 
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