Mesolith und Skolezit.

Von

Otto Luedecke in Halle.

Mit Tafel I. II. III.

Literatur.

BERZELIUS: Jahresbericht über die Fortschritte der Chemie. III. 147. Mesole von Faeroë. (V. 217.)

Derselbe: Mesole v. Anaklef. Kongl. Vetenskaps Handlingar 1838. p. 189.

BREIDENSTEIN: RAMMELSBERG'S Handbuch der Mineralchemie. II. Aufl. II. Bd. 634. Mesolith von Island.

BREWSTER: Pogg. Annalen. 1824. I. p. 78. Pyroëlectricität von Mesolith und Skolezit.

Derselbe: Gilb. Ann. 1821. Bd. 69. p. 7.

35

Derselbe: Journal d. Physik und Chemie. 1825. Bd. 43. p. 94. (Verzeichniss electrischer Krystalle.)

BROOKE: Philosophical Magazine. X. 110. 1831. Aug.: On Poonalite, a new species of mineral.

BRYCE: Übersicht einfacher Mineralien in den Grafschaften Down, Antrim und Derry. London and Edinb. Philosophical Magazine. 1833. p. 85.

COLLIER: DANA, a system of min. V. Aufl. p. 429. Skolezit von Ghauts.

CREDNER: Neues Jahrbuch f. Min., Geol. u. Pal. 1860. p. 60: Über den Dolerit der Pflasterkaute und die in demselben vorkommenden Mineralien.

DAMOUR: Annales des mines t. XIII. 1858. p. 20. Sources thermales de Plombières.

DES-CLOIZEAUX: Annales des mines. V. Sér. XVI. Bd. p. 389: Mémoire sur l'emploi des propriétés optiques biréfringentes pour la détermination des espèces cristallisées.

Derselbe: Manuel de Min. 1862. p. 386 Skolezit, p. 388 Mesolith. N. Jahrbuch f. Mineralogie etc. 1881. Bd. II. 1 DOMEYRO: Annales des mines. Sér. IV. t. IX. pg. 9: Sur la géologie de Chili etc. (Skolezit von Cachapual).

DUFRÉNOY: Traité de min. III. 429.

FRANKENHEIM: Neues Jahrbuch für Min., Geol. und Pal. 1842. 637. Mesotyp.

GEHLEN und FUCHS: SCHWEIGGER'S JOURNAL für Physik und Chemie. Bd. VIII. 1813. 353: Über WERNER'S Zeolithe; HAUY'S Mesotyp und Stilbit (auch im Journ. de Phys. t. 78. p. 444-451).

FUCHS: SCHWEIGGER'S Journ. f. Phys. u. Chem. Bd. XVIII. 1816. p. 1. Über Zeolith.

GIBBS: Pogg. Ann. LXXI. 565: Skolezit aus Island.

GMELIN: POGG. Ann. XLIX. 538. Chem. Unters. des Poonalith und Thulit.

GÜLICH: POGG. Ann. LIX. 373; im Aufsatz von Riess und Rose über die Pyroëlectricität der Mineralien: Analyse d. Skolezits von Island. GUILLEMIN: Annal. d. mines. I. Série. XIII. Bd. p. 390.

HAIDINGER: Englische Übersetzung der Mons'schen Mineralogie.

HANKEL: Abhandlg. d. kgl. sächs. Ak. der Wissenschaften. XII. Bd. No. I. p. 33. Electrische Untersuchungen; XIII. Abhandlung: Natrolith und Skolezit.

HAUGHTON: Philosophical Magazine. IV. Ser. Bd. 32. p. 225: "Notes on Mineralogy": Harringtonit von Bombay.

HAUY: LEONHARD, Taschenb. f. Min. IX. 612: Über Mesotyp.

HAW: Journ. f. p. Chem. LXXV. 460: Mesolith von Port George.

HEDDLE: Phil. Mag. IV. Ser. 13. Bd. 1857. p. 50: On Mesolite and Faeröelite. IV. Ser. XI. Bd. p. 273: Harringtonite v. Glenfarg; XIII. Bd, 148: On the Antrimolite of Thomson.

HERMANN: Journ. f. p. Chem. LXXII. p. 26: Skolezit des Basalts von Stolpen.

HISINGER: Kongl. Vetensk. Handlingar. 1838. p. 189: Mesole von Anaklef.

HLASIWETZ: KENNGOTT, Übers. d. min. Forschungen. 1858. p. 72: Galaktit v. Fassa.

How: Amer. Journ. of Science a. art. II. Ser. t. 26: Mesolite von Anapolis, p. 32: Chemical analysis of Faeröelite a. some other Zeolites occurring in Nova Scotia. pg. 30.

IGELSTRÖM: Neues Jahrbuch für Min., Geol. und Pal. 1871. p. 361: Skolezit v. Lundörrsfjäll.

Issel: Bollet. geologic. d'Italia. 1879, p. 541: Skolezit v. Casarza.

KENNGOTT: Neues Jahrb. f. Min., Geol. und Pal. 1870. p. 998. (Auszug aus der Züricher Vierteljahrschrift. 1870. p. 287): Über Skolezit. 1873. p. 725: Über das Vorkommen des Skolezits am schattigen Wichel, Fellinen-Alp.

Derselbe: Übersicht der mineralogischen Forschungen. 1854. p. 87: Über Poonalith.

KENNGOTT: Sitzungsberichte der Wiener Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Classe. V. 240: Über Harringtonit. Derselbe: ibid. 234: Antrimolith. LUEDECKE: Sitzungsbericht d. hallischen naturforschenden Gesellschaft. 8. Febr. 1879. Derselbe: Dies. Jahrbuch 1880, II. 200. MALLARD: Bull. de la société minéralogique de France. I. 109: Pseudosymmetrie der Zeolithe. MARSH: DANA, a syst. of min. V. Aufl. 430: Mesolith von Blomidon. Mons: Mineralogie. I. Aufl. II. p. 271. NAUMANN: Elem. d. Min. X. Aufl. 628. PETERSEN: Poonalith. Neues Jahrb. 1873. p. 853. RAMMELSBERG: Handbuch der Mineralchemie, 1860, 799. Mineralchemie. II. Aufl. II. Bd. 632. Derselbe: Zeitschrift der deutsch. geol. Gesellsch. 1869. 121. RIEGEL: Skolezit von Niederkirchen. Journ. f. p. Chem. XL. 317. v. RICHTHOFEN: Sitzungsber. d. k. k. Akad. d. Wissensch. zu Wien. Math.-naturwissenschaftl. Classe. 27. Bd. 353, 1857: Bildung und Umbildung der Mineralien in Süd-Tirol. RIESS und Rose: Pogg. Ann. 59. 368. (Berlin. Akad. 1843. 75): Über Pyroëlectricität der Mineralien. Rose: Pogg. Ann. 28. 424: Mesotyp. SARTORIUS V. WALTERSHAUSEN: Vulkanische Gesteine, p. 267. SCHMID: POGG. Ann. 142. 118: Über Mesolith. Derselbe: Jenaische Zeitschrift für Med. u. Naturwiss. 1880. Juli: Über Skolezit v. Etzlithale. Scott: Edinburgh new phil. Journ. 1852. LIII. 272. (= KENNGOTT: Min. Forschg, 1852. 55): Skolezit v. Mull. STEPHAN: RAMMELSBERG'S Mineralchemie. 1875. II. Aufl. II. Bd. 632: Skolezit v. Faeroë. TAYLOR: Americ. Journ. of Science a. art. II. Ser. Bd. XVIII. p. 410. Contribution to mineralogy by GENTH. Skolezit of the East-Indies. THOMSON: Lond. Edinb. Phil. Mag. 17. Bd. p. 409. 1840: Skolezit from Giants Causeway. Derselbe: Outlines. I. p. 329. 339. VAUQUELIN: Journal des mines. No. 14. p. 87. Analyse des Skolezits. WISER: Neues Jahrb. 1860. p. 786: Skolezit v. Viescher Gletscher. ZIPPE: Mineralogie v. Mons. II. Ausgabe. S. 60.

1*

Historisches.

HAUY hat in seinem Traité de minéralogie noch alle drei Zeolithe: den Natrolith (WERNER), den Skolezit (FUCHS) und den Mesolith (FUCHS) unter dem Namen Mesotyp vereinigt und rechnet zu ihnen auch noch den Mesotype épointée (Apophyllit). FUCHS trennte im Jahre 1813 in seiner Arbeit: Über WERNER'S Zeolith ⁴ von dem Mesotyp den Skolezit und Apophyllit ab; die Anregung, sich mit diesen Zeolithen näher zu beschäftigen, hatte er durch folgende Bemerkung HAUY'S über die Mesotype erhalten²: "Fusible avec bouillonnement en émail spongieux"; er fand dagegen, dass der wirkliche Mesotyp³ ganz ruhig zu einem klaren ungefärbten Glase schmelze, während die von ihm später als Skolezite bezeichneten Körper in der Hitze sich wurmförmig krümmen.

Durch quantitative Analysen zeigt er sodann, dass in dem Skolezit neben Spuren von Alkali grösstentheils Calcium an Stelle von Natrium, wie beim Mesotyp (Natrolith WERNER), getreten sei. In einer folgenden Publikation weist sodann FUCHS⁴ im Verein mit GEHLEN die Angriffe HAUY'S⁵ auf die neue Gattung zurück und trennte vom Skolezit noch den Mesolith ab. Spätere Analysen von SARTORIUS v. WALTERSHAUSEN⁶, BREIDENSTEIN⁷, BERZELIUS⁸, HEDDLE⁹, How¹⁰, THOMSON¹¹, RIEGEL¹², MARSH¹³ und E. SCHMID¹⁴ zeigten, dass auch diese Species wohl begründet sei und daher vom Skolezit abgetrennt werden müsse.

- ⁴ Schweigg. Journ. 1816. Bd. 18. p. 1.
- ⁵ LEONHARD, Taschenbuch f. Min. IX. 612.
- ⁶ Vulcan. Gest. p. 267.
- ⁷ RAMMELSBERG, Handb. d. Mineralchemie. I. Aufl.: II. p. 634.
- ⁸ Jahresb. 3. 147.
- ⁹ Phil. Mag. IV. Ser. 13. 50.
- ¹⁰ Am. Journ. II. Ser. 26. 30.
- ¹¹ Phil. Mag. 1840. t. 17. p. 409.
- ¹² Journ. f. p. Chem. 40. 317.
- 13 DANA, a syst. V. Aufl. 431.
- 14 Pogg. Ann. 142. p. 118.

¹ Schweigg. Journ. VIII. p. 353.

² Traité de min. t. III. p. 152. I. Aufl.; in d. II. Aufl. t. III. 182.

³ p. 356.

Die neue Gattung enthält sowohl Calcium als Natrium, steht also, "was ihre chemische Constitution anbelangt, zwischen Natrolith und Skolezit mitten inne, während ihre physikalischen Charactere mit jenen beiden übereinkommen"¹⁵. Auch erkannte FUCHS, "dass diese Mischungen, wie aus den angegebenen quantitativen Verhältnissen der Bestandtheile zu ersehen ist, sehr gut mit den Gesetzen der bestimmten Mengenverhältnisse übereinstimmen", und "dass der Wassergehalt sich nach dem Natron und Kalk richtet, dass das Thonerdesilicat jedoch in allen dreien constant bleibt"¹⁶. FUCHS schliesst¹⁷: "Wenn man sich zu dem chemischen Mineralsystem bekennt, so wird man sagen, dass jedes der drei Mineralien eine eigene Gattung ausmache."

Die Krystallformen der drei Mineralien hielten jene Forscher für übereinstimmend mit dem rhombischen System. Genauere Messungen am Natrolith der Auvergne, welche später HAIDINGER veröffentlichte¹⁸, bestätigten die Angaben von FUCHS und GEHLEN für diese Gattung; hingegen zeigte nachher G. Rose an den Krystallen des Skolezits von Island¹⁹, dass derselbe dem monoklinen System zugerechnet werden müsse; diese Angaben finden sich dann auch in der von ZIPPE besorgten Ausgabe der Mineralogie von MOHS. Als dritte Species ist hier der Mesolith aufgenommen, welcher dann auch den Comptonit von Hauenstein umschliesst, von dem jedoch RAMMELSBERG²⁰ zeigte, dass er gar nicht hierher gehört.

RIESS und ROSE²¹ kamen vorzüglich auf Grund des electrischen Verhaltens zu dem Schlusse, "dass der grösste Theil des Mesoliths keine selbstständige Gattung bildet, sondern theils zum Natrolith, theils zum Skolezit gehört, dass es aber kalkhaltige Natrolithe und natronhaltige Skolezite gebe".

¹⁵ Schweigg. Journ. 1816. XVIII. p. 16.

- ¹⁶ a. a. O. p. 22.
- ¹⁷ a. a. O. p. 24.

¹⁸ Englische Übersetzung von Mons. Min. II. p. 236.

¹⁹ Pogg. Ann. 28. 424.

²⁰ Über die Identität von Thomsonit und Comptonit. Pogg. Ann. Bd. 46. p. 286. (HAIDINGER, Verhandlungen des vaterländischen Museums in Böhmen. 1836. p. 44.)

²¹ Pogg. Ann. 59. 373

In der Folge beschäftigten sich PHILLIPS und LEVY mit den Krystallgestalten dieser Körper, wie dies aus den Citaten im Traité de minéralogie von DUFRÉNOY und im Manuel de minéralogie von DES-CLOIZEAUX hervorgeht; leider habe ich die Quellen, aus welchen beide geschöpft haben, nicht eruiren können. Nach ihnen scheint sich in der Folge nur DES-CLOIZEAUX mit der Gruppe des Mesotyp's beschäftigt zu haben. Nach seinen Untersuchungen ist der Skolezit monoklin und der Mesolith kommt nur in triklinen Zwillingen vor.

Durch Ankauf der CREDNER'schen²³ Sammlung gelangte auch das Originalmaterial, welches Herr HEINRICH CREDNER bei Veröffentlichung seines Aufsatzes: "Über den Dolerit der Pflasterkaute und die darin vorkommenden Mineralien" vor Augen gehabt hatte, an das hiesige mineralogische Museum. Unter diesen Mineralien fand sich auch Skolezit; eine nähere chemische quantitative Analyse ergab, dass dieses Mineral ebenso viel Procent Natron wie Kalk enthält, es also nicht zum Skolezit, sondern eher zum Mesolith gestellt werden muss. Damit stand scheinbar im Widerspruch, dass die geometrischen und optischen Eigenschaften des Minerals ein monoklines System verlangten. Um diesen Widerspruch aufzuklären, wandte ich mich an Herrn E. E. SCHMID²⁴, welcher schon früher einfache Krystalle von typischem Mesolith von Island beschrieben hatte und bat denselben, mir einige Krystalle seines analysirten Vorkommens zu überlassen. Die freundlichst überlieferten Krystalle zeigten ebenfalls, dass es Mesolithe giebt, welche einfache Krystalle sind und dem monoklinen Systeme zugezählt werden müssen. Daraus geht hervor, dass - mit den Angaben Des-CLOIZEAUX's²⁵ verglichen — es sowohl verzwillingte trikline, als einfache monokline Mesolithe giebt.

In der Folge wandte ich mich nun auch den Skoleziten zu; ich untersuchte ²⁶ die typischen Vorkommnisse des Schattigen

²² Annales des mines. V. Série, XVI. 398. Manuel de min. 386.

²³ Sammlung des verstorbenen Geh. Oberbergraths HEINRICH CREDNER.

²⁴ Über Mesolith; Pogg. Ann. 142. p. 118.

²⁵ Manuel. 1862. p. 389.

²⁶ dies. Jahrbuch. 1880. II. 200.

Wichels an der Fellinen-Alp, auf welche früher KENNGOTT²⁷ aufmerksam gemacht hatte. Es sind Zwillinge des triklinen Krystallsystems, ganz ähulich den triklinen Mesolithen. Hingegen erwiesen sich die Krystalle, welche ROSE²⁸ beschrieben hat, sowie die von HANKEL²⁹ zu seinen thermoëlectrischen Untersuchungen verwandten, als Zwillinge des monoklinen Systems, — ganz so, wie von Rose derzeit berichtet wurde. Es giebt demnach ebenso wie es monokline und trikline Mesolithe giebt, auch monokline und trikline Skolezite: beide Substanzen sind isodimorph. Da nun nach vielen Analysen der Skolezit die chemische Zusammensetzung: Ca Al²Si³O¹⁰ + 3 aq hat, und der Mesolith eine Mischung von Skolezit und Natrolith:

 $\begin{cases} Na^{2} Al^{2} Si^{3} O^{40} + 2 aq \\ 2 (Ca Al^{2} Si^{3} O^{40} + 3 aq) \end{cases}$

ist, so scheint daraus unmittelbar zu folgen, dass auch die Natrolithsubstanz der Skolezitsubstanz isomorph sein muss; es müsste dann eben so wohl monokline und trikline Natrolithe geben, wie es monokline und trikline Skolezite und Mesolithe giebt; dies scheint in der That der Fall zu sein, denn Natrolithe von Salesel und Aussig zeigen, parallel den Säulenflächen auf den Tisch des Polarisationsmikroskops gelegt, Auslöschungen, die 5-6° gegen die Säulenkante geneigt sind.

Andererseits könnte es dann natürlich auch rhombische Mesolithe und Skolezite geben; in der That scheint dies der Fall zu sein, denn DES-CLOIZEAUX giebt für den Galaktit³⁰ von Bishoptown an, dass die optischen Constanten mit denen des Natroliths identisch seien.

Am Schlusse dieser einleitenden Worte sei es mir vergönnt, den Herrn Eisenach in Gotha, Herrn von Fritsch in Halle, Herrn Hankel in Leipzig, Herrn E. Schmid in Jena und Herrn Websky

²⁷ dies. Jahrbuch. 1873. 725.

²⁸ Pogg. Ann. 28, 424 und 59, 368.

²⁹ Abhdlg. d. mathem.-phys. Cl. d. Kgl. Sächs. Akad. d. Wissensch. XII. No. I. p. 33.

³⁰ RAMMELSBERG, Mineralchemie. II. 633. $\begin{pmatrix} n Na^2Al^2Si^3O^{10} + 2aq. \\ Ca Al^2Si^3O^{10} + 2aq. \end{pmatrix}$

in Berlin meinen herzlichsten Dank auszusprechen für die zuvorkommende Freundlichkeit, mit welcher sie mir Material zu meinen Untersuchungen zur Verfügung gestellt haben.

Skolezite.

I. Monokline Skolezite.

1. Untersuchung der von Riess und Rose benutzten Krystalle von Island.

Chemisches Verhalten: G. Rose³⁴ und Riess³² fanden, dass die Krystalle sowohl Kalk als Natron enthielten. Der letztere sagt: "Rücksichts ihrer chemischen Zusammensetzung enthalten die Krystalle Kalkerde und Natron, sie gehören also zum Mesolith." Die beiden Krystalle, welche ich durch die Güte des Herrn WEBSKY aus der Berliner Sammlung erhielt, gaben, in die Flamme des BUNSEN'schen Brenners gebracht, derselben keine Natriumfärbung; erst nach dem Befeuchten mit Salzsäure zeigte sich bei dem einen eine schwache Natriumflamme; beide Krystalle scheinen demnach Natrium nur in Spuren zu enthalten und können desshalb nicht zu den typischen Mesolithen gezählt werden. In der Flamme krümmt er sich und bläht sich auf; es ist typischer Skolezit.

Physikalisches Verhalten: Die schön durchsichtigen, wasserhellen bis schwach gelblichen Krystalle haben eine Härte von 5-5,5. Legt man die Krystalle mit dem Klinopinakoid unter das mit gekreuzten Nicols versehene Mikroskop, so bemerkt man, dass das Klinopinakoid in zwei Theile zerfällt, in welchen bei normaler Ausbildung die Auslöschungsschiefen symmetrisch zum Orthopinakoid liegen. Auf diese durch Zwillingsbildung nach dem Orthopinakoid hervorgerufene Erscheinung hat schon BREWSTER aufmerksam gemacht. Schon im gewöhnlichen Lichte sieht man parallel der Säulenkante auf dem Klinopinakoid eine scharfe Linie, in welcher unter einem Winkel von $24-26^{\circ}$ (DES-CLOIZEAUX und DANA) feine Streifen zusammenstossen (Taf. III. Fig. 2, 3, 4 und 5).

Macht man Schliffe parallel dem Klinopinakoid (Taf. III

³² Pogg. Ann. 59, 370.

³¹ Pogg. Ann. 28. 424.

Fig. 6), so bilden die Auslöschungen im weissen Lichte mit der Zwillingsgrenze, welche als haarscharfe Linie über den Schliff parallel der Verticalaxe hinläuft, nach vorn zu einen Winkel von 22,7° und nach hinten 11,5°; an einem andern Präparate wurden die bezüglichen Winkel 23,7° und 9,8° im Mittel gefunden. (Taf. II Fig. 10). Ähnliche Beziehungen finden sich an HANKEL'S Krystallen, wo die betreffenden Winkel 21º und 9º betrugen (Taf. II Fig. 12), und an den SCHMID'schen einfachen Krystallen von Mesolith, wo die Auslöschung gegen die vordere Säulenkante (Taf. 11 Fig. 9) 9º beträgt. Schliffe senkrecht zum Klinopinakoid und zur Säule zeigen, dass die Auslöschungen senkrecht und parallel zur Combinationskante zu ersterer Fläche liegen. Die Orientirung der Hauptauslöschungsrichtungen ist also im Einklang mit dem monoklinen System. Die verschiedene Grösse der Auslöschungen in den beiden Theilen der Zwillinge rührt wahrscheinlich von anomaler innerer Structur der Krystalle her, eine Anomalie, welche auch in der äussern Gestalt der Krystalle ihren Ausdruck in der Verschiedenheit der Flächen findet, welche die beiden Scheiteltheile des Zwillings begrenzen, und darin, dass die beiden theoretisch parallelen Flächen b um 5-6' von einander abweichen

Im Polarisationsapparat für convergentes Licht sieht man, dass die beiden Ebenen der optischen Axen auf dem Klinopinakoid (Taf. II Fig. 8) senkrecht stehen. Stellt man im ADAMSschen Polarisationsapparate das Klinopinakoid parallel zum getheilten Kreise und die beiden gekreuzten Nicols so, dass sie mit dem getheilten Kreise Winkel von 45° einschliessen, so kann man annähernd den Winkel, welchen beide optische Axenebenen mit einander einschliessen, messen; er betrug 32° 30': in Bezug auf das Glas des Apparats betrug der Winkel, welchen die beiden optischen Axen mit einander bilden:

für	Lithiumlicht	340 354
27	Natriumlicht	35° 36'
17	Thalliumlicht	36° 36'.

Die Brechungsexponenten³³ für das Glas der beiden mittleren halbkugelförmigen Linsen betragen:

³³ Bestimmt von Dr. AR. BREZINA in Wien.

für	Lithiumlicht	1,6156
	Natriumlicht	1,6213
5	Thalliumlicht	1,6269.

Geneigte Dispersion ist schwach, der optische Character der ersten Mittellinie negativ. Ähnliche Angaben giebt DES-CLOIZEAUX³⁴ für die monoklinen Skolezite: "Plan des axes optiques normal à ∞P_{∞} . Bissectrice négative parallèle à ∞P_{∞} . Dispersion des axes très notable. Le plan des axes rouges et leur bissectrice font un angle de 17°8' avec ∞P_{∞} ; le plan des axes bleus et leur bissectrice font avec ∞P_{∞} un angle de 17°52'.

 $2E = 53^{\circ} 41$ ray. roug., $59^{\circ} 37$ ray. bleus.

Deux plaques, normales avec deux bissectrices, m'ont donné dans l'huile (n_r = 1,465) 2 Ha = $35^{\circ} 57'$; 2 H_o = $165^{\circ} 4'$; 2 V = $35^{\circ} 1'$; β = 1,502 rayons rouges."

"Die Krystalle des Skolezits³⁵ sind fast alle Zwillingskrystalle" nach dem Orthopinakoid und gewöhnlich Combinationen von $\underset{g}{\infty}P(110); \underbrace{mP(110)}_{g}; \underbrace{mP(110)}_{g}; \underbrace{mP(110)}_{b}; \underbrace{mP(111)}_{b}; \underbrace{mP(111)}_{c}; \underbrace{mP(11)}_{c}; \underbrace{mP(11)}_$

"Sind die beiden Individuen von gleicher Grösse (Taf. III Fig. 2), so geht die gemeinschaftliche Ebene (Zusammensetzungsfläche des Zwillings) durch die klinodiagonalen Polkanten der Grundform; eine Fläche - o des einen Individuums grenzt an - o des andern Individuums und bildet mit demselben eine Kante von 141º 56'. Gewöhnlich ist dies jedoch nicht der Fall, sondern es grenzt ein - o mit einem o zusammen (Taf. III Fig. 3). Beide bilden dann einen Winkel von 178º 28'." G. Rose hat an seinem schönen Materiale die Messungen oft und zu wiederholten Malen vorgenommen; ich habe ebenfalls von jenem Materiale 2 Krystalle gemessen, dieselben zeigen sich als Zwillinge, wie sie oben beschrieben worden sind. Der Krystall 1 hat die beiden Flächen -o und -o, welche unmittelbar an einander stossen, auf einer Seite sehr gross ausgebildet, so dass sie fast allein den Gipfel des Krystalls einnehmen; sie sind etwas gerundet und desswegen zu genauen Messungen schlecht geeignet.

³⁴ Manuel. 1862. p. 387.

³⁵ Pogg. Ann. 28, 425.

Der Krystall 2 ist in Taf. III Fig. 4 dargestellt; es ist eine Combination von $\infty P 110; \underline{\infty} P 110; \underline{\infty} P_{\infty} 010; -P 111; P \overline{1}11; \\ g \underline{g} \underline{g} b - 0 0$ - P 111; - 3P3 131; - 3P 331; die beiden letzten Flächen - 0 p p p p sind sehr schmal und geben sehr in die Breite gezogene Bilder; p liegt mit g und - 0 und p mit - 0 und b in einer Zone.

Die umstehende Tabelle giebt unter R_1 die von G. Rose in seiner Arbeit über den Mesotyp gegebenen Winkel; unter R_2 stehen die von mir aus denselben Grunddimensionen nachgerechneten Winkel.

> Aus: $g: g = 91^{0} 35';$ $-o: -o = 144^{0} 40'$ und $g: -o = 116^{0} 27'$ findet man:

Neigung der Klinodiagonale a zur Verticalaxe $c = 89^{\circ} 5,4'$ und a : b : c = 0,97290 : 1 : 0,3390.

Bezeichnen wir ferner mit:

X die Neigung der positiven Hemipyramide P gegen den klinodiagonalen Hauptschnitt Y , , , , , , , , , , , , orthodiagonalen Z , , , , , , , , , , , , , , , , , , basischen Hauptschnitt

und mit X' Y' Z' die entsprechenden Winkel der negativen Hemipyramide -P, ferner:

mit	μ	die	Neigung	von	Х	gegen	die	Verticalaxe c
;,	v	77	"	;,	Х	**	"	Klinodiagonale a
27	ρ	**	"	33	Υ	>>	77	Verticalaxe c
77	σ	"	37	"	Ζ	;9	77	Klinodiagonale a;

endlich mit μ' und ν' die entsprechenden Neigungen von X' gegen c und a, so ist:

 $\begin{array}{rl} P & . \ \bar{1}11. \\ X &= 72^{0} \ 10,1' \\ Y &= 72^{0} \ 31,0' \\ Z &= 26^{0} \ 2,9' \ \text{und} \\ \mu &= 71^{0} \ 36,2'; \ \nu &= 19^{0} \ 18,4' \\ \rho &= 71^{0} \ 16,5'; \ \sigma &= 45^{0} \ 47,2'. \end{array}$

$$\begin{array}{rl} -P \cdot 111. \\ X' = 72^{0} 20,0' \\ Y' = 70^{0} 57,7' \\ Z' = 25^{0} 47,9' \text{ und} \\ \mu' = 69^{0} 58,8' \quad \nu' = 19^{0} 6,6'. \\ & & & & & \\ \infty P \cdot 110. \\ X = 45^{0} 47,5' \\ Y = 44^{0} 12,5' \\ Z = 90^{0} 39,1' \\ & & & \\ -3 P \cdot 331. \\ X' = 55^{0} 6,4' \\ Y' = 53^{0} 20,8' \\ Z' = 55^{0} 7,1' \\ \mu' = 43^{0} 17,7'; \nu' = 45^{0} 47,7' \\ \rho' = 44^{0} 31,0'. \end{array}$$

Aus diesen Winkeln berechnen sich die in der Tabelle unter R_2 angegebenen Combinationskanten. In derselben sind dann noch unter L_1 die von mir an Rose's Krystall 2 und unter L_2 die an Krystall 1 gemessenen Winkel angeführt. Unter L_3 finden sich endlich die aus den 3 besten Messungen am Krystall 2:

 $\begin{array}{rcl} g: & g = 91^{\circ} \ 20,5' \\ -o: & -o = 144^{\circ} \ 8,8' \ \text{und} \\ -o: & g = 116^{\circ} \ 29,3' \end{array}$

berechneten Dimensionen; β ist hier 89° 30,3' und a : b : c = 0,9769 : 1 : 0,3439. Ferner:

P. T11.

$$X = 71^{0} 58,9'$$

 $Y = 72^{0} 0,5'$
 $Z = 26^{0} 16,3'$
 $\mu = 71^{0} 2,8'; \nu = 19^{0} 26,9'$
 $\rho = 71^{0} 1,3'; \sigma = 45^{0} 40,2'$
 $-P. 111.$
 $X' = 72^{0} 4,4'$
 $Y' = 71^{0} 10,0'$
 $Z' = 26^{0} 8,1'$
 $\alpha' = 70^{0} 9,9' \nu' = 19^{0} 20,3'$
 $\infty P. 110.$
 $X = 45^{0} 40,3'$
 $Y = 44^{0} 19,7'$
 $Z = 90^{0} 214'$

Flächen	R ₁	R ₂	L ₁	\mathbf{L}_2	L_3
g:g	0 / 91 35	0 ' 	° ' 91 20,5	0 / 91 21 1	0 (91 20,5
-0:-0	144 40	-	144 8,8	144 5,5	144 8,8
0:0	144 20	144 20,2	143 54,1		143 57,9
0:0	143 29	143 28,7	143 14,5 ²		143 10,5
0:0	178 28	178 26,9	178 42,8	-	179 9,4
—o : b	107 40	107 40	107 55,24	-	107 55,6
o : b	107 50	107 49,9	108 3,2	—	108 1,1
—o:g	116 27		116 29,33	116 35	116 29,3
0: <u>g</u>	115 24	115 23,8	115 50,8	-	115 55,3
-0: <u>-0</u>	141 56	141 55,4	141 57,2	141 58,9	142 19,9
o:d	162 20	162 20	162 19,5	—	162 4,4
o:p	-	150 39,8	150 11,7	149 55	150 37,4
—o:p	-	154 8	155 20	_	153 47
b:g	134 13	134 12,5	134 21,95	134 20,35	134 19,8
$\mathbf{b}:\mathbf{p}$	_	134 41,9	132 35	-	134 8,6
b : d	90 0	90 0	-	_	90 0
$\mathfrak{p}: \mathbf{g}$	-	145 46,2	146 17,5	147 50	145 59,9
p:p	-	110 12,8	109 46		109 <mark>31,</mark> 9
p : b	-	-	125 8		—
a : d	-	110 1,2	-		109 50,1

³⁶. ¹ Mittel aus den vorderen und hinteren Kanten.

² Mittel aus den klinodiagonalen Kanten (beiderseits).

³ Mittel aus sehr gut übereinstimmenden Messungen am vordern Theile des Zwillings. Am hinteren Theile des Zwillings fand sich rechts 129° 30 und links 129° 45,0'; letztere Messungen waren auf weniger deutliche Bilder basirt.

⁴ Mittel aus den rechten und linken Combinationskanten.

⁵ Mittel aus allen vier Combinationskanten.

 R_1 Rose's Winkel; R_2 durch LUEDECKE aus Rose's Grunddimensionen gerechnete Winkel.

 $\begin{array}{rl} -3P & .331. \\ X' &= 54^{0} \ 46' \\ Y' &= 53^{0} \ 27,5' \\ Z' &= 55^{0} \ 38,8' \\ \mu' &= 43^{0} \ 12,2' \ ; \ \nu' &= 46^{0} \ 18,2^{0} \ ; \ \rho' &= 44^{0} \ 6,3' \end{array}$

Vergleicht man in der Tabelle die gerechneten Winkel aus Rose's Dimensionen mit den von mir aus den Grunddimensionen des Krystall 2 gerechneten, so wird man finden, dass die Summe der Differenzen zwischen meinen gerechneten und gemessenen um $\frac{1}{5}$ geringer ist, als die zwischen den Dimensionen Rose's und meinen an 2 gemessenen. Diese beiden Krystalle sowohl, als der HANKEL'sche Krystall zeigen die Fläche b auf der negativen Seite von der Axe b um 5-6' aus der parallelen Stellung zum b auf der positiven Seite der Axe b verschoben; eine merkwürdige übereinstimmende Abweichung von der normalen Ausbildung.

2. Monokliner Skolezit von Kandallah.

Dieses ausgezeichnete Vorkommen verdanke ich der Freundlichkeit des Herrn HANKEL in Leipzig; es ist das Originalmaterial für seine Untersuchung über die "thermoëlectrischen Eigenschaften des Skolezits"³⁷. Die Krystalle stammen ursprünglich von TH. SCHUCHARDT in Görlitz, welcher als Fundort "Kandallah" angiebt.

Chemisches Verhalten: An die Flammenbasis des Bunsen'schen Brenners gebracht, schmilzt er zu einem weissen Email, höher in die Flamme gebracht, blättert er sich etwas auf, krümmt sich dabei und schmilzt, ohne der Flamme die Natriumfärbung zu ertheilen, zu einem undurchsichtigen weissen Email; auch mit Salzsäure befeuchtet, giebt er keine Natriumflammenreaktion; ebensowenig zeigt die durch Behandeln mit Salzsäure hervorgerufene Gallerte unter dem Mikroskope Chlornatriumwürfelchen: Natrium ist desshalb nicht im Skolezit von Kandallah anwesend; setzte man hingegen zu der wieder angefeuchteten Gallerte Schwefelsäure, so bildeten sich die bekannten monoklinen, buntfarbig polarisirenden (bei gekreuzten Nicols im Mikroskop)

³⁷ Electrische Untersuchungen. XIII, aus dem 12. Bande der Abhandlungen der mathemat.-phys. Classe der Königl. Sächs. Ges. der Wissenschaften, p. 38. Leipzig 1878.

Gypskrystalle, ein Zeichen, dass Calcium in bedeutender Menge vorhanden ist.

Physikalisches Verhalten: Die Krystalle dieses Skolezits sind die grössten, welche mir bis jetzt zu Gesicht gekommen sind; Krystall 2 hat eine Länge von 20 Millim., eine Breite parallel der Axe b von 4 Millim. und eine Dicke parallel der Axe a von 5¹/₄ Millim.; es ist ein typischer Zwilling nach $\infty P \infty$ (100), wie sie G. ROSE beschrieben hat; die beiden andern Krystalle waren oben und unten verstossen und in ihren Dimensionen kleiner als die von 2; der eine der letztern Krystalle ist wasserhell, während die beiden andern weisslich sind; ihre Härte ist genau die des Apatits vom Zillerthal. Alle 3 Krystalle zeigen auf dem Klinopinakoid die federartige Streifung (Taf. III, Fig. 5). Die Auslöschungen bilden in den beiden Theilen des nach $\infty P \infty$ zusammengesetzten Zwillings einen Winkel von 31-33°; auch hier liegen die Auslöschungen mehr oder weniger unsymmetrisch zur Zwillingsfläche. In demjenigen Theile des Krystalls parallel ∞P∞ (Taf. II Fig. 12), welcher oben von den beiden Pyramidenkanten o und -o begrenzt wird, macht die eine Auslöschung mit der Zwillingsgrenze einen Winkel 21°; während sie im hintern Theile, welcher oben von dem Doma -d begrenzt wird, mit der Zwillingsgrenze nur 9,2º einschliesst; bei Krystall 3 nähern sich die beiden Winkel einander mehr; es wurden den vorigen entsprechend 18,4° und 14.7º gefunden; bei Krystall 1 fand sich 22,7º u. 11,5º (Taf. III Fig. 6). Macht man Schliffe senkrecht zur Säule, so kann man sich leicht davon überzeugen, dass die Hauptauslöschungsrichtungen des Lichts wirklich parallel und senkrecht zur Combinationskante der Schlifffläche mit dem Klinopinakoid liegen, so wie davon, dass die beiden optischen Axenebenen mit einander den Winkel von 32º (scheinbarer Winkel in Glas) bilden.

Der Winkel der optischen Axen selbst betrug im weissen Lichte $35\frac{1}{2}$ — 36° ; die Platten waren senkrecht zur Säule geschnitten, nicht ganz gleichmässig dick und eigneten sich nicht zu einer genaueren Bestimmung im monochromatischen Lichte; andererseits hinderte die geringe Menge des Materials neue Schnitte zu machen; auch hier ist $\varrho < \tau$ (s. DES-CLOIZEAUX, Manuel pag. 387).

Die thermoëlectrischen Eigenschaften hat schon

HAUY 38 bei einem Theile seines Mesotyps beobachtet; FUCHS sagt in seiner Abhandlung 1816 39, dass die Skolezite und Mesolithe am ausgebildeten Ende bei dem auf das Erwärmen folgende Erkalten positive Electricität zeigen; auch BREWSTER⁴⁰ führt in seinem Verzeichnisse electrischer Mineralien Mesolith und Skolezit auf. Nach RIESS und ROSE⁴⁴ sollten die Skolezite eine electrische Axe besitzen, welche mit der Verticalaxe zusammenfallen sollte: "Stets waren die freien oder divergirenden Enden antilog electrisch." Die Vertheilung der Electricität sollte gerade so wie beim Turmalin und Kieselzinkerz sein. Nach HANKEL's 42 Abhandlung existirt eine solche electrische Axe überhaupt nicht; "die electrische Vertheilung gleicht vielmehr der von mir am Topas, Aragonit, Gyps, Diopsid und Orthoklas beobachteten, und die Zwillingsbildung hat auf die electrische Vertheilung keinen massgebenden Einfluss" (p. 35); "es gleichen die Zwillingskrystalle des Skolezits denen des Gypses (p. 40) und hier ist die Vertheilung der Electricität bei einfachen und Zwillings-Krystallen dieselbe." An Stärke übertrifft die electrische Erregung die des Turmalins und des brasilianischen Topases; beim Erkalten sind ∞P und ∞P_{∞} positiv; ∞P_{∞} dagegen negativ. Das ausgebildete Ende der Verticalaxe zeigt beim Erkalten sehr starke positive Electricität, welche beim weiteren Erkalten bei einigen in schwache negative übergeht. 43

Krystallform: Die Krystalle gleichen den Rosz'schen von Island. Sie sind ebenfalls Zwillinge nach dem Orthopinakoid; nur Krystall "2" ist vollkommen terminal begrenzt; 1 und 3 sind oben und unten verstossen. Der vordere Theil des Zwillings "2" ist von den Flächen (Taf. III Fig. 5) $g_{\infty}P$. 110; $b_{\infty}P_{\infty}$. 010; $-o_{\cdot}-P_{\cdot}$.111; $o_{\cdot}P_{\cdot}$.111; $-d_{\cdot}-\bar{P}_{\infty}$. 101; $-p_{\cdot}m\bar{P}m;a_{\cdot}_{\infty}\bar{P}_{\infty}$. 100 begrenzt; der hintere Theil nur von $g_{\cdot}_{\infty}P_{\cdot}$.110; $b_{\cdot}_{\infty}P_{\infty}$.010;

43 ibid. p. 38

³⁸ Traité de Min. 2 éd. T. 3. p. 180: "une partie seulement des cristaux sont électriques par la chaleur."

³⁹ Journal der Physik und Chemie XVIII. Bd., 1816, p. 11.

 ⁴⁰ Journal der Physik und Chemie v. SCHWEIGGER, 1825, Bd. 43, p. 94.
 ⁴¹ Poeg. Ann. 59. 1843, p. 373.

⁴² Abhdlg. d. math.-phys. Cl. d. Kgl. sächs. Ak. der Wissenschaften, 1878, XII Bd., p. 35.

-d. P_{∞} . 101; a. ∞P_{∞} . 100. Die Flächen g, b, -o und o sind sehr vollkommen eben und geben recht gute Bilder; -d und a sind sehr schmal und geben sehr breite verwaschene Spalt-Bilder; hingegen giebt -d einen ganz guten Reflex; -p ist sehr rauh und die eine Fläche verbrochen; o rechts hinten ist nur punktartig entwickelt, liefert jedoch noch ein leidliches Bild. Die Zeichnung zeigt die Flächen gleichartig ausgebildet; am Krystall selbst ist dies nicht der Fall; -p, nach dem negativen Theile der Axe b zu gelegen und das auf der andern Seite nach +b zu gelegene -o sind am vordern Theile des Krystalls grösser ausgebildet; hingegen ist auf der hintern Seite dasjenige o, welches nach dem negativen Theile der Axe b zu liegt, stärker entwickelt, als das nach dem positiven Theile zu liegende: In der Figur ist ferner die hintere Fläche a im obern Theile des Krystalls zu stark ausgedehnt gezeichnet; eigentlich ist die Fläche -d ungefähr die Fortsetzung der Polkante von o : o und die in a hervortretenden Ecken des hintern Individuums sind abgebrochen. Wenn man:

g: g = 91° 29,5'
-0: -0 = 144° 32,8' und
g: -0 = 116° 36,0'
der Rechnung zu Grunde legt, erhält man:

$$\beta = 88° 58,6'$$
 und
a: b: c = 0,9744: 1: 0,3406
+P. Ī11.
X = 72° 5,0'
Y = 72° 34'
Z = 26° 9,3'
 $\rho = 71° 11,6'$ $\sigma = 45° 44,5'$
 $\mu = 71° 38,8'$ $\nu = 19° 22,6'$
-P. 111.
X' = 72° 16,4'
Y' = 70° 49,4'
Z' = 25° 52,0'
 $\mu' = 69° 49,6'$; $\nu' = 19° 9,0'$.
 $\infty P. 110.$
X = 45° 44,8'
Y = 44° 15,2'
Z = 90° 44,0'
N. Jahrbuch f. Mineralogie etc. 1881. Ed. IL

Ν.

 $\mathbf{2}$

Aus diesen Daten ist die folgende Tabelle berechnet, welche unter R_2 die aus ROSE's Skolezitdimensionen berechneten Winkel, unter H_4 die an HANKEL's Krystall "2" gemessenen und unter H_2 die aus den oben angenommenen Fundamentalwinkeln

Flächen.	\mathbf{R}_2	H ₁	H ₂	
	0 /	0 /	0 /	
g: g	91 35	91 29,5*		
-0:-0	144 40	144 32,8*		
0: 0	144 20,2	144 0	144 10	
0:-0	143 28,7	$143 \ 22$	143 23.4	
o: b	107 40	107 31,7	107 43,6	
o ; b	107 49,9	107 53.7	107 55.0	
—0: g	116 27	116 36*	—	
o: g	115 23,8	115 50	$115 \ 25,3$	
$-o: \overline{d}$	162 20	162 16,4	162 16,4	
b: g	134 12,5	134 19	$134 \ 15,2$	
d : b	90 0	90 10	90 0	
g: d	104 12,3	104 15,2	104 18	
a: d	110 1,2	110 0,3	110 10,4	

 R_2 Winkel aus Rosz's Grunddimensionen durch LUEDECKE berechnet. H₁ Winkel an HANKEL's Krystallen durch LUEDECKE gemessen; H₂ aus den Grunddimensionen H₁* berechnete Winkel.

berechneten Combinationskanten giebt. Die gemessenen Winkel schliessen sich im Grossen und Ganzen den Rosz'schen Dimensionen eher, als den von mir aus den besten Messungen berechneten an.

Auch an diesem Krystalle ist die eine Fläche b der andern nicht ganz parallel, gerade so wie an dem Rose'schen Krystalle. Trotz der mannigfachen Abweichungen zwischen meinen Messungen und Rose's berechneten Winkeln, dürfte es wohl das beste sein für alle monoklinen Skolezite, das Rose'sche Axensystem beizubehalten, da er seine Messungen an vielen Krystallen mehrfach wiederholt hat.

II. Trikline Skolezite.

 Der trikline Skolezit vom Schattigen Wichel über der Fellinen-Alp hinter dem Bristenstock.

Der Skolezit kommt am Schattigen Wichel mit Calcit, Quarz, Byssolith, Apophyllit, Chlorit, Stilbit und Epidot vor; neuerdings habe ich mit denselben Mineralien zusammen auch den Desmin kennen gelernt⁴⁴. Die Skolezite⁴⁵ sind frei auskrystallisirt, gewöhnlich von der Säule und der Pyramide begrenzt, haben einen Durchmesser von 0,2--1,8 Millimeter; zum Theil sind sie lebhaft glasglänzend, zum Theil jedoch, besonders jene, welche mit Byssolith zusammen vorkommen, trüb und undurchsichtig.

Chemisches Verhalten: Bringt man ein Säulchen in die Nähe der Flammenbasis des Bunsen'schen Brenners, so wird es weiss, emailartig, schmilzt an der Spitze und krümmt sich etwas; in die Flammenbasis gebracht, krümmt es sich stark und schmilzt zu einem weissen Email, ist also etwas schwieriger schmelzbar als Antimonit und ebenso leicht wie Borax und Kryolith; der Flamme selbst theilt die Probe eine ziegelrothe Färbung mit. Bringt man Splitter der Krystalle mit Salzsäure auf einen Objectträger, so gelatiniren sie und nur äusserst wenige geben isotrope Chlornatriumwürfelchen. War schon durch diese Vorversuche der chemische Character der Krystalle festgestellt, so ergab die quantitative Analyse, dass es wirklicher Skolezit war. Zwei Analysen, welche ich im vorigen Winter ausführte, ergaben folgende Resultate I und II:

	Ι	II	Mittel	R	D
Si O ²	45,82 %	47,04%	46,43 ° 0	45,85	+0,58
$Al^{2}O^{3}$	26,52	25,27	25,89	26,13	+0,24
Ca O	13,99	14,14	14,07	14,26	0,19
Na ² O	0,70	0.27	0,49		+0,49
H2O	13,04	13,44	13,24	13,76	-0,52

⁴⁴ Erhalten vom Mineralienhändler Doerig aus Appenzell.

^{*5} KENNGOTT: Dies. Jahrbuch 1873. 725 und LUEDECKE, Sitzungsbericht der naturforschenden Gesellschaft zu Halle, 8. Februar 1879.

⁴⁶ Analytische Belege: 0.4211 Grm. Skolezit verloren: 0.0549 Grm., also 13.04% H²O: 1.790 Grm. enthielten:

0,8232 " Kieselsäure, also 45,82 %

0,4766 " Thonerde " 26,52 "

Unter Mittel steht in der Tabelle das arithmetische Mittel aus 1 und II, unter R die von RAMMELSBERG aus der Formel:

 $\left. \begin{array}{c} \operatorname{Ca}\operatorname{Al}^2\operatorname{Si}^4\operatorname{O}^{12}\\ \operatorname{Ca}\operatorname{Al}^2\operatorname{Si}^2\operatorname{O}^8 \end{array} \right\} + 6\,\mathrm{aq}$

berechneten Procente⁴⁷, endlich unter D die Differenz zwischen diesen Angaben und meinen Mittelwerthen. Der untersuchte Skolezit hat also ganz dieselbe chemische Zusammensetzung wie die Skolezite von Island, den Faeroër-Inseln, der Insel Staffa und von Poonah. Sein specifisches Gewicht bestimmte ich zu 2,27 bei 16^o Celsius.

Physikalisches Verhalten: Schon früher⁴⁸ hatte ich darauf aufmerksam gemacht, dass die typische Skolezitsubstanz dasselbe physikalisch-optische Verhalten zeige, wie die triklinen Mesolithe DES-CLOIZEAUX'; eine nähere Untersuchung hat die frühern Resultate nur bestätigt. Behufs der Orientirung wurden diejenigen Krystalle, aus welchen die Schliffe hergestellt wurden, vorher gemessen. Die Krystalle zeigen gewöhnlich nur die Combination von ∞ P mit den vier Pyramidenflächen (Taf. I Fig. 1). Macht man nun einen Schliff, welcher die stumpfe Säulenkante abstumpft, also ungefähr parallel dem vordern Pinakoid (Taf. I Fig. 3), so beobachtet man eine Zweitheilung des Schliffs und findet, dass die Auslöschungen in den beiden Theilen desselben: ADEF und BCEF, ungefähr symmetrisch zur Linie FE liegen; ADEF wird zwischen gekreuzten Nicols dunkel, wenn die Kante FE mit dem einen Nicolhauptschnitt 1430 bildet und BCEF, wenn FE mit dem gleichen Hauptschnitt 174° bildet. Es bilden also die Maxima der Auslöschungen in den beiden Theilen des

0,2515 Grm. Calciumoxyd, also 13,99%

0,0250 " Chlornatrium " 0, 7 " Natriumoxyd ; ferner enthielten 1,5270 Grm. Skolezit :

0,7183 Grm. Kieselsäure also 47,04 %

0,3860 " Thonerde " 25,27 "

0,2198 " Calciumoxyd " 14,14 " u. 0,0080 Chlornatrium, was 0,0042 " Natriumoxyd " 0,27 " entspricht;

0,2015 " Wasser aus 13, 2% berechnet.

Summa 1,5298 statt 1,5270; endlich ergaben 0,9676 Grm. Skolezit 0,1300 Grm., also 13,44 % Wasser.

⁴⁷ RAMMELSBERG, Mineralchemie, II. Aufl. II, 632.

⁴⁸ Sitzungsbericht der naturforschenden Gesellschaft zu Halle, 8. Febr. 1879; dies. Jahrbuch 1880. Bd. II, p. 200.

Schliffs mit einander einen Winkel von 3210. Gehörte der Krystall, entsprechend seinen geometrischen Verhältnissen, welche zeigen, dass die betreffenden Combinationskantenwinkel rechts und links von der Symmetrieebene identisch sind, dem monoklinen Systeme an, so durfte man erwarten, dass die Hauptauslöschungsrichtungen des Lichts im Orthopinakoid der Combinationskante zum Klinopinakoid parallel und senkrecht verliefen; da dies nicht der Fall ist, gehört der Krystall in das trikline System. An 3 andern Präparaten zeigten sich ähnliche Auslöschungen im Makropinakoid (Taf. I Fig. 4 u. 6). HKF betrug bezüglich 15º 17# und 16º und GKF mass bezüglich 15º 17¹/₂ und 16º. Während am ersten Schliff HKF und FKB eine verschiedene Grösse zeigten, sind sie bei den 3 andern Schliffen vollständig einander gleich; auch hier dürfte die verschiedene Grösse der symmetrisch zu KF liegenden Auslöschungen in einer innern anomalen Structur des Krystalls zu suchen sein. Durchschnittlich bilden daher die Elasticitätsaxen im Makropinakoid mit der Verticalaxe 16º. Ähnliche Verhältnisse zeigten sich an den Skoleziten vom Etzlithale und von Faeröe (siehe p. 26). Fertigt man Schliffe parallel dem Brachypinakoid, so zeigte der ganze Schliff durchaus in allen seinen Theilen dieselbe Auslöschung; dieselbe bildet in dem einen Schliff mit der hintern Säulenkante oben einen Winkel von 710. in dem Schliff "5" einen Winkel von 8º (Taf. I Fig. 7); andere Schliffe, welche vor ihrer Fertigstellung verunglückten, zeigten dieselben Auslöschungen wie diese; auch Krystalle von Faeröe zeigten ähnliche Verhältnisse. Taf. II Fig. 7 zeigt einen Schliff parallel ∞P ; es bilden hier die Auslöschungen 7º und 15º mit der Zwillingsgrenze. Schliffe senkrecht zur Säulenkante zeigen ebenfalls verschiedene Theile, in denen die Auslöschungen nicht gleich gerichtet liegen. Der Schliff ABCDEFG (Taf. I Fig. 5) hat drei verschieden orientirte Theile; in den beiden äussern Theilen ABG und CDEF liegen die Auslöschungen gleich gerichtet; die des mittlern Theils bilden mit den Auslöschungen der beiden äussern Theile 16°. Der mittlere Theil befindet sich in Zwillingsstellung gegen die beiden äussern. Andere Krystalle zeigten einfachere Verhältnisse. Während bei Fig. 5 die Zwillingsgrenzen zum Theil unregelmässig, nicht geradlinig verlaufen, zeigen die Figuren auf Taf. I Fig. 11 und Taf. II Fig. 2 die Zwillingsgrenzen direct parallel

dem Brachypinakoid verlaufend; auch hier bilden die Auslöschungen in den beiden verzwillingten Theilen mit dem Brachypinakoid in dem einen Falle 8°, im andern 9°4°. Parallel denselben liegen hier die Ebenen der optischen Axen. Ein hinreichend dickes Präparat liess erkennen, dass der Character der Doppelbrechung negativ und $\varrho < \nu$ ist.

Der Winkel der optischen Axen ist in Bezug auf das Glas im Adams'schen Polarisationsapparat:

für Lithiumlicht 35º 17'

" Natriumlicht 36º 20'

" Thalliumlicht 38º 22';

die entsprechenden Brechungsexponenten des Glases waren:

Li 1,6156 Na 1,6213 Thl 1,6269 50.

Durch Drehen des Schliffs kann man auch das 2. Paar optischer Axen sehen und messen; es wurden die gleichen Grössen gefunden.

Ganz ähnliche optische Erscheinungen an Mesolithen hat SENARMONT⁵¹ an Schliffen senkrecht zur Säule beobachtet (Taf. III Fig. 8), "le plan des axes du secteur v fait un angle de 165^{0"} (an meinem Schliff Taf. I Fig. 5 bilden im Theile CDEF die Auslöschungen mit denen im Theile BCFG 164⁰), "avec celui du secteur x; celui du secteur x fait un angle de 20[°] avec celui du secteur y". In meinem Schliffe (Fig. 5 Taf. I) bildet dann die Auslöschung im Theil BCFG mit der im Theil ABG 16[°].

Im Grossen und Ganzen erscheinen indess die optischen Verhältnisse an DES-CLOIZEAUX' Mesolithen, compliciter und mannigfaltiger als die der triklinen Skolezite.

Die krystallographischen Constanten: Aus den optischen Eigenschaften geht hervor, dass die scheinbare Symmetrieebene des triklinen Skolezits eine Zwillingsebene ist. Während

⁴⁹ Ein Präparat aus Krystall 3 zeigte (Taf. I Fig. 8), dass es auch Krystalle giebt, wo die Auslöschungen grössere Winkel einschliessen: RS bildet mit $\infty \breve{P}\infty$ 13° und ST mit derselben Fläche 16°.

⁵⁰ Bestimmung von Dr. BREZINA in Wien.

⁵¹ DES-CLOIZEAUX, Manuel de Min., p. 399.

die monoklinen Skolezite Zwillinge nach dem Orthopinakoid sind, haben wir hier Zwillinge nach dem Brachypinakoid. Der Krystall Fig. 1 Taf. I ist demnach zu betrachten als Combination von $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{$ $\frac{P'}{p^4} \cdot \frac{111}{p^4} \cdot \frac{P}{p^2} \cdot \frac{\overline{111}}{p^2} \cdot \frac{1}{p^2} \cdot \frac{1}{p^2$ beobachtet. Die Säulenflächen eignen sich selten zu guten Messungen, da die Grundsäule vielfach dadurch gewellt und parallel ihrer Kante gefurcht erscheint, dass vicinale Säulenflächen auftreten. Nehmen dieselben so überhand, dass sie prävaliren, so fallen, wenn man z. B. Zone [p¹: p²] einstellt, die Signale von S¹ und S2 nicht mehr in die Zone [p1 p2]*. Fast bei allen Krystallen fallen die Säulenbilder nicht ganz in die Pyramidenzone; indess sind die Abweichungen gering und 2' nicht übersteigend. Diese Erscheinung zeigen auch die Skolezite vom Etzlithale und die monoklinen Mesolithe der Pflasterkaute. Die Pyramidenflächen zeigen ebenfalls häufig doppelte und mehrfache Bilder, herrührend von vicinalen Pyramidenflächen aus der Zone [P₁ p₁] und [P₂ p₂]. Die Messungen wurden an folgenden 8 Krystallen ausgeführt: 1, 2, 4, 5, 6, 8, 9 und 10; zahlreiche einzelne Krystalle gestatteten nur einzelne Winkel zu messen; diese sind in der Tabelle weggelassen worden. Unter Mittel steht in der Tabelle dasjenige Mittel, welches mit Rücksicht auf die Güte der einzelnen Messungen aus den betreffenden Daten gewonnen wurde; es ist also nicht das directe arithmetische Mittel aus den angeführten Messungen.

Aus:
$$p^{1}$$
: $p^{1} = 145^{0} 44.0'$
 p^{2} : $p^{2} = 145^{0} 11.0'$
 p^{1} : $p^{2} = 141^{0} 28.0'$
 S_{2} : $S_{2} = 91^{0} 27.0'$
 S_{2} : $p^{2} = 115^{0} 59.0'$

berechnete sich im Octanten oben vorn rechts:

$$\alpha = 88^{\circ} 30, 1'; \beta = 90^{\circ} 41, 3'; \gamma = 89^{\circ} 49, 2'$$

a : b : c = 0,9712 : 1 : 0,3576.

^{*} DES-CLOIZEAUX führt Gleiches von seinen triklinen Mesolithen an Minéralogie I. p. 389.

P' . 111. $X = 72^{\circ} 52,0'$; $\mu = 69^{\circ} 10,8'$; $\nu = 20^{\circ} 7,9'$ $Y = 70^{\circ} 12,3'$ $\rho = 71^{\circ} 39,3'; \pi = 19^{\circ} 50,6'$ $Z = 27^{\circ} 14.2'$ $\sigma = 45^{\circ} 55.5'$; $\tau = 44^{\circ} 15.3'$.P. 111. $X' = 72^{\circ} 35.5' \quad \mu' = 70^{\circ} 23.6' ; \nu' = 20^{\circ} 17.7'$ $Y' = 71^{\circ} 15,7' \sigma' = 45^{\circ} 44,6'; \tau' = 44^{\circ} 4,6'$ $Z' = 27^{\circ} 31,4'$ $\infty P'_{110}$ ∞ , P. $\overline{1}10$. $X = 45^{\circ} 43.5'$ $X = 45^{\circ} 55.6^{\circ}$ $Y = 44^{\circ} 0.9'$ $Y = 44^{\circ} 20,0'$ $Z = 89^{\circ} 26.8'$ $Z = 88^{\circ} 27.6'$

Da diese Zahlen aus vielen Beobachtungen abgeleitet sind, so werden sie den wirklichen Constanten jedenfalls sehr nahe stehen und auch näher stehen als die folgenden vom Etzlithale, welche nur aus den Beobachtungen an einem Krystalle hergeleitet sind; auch stimmt die Kontrolmessung $p_4: S_4$ an den Krystallen 10, 6 und 9 ziemlich genau mit dem berechneten Winkel 116° 41,0' überein (siehe nebenstehende Tabelle).

2. Der trikline Skolezit vom Etzlithale.

Vorkommen: Der Skolezit vom Etzlithale findet sich mit Stilbit und Byssolith⁵²; seine Krystalle erreichen 20 Millim. Länge bei einem Durchmesser, welcher unter einem Millimeter liegt. Herr E. E. SCHMID hatte die Freundlichkeit, mir einige seiner beschriebenen Krystalle zur Untersuchung zu überlassen.

Chemisches Verhalten: Der Schmelzgrad liegt zwischen dem des Antimonits und dem des Kryoliths; ehe er schmilzt, krümmt er sich stark und schmilzt dann zu einem schaumigen Email. In der Bunsen'schen Flamme konnte man weder vor noch nach dem Befeuchten mit Salzsäure Natriumreaction wahrnehmen; "das Glühlicht ist ziegelroth" (SCHMID).

⁵² E. E. SCHMID, in Zeitschrift für Medicin und Naturwissenschaft. Jena,
9. Juli 1880.

Etzlithal	91 46	I	145 20,5	145 15,4	$142 \ 16,0$	142 1,0	127 46,0	$127 \ 43,0$	$116\ 28,0$	- 14 - 14	· · · · · ·	1	
DES-CL. ³ Mesolith 0	91 45	-	146 146 10		142 - 143		127 40 - 128		$116 \ 10 - 25$	" "	115 - 115 35	2	
B2 0 /	*		*	*	*	2	-	I	116 41	11 H	*	I	
Mittel ¹	91 27	134 34	145 44	145 11	141 28	7	127 41	"	116 36	и и	115 59	3	
8 0	91 10	1	145 43	145 0	ļ	1	-	1	I	ł	-		
9 •	92 3,6	1	1			1	127 38	127 42,7	116 35,8	136 34,8	115 20	115 20	
5	91 25,6	١,	145 32,6	145 22	142 21,2	142 25,6	128 8	128 9	1	116 35	115 53,4	1	
2 ,		[145 22,4	145 16,5	141 40		1	1	1	I	1		
0 1		1	146 8	145 10	142 2,9	142 3,4	127 47,6	127 51,6	1	I	115 50,2	116 16,5	
4	l	1	146 9,5	145 6,7	141 39,4	141 32,1	127 32,7	127 49,2	1		1	I	
6	91 32	1	145 18,5	145 9,5	141 44,5	I	127 37,5	127 29,2	116 22,1	116 41,5	116 4	116 27,7	
10 0 '	91 33	l	145 59	145 29	142 20	I	128 3,8	1	116 38,2	116 37.0	115 53	115 53,8	-
Flächen	S^1 : S^1	$S_1 : b$	$p^1 : p^1$	$p^{2} : p^{2}$	$p^{1} : p^{2}$	$p^{1} : p^{2}$	$p^{i} : p^{2}$	\mathbf{p}^1 : \mathbf{p}^2	$p^1 : S_1$	$\mathbf{p}^1:\mathbf{S}_1$	$S^{2} : p^{2}$	$p^2 : S^2$	

Krystalle vom Schattigen Wichel.

Mesolith anführt.

⁴ Unter Etzlithal finden sich diejenigen Winkel, welche an einem triklinen Skolezit vom Etzlithal (siehe pag. 27) gemessen wurden.

25

¹ Unter Mittel stehen diejenigen Zahlen, welche mit Berücksichtigung der Güte der einzelnen Messungen an den Krystallen 1, 2, 4, 5, 6, 8, 9, 10 aus letztern gewonnen wurden. ² Unter B sind diejenigen Zahlen des Mittels besternt, aus welchen die Grunddimensionen und p¹: S¹ berechnet wurden. ³ Unter DES-CLOIZEAUX stehen diejenigen Winkel, welche DES-CLOIZEAUX in seinem Manuel p. 388 für den triklinen

Herr SCHMID veröffentlichte folgende Analyse I:

		° I	II	III
Kieselsäure		45,70%	45,85	-0,15
Thonerde .		27,46	26,13	+1,33
Kalkerde .		14,29	14,26	+0,03
Wasser .		13,45	13,76	-0,31
Eisenoxyd		0,16		+0,16
Magnesia .	•	0,06		+0,06
Natron .		0,11		+0,11

Unter II ist die Berechnung nach der von RAMMELSBERG gegebenen Formel für die Skolezite:

 $Ca Al^2 Si^3 O^{10} + 3 aq;$

unter III findet sich die Differenz zwischen SCHMID's Analyse und der Berechnung nach RAMMELSBERG'S Formel angegeben.

Optisches Verhalten: Schliffe parallel dem Makropinakoid zeigten sich wiederum, wie oben beim Skolezit vom Schattigen Wichel, durch eine haarscharfe Linie in 2 verschiedene Theile getrennt, in welchen die Auslöschungen symmetrisch und entgegengesetzt liegen. Sie bilden hier einen Winkel von 35º mit einander, jede von ihnen mit der Zwillingsgrenze $17\frac{1}{2}^{0} = HKF$ = FKG (Taf. I Fig. 12,); bei den Krystallen vom Schattigen Wichel betrug dieser Winkel durchschnittlich 16°. Taf. I Fig. 10 stellt einen Schliff parallel der Säule dar; hier bilden die Auslöschungen mit der Zwillingskante 9º und 15º. In einem Schliff ungefähr in der Richtung des Brachypinakoids geführt, zeigte sich gegen die Vertikalaxe eine Auslöschungsschiefe von 11º. Schliffe senkrecht zur Säule zeigten sich durch eine gewundene Linie (Taf. II Fig. 5) in 2 optisch verschieden orientirte Theile zerschnitten. Die optischen Elasticitätsaxen bildeten auch hier, wie beim Skolezit des Etzlithals, miteinander einen Winkel von 16°, cf. pag. 21. Parallel diesen Auslöschungen liegen auch hier die Ebenen der optischen Axen in beiden Theilen des Zwillings. Auch diese Krystalle sind daher Zwillinge des triklinen Systems nach dem Brachypinakoid.

Krystallographische Constanten: Die Krystalle sind Combinationen von:

Von vielen Krystallen zeigte sich nur einer ringsum messbar; auch hier erwiesen sich die Pyramidenflächen parallel den in der Zwillingsebene liegenden Polkanten gestreift und ebenso die Säulenflächen durch das Auftreten der vicinalen Säulen; auch hier waren die Zonen S, p, p² S¹ und S¹ p¹ p² S₂ nicht ganz erfüllt; doch fand sich nur eine geringe Abweichung der Säulenflächen aus der Zone der Pyramidenflächen, sie betrug im Maximum 2 Minuten. Am Krystall wurden folgende Winkel von mir gemessen:

Die besternten Winkel wurden der Berechnung zu Grunde gelegt; von den rechts und links von der Zwillingsebene gelegenen Kanten wurde 142º 16,0' in die Rechnung aufgenommen, da sie auf vollkommeneren Messungen beruht als p¹: p². Unter der Annahme, dass die Zwillingsebene das Brachypinakoid ist, ergaben sich im vordern obern rechten Octanten folgende Grunddimensionen: 890 52.8 000 500 000 27 4

$$= 90^{\circ} 50,5'; \beta = 90^{\circ} 37,1'; \gamma = 89^{\circ} 5$$

a: b: c = 0,9676: 1: 0,34844.
P' 111
X = 72° 40,3'
Y = 70° 34,5'
Z = 26° 40,5'
 $\rho = 71^{\circ} 37,7'; \pi = 19^{\circ} 18,6'; \nu = 19^{\circ} 43,9'$
 $\sigma = 45^{\circ} 52,8'; \tau = 44^{\circ} 0,0'; \mu = 69^{\circ} 39,0'$
.P T11
X = 72° 97,7'
Y = 71° 41,5'
Z = 26° 48,5'

α

 ∞ , 'P $\overline{1}10$ X = 45° 52,4' Y = 43° 53,7' Z = 91° 6,2'

Da hier die Messungen nur an einem Krystall durchgeführt wurden, so ist diesen berechneten Dimensionen natürlich nicht derselbe Werth beizulegen, wie den aus vielen Mittelwerthen erhaltenen Dimensionen der Krystalle vom Schattigen Wichel; auch liegen diese Winkel innerhalb der Grenzwerthe der an den Krystallen vom Schattigen Wichel erhaltenen Werthe.

3. Trikliner Skolezit von Faeroë.

Vorkommen: Es sind feine 0,2-0,8 Millim. dicke bis 1,5 Millim. lange Säulchen von 4 Säulenflächen begrenzt ohne Endflächen; das Material verdanke ich Herrn WEBSKY; es ist z. Th. aus der Collection TAMNAU, z. Th. aus der Collection BERG-MANN (Berliner Universitätssammlung).

Chemisches Verhalten: Schon in der Nähe der Flammenbasis des Bunsen'schen Brenners schmelzen sie; in der Flamme krümmen sie sich nur wenig, schmelzen zu einem weissen Email, ohne der Flamme die Natriumfärbung zu geben. Auf dem Objectträger mit Salzsäure befeuchtet, bilden sich keine Chlornatriumwürfelchen und mit Schwefelsäure bilden sich Gypsnädelchen: es ist also ein typischer Skolezit.

Optisches Verhalten: Schliffe parallel dem Makropinakoid zeigen, ganz wie beim Skolezit vom schattigen Wichel und vom Etzlithal in den beiden optisch symmetrisch entgegengesetzt orientirten Theilen eine Neigung der Maxima der Auslöschungen von $35,7^{\circ}$ gegen einander; die betreffenden Winkel betrugen (Taf. I Fig.3) H K F == 14° und G K F 21,7°. Eine zweite Platte gab für H K G = 34°. Eine Platte parallel dem Brachypinakoid zeigt eine Neigung der Auslöschung von 3,8° gegen die Verticalaxe, also eine geringere Neigung als bei den Skoleziten vom Schattigen Wichel, eine andere Platte (Taf. I Fig. 9) zeigte 4°. Ein Skolezitvorkommen ebenfalls von Faeroë aus der Collection BERGMANN lässt ähnliche chemische Reactionen und dieselben optischen Verhältnisse erkennen:

Ein Schliff parallel dem Makropinakoid zeigte eine Abweichung der Maxima der Auslöschungen von 33º in seinen beiden Theilen. Winkel HKF (Taf. I Fig. 3) betrug 23° und FKG 10°, ein anderer Schliff in gleicher Richtung ergab für HKF 19º und für FKG 9º; dieser Schliff zeigt auch, dass die Zwillinge häufig nicht direct das Brachypinakoid als Zusammensetzungsfläche haben, sondern dass die einzelnen Theile des einen Individuums in die des andern eingreifen. Ein anderer Schliff hatte in der Mitte eine Lamelle HFILK'M, welche sich in Zwillingsstellung zu den seitlichen Theilen befand. Die Auslöschungen bildeten rechts und links von den Zwillingsgrenzen 13º. HKF, GKF, G'K'L und H'K'L betrugen 13º (Taf. II Fig. 6). Ähnliche Auslöschungsschiefen zeigen die in Fig. 1 und 3 auf Taf. II dargestellten Schliffe; die betreffenden Auslöschungsschiefen betrugen $HKF = 16,8^{\circ}$ und $16,6^{\circ}$ und GKF = 16,8 und $16,6^{\circ}$. Eine Platte parallel dem Brachypinakoid (Taf.II Fig. 4) zeigt eine Auslöschung von 6º gegen die Säulenkante.

Die optischen Verhältnisse verweisen auch diese Skolezite in das trikline System; auch hier findet man bei vielen Krystallen, dass die Auslöschungen nicht ganz symmetrisch zu den Zwillingsgrenzen liegen, was wohl auch hier, wie schon oben angedeutet, auf innere anomale Struktur zurückgeführt werden muss.

Mesolith.

1. Monokliner Mesolith von Island.

Vorkommen: Das isländische Vorkommen ist ein Stück einer etwa 5 Centimeter starken Auskleidung eines grossen basaltischen Hohlraums, bestehend aus mässig divergirenden Strahlenbündeln, die in freien Krystallen enden; die Dicke der Krystalle beträgt jedoch nur selten über 1 Millim. und häufig unter 0,55⁵³. Die Innenseite der von den Krystallen erfüllten Caverne war von einer lehmartigen Masse ausgekleidet, die sich nicht abputzen liess und den Thonerdegehalt beeinflusst.

Chemisches Verhalten: Vor dem Löthrohre blättern

⁵³ E. SCHMID, Unt. Mesolith, Pogg. Ann. 142. Bd., p. 119.

sich sehr dünne Splitter auf und die aufgeblätterten Fasern schmelzen leicht zu einem trüben Glase; das Glühlicht ist gelb⁵⁴. Die SCHMID'schen Original-Krystalle, welche ich der Freundlichkeit des Herrn SCHMID verdanke, schmelzen etwas schwieriger als Schwefel und leichter als Kryolith. Grobe Splitter in concentrirte Salzsäure gelegt, zeigen sich bereits nach zwei Tagen deutlich angegriffen, opalisiren, quellen auf und umgeben sich mit Gallerte ⁵⁵, in welcher man unter dem Mikroskope deutlich isotrope Chlornatriumwürfelchen erblickt. Setzt man Schwefelsäure zur Gallerte hinzu, so bilden sich bald chromatisch polarisirende Gypsnädelchen. SCHMID gab für die Krystalle folgende Analyse I:

	Ι	II
${ m Si}{ m O}^2$	46,58 %	46,32
$\mathrm{Al^2O^3}$	27,57 "	$26,\!40$
Ca O	9,11 "	9,61
Mg O	0,08 "	
Na ² O	3,64,	5,32
H^2O	12.94	12.35

Nach RAMMELSBERG hat der Mesolith eine procentische Zusammensetzung II, welche aus der Formel:

 $\left\{\begin{array}{c} Na^{2} Al^{2} Si^{3} O^{10} + 2aq \\ 2 (Ca Al^{2} Si^{3} O^{10} + 3aq) \end{array}\right\}$

abgeleitet ist. Der SCHMID'sche Mesolith von Island I weicht nur wenig davon ab.

Physikalisches Verhalten: Die kleinen Krystalle sind zum Theil vollkommen wasserhell, glasglänzend, durchsichtig, besitzen ein specifisches Gewicht von 2,18 und eine Härte von 5 und etwas darüber. Legt man einen dünnen Krystall auf den Tisch des Polarisationsmikroskops, so beobachtet man bei parallelen Nicols und eingeschobener Quarzplatte bei einer Drehung um 90° nur einen schwachen ganz allmähligen Übergang der violetten Farbe des Gesichtsfeldes in andere Farbentöne.

Wählt man hierzu dickere Krystalle, so zeigt sich bald, dass der ganze Krystall ein einfaches Individuum ist, von Zwillingsbildung findet sich keine Spur. Das Maximum der Auslöschung

⁵⁵ ibidem.

⁵⁴ a. a. O. SCHMID, p. 120.

bildet mit der vordern Säulenkante unten (Taf. II Fig. 9) einen Winkel von 9°, wenn der Krystall auf dem Klinopinakoid liegt; an andern Krystallen wurden 8°, 9° und 9⁴/₂° beobachtet; nur einige wenige zeigten 5—6°. Ein Schliff senkrecht zum Klinopinakoid und parallel ∞P_{∞} zeigte, dass hier die Auslöschungen übereinstimmend mit dem monoklinen System parallel der Vertikalaxe liegen. Schliesslich wurden verschiedene Krystalle auf den Säulenflächen unter dem Mikroskop im polarisirten Lichte geprüft; nirgends zeigten sich jene von DES-CLOIZEAUX ⁵⁶ beschriebenen Erscheinungen, welche trikline Mesolithe und Skolezite fast immer zeigen: "Les cristaux vus, à travers leurs faces laterales, offrent en général deux bandes étroites parallèles à ces faces, et dont les plans d'extinction sont à 5° ou 6° l'un de l'autre."

Geometrische Constanten: Die Krystalle sind monokline Combinationen von ${}_{\infty}P$. (110); mit – P. (111); + P (111) g – o o und ${}_{\infty}P_{\infty}$. (010); letztere Fläche ist weniger häufig vorhanden b (Taf. III Fig. 1); parallel den klinodiagonalen Polkanten sind die Pyramidenflächen sehr häufig gestreift, besonders an jenen Krystallen, welche das Klinopinakoid zeigen; diejenigen, welchen dasselbe mangelt, zeigen jene Streifung, welche durch vieinale Pyramidenflächen aus der Zone – P: ${}_{\infty}P_{\infty}$ und + P: ${}_{\infty}P_{\infty}$ hervorgebracht wird, gewöhnlich nicht. Auch auf der Säule bemerkt man häufig Streifungen parallel der Säulenkante, hervorgerufen durch vieinale ${}_{\infty}P$ m; so wurde ${}_{\infty}P \frac{14}{13}$ (13.14.0) an mehreren Kry-

stallen beobachtet. Aus folgenden am Krystall 3 gemessenen Winkeln:

 $\begin{array}{rcrcrcr} 0 & : & 0 & = & 145^{\circ} & 50' \\ 0 & : & - & 0 & = & 142^{\circ} & 39' \\ - & 0 & \text{rechts} : & 0 & \text{links} & = & 128^{\circ} & 45,2' \end{array}$

wurden die Dimensionen berechnet:

$$\mathbf{a} : \mathbf{b} : \mathbf{c} = 0,9079 : 1 : 0,3226$$

 $\boldsymbol{\beta} = 87^{\circ} 53,6'$

⁵⁶ Man. d. min. p. 389.

$$\begin{array}{r} -\mathrm{P} \, . \, 111. \\ \mathrm{X}' \, = \, 73^{\circ} \, 17,0' \\ \mathrm{Y}' \, = \, 69^{\circ} \, 31,5' \\ \mathrm{Z}' \, = \, 25^{\circ} \, 19,9' \\ \rho \, = \, 72^{\circ} \, \, 7,2' \quad \sigma \, = \, 47^{\circ} \, 45,9' \\ \mu' \, = \, 68^{\circ} \, 34,7' \quad \nu' \, = \, 19^{\circ} \, 18,9' \\ \quad +\mathrm{P} \, . \, \bar{1}11. \\ \mathrm{X} \, = \, 72^{\circ} \, 55,0' \\ \mathrm{Y} \, = \, 73^{\circ} \, \, 7,5' \\ \mathrm{Z} \, = \, 25^{\circ} \, 54,9' \\ \mu \, = \, 72^{\circ} \, 19,2' \, ; \, \nu \, = \, 19^{\circ} \, 47,2' \\ \quad \infty\mathrm{P} \, . \, 110 \\ \mathrm{X} \, = \, 47^{\circ} \, 47,1' \\ \mathrm{Y} \, = \, 42^{\circ} \, 12,9' \\ \mathrm{Z} \, = \, 91^{\circ} \, 33,6' \end{array}$$

Aus diesen Winkeln berechnen sich die in der Tabelle angeführten Combinations-Kanten.

	Flächen	Krystall 3	4	1	2
	0:0	145° 50,0'*			146º 12,9'
	-0:-0	146° 34,0'	146º 28,3'	146º 22,1'	146º 19,9'
rechts	0 : -0	1420 39,0' *		142º 38,1'	1420 39,6'
links	0:-0	142º 33,9'	-	142º 45,5'	142º 26,6'
	o : —o rechts links	128º 45,2'*	-	—	-
rechts	-o: b	106 ⁰ 43,0' ber.	106º 44,3'	-	
links	—o: b	27 27	106º 45,7'	-	
	g,: g,	91º 19,2' ber.	—	91° 10,0'	91º 25,0'
	g: g	95° 34,2' ber.	•	-	-
	g,: b	134 ⁰ 20,4' ber.	134º 26,0'	-	-

Unter 3, 4, 1, 2 sind die Messungen an den gleichbenannten vier Krystallen angegeben; unter 3 stehen gleichzeitig die aus 3* berechneten Combinationskanten:

Betrachtet man die Werthe in ihrem Verhältniss zu den an den monoklinen Skoleziten gegebenen, so wird man finden, dass der Säulenwinkel von ∞ P sehr hoch aus der Rechnung hervorgeht, und dass andererseits die als $\infty P \frac{14}{13}$ berechnete Säule der einfachen Grundsäule an den monoklinen Skoleziten nahesteht; es ist desswegen wahrscheinlich, dass die als Winkel von + Pund - P angenommenen Werthe eigentlich zwei - P und + Pvicinalen Pyramiden angehören und $\infty P_{\frac{1}{4}}$ nicht diese, sondern die eigentliche Grundsäule ∞P ist; unter diesem Gesichtspunkte würden dann die Dimensionen der monoklinen Mesolithe noch näher an die der monoklinen Skolezite heranrücken.

2. Monokliner Mesolith von der Pflasterkaute.

Den Mesolith der Pflasterkaute hat CREDNER ⁵⁷ beschrieben: "selten in zarten, nadelförmigen Krystallen mit wahrnehmbaren Endflächen, häufiger kugelförmig, concentrisch strahlig in den Drusen des feinkörnigen Dolerits; kleine Drusen oft vollständig ausfüllend; ausserdem der einen Doleritabänderung innig beigemengt." Er kommt auf Nephelinbasalt ZIRKEL ⁵⁸ mit Thomsonit, Phillipsit, Gismondin ⁵⁹, Natrolith, Glimmer, Sphaerosiderit, Bitterspath, Calcit und Magneteisen vor.

Herr Prof. EISENACH in Gotha war so freundlich, mir von der schön krystallisirten Varietät brauchbares Material für eine krystallographische Untersuchung zu überlassen.

Chemisches Verhalten: Vor dem Löthrohre krümmt er sich nicht, sondern schmilzt zu einem wasserklaren Email, im Glaskölbchen erhitzt giebt er Wasser aus; mit Salzsäure behandelt, gelatinirt er; die eingetrocknete Gallerte lässt leicht isotrope Chlornatriumwürfelchen unter dem Mikroskop erkennen; setzt man zur wiederangefeuchteten Gallerte Schwefelsäure, so entstehen Gypskrystalle, die durch ihre Gestalt und ihr optisches Verhalten unter dem Polarisations-Mikroskop scharf charakterisirt sind. Das spec. Gewicht betrug bei 16°C. 2,232. Eine quantitative Analyse, welche ich im Sommer 1878 anstellte, ergab folgendes Resultat ⁶⁰:

⁵⁷ Dies. Jahrbuch 1860, p. 59.

⁵⁸ ZIRKEL, Basaltgesteine p. 166.

⁵⁹ Dieses Mineral führt CREDNER als Faujasit auf; hingegen erwähnt schon BLUM in seiner Mineralogie den Gismondin von der Pflasterkante; dass es wirklich Gismondin ist, zeigten die von mir gemessenen Winkel.

⁶⁰ Analytische Belege: 0,9825 Grm. Mesolith gaben 0,1150 Grm. Wasser also 11,75% aus.

0,9880 Grm. Mesolith enthielten:

	0.4331	"	Kiesels	äure,	also	$43,83^{0}/_{0}$			
	0,2869	"	Thoner	de	22	29,04%			
	0,0775	27	Calciur	noxyd	22	7,84%	und	0,1453	Chlornatrium
oder	0,077	22	Natriur	noxyd	19	7,80%			
Ν.	Jahrbuch	f. Min	neralogie	etc. 188	зі. в	d. 11.			3

	I	Elemente	Quotient	Atome
Si O^2	43,83 %	20,45%	0,73	õ
Al^2O^3	29,04 "	15,45 "	0,56	4
Ca O	7,84 "	5,60 "	0,14	1
Na ² O	7,80 "	5,8 "	0,25	2
H ² O	11,75 "	1,3 "	1,3	10

Aus den Atomverhältnissen folgt die Formel H¹⁰Na²Ca Al⁴ Si⁵O²³ oder

 $\begin{cases} \operatorname{Na}^{2}\operatorname{Si} \operatorname{O}^{3} \\ \operatorname{Ca}\operatorname{Si} \operatorname{O}^{3} + 5 \operatorname{H}^{2} \operatorname{O} \\ \operatorname{Al}^{4}\operatorname{Si}^{3} \operatorname{O}^{12} \end{cases} \end{cases}$

Der Mesolith der Pflasterkaute hat demnach eine ähnliche Zusammensetzung, wie die als Mesole bezeichneten Mineralien von Bombay⁶¹, Oberschaffhausen⁶², Anaklef⁶³ und den Faeroër-Inseln⁶⁴.

Physikalisches Verhalten: Die Krystalle besitzen lebhaften Glasglanz. Im polarisirten Lichte zeigen sie sich durchaus als einfache Individuen; alle Theile der Krystalle löschen gleichmässig aus, wenn sie auf der Säulenfläche auf dem Tische des mit gekreuzten Nicols versehenen Mikroskops liegen; die Abweichung der Auslöschung von der Säulenkante - wenn man durch eine Säulenfläche den Krystall beobachtete, - betrug an einigen Krystallen 22-24°, bei andern 3-6°. Legte man den Krystall 5 auf eine Säulenfläche, so beobachtete man ein Maximum der Auslöschung von 3.6°; auf die andere Säulenfläche, welche mit der ersten einen Winkel von 91º 10' bildete, gelegt, wurde eine Auslöschung von 4º beobachtet; die Auslöschung liegt demnach auf 2 anstossenden Säulenflächen symmetrisch entgegengesetzt. Die Dünnheit der Krystalle verhinderte das Schleifen nach den Pinakoiden. Klebte man einen Krystall an eine Stecknadel, so dass die Axe c in die Verlängerung der Nadel fiel, so gelang es den Krystall auf dem Objecttische durch Drehen um c in eine solche Lage zu bringen, dass die Auslöschung parallel der Säulenkante O^o war. Die Krystalle scheinen demnach dem monoklinen System anzugehören.

⁶¹ THOMSON, Edinburgh New Philosophical Journal 17. 186.

⁶² TOBLER, Annal. d. Chem. u. Pharm. 91. 229.

⁶³ HISINGER, BERZELIUS' Jahrb. V. 217 u. XX. 227.

⁶⁴ S. UIG, Philosoph. Mag. IV. Ser. 13. Bd., p. 53.

Geometrische Constanten: Die Krystalle stellen immer Combinationen der Säule ∞P . 110; $\infty P_{\frac{15}{14}} = 14.15.0$, mit S - P 111 und + P 111 dar. Figur 10 auf Tafel III stellt — p р eine Projection auf die zur Säulenzone senkrechte Ebene dar. Aus den Winkeln: $-p: -p = 145^{\circ} 37,3^{\circ}$ $p:-p = 141^{\circ} 53.8^{\circ}$ rechts links und p = 127° 13' -p: $\beta = 85^{\circ} 57,8'$ folgt: 0,9241 : 1 : 0,3375.a:b:c =-P. 111. $X' = 72^{\circ} 48.7'$ $Y' = 74^{\circ} 21, 2'$ $Z' = 26^{\circ} 58,8'$ $\rho = 71^{\circ} 21,1'$ $\sigma = 47^{\circ} 15,6'$ $\mu' = 73^{\circ} 32.3' \qquad \nu' = 20^{\circ} 29.9'$ +P. 111. $X = 72^{0} 4.0^{\prime}$ Y == 67º 32,6' $Z = 25^{\circ} 48,8'$ $\mu = 66^{\circ} 24.3'$ $\nu = 19^{\circ} 33.1'$ ∞P.110. $X = 47^{\circ} 19,9^{\circ}$ $Y = 42^{\circ} 40,1'$

Hieraus berechnen sich die in der unten stehenden Winkeltabelle aufgeführten Combinationskanten.

 $Z = 92^{\circ} 58.2'$

Flächen	Krystall 10	4	7	3	Berechnet
$S_1 : S_1$	90° 40,0'			90° 55,3'	900 41,2'
s: s	- 1				94º 39,8'
$\mathbf{p}:-\mathbf{p}$	141º 53,8' *	1420 46,7'	-	142º 15,3'	-
-p : -p	1450 37,3' *	_	—	144º 32,1'	
links rechts p:p	127º 13' *	-	_ [.]	127º 11,1'	
D : -D			_ (1270 11,2'	_
p: p	144º 13,5'	-	144º 21,7'	'	1 44 º 8'
					3*

Auch hier sind die Säulenflächen stark gestreift parallel ihren verticalen Kanten; auch die Pyramidenflächen sind oft gestreift parallel den klinodiagonalen Polkanten; auch hier wird dies durch vicinale Flächen bewirkt; auch hier liegen S, p, — p und S nicht immer in einer Zone, weil die Säulenflächen S oft durch S₄ verdrängt werden; es ist endlich auch bei diesen Krystallen wahrscheinlich, dass die abgeleitete Säule $\infty P_{\frac{15}{14}}$ die eigentliche Hauptsäule ∞P ist und, dass die als Grundpyramiden angenommenen +P und -P nur der Grundpyramide vicinale Pyramiden sind. Die bescheidenen Dimensionen der Krystalle — sie haben nur 0,25 Millimeter Durchmesser — erschwerten die im Winter 1877—78 vorgenommenen Messungen sehr; die 4 Pyramidenflächen sind gewöhnlich auf 0,06 Quadratmillimeter vertheilt.

Schluss.

Betrachtet man die monoklinen Formen der Mesolithe und Skolezite, so findet man, dass beide einander so nahe stehen, dass sie wohl als isomorphangesehen werden können; auch die optischen Verhältnisse (pag. 30, 31 und 34) sprechen dafür und, wenn sie auch in Bezug auf die Grösse der Auslöschungen einige Differenzen zeigen, so ist der Sinn derselben doch stets der gleiche. Merkwürdig bei den beiden Mineralien ist, dass während der Skolezit fast nur in Zwillingen nach dem Orthopinakoid vorkommt, der Mesolith dagegen sich nur in einfachen Krystallen findet.

Auch die triklinen Formen der Mesolithe und Skolezite sind isomorph. Allerdings sind mir von triklinen Mesolithen nur die Angaben bekannt geworden, welche DES-CLOIZEAUX in seinem Manuel giebt; leider giebt derselbe nicht an von welchem Fundorte seine und die von SENARMONT optisch untersuchten Krystalle stammen; unter denjenigen Krystallen, welche ich untersucht habe, fanden sich trikline Mesolithe nicht. Aus den Winkelangaben DES-CLOIZEAUX' (Tabelle bei trikliner Skolezit) folgt, dass die Formen ganz ähnliche wie bei den triklinen Skoleziten sind. Auch die optischen Verhältnisse scheinen übereinzustimmen. "Des lames coupées perpendiculairement aux arêtes verticales montrent, dans un faisceau polarisé de rayons parallèles, une structure très-variable quoique soumise à certaines lois: leur contour est toujours un

parallelogramme très-voisin d'un carré, mais leur intérieur se compose, tantôt de deux triangles sensiblement isocèles d'égale ou d'inégale étendue, en contact par leur base ou séparés par une bande étroite à côtés parallèles, tantôt de quatre triangles à peu près égaux ou de deux triangles et de deux hexagones disposés en opposition, tantôt enfin d'une grande plage uniforme dans laquelle sont enchâssés deux triangles isocèles opposés par leur sommet. Dans les lames à deux secteurs triangulaires, les directions où l'extinction maximum a lieu pour chacun d'eux font entre elles un angle de 20-24º. (Taf. 1 Fig. 8.) Dans les lames à quatre secteurs, l'extinction paraît complète en même temps pour deux secteurs opposés, tandis qu'elle se fait sous un angle de 11-15° pour deux secteurs voisins 65." An meinen Platten zeigten sich nicht so grosse Verschiedenheiten, gewöhnlich zeigten sich die Verhältnisse, wie in den Figuren 8 und 11 Tafel I und Fig. 2 Taf. II; seltener wie Fig. 5 Taf. II und Fig. 5 Taf. I (vergleiche auch Text: pag. 21 und 26). Nach den Zeichnungen (Fig. 175 Atlas d. Man. de Min. tab. XXX = Copie Taf. III Fig. 8) würden die optischen Axenebenen bei den Krystallen DES-CLOIZEAUX' eher in der Richtung des Makropinakoids liegen, als mehr in der Richtung des Brachypinakoids, wie es meine Figuren zeigen. Die Richtung der optischen Axenebenen und ihre Werthe (pag. 21 u. 22) wurden jedoch an einem Krystall festgelegt, dessen geometrische Constanten vorher bestimmt waren, und aus welchem später 3 Schliffe: parallel dem Makropinakoid, parallel dem Brachypinakoid und senkrecht zu den Säulenflächen, gemacht wurden, so dass eine Unsicherheit in Bezug auf die Lage der optischen Axenebenen nicht vorhanden sein kann. Hingegen giebt DES-CLOIZEAUX keine genauen Angaben über die Orientirung seiner Ebenen der optischen Axen im Texte; er zeichnet sie nur in seinen Figuren wie oben angedeutet; es könnte daher, bei sonst ganz analogen Verhältnissen wohl möglich sein, dass dieselben ebenso orientirt wären, wie bei meinen triklinen Skoleziten.

Unter diesem Gesichtspunkte wären dann auch die triklinen Mesolithe und Skolezite isomorph und man hätte die isodimorphe

⁶⁵ Des-Cloizeaux, Manuel de Min. p. 389.

Gruppe Mesolith und Skolezit, was um so wahrscheinlicher ist, da man ja schon weiss 66, dass der Mesolithsubstanz:

 $\begin{cases} Na^2 Al^2 Si^3 O^{10} + 2aq. \\ 2 Ca Al^2 Si^3 O^{10} + 3aq. \\ die isomorphe Skolezitsubstanz: Ca Al^2 Si^3 O^{10} + 3aq. beigemengt \end{cases}$ ist. Krystallisirt nun einerseits $\begin{cases} Na^2 Al^2 Si^3 O^{10} + 2 aq. \\ 2 Ca Al^2 Si^3 O^{10} + 3 aq. \end{cases}$ mono-

klin und triklin und andererseits Ca Al² Si³ O⁴⁰ + 3aq. in gleichen Formen so ist nicht einzusehen, warum es nicht auch monokline und trikline Na² Al² Si³ O¹⁰ + 2 aq., d. i. Natrolithe, geben soll. Ebenso gut aber wie in dem Mesolith $1 \operatorname{Na^2 Al^2 Si^3 O^{10}} + 2 \operatorname{aq. mit}$ 2 Ca Al² Si³ O¹⁰ + 3 aq. verbunden ist, ebenso gut können Mineralien existiren, wo dies Verhältniss 1:2 ein anderes ist; es kann demnach eine ganze Reihe solcher Mesolith-artiger Körper geben. Hierher scheinen die bisher als Mesole aufgeführten Mineralien zu rechnen zu sein. Zu den soeben erwähnten monoklinen und triklinen Natrolithen scheinen die von Aussig und Salesel⁶⁷ zu gehören. Wenigstens zeigten Krystalle von beiden Fundorten nach den Säulenflächen auf den Tisch des Polarisationsmikroskop gelegt, Auslöschungen von 5-6° gegen die Säulenkante.

Umgekehrt wie man aus der Isotrimorphie von Mesolith und Skolezit vorstehende Schlüsse ziehen kann, kann man dann auch weiter folgern, dass es rhombische Mesolithe und Skolezite geben muss. Ein derartiger Natrolith-ähnlicher Mesolith ist der Galaktit⁶⁸. Freilich besteht derselbe nach RAMMELSBERG nicht aus isomorphen Mischungen von Natrolith und Skolezit, sondern aus einem isomorphen Gemisch von Natrolith und Natrolith, wo an Stelle des Natriums Calcium eingetreten ist:

 $\begin{cases} nNa^{2} Al^{2} Si^{3} O^{10} + 2 aq. \\ Ca Al^{2} Si^{3} O^{10} + 2 aq. \end{cases}$

⁶⁶ RAMMELSBERG, Mineralchemie, 2. Aufl. II. Thl. p. 635.

⁶⁷ Allerdings scheinen die von Seligmann, Zeitschrift für Krystallographie I. 339-340, gemessenen Krystalle gerade dieses Vorkommens dagegen zu sprechen; indess könnten ja an demselben Fundorte rhombische und monokline Natrolithe vorkommen.

⁶⁸ s. Literatur RAMMELSBERG, Mineralchemie II. Aufl. II. Bd. p. 633. 69 Es könnte dann eine zweite Reihe Mesolithe geben, welche nach der Formel $\begin{cases} m Na^2 Al^2 Si^3 O^{40} + 2aq \\ n Ca Al^2 Si^3 O^{10} + 2aq \end{cases}$ zusammengesetzt wären.

DES-CLOIZEAUX ⁷⁰ sagt : J'ai constaté sur des aiguilles de Bishoptown des propriétés optiques biréfringentes identiques à celles de la mésotype. Der Galaktit ist also wirklich ein rhombischer Mesolith. Unter der Voraussetzung, dass meine Beobachtung über die schiefe Auslöschung an den Natrolithen von Aussig und Salesl wirklich den normal monoklinisch ausgebildeten Krystallen zukommt, was nur eine Untersuchung an besserem Material, als ich besitze, feststellen kann, hätten wir also folgende untenstehende isotrimorphe Gruppe des Mesotyps. Ich nenne sie desswegen Gruppe des Mesotyps, weil HAUY alle drei Körper: Natrolith, Mesolith und Skolezit unter diesem Namen zusammenfasste. Gleichzeitig sieht man, dass die rhombischen Natrolithe und rhombischen Mesolithe mehr der Natrolithformel folgen; es würde desswegen auch anzunehmen sein, dass, wenn ein rhombischer Skolezit jemals aufgefunden würde, demselben die analoge Formel CaAl²Si³O¹⁰ + 2aq. zukommen müsste.

Isotrimorphe Gruppe des Mesotyps.

1. Rhombische	2. Monokline	3. Trikline		
	1. Natrolithe:			
typische Vorkomm- nisse z. B. von Åro.	von Aussig, von Salesel.	unbekannt.		
	2. Skolezite:			
unbekannt.	von Island, von Kandallah.	vom Schattigen Wi- chel, von Faeröe, vom Etzlithal.		
	3. Mesolithe:			
Galaktit von Bishop- town.	von Island, von der Pflasterkaute.	Vorkommen nach Des-Cloizeaux.		

⁷⁰ Man. de Min. p. 385.

Erklärung der Tafeln.

Taf. I.

Fig. 1 stellt einen Skolezitzwilling dar: Combination ∞P_i , S_i; $\infty_i P_i$ S₂; ∞P_i , S_i; $\infty_i P_i$ S₂; P' p'; P p²; P' p'; P p² (pag. 23).

Fig. 2 dieselbe Combination, Projection auf die zu ∞P ,' und ∞ ,'P normale Ebene.

Fig. 3 Schliff vom Krystall 1 vom Schattigen Wichel parallel $\infty \overline{P}\infty$; die Auslöschungen HK und KG machen mit der Zusammensetzungsfläche des Zwillings Winkel von $14^{3}/_{4^{0}}$ und $17^{1}/_{2^{0}}$ (pag. 20).

Fig. 4 ein eben solcher Schliff vom gleichen Fundorte, wo die Ausöschungen je 15⁰ mit der Zwillingsnaht KF einschliessen.

Fig. 5 ein Schliff senkrecht zu den Säulenflächen. Die Auslöschungen bilden in den verschiedenen Theilen 16⁰ und 164⁰ mit einander (pag. 21).

Fig. 6 Schliff parallel $\infty \mathbb{P}\infty$; Auslöschungen bilden $17^{1/2^{0}}$ mit der Zwillingsnaht (pag. 21).

Fig. 7 Schliff parallel $\infty \tilde{P}\infty$; Auslöschung bildet mit der Verticalaxe 8° (pag. 21).

Fig. 8 Schliff senkrecht zu den Säulenflächen aus Krystall 3, die Auslöschungen bilden 29^o mit einander (pag. 22).

Fig. 9 Schliff parallel $\infty \check{P}\infty$; wie 7, aus einem Krystall von den Faeröer (pag. 28).

Fig. 10 Schliff parallel der Säule, aus dem Etzlithale (pag. 26).

Fig. 11 Schliff aus einem Krystall vom Schattigen Wichel, senkrecht zu den Säulenflächen, zeigt die Lage der optischen Axen. (pag. 21)

Fig. 12 Schliff aus einem Krystall vom Etzlithal parallel $\infty \bar{P} \infty$ (pag. 26).

Taf. II.

Fig. 1 Schliff aus milchigem Skolezit von den Faeröer Inseln parallel $\infty \bar{P}\infty$ (pag. 29).

Fig. 2 Schliff senkrecht zu den Säulenflächen (vom Schattigen Wichel, pag. 21).

Fig. 3 wie Fig. 1 (pag. 29).

Fig. 4 Schliff parallel $\infty P \infty$ (pag. 29) von den Faeröer Inseln.

Fig. 5 Schliff aus einem Krystall vom Etzlithale senkrecht zu den Säulenflächen (pag. 26).

Fig. 6 Schliff aus Skolezit von Faeroë parallel $\infty P\infty$ (pag. 29).

Fig. 7 Schliff aus Skolezit vom Schattigen Wichel parallel einer Säulenfläche.

Fig. 8 Platte aus einem monoklinen Skolezitzwilling von Kandallah; optische Axenebenen senkrecht zu $\infty \mathbb{P}\infty$ zeigend (pag. 15).

Fig. 9 Schmid's monokline Mesolithe; Platte parallel dem Klinopinakoid (pag. 30).

Fig. 10 Schliff aus Rose's Krystallen parallel $\infty \mathbb{P}\infty$ (Skolezit pag. 9).

Fig. 11 Projection von Rose's isländischem monoklinen Skolezit auf die zur Säule normale Ebene.

Fig. 12 HANKEL'S Krystall von Kandallah; Auslöschungen im Klinopinakoid (pag. 15).

Taf. III.

Fig. 1 SCHMID'S Krystall von Island I. Combination ∞Pg ; $\infty P\infty$. b; -P-o; +Po; (pag. 31).

Fig. 2 u. 3 Copien nach G. Rose. Skolezit (pag. 10).

Fig. 4 Krystall 2 von G. Rose's Krystallen mit -3P und -3P3.

Fig. 5 HANKEL'S Krystall "2" von Kandallah (pag. 16).

Fig. 6 Auslöschungen im Klinopinakoid an HANKEL's Krystall. -

Fig. 7 Projection auf die zu den Säulenflächen normale Ebene von Rose's Krystall "2".

Fig. 8 und 9 Copien von triklinen Mesolithen nach DES-CLOIZEAUX.

Fig. 10 Monokliner Mesolith von der Pflasterkaute: Projection auf die zur Säule normale Ebene. Combination $-P + P \propto P$ (pag. 35).

-p p s

n

р

Mineralogisches Institut, im Januar 1881.

N. Jahrb. f. Min. etc. 1881 Bd. II. Lucdecke, Trikliner Skolexit.

N Jahrb f. Min. etc 1881 Bd. II. Luedecke, Mesolith u.Skolezit. Taf. II.

N. Jahrb.f. Min. etc 1881 Bd: II. Luedecke "Mesolith u Skolezit. Taf.III.

t v x t

8.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Neues Jahrbuch für Mineralogie, Geologie und</u> <u>Paläontologie</u>

Jahr/Year: 1881

Band/Volume: 1881_2

Autor(en)/Author(s): Luedecke Otto

Artikel/Article: Mesolith und Skolezit 1-41