Beitrag zur Wicklerfauna Kretas aus Aufsammlungen von Dr. Walter RUCKDESCHEL

(Lepidoptera, Tortricidae)

Peter HUEMER

Abstract

The paper gives a short overview about Tortricidae collected by Walter RUCKDESCHEL on the Island of Crete. Altogether 40 species were collected in a period lasting from 1997 to 2011. Material was primarily identified morphologically, supplemented by molecular data of the COI barcode region. Data of collected material are given in detail. The faunistic list includes 24 new records for Crete, boosting the total species number of the island by 75% to actual 56 species. *Gypsonoma obraztsovi* AMSEL, 1959 and *Grapholita lunulana* (DENIS & SCHIFFERMÜLLER, 1775) are new records for Greece. Several species with suspected cryptic diversity are discussed.

Einleitung

Die Schmetterlingsfauna Kretas erweckte ab etwa der Mitte des 19. und insbesondere im 20. Jahrhundert die Aufmerksamkeit zahlreicher Experten und wurde in der Folge in einer Vielzahl von Publikationen bearbeitet (siehe Übersicht bei LEESTMANS 1988), besonders hervorzuheben ist hier die Monographie der kretischen Lepidopteren durch REBEL (1916). Insgesamt wurden nach der aktuellsten Aufstellung in Fauna Europaea (Stand August 2013) (AARVIK 2013) durch diese Bemühungen 919 Schmetterlingsarten auf der Insel nachgewiesen. Wenn auch für manche Familien, insbesondere der sogenannten Großschmetterlinge, der faunistische Bearbeitungsstand inzwischen gut ist (RUCKDESCHEL 2007), besteht in der Bearbeitung einzelner Gruppen der sogenannten Kleinschmetterlinge sowohl faunistisch als auch taxonomisch noch deutlicher Nachholbedarf. Die hier vorgestellten Wickler aus den Aufsammlungen von Walter RUCKDESCHEL belegen diese offensichtlichen Defizite eindrücklich.

Material und Methodik

Probenaufsammlungen und Behandlung

Das untersuchte Material stammt ausschließlich aus Aufsammlungen von RUCKDESCHEL, der Kreta zwischen 1997 und 2011 insgesamt 13 mal besuchte. Die Aufsammlungen zielten auf eine möglichst vollständige Erfassung der Lepidopterenfauna, weshalb auch Kleinschmetterlinge als Beifänge in größerem Umfang belegt wurden. Wichtig erschien daher aber auch eine möglichst umfassende regionale und jahreszeitliche Abdeckung. Die Hauptmethoden waren Lichtfang mit Leinwand, Leuchtturm und automatischen Lichtfallen sowie Tagaufsammlungen (RUCKDESCHEL 2007). Das umfangreiche Belegmaterial an Kleinschmetterlingen wurde genadelt und meistens gebreitet sowie etikettiert. Das Material wurde darüber hinaus von RUCKDESCHEL grob nach Familien sortiert und einschließlich einer digitalen Liste der Fundorte zur weiteren Bearbeitung an Experten weitergeleitet. Die Zünslerartigen Schmetterlinge werden von SEGERER untersucht und sind in der Zoologischen Staatssammlung in München gelagert. Die restlichen Kleinschmetterlinge wurden vom Autor dieser Studie kontrolliert und zur Bearbeitung übernommen. Sämtliches Belegmaterial exkl. Crambidae und Pyralidae wird folglich in den Naturwissenschaftlichen Sammlungen der Tiroler Landesmuseen fachgerecht aufbewahrt.

Zu den hier dargestellten Wicklern gehören insgesamt 589 Falter, die 40 Morphospezies zugeordnet werden konnten. Die Artbestimmung erfolgte nach Standardliteratur (RAZOWSKI 2002; 2003) unter Berücksichtigung phänotypischer und stichprobenweise genitalmorphologischer Merkmale.

Molekulare Daten

In Erwartung möglicher genetischer Divergenzen isolierter Inselpopulationen bzw. eventueller kryptischer Diversität wurden von insgesamt 35 Arten bzw. 72 Individuen Gewebeproben (Bein oder Teil eines Beines) entnommen und zur Ermittlung von Gensequenzen an das Canadian Center for DNA Barcoding (CCDB) der Universität Guelph (Ontario, Kanada) versendet. Die PCR Amplifikation sowie die anschließende DNA-Sequenzierung folgte den bei DEWAARD et al. (2008) beschriebenen Standardprotokollen. Mit Hilfe dieser Methode wurde eine 658 Basenpaare umfassende Region der mitochondrialen Cytochrom C Oxidase I (COI) einschließlich der 648 Basenpaare des Barcodes isoliert und vervielfältigt. Sämtliche objektspezifischen Daten sowie DNA-Barcodes werden in der Datenbank BOLD (http://www.barcodinglife.org/) (RATNASINGHAM & HEBERT 2007) im öffentlichen Projekt LECRT "Lepidoptera of Crete – Tortricidae" verwaltet.

Fundortliste

Die Liste der Referenzfundorte samt Sammeldaten und Methodik basiert auf einer von RUCKDESCHEL verfügbar gemachten umfassenderen Liste der Lokalitäten aller seiner Aufsammlungen, die jedoch hier gekürzt wiedergegeben wird und nur die Lokalitäten/Daten auflistet, die für Tortricidae relevant sind.

Tab. 1: Referenzfundorte, Sammeldaten und Methodik

Abkürzungen:

Bezirk (Bez): Cha = Chania; Ira = Iraklion; Las = Lasithi; Re = Rethymon.

Kreis: AgNik = Agios Nikolaos; Cha = Chania; Cher = Chersonissos; Iera = Ierapetra; Ira = Iraklion; Kol = Kolimbari; Lam = Lambi; Las = Lasithi; Mak = Makrygialos; Mou = Mousouri; Pal = Paleochora; Pla = Platanias; PsiGeb = Psiloritisgebirge; Sfa = Sfakia; Ther = Therisso.

Me (Methode): Lt = Leuchtturm; Tf = Tagfang; To = Topffalle; Tr = Trichterfalle.

SMe (Submethode): **Bl** = Blaulicht; **Sw** = Schwarzlicht.

Nr	Bez	Kreis	Bezugsort	Fundort	Höhe von	Höhe bis	T	M	J	Me	SMe
1	Cha	Sfa	Loutro	Phinix	40		17	5	2005	Tr	Sw
2	Cha	Sfa	Loutro	Phinix	40		22	5	2005	Tr	Sw
14	Cha	Cha	Kydonia	üb. Lakki St.3	800		11	5	2000	Tf	
19	Cha	Kol	Drakona b. Kol.	Agios Stephanos	120		03	8	2006	Tr	Sw
20	Cha	Kol	Drakona b. Kol.	Agios Stephanos	120		03	8	2006	Lt	
23	Cha	Mou	Langos	Fassastal	400		13	5	2003	Tr	Bl
25	Cha	Mou	Nea Roumata	Kalamonitestal	270	300	13	5	2003	Tr	Bl
26	Cha	Mou	Nea Roumata	Kalamonitestal	270	300	13	5	2003	Tr	Sw
27	Cha	Mou	Omalos	Omalos	1100		10	8	2006	Tr	Bl
29	Cha	Mou	Omalos	Omalos	1100		05	7	2010	Tr	Sw
30	Cha	Mou	Omalos	Omalos	1100		09	8	2006	Tr	Bl
33	Cha	Mou	Omalos	Omalos	1250		06	7	2010	Tr	Sw
34	Cha	Mou	Omalos	Omalos - Hotel	1060		11	5	2000	То	Bl
35	Cha	Mou	Omalos	Omalos - Hotel	1060		12	5	2000	То	Bl

Nr	Bez	Kreis	Bezugsort	Fundort	Höhe von	Höhe bis	T	M	J	Me	SMe
39	Cha	Mou	Omalos	Omalos - Hotel	1060		05	7	2010	То	Bl
41	Cha	Mou	Omalos	Omalos - Hotel	1060		20	5	2003	То	Bl, Sw
43	Cha	Mou	Omalos	Omalos - Hotel	1060		19	5	2003	Tr	Sw
46	Cha	Mou	Omalos	Omalos - Hotel	1060		10	8	2006	То	Bl
47	Cha	Mou	Omalos	Omalos, Wald	1100	1150	19	5	2003	Tr	Bl
51	Cha	Mou	Omalos	Omalos, Wald	1100	1150	11	5	2000	Tr	Sw
52	Cha	Mou	Omalos	Omalos-Ebene	1050	1100	06	7	2010	Tr	Sw
54	Cha	Mou	Omalos	Omalos-Ebene	1050	1100	11	5	2000	Tf	
58	Cha	Mou	Omalos	Str. nach Lakki	900		09	8	2006	Tr	Sw
59	Cha	Mou	Skines	Fassastal	140		22	9	2001	Tf	
60	Cha	Mou	Skines	Fassastal	140		22	9	2001	Tr	Sw
64	Cha	Pal	Paleochora	Azogires	300		15	5	2000	Tr	Sw
66	Cha	Pal	Paleochora	Paleochora	150		26	3	1999	Tr	B1
67	Cha	Pal	Paleochora	Paleochora	150		14	5	2000	Tr	Bl
69	Cha	Pal	Paleochora	Paleochora	5	50	28	3	1999	Tf	
71	Cha	Pal	Pelekanos	Sarakina	450		27	3	1999	Tr	B1
73	Cha	Pla	Platanias	Platanias	5	20	06	8	2006	Tr	Sw
75	Cha	Pla	Platanias	Platanias	5	20	02	8	2006	Tr	B1
78	Cha	Pla	Platanias	Platanias	5	20	17	5	2003	Tr	B1
84	Cha	Pla	Xekollimenos	Patellari	20		16	6	1997	Tr	B1
85	Cha	Pla	Xekollimenos	Patellari	20		17	5	2003	Tr	Sw
86	Cha	Pla	Xekollimenos	Patellari	20		15	5	2003	Tr	Bl
87	Cha	Pla	Xekollimenos	Patellari	20		22	9	2001	Tr	Bl
88	Cha	Pla	Xekollimenos	Patellari	20		25	9	2001	Tr	Sw
89	Cha	Pla	Xekollimenos	Patellari	20		18	6	1997	Tr	Bl
90	Cha	Pla	Xekollimenos	Patellari	20		17	6	1997	Tr	Bl
93	Cha	Sfa	Sfakia	Hora Sfakion	100	150	11	5	2003	Tf	
98	Cha	Ther	Xekollimenos	Kirtomados	40	70	27	9	2001	Lt	
99	Cha	Ther	Xekollimenos	Kirtomados	40	70	25	9	2001	Tr	B1
100	Cha	Ther	Xekollimenos	Kirtomados	40	70	17	5	2003	Tr	Sw
101	Cha	Ther	Xekollimenos	Kirtomados	40	70	22	9	2001	Tr	B1
104	Cha	Ther	Xekollimenos	Kirtomados	50	70	09	5	2000	Tr	Sw
105	Cha	Ther	Xekollimenos	Kirtomados	50	70	08	5	2000	Tr	Sw
106	Cha	Ther	Xekollimenos	Kirtomados	20	30	09	5	2000	Tr	B1
107	Cha	Ther	Xekollimenos	Kirtomados	20	30	08	5	2000	Tr	Bl
111	Ira	Cher	Moni Kardiótissa	Krasi	750	800	08	10	2001	Tr	Bl
115	Ira	Ira	Kera	Kera	800		14	8	2006	Tr	Sw
116	Ira	Ira	Kera	Kera	800		17	4	2008	Tr	Bl
119	Ira	Ira	Pandom.	Fodele	40	100	10	10	2001	То	Bl
122	Ira	Ira	Pandom.	Fodele	40		25	5	2000	Tr	Sw
123	Ira	Ira	Pandom.	Fodele	100		25	5	2000	То	Bl

Nr	Bez	Kreis	Bezugsort	Fundort	Höhe von	Höhe bis	Т	M	J	Me	SMe
129	Ira	Psigeb	Psigeb	Nidha	1400	1510	23	5	2000	Tr	Sw
150	Las	AgNik	Elounda	Lenika	10		10	6	1997	Tr	Bl
154	Las	Iera	Ferma	H. Coriva Beach			01	4	1999	То	Bl
155	Las	Iera	Koutsounari	Agios Joannis	240	260	1	5	2003	Tr	Sw
156	Las	Iera	Koutsounari	Agios Joannis	240	260	28	4	2003	Tr	Sw
161	Las	Iera	Koutsounari	Agios Joannis	390		03	11	2004	Tr	Bl
162	Las	Iera	Koutsounari	Agios Joannis	390		28	4	2003	Tr	Bl
163	Las	Iera	Koutsounari	Agios Joannis	390		06	5	2003	Lt	
164	Las	Iera	Koutsounari	Agios Joannis	390		14	4	2008	Tr	Sw
165	Las	Iera	Koutsounari	Agios Joannis	390		19	5	2000	Tr	Bl
170	Las	Iera	Koutsounari	Ferma	70		07	11	2004	Tr	Sw
171	Las	Iera	Koutsounari	Ferma	70		11	4	2008	Tr	Sw
172	Las	Iera	Koutsounari	H. Kakkos Bay	10		29	4	2003	Lf	
174	Las	Iera	Koutsounari	Koutsounari	100		01	5	2003	Tr	Bl
176	Las	Iera	Koutsounari	Koutsounari	100		04	11	2004	Tr	Sw
177	Las	Iera	Koutsounari	Koutsounari	100		03	11	2004	Tr	Sw
178	Las	Iera	Koutsounari	Koutsounari	100		28	4	2003	Tr	Bl
179	Las	Iera	Koutsounari	Koutsounari	100		30	4	2003	Lt	
181	Las	Iera	Koutsounari	Koutsounari	100		12	4	2008	Tr	Sw
185	Las	Las	Lasithi	Tzermiadou	830		22	5	2000	То	Bl
186	Las	Las	Lasithi	Tzermiadou	830		04	5	2003	Tr	Bl
196	Las	Las	Lasithi	Tzermiadou	830		17	4	2008	То	Bl, Sw
197	Las	Las	Lasithi-Ebene	Messa Lasithi	850	980	13	7	2010	Tr	Sw
198	Las	Las	Lasithi-Ebene	Messa Lasithi	850	980	22	5	2000	Tr	Sw
199	Las	Las	Lasithi-Ebene	Messa Lasithi	850	980	12	7	2010	Tr	Sw
200	Las	Las	Lasithi-Ebene	Messa Lasithi	850	980	17	4	2008	Tr	Sw
201	Las	Las	Lasithi-Ebene	Messa Lasithi	850	980	14	8	2006	Tr	Bl
202	Las	Las	Lasithi-Ebene	Messa Lasithi	850	980	07	10	2001	Tr	Bl
204	Las	Las	Lasithi-Ebene	Messa Lasithi	850	980	03	5	2003	Tr	Sw
211	Las	Las	Malia	Sisi	50		28	4	2003	Tf	
212	Las	Las	Malia	Sisi	50		06	4	1999	Tr	Bl
218	Las	Makr	Koutsouras	Achlia	30		05	11	2004	Tr	Sw
221	Las	Makr	Koutsouras	Achlia	30		07	11	2004	Tr	Bl
222	Las	Makr	Koutsouras	Achlia	30		09	4	2008	То	Bl, Sw
223	Las	Makr	Koutsouras	Achlia	30		11	4	2008	Tr	Sw
224	Las	Makr	Koutsouras	Achlia	30		04	11	2004	Tr	Sw
226	Las	Makr	Koutsouras	Achlia	30		13	4	2008	То	Bl, Sw
227	Las	Makr	Koutsouras	Achlia	30		12	4	2008	То	Bl, Sw
229	Las	Makr	Moni Kapsa	Perivolakia- Schlucht	10	30	10	4	2008	Lt	
231	Las	Makr	Moni Kapsa	Perivolakia- Schlucht	10	30	20	5	2000	Lt	

Nr	Bez	Kreis	Bezugsort	Fundort	Höhe von	Höhe bis	T	M	J	Me	SMe
234	Las	Makr	Schinokapsala	Agios Georgios	460		04	10	2001	Tr	Bl
235	Las	Makr	Schinokapsala	Agios Georgios	675		04	10	2001	Lt	
236	Las	Makr	Schinokapsala	Agios Georgios	675		03	11	2004	Tr	Bl
237	Las	Makr	Schinokapsala	Agios Georgios	675		04	10	2001	Tr	Bl
248	Re	Lam	Agia Galini	Agia Galini	5	200	06	5	2003	Tr	Bl
252	Re	Lam	Agia Galini	Agia Galini	5	200	07	5	2003	Tf	
254	Re	Lam	Agia Galini	Agia Galini	5	200	07	5	2003	Tr	Bl
255	Re	Lam	Agia Galini	Agia Galini	5	200	17	5	2000	Tr	Sw
269	Re	Lam	Agia Galini	Agia Galini	10		15	11	2004	Lf	
277	Re	Lam	Agia Galini	Agia Galini, O- Strand	5		14	6	1997	Tr	Bl
295	Re	Lam	Kissou Kampos	Kissou Kampos	460		20	4	2008	Tr	Bl
296	Re	Lam	Kissou Kampos	Kissou Kampos	460		12	8	2006	Tr	
298	Re	Lam	Saktouria	Ano Saktouria	400		18	5	2000	Lt	
305	Re	Lam	Spili	üb. Spili	610		12	8	2006	Tr	Bl
306	Re	Lam	Spili	üb. Spili n. Gerakari	580	800	16	5	2000	Tr	Sw
307	Re	Lam	Spili	üb. Spili n. Gerakari	580	800	30	9	2001	Tr	Sw
308	Re	Lam	Spili	üb. Spili n. Gerakari	800		08	5	2003	Tr	Sw
309	Re	Lam	Spili	üb. Spili n. Gerakari	800		16	5	2000	Tr	Sw
310	Re	Lam	Spili	üb. Spili n. Gerakari	580		16	5	2000	Tr	Sw
314	Re	Lam	Agia Galini	Agia Galini	150	65	21	3	1999	Tr	Bl
316	Re	Lam	Agia Galini	Agia Galini	200	225	13	3	2011	То	Sw
323	Re	Lam	Agia Galini	Agia Galini	200	225	4	12	2010	Tr	Sw
332	Re	Lam	Agia Galini	Agia Galini	200	225	17	3	2011	Lw	Bl, Sw
346	Re	Lam	Agia Galini	Str. n. Spili	150	135	14	3	2011	Tr	Sw
348	Re	Lam	Agia Galini	Str. n. Spili	200	80	24	3	1999	Tf	Bl
349	Re	Lam	Agia Galini	Str. n. Tymbaki	180	140	16	3	2011	Tr	Sw
359	Ira	Lasi	Sisi	Umg. Sisi	50	90	5	4	1999	Tr	Bl

Ergebnisse

Nachfolgend werden die Arten einschließlich Fundorten/Daten aufgelistet. Die systematische Reihung erfolgt in Anlehnung an RAZOWSKI (2002, 2003). Die Artenliste umfasst insgesamt 40 Arten. Faunistische Neufunde sind hervorgehoben: * = Erstmeldung für Kreta; ** = Erstmeldung für Griechenland. Sämtliche Fundangaben (Fundort, Datum, Methodik) orientieren sich an Tabelle 1 und beziehen sich auf die dort in Spalte 1 festgelegte Nummer (fett). Die Anzahl der Individuen wird in runder Klammer angeführt, ebenso die genetisch untersuchten Exemplare.

Knapp 70% der genetisch untersuchten Individuen bzw. etwa zwei Drittel des belegten Artenbestandes, das sind gesamt 25 Arten bzw. 50 Individuen, wurden erfolgreich sequenziert. Informationen zu den genetischen Befunden werden eigens vermerkt und kurz diskutiert.

Artenliste

*Aleimma loeflingianum (LINNAEUS, 1758)

Fundangaben: **150** (1).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

*Acleris variegana (DENIS & SCHIFFERMÜLLER, 1775)

Fundangaben: 39 (1); 122 (1, DNA Barcode TLMF Lep 16969).

Molekulare Daten: Die Art teilt sich nach Daten in BOLD in zwei Cluster, die geringfügig 1,12% divergieren.

Phtheochroa reisseri (RAZOWSKI, 1970)

Fundangaben: **47** (3, DNA Barcode TLMF Lep 16968); **51** (2); **163** (1); **164** (1); **308** (1); **181** (1, DNA Barcode TLMF Lep 16967).

Molekulare Daten: Insgesamt vier Exemplare in BOLD aus Griechenland und Bulgarien zeigen mit 0,17% intraspezifischer Divergenz eine geringe Variabilität. Die Distanz zum nächsten Nachbarn, einer nicht determinierten *Phtheochroa* aus Zypern, beträgt 3,34%.

Phtheochroa duponchelana (DUPONCHEL, 1843)

Fundangaben: **26** (1); **78** (1, DNA Barcode TLMF Lep 16924); **84** (1); **100** (3); **104** (2); **107** (2); **277** (3); **198** (1); **231** (2); **295** (1, DNA Barcode TLMF Lep 16923); **298** (1).

Molekulare Daten: Die beiden bisher sequenzierten Proben der Art, jeweils eine aus Kreta bzw. aus Frankreich zeigen eine intraspezifische Variationsbreite von 0,85%, die Distanz zum nächsten Nachbarn, einer nicht determinierten *Phtheochroa* aus Zypern, beträgt hingegen 6,23%.

*Hysterophora maculosana (HAWORTH, 1811)

Fundangaben: 212 (1, DNA Barcode TLMF 16973).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

*Cochylimorpha straminea (HAWORTH, 1811)

Fundangaben: **43** (1, DNA Barcode TLMF Lep 16963); **204** (1, DNA Barcode TLMF Lep 16964); **212** (1); **269** (1).

Molekulare Daten: Exemplare aus Kreta stimmen im Barcode weitgehend mit Tieren aus dem mittleren und nördlichen Europa überein, lediglich Populationen aus Spanien divergieren etwa 2%.

*Phalonidia contractana (ZELLER, 1847)

Fundangaben: 73 (1, DNA Barcode TLMF Lep 16915); 202 (1).

Molekulare Daten: Die Art zeigt mit bis zu 2,09% intraspezifischer Divergenz eine beachtliche Variationsbreite, die Distanz zum nächsten Nachbarn in BOLD, einer nicht klassifizierten *Phalonidia*, beträgt 2,89%.

Aethes williana (BRAHM, 1791)

Fundangaben: 19 (1).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

*Aethes francillana (FABRICIUS, 1794)

Fundangaben: **23** (1, DNA Barcode TLMF Lep 16914); **155** (1); **185** (1); **197** (2, DNA Barcode TLMF Lep 16913); **198** (1); **199** (2); **212** (1); **252** (2); **254** (3); **295** (2); **309** (1).

Molekulare Daten: Die Art weist nach insgesamt 12 Barcodes in BOLD eine maximale intraspezifische Divergenz von 0,96% auf, die Distanz zum nächsten Nachbarn *Aethes kasyi* RAZOWSKI, 1962, beträgt hingegen 3,67%.

Cochylis posterana ZELLER, 1847

Fundangaben: 29 (1, DNA Barcode TLMF Lep 16966); 33 (1).

Molekulare Daten: Die Art weist zum nächsten Nachbarn, einer unbestimmten Art aus Kirgisien, eine Barcode-Distanz von 4,18% auf. Das einzige sequenzierte Exemplar aus Kreta fällt in die geringe Variationsbreite mit einer intraspezifische Divergenz von maximal 0,32% (n=12).

*Cochylis molliculana Zeller, 1847

Fundangaben: 20 (1, DNA Barcode TLMF Lep 16932); 88 (1).

Molekulare Daten: Das einzige erfolgreich sequenzierte Exemplar aus Kreta divergiert im Barcode von Festlandtieren um ca. 1,8% sodass der taxonomische Status überprüfungswürdig erscheint.

Cnephasia incertana (TREITSCHKE, 1835)

Fundangaben: 1 (2); 129 (2); 198 (1); 298 (1); 309 (9).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

*Cnephasia cupressivorana (STAUDINGER, 1871)

Fundangaben: **34** (1); **35** (1); **43** (4); **44** (1); **47** (8); **51** (15); **129** (6); **185** (1); **186** (2); **196** (4, DNA Barcodes TLMF Lep 16920, 16965); **198** (2); **200** (11, DNA Barcode TLMF Lep 16919); **204** (5, DNA Barcode TLMF Lep 16930); **295** (2); **298** (3); **306** (1); **308** (4).

Molekulare Daten: Die Art weist nach vier bisher sequenzierten Proben, davon drei aus Kreta, zum nächsten Nachbarn *Cnephasia incertana* (TREITSCHKE, 1835) eine Barcode-Distanz von 7,06% auf. Die intraspezifische Divergenz ist hingegen mit maximal 0,9% (n=7) relativ gering.

Cnephasia tofina MEYRICK, 1922

Fundangaben: **35** (1); 41 (1, DNA Barcode TLMF Lep 16935); **43** (1, DNA Barcode TLMF Lep 16936); **54** (4); **198** (1); **309** (2).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

Cnephasia longana (HAWORTH, 1811)

Fundangaben: 298 (1, DNA Barcode TLMF Lep 16984).

Molekulare Daten: Die Art überschneidet sich im Barcode nach Daten aus BOLD mit *Cnephasia genitalana* PIERCE & METCALFE, 1922, und *C. conspersana* DOUGLAS, 1846.

*Avaria hyerana (MILLIÈRE, 1857)

Fundangaben: **161** (1).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

*Cacoecimorpha pronubana (HÜBNER, 1799)

Fundangaben: **59** (1); **88** (1); **89** (1); **115** (1); **176** (2); **177** (2, DNA Barcode TLMF Lep 16954); **211** (1); 218 (1); **221** (1, DNA Barcode TLMF Lep 16955).

Molekulare Daten: Exemplare aus Kreta divergieren im Barcode von Proben aus anderen Gebieten Europas um ca. 2%.

Clepsis consimilana (HÜBNER, 1817) (Abb. 1)

Fundangaben: 67 (1); 119 (2); 123 (4); 155 (4); 156 (4); 164 (2); 178 (1); 174 (7); 179 (1); 201 (2); 221 (5); 222 (2, DNA Barcode TLMF Lep 16957); 224 (2); 226 (6, DNA Barcodes TLMF Lep 16953, 16956); 218 (4); 234 (1); 237 (1); 323 (1).

Molekulare Daten: Exemplare aus Kreta weisen im Barcode zu Proben aus anderen Gebieten Europas eine Distanz von 3,34% auf. Die Divergenz innerhalb der Population ist hingegen mit maximal 0,17% (n=4) gering. Eine taxonomische Überprüfung erscheint dringend empfehlenswert.

*Bactra venosana (ZELLER, 1847)

Fundangaben: **19** (1); **59** (3); **73** (1); **75** (1, DNA Barcode TLMF Lep 16946); **85** (1, DNA Barcode TLMF Lep 169960); **86** (8); **87** (9); **88** (4); **90** (1); 98 (2); **100** (1); **105** (2); **106** (1); **107** (5); **119** (2); ; **122** (1); **221** (1).

Molekulare Daten: Europäische Proben von Spanien bis Griechenland divergieren im Barcode von Populationen aus anderen Regionen (Madagaskar, Ägypten, Pakistan) um ca. 1%.

*Endothenia sororiana (HERRICH-SCHÄFFER, 1851)

Fundangaben: **60** (1); **66** (5); **71** (1); **87** (1); **88** (1); **98** (1); **155** (3); **156** (3); **164** (4); **176** (1); **178** (3); **181** (2); **212** (1); **229** (2, DNA Barcodes TLMF Lep 16928, 16929); **252** (1); **314** (1); **346** (2); **348** (1); **349** (1).

Molekulare Daten: Die Distanz der bisher einzigen sequenzierten Probe zum nächsten Nachbarn in BOLD, *Endothenia gentianaeana* (HÜBNER, 1799), beträgt 4,87%.

Abb. 1: *Clepsis consimilana* divergiert von anderen europäischen Populationen im DNA Barcode so stark, dass kryptische Diversität vermutet werden kann (Foto: Stefan HEIM).

Abb. 2: Die in Europa bisher nur von wenigen Lokalitäten des Balkans bekannte *Gypsonoma obraztsovi* gehört zu den bemerkenswerten faunistischen Neufunden Kretas (Foto: Stefan HEIM).

Lobesia botrana (DENIS & SCHIFFERMÜLLER, 1775)

Fundangaben: **2** (7); **23** (1); **66** (1); **98** (1); **100** (1); **104** (1); **105** (1); **155** (2); **162** (2); **171** (2, DNA Barcode TLMF Lep 16952); **176** (1); **202** (1); **212** (2); **222** (1); **231** (1); **235** (1); **248** (1); **252** (2); **255** (1); **308** (1); **332** (1, DNA Barcode TLMF Lep 16925); **359** (5).

Molekulare Daten: Insgesamt drei in BOLD vorhandene Sequenzen zeigen keine intraspezifische Divergenz. Zum nächsten Nachbarn *Lobesia reliquana* (HÜBNER, 1825) besteht eine Distanz von 4,24%.

Hedya nubiferana (HAWORTH, 1811)

Fundangaben: 298 (1, DNA Barcode TLMF Lep 16947).

Molekulare Daten: Die Art zeigt mit bis zu 2° intraspezifischer Divergenz eine beachtliche Variationsbreite, wobei die beiden bekannten Proben aus Griechenland ein separates Cluster bilden. Die Distanz zum nächsten Nachbarn in BOLD, einer nicht klassifizierten Hedya, beträgt 6,01%.

*Thiodia trochilana (FRÖLICH, 1828)

Fundangaben: 231 (1).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

Epinotia thapsiana (ZELLER, 1847)

Fundangaben: **186** (1); **204** (4, DNA Barcode TLMF Lep 16981); **296** (4, DNA Barcodes TLMF Lep 16933, 16950).

Molekulare Daten: Zwei Barcodes aus Kreta zeigen keine intraspezifische Divergenz. *Epinotia thapsiana* splittet jedoch in insgesamt drei BINs, die bei einer minimalen Distanz von 1,69% auf potentielle kryptische Diversität geprüft werden sollten.

Crocidosema plebejana Zeller, 1847

Fundangaben: 25 (1); 69 (1); 78 (2); 89 (1); 104 (2); 106 (1); 107 (1); 119 (1); 154 (1); 156 (1); 172 (1); 198 (1); 222 (3, DNA Barcode TLMF 16977); 221 (1); 223 (1); 224 (2); 226 (1); 227 (7); 252 (2); 277 (1); 316 (2); 327 (1, DNA Barcode TLMF 16927); 332 (1).

Molekulare Daten: Die Art ist im Barcode mit drei BINs ausgesprochen divergent, ein Hinweis auf mögliche kryptische Arten. Tiere aus Kreta clustern gemeinsam mit allen anderen europäischen Proben.

Pelochrista duercki (OSTHELDER, 1941)

Fundangaben: **58** (1); **197** (2, DNA Barcode TLMF Lep 16962); **201** (3); **234** (1, DNA Barcode TLMF Lep 16916); **323** (1);

Molekulare Daten: Die drei bisher sequenzierten Proben der Art aus Kreta zeigen keine intraspezifische Variationsbreite, die Distanz zum nächsten Nachbarn *Pelochrista agrestana* (TREITSCHKE, 1830) beträgt hingegen 5,94%.

*Eucosma sp.

Fundangaben: 23 (1); 85 (3, DNA Barcode TLMF Lep 16959); 86 (2); 104 (1); 105 (8); 106 (3, DNA Barcode TLMF Lep 16942); 107 (2); 295 (1, DNA Barcode TLMF Lep 16931)

Molekulare Daten: Das einzige bisher erfolgreich sequenzierte Exemplar dieser Art divergiert gegenüber dem nächsten Nachbarn *Eucosma cana* (HAWORTH, 1811) um 2,68%. Da letztere Art bei immerhin 48 Barcodes in BOLD aus großen Teilen Europas lediglich 1,32% intraspezifische Variabilität aufweist, erscheint eine Konspezifität der Populationen Kretas zweifelhaft

**Gypsonoma obraztsovi AMSEL, 1959 (Abb. 2)

Fundangaben: 73 (1, DNA Barcode TLMF Lep 16934); 106 (1, DNA Barcode TLMF Lep 16943).

Molekulare Daten: Die beiden bisher sequenzierten Proben der Art in BOLD, jeweils eine aus Kreta bzw. aus Bulgarien zeigen keine intraspezifische Variationsbreite, die Distanz zum nächsten Nachbarn *Gypsonoma aceriana* (DUPONCHEL, 1843) beträgt hingegen 7,54%.

*Notocelia uddmanniana (LINNAEAUS, 1758)

Fundangaben: 78 (1, DNA Barcode TLMF Lep 16982).

Molekulare Daten: Insgesamt 39 Exemplare in BOLD aus unterschiedlichsten Regionen Europas zeigen mit maximal 1,28% intraspezifischer Divergenz eine mäßige Variabilität.

*Pseudococcyx tessulatana (STAUDINGER, 1871)

Fundangaben: **27** (1); **29** (2) (DNA Barcode TLMF Lep 16911, 16912); **43** (1); **46** (5); **51** (5); **93** (2); **198** (1); **296** (1).

Molekulare Daten: Zwei sequenzierte Exemplare aus Kreta weisen keine intraspezifische Divergenz auf.

*Clavigesta tokei LARSEN, 2010

Fundangaben: 161 (2); 170 (3, DNA Barcode TLMF Lep 16985); 237 (1).

Molekulare Daten: Die Art weist nach der einzigen bisher sequenzierten Probe zum nächsten Nachbarn *Clavigesta purdeyi* (DURRANT, 1911) eine Barcode-Distanz von 4,65% auf.

Bemerkung: Die Art wurde erst 2010 aus der Türkei und Griechenland beschrieben, war jedoch aus Kreta noch unbekannt (LARSEN, 2010)

**Grapholita lunulana (Denis & Schiffermüller, 1775)

Fundangaben: 14 (1).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

*Cydia blackmoreana (WALSINGHAM, 1903)

Fundangaben: **295** (1).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

*Cydia plumbiferana (STAUDINGER, 1870)

Fundangaben: 64 (8); 67 (15); 93 (1); 105 (2); 116 (1); 123 (4); 155 (1); 165 (11); 236 (1); 248 (1); 255 (2); 310 (10, DNA Barcodes TLMF Lep 16941, 16944, 16945).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

*Cydia sp.

Fundangaben: 93 (1, DNA Barcode TLMF Lep 16939).

Molekulare Daten: Die Art ist in BOLD lediglich in einem Barcode bekannt. Die Distanz zum nächsten Nachbarn, einer nicht klassifizierten *Cydia*, beträgt 4,46%.

Cydia pomonella (LINNAEUS, 1758)

Fundangaben: **33** (1, DNA Barcode TLMF Lep 16978); **98** (1); **185** (2, DNA Barcode TLMF Lep 16971).

Molekulare Daten: Keine Barcode-Sequenzen aus Kreta verfügbar.

Cydia pyrivora (DANILEVSKY, 1947)

Fundangaben: 46 (1, DNA Barcode TLMF Lep 16975); 199 (1, DNA Barcode TLMF Lep 16975).

Molekulare Daten: Die wenigen bisher sequenzierten Proben der Art zeigen mit maximal 0,17% eine geringfügige intraspezifische Variationsbreite, die Distanz zum nächsten Nachbarn *Cydia pomonella* beträgt hingegen 4,69%.

Cydia fagiglandana (ZELLER, 1841)

Fundangaben: 1 (1); 19 (2); 27 (3); 29 (4); 30 (7); 33 (3, DNA Barcode TLMF Lep 16922); 60 (1); 87 (1); 99 (6); 101 (1); 111 (7); 115 (1); 119 (2); 197 (3); 199 (5); 201 (4, DNA Barcode TLMF Lep 16921); 202 (2); 234 (1); 237 (2); 296 (9, DNA Barcode TLMF Lep 16972); 307 (8). Molekulare Daten: Die Art weist in Europa eine beachtliche intraspezifische Divergenz von maximal 2,59% auf, Tiere aus Kreta stehen Populationen aus dem Mediterraneum am nächsten. Allerdings wurde aus Kreta darüber hinaus ein auch phänotypisch abweichendes Exemplar sequenziert, das im Barcode 2,98% Divergenz aufweist und in BOLD gemeinsam mit einer Probe aus Süditalien in einem separaten BIN geführt wird. Mehrere weitere Tiere dürften nach ihrem Phänotypus diesem revisionsbedürftigen Cluster von *C. fagiglandana* angehören. Die mutmaßliche kryptische Art muss jedoch anhand weiterer genetischer Daten sowie umfassender vergleichender Untersuchungen der Genitalstrukturen geprüft werden.

*Cydia amplana (HÜBNER, 1800)

Fundangaben: 27 (1); 58 (2, DNA Barcode TLMF Lep 16979, 16980); 59 (7); 99 (1); 201 (4, DNA Barcode TLMF Lep 16948); 305 (8); 307 (1).

Molekulare Daten: Vier bisher sequenzierte Proben, davon drei aus Kreta, zeigen keinerlei intraspezifische Divergenz, die Distanz zum nächsten Nachbarn *Cydia rymarczyki* VARENNE & NEL, 2013, ist mit 1,02% zwar gering, jedoch konstant.

*Pammene fasciana (LINNAEUS, 1761)

Fundangaben: **197** (1, DNA Barcode TLMF Lep 16974); **199** (3, DNA Barcodes TLMF Lep 16917, 16918).

Molekulare Daten: Die Art wird in BOLD gemeinsam mit *Pammene herrichiana* (HEINEMANN, 1854) in einem BIN geführt, differiert allerdings von dieser Art um etwa 1%. Griechische Exemplare lassen sich sowohl nach dem Barcode als auch phänotypisch zweifelsfrei *P. fasciana* zuordnen.

Diskussion

Nach AARVIK (2013) wurden bisher lediglich 32 Arten Tortricidae aus Kreta bekannt, gegenüber 40 durch Walter Ruckdeschel belegten Arten. 16 bereits früher nachgewiesenen Arten stehen ebenso viele im Rahmen dieser Studie nicht registrierte Arten gegenüber: Aethes bilbaensis (RÖSSLER, 1877), A. flagellana (DUPONCHEL, 1836), A. margarotana (DUPONCHEL, 1836), Agapeta largana (REBEL, 1906), Bactra lancealana (HÜBNER, 1799), Cnephasia disforma RAZOWSKI, 1983, C. divisana RA-ZOWSKI, 1959, C. gueneeana (DUPONCHEL, 1836), C. heringi RAZOWSKI, 1958, C. stephensiana (Doubleday, 1849), Cydia succedana (Denis & Schiffermüller, 1775), Dichrorampha lasithicana REBEL, 1916, Endothenia oblongana (HAWORTH, 1811), Epiblema cretana OSTHELDER, 1941, Eucosma obumbratana (LIENIG & ZELLER, 1846) und Pelochrista agrestana (TREITSCHKE, 1830). Umgekehrt werden jedoch in dieser Arbeit 24 Arten erstmals für Kreta gemeldet und das trotz methodisch überwiegend auf Lichtfang beschränkter Aufsammlungen eines zwar versierten Lepidopterologen, allerdings ohne spezifische Kenntnisse über Wickler. Der enorme Zuwachs von 75% zum bisher bekannten Artenbestand belegt erstaunliche Defizite in der faunistischen Erforschung der Insel. Zwar wurden rezent von verschiedenen Experten Aufsammlungen getätigt (KARSHOLT mdl. Mitt), diese sind jedoch meistens nicht veröffentlicht und somit de facto irrelevant. Es ist anzunehmen, dass der gezielte Einsatz weiterer Methoden wie Pheromoneinsatz oder die Suche nach Präimaginalstadien zur Entdeckung weiterer Arten führen wird. Ähnliches gilt sicher auch für weitere bisher nur sporadisch besammelte Gruppen.

Bemerkenswert sind auch die ersten Ergebnisse der genetischen Beprobungen. Viele Arten unterscheiden sich im DNA-Barcode konstant geringfügig bis deutlich von kontinentalen Populationen. Von besonderem Interesse sind die durch signifikante Barcode-Divergenzen untermauerten

Indizien auf bislang unbekannte kryptische Diversität. Beispiele umfassen *Clepsis consimilana* und *Cydia fagiglandana*, aber auch andere bisher nicht auf Artniveau bestimmte Taxa wie *Eucosma* sp. und *Cydia* spp. Zukünftige umfassende morphologische Vergleichsstudien unter Berücksichtigung beschriebener Typenexemplare sind eine Prärequisite, um alle diese Verdachtsfälle zu klären.

Dank

Besonderer Dank und Anerkennung gebührt Herrn WALTER RUCKDESCHEL für die mit enormer Begeisterung und Ausdauer getätigten Aufsammlungen und vielfältige Informationen, sowie der Crocallis-Stiftung, Übersee a. Chiemsee, für die Übergabe des Materials und finanzielle Förderung der Bearbeitung. Die Sequenzierungen wurden durch das Canadian Centre for DNA Barcoding (University of Guelph, Canada) durchgeführt und durch Mittel der Kanadischen Regierung an Genome Canada über das Ontario Genomic Institute ermöglicht. Dank gebührt hier vor allem Prof. Dr. PAUL D. N. HEBERT und seinem herausragenden Team in Guelph. Weiter gebührt dem Ontario Ministry of Research and Innovation und dem Natural Sciences and Engineering Research Council of Canada für die Unterstützung der Datenbank BOLD herzlicher Dank. Fotos wurden dankenswerterweise von STEFAN HEIM/Tiroler Landesmuseen angefertigt.

Literatur

- DEWAARD, J. R., IVANOVA, N. V., HAJIBABAEI, M. & P. D. N. HEBERT 2008: Assembling DNA Barcodes: Analytical Protocols, S. 275-293. In: CRISTOFRE, M. (Hrsg.): Methods in Molecular Biology: Environmental Genetics. Humana Press Inc., Totowa, USA, 364 S.
- LARSEN, K. 2010: The genus *Clavigesta* (Lepidoptera: Tortricidae) with description of two new species. Phegea **38**, 41-54.
- LEESTMANS, R. 1988: Histoire de l'éxploration lépidoptérique de l'île de Crète (Insecta, Lepidoptera). Linneana Belgica 11, 389-413.
- RATNASINGHAM, S. & P. D. N. HEBERT 2007: BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes 7, 355-364. DOI: 10.1111/j.1471-8286.2006.01678.x
- Rebel, H. 1916: Die Lepidopterenfauna Kretas. Annalen des k.k. Naturhistorischen Hofmuseums Wien 30, 66-172.
- RAZOWSKI, J. 2002: Tortricidae (Lepidoptera) of Europe. Vol. 1: Tortricinae and Chlidanotinae. Verlag F. Slamka, Bratislava, 247 S.
- RAZOWSKI, J. 2003: Tortricidae (Lepidoptera) of Europe. Vol. 1 : Olethreutinae. Verlag F. Slamka, Bratislava, 301 S.
- RUCKDESCHEL, W. 2007: Die Geometriden Kretas (Lepidoptera, Geometridae). Nachrichtenblatt der bayerischen Entomologen **56** (1/2), 2-13.

Internetressourcen

AARVIK, L. E. 2013: Fauna Europaea: Tortricidae. – In: KARSHOLT, O. & E. J. VAN NIEUKERKEN (Hrsg.): Fauna Europaea: Lepidoptera, Moths. Fauna Europaea version 2.6.2 vom 29.8.2013, http://www.faunaeur.org.

Anschrift des Verfassers:

Mag. Dr. Peter HUEMER Naturwissenschaftliche Sammlungen Tiroler Landesmuseen Betriebsgesellschaft Feldstr. 11a A-6020 Innsbruck

E-Mail: p.huemer@tiroler-landesmuseen.at

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Nachrichtenblatt der Bayerischen Entomologen

Jahr/Year: 2016

Band/Volume: 065

Autor(en)/Author(s): Huemer Peter

Artikel/Article: Beitrag zur Wicklerfauna Kretas aus Aufsammlungen von Dr. Walter

RUCKDESCHEL 2-12