Der Kristallisationsverlauf im ternären System Cadmiumbromid-Kaliumbromid-Natriumbromid.

Von

#### H. Brand in Berlin.

Mit 8 Textfiguren.

An die Untersuchung der Vorgänge der Kristallisation in den binären Systemen aus den Chloriden¹ und Jodiden des Cadmiums und der Alkalien Natrium und Kalium sowie für die Chloride auch in ternären Mischungen habe ich die Bearbeitung des Dreistoffsystems der entsprechenden Bromide angeschlossen.

Von den binären Systemen ist das der beiden Salze Kaliumbromid—Natriumbromid bereits von N. S. Kurnakow und S. F. Zemczuznyj² in einer Arbeit über "Isomorphismus der Kalium- und Natriumverbindungen" behandelt. Die beiden Autoren fanden, daß sich aus dem Schmelzfluß eine lückenlose Reihe von Mischkristallen bildet, die beim Erkalten nicht merklich zerfallen. Indessen sehen sie dieses System bei Zimmertemperatur als unterkühlt an, da sich erstens ein beträchtlicher Unterschied in den Lösungswärmen des mechanischen Gemenges und der kristallisierten Schmelzen der beiden Salze zeigt, und da zweitens aus wässerigen Lösungen bei gewöhnlicher Temperatur Kaliumbromid vollständig rein ohne Beimengung von Natriumsalz sich ausscheidet.

<sup>&</sup>lt;sup>1</sup> H. Brand, Diss. Berlin 1911. Dies. Jahrb. Beil.-Bd. XXXII. p. 627. 1911, und Centralbl. f. Min. etc. 1912. p. 26.

<sup>&</sup>lt;sup>2</sup> N. S. Kurnakow und S. F. Zemczuznyj, Zeitschr. f. anorg. Chem. 52, 186, 1907.

### 1. Das binare System Cadmiumbromid—Kaliumbromid.

Die den Kristallisationsvorgang in den geschmolzenen Mischungen aus Cadmiumbromid und Kaliumbromid charakterisierenden und aus Abkühlungsversuchen gewonnenen Temperaturen sind in Tabelle 1 und Fig. 1 zusammengestellt.

Tabelle 1. Konzentrations-Temperatur-Diagramm der Mischungen aus Cadmiumbromid und Kaliumbromid.

| No. | Gehalt<br>Molekül-<br>prozente |         | Beginn<br>der Kristalli-<br>sation | Eutektische<br>Kristalli-<br>sation | Dauer der<br>eutekt, Kri-<br>stallisation | Umsetzung<br>zu<br>Cd Br <sub>2</sub> .4KBr | Dauer der<br>Umsetzung |
|-----|--------------------------------|---------|------------------------------------|-------------------------------------|-------------------------------------------|---------------------------------------------|------------------------|
| 1   | 0                              | 0       | 5670                               |                                     | ·                                         | _                                           |                        |
| 2   | 10                             | 4,63    | 536                                | 3440                                | 100(sec)                                  |                                             | _                      |
| . 3 | 20                             | 9,85    | 508                                | 344                                 | 200                                       | _                                           | _                      |
| 4   | 25                             | 12,72   | 488                                | 345                                 | 230                                       |                                             |                        |
| -5  | 30                             | 15,78   | 464                                | 345                                 | 280                                       | _                                           | -                      |
| 6   | 40                             | 22,57   | 397                                | 346                                 | 340                                       |                                             |                        |
| 7   | 48                             | 28,75   | 350                                | 345                                 | 130                                       |                                             |                        |
| 8   | 50                             | 30,42   | 354                                |                                     |                                           |                                             |                        |
| 9   | 55                             | . 34,83 | 348                                | 304                                 | 100                                       |                                             | _                      |
| 10  | 60                             | 39,61   | 329                                | 305                                 | 200                                       |                                             |                        |
| 11  | 65                             | 44,81   | 315                                | 305                                 | 520                                       |                                             |                        |
| 12  | $66\frac{2}{3}$                | 46,65   | 319                                | 304                                 | 450                                       | -                                           | _                      |
| 13  | 70                             | 50,50   | 443                                | 304                                 | 400                                       | 3230                                        | 50 (sec)               |
| 14  | 73,3                           | 54,55   | 514                                | 305                                 | 300                                       | 325                                         | 80                     |
| 15  | 75                             | 56,74   | 544                                | 303                                 | 250                                       | 324                                         | 100                    |
| 16  | 80                             | 63,62   | 605                                | 304                                 | 210                                       | 325                                         | 120                    |
| 17  | 85                             | 71,24   | 652                                | 306                                 | 150                                       | 324                                         | 90                     |
| 18  | 90                             | 79,74   | 682                                | 304                                 | 120                                       | 324                                         | 80                     |
| 19  | 95                             | 89,25   | 712                                | 300                                 | 40                                        | 322                                         | 50                     |
| :20 | 100                            | 100     | 735                                |                                     | _                                         |                                             | _                      |
|     | 11                             |         | 1                                  |                                     |                                           |                                             |                        |

Das Existenzgebiet der homogenen flüssigen Phasen wird durch die Kristallisationskurve ApDquB begrenzt, die sich aus vier Ästen zusammensetzt, von denen jeder einer kristallisierten Phase entspricht. Es treten demnach außer den beiden Komponenten noch zwei neue Kristallarten auf. Merkliche Mischfähigkeit im festen Zustande zeigt sich nicht.

Als erste neue Kristallart bildet sich das

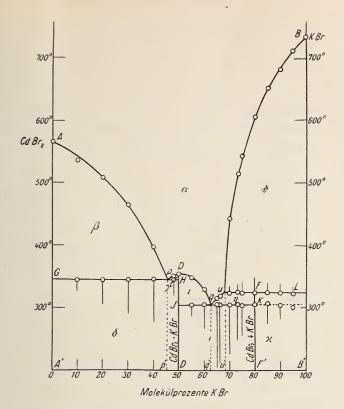



Fig. 1. Konzentrations-Temperatur-Diagramm der Mischungen aus Cadmiumbromid und Kaliumbromid.

- a Existenzgebiet der homogenen flüssigen Mischungen.
- β Gleichgewichtsgebiet von Cd Br, und Schmelzen α.
- γ, ε Gleichgewichtsgebiet von Cd Br<sub>2</sub>. K Br und Schmelzen α.
  - $\sigma$  Existenzgebiet von eutektischen Gemengen aus  $\operatorname{CdBr}_2$  und  $\operatorname{CdBr}_2$  . K Br.
    - η Gleichgewichtsgebiet von Cd Br<sub>2</sub>. 4K Br und Schmelzen α.
    - 9 Gleichgewichtsgebiet von KBr und Schmelzen α.
    - , Existenzgebiet von eutektischen Gemengen aus  $\operatorname{Cd} \operatorname{Br}_2$ . K $\operatorname{Br}$  und  $\operatorname{Cd} \operatorname{Br}_2$ . 4 K $\operatorname{Br}$ .
    - z Existenzgebiet von Gemengen aus Cd Br2.4KBr und KBr.

### Doppelsalz CdBr<sub>2</sub>. KBr,

welches sich aus gleichen molekularen Mengen der beiden Komponenten zusammensetzt. Seine Schmelztemperatur  $354^{\circ}$  wird durch den Punkt D (Fig. 1) dargestellt, von dem aus die Kurve pDq nach beiden Seiten zu tieferen Temperaturen abfällt.

Hieraus folgt, daß dieses Doppelsalz ohne Zersetzung schmilzt. Das Eutektikum, welches aus Cadmiumbromid und Doppelsalz D besteht, wird durch den Punkt p bei der Konzentration 55 Mol.-% Cd Br $_2$  + 45 Mol.-% KBr und der Temperatur 3450 wiedergegeben. Auch weisen die eutektischen Haltezeiten, die sich in allen untersuchten Schmelzen auf 30 g Substanz beziehen, eine größte Dauer für die Mischung p' auf. Die Kristallisationskurve u q des zweiten auftretenden Doppelsalzes F wird von D q in q bei der Konzentration 37 Mol.-% Cd Br $_2$  + 63 Mol.-% KBr und der Temperatur 3050 getroffen.

Aus dem Schmelzfluß bildet sich das Doppelsalz CdBr<sub>2</sub>. KBr in feinen Nadeln, die gerade auslöschen. In Dünnschliffen zeigt es ein zweiach siges Interferen zbild mit negativem Charakter der Doppelbrechung. Es besitzt danach ebenso wie das entsprechende Doppelchlorid CdCl<sub>2</sub>. KClrhombische Kristallform.

Als erstes Ausscheidungsprodukt ist das Doppelsalz CdBr<sub>2</sub>. KBr in Dünnschliffen zu beobachten, die von den Schmelzen p' bis q' hergestellt wurden. Im Dünnschliff der Schmelze 7 (52 Mol.-% Cd Br<sub>2</sub> + 48 Mol.-% K Br) lagert sich um die Doppelsalzkristalle eine eutektische Grundmasse, die sich aus Cadmiumbromid und CdBr2. KBr zusammensetzt. In dem Dünnschliff der Schmelze 10 (40 Mol.-%) Cd Br<sub>2</sub> + 60 Mol.-% KBr) hebt sich die Verbindung D durch ihre ausgeprägte Kristallform vom Eutektikum ab, das aus CdB2. KBr und CdBr2. 4 KBr besteht. In der Schmelze 6 (60 Mol.-% Cd Br<sub>2</sub> + 40 Mol.-% K Br) finden sich dünne, sechsseitig begrenzte Blättchen, die sich u. d. M. als hexagonales Cadmiumbromid erweisen, da sie im konvergent polarisierten Lichte ein einachsiges Interferenzbild mit negativem Charakter der Doppelbrechung erkennen lassen. Kristalle des Doppelsalzes D sind im Dünnschliff dieser Schmelze nicht mehr zu beobachten, weil es sich erst mit Cadmiumbromid zusammen im eutektischen Punkt p ausgeschieden hat.

Aus Fig. 1 ergibt sich ferner, daß die beiden Komponenten noch ein zweites

<sup>&</sup>lt;sup>1</sup> Aus wässeriger Lösung scheidet sich das Hydrat Cd Br<sub>2</sub>. K Br. H<sub>2</sub>O aus, das von E. Rimbach (Ber. d. deutsch. chem. Ges. 38. (2.) 1553. 1905) dargestellt ist und nach Messungen von Fock rhombisch kristallisiert.

## Doppelsalz Cd Br<sub>2</sub>. 4 KBr

bilden. Denn die Punkte der Geraden uL deuten an, daß sich das längs der Kurve Bu primär kristallisierte Kaliumbromid bei der Temperatur 324° mit der flüssigen Schmelze u unter Bildung einer neuen Kristallart umsetzt. Die Dauer der Umsetzung ist am größten für die Schmelze F' (20 Mol.-% Cd Br<sub>2</sub> + 80 Mol.-% KBr). Hieraus folgt, daß sich das neu gebildete Doppelsalz aus einem Molekül Cadmiumbromid und vier Molekülen Kaliumbromid zusammensetzt. Ohne Umsetzung kristallisiert es aus dem Schmelzfluß längs der Kurve uq. Aus wässeriger Lösung ist es nicht zu erhalten, worauf schon E. Rimbach¹ hinweist.

Im Dünnschliff der Schmelze 11 (35 Mol.-% CdBr $_2$  + 65 Mol.-% KBr) erkennt man Kristalle dieses Doppelsalzes, umgeben von eutektischer Grundmasse. Sie sind schwach doppeltbrechen d, positiven Charakters und wahrscheinlich isomorph mit der entsprechenden Verbindung CdCl $_2$ . 4 KCl, die ditrigonal-skalenoedrische Kristallform besitzt.

Bei den Abkühlungsversuchen der Schmelzen von u' bis B' konnte trotz kräftigen Durchrührens nicht erreicht werden, daß die Umsetzung von Kaliumbromid zu Doppelsalz vollständig vor sich ging. So zeigt Fig. 1, daß die Dauer der eutektischen Haltezeiten von u' nach F' nicht in dem Maße abnimmt, daß sie für die Schmelze F' gleich Null wird. Sie besitzt hier den beträchtlichen Wert von 210 Sekunden, der für die Schmelze 19 (5 Mol.-%  $\operatorname{CdBr}_2 + 95$  Mol.-% KBr) noch 50 Sekunden beträgt. Die Dünnschliffe dieser Schmelzen lassen den Grund dieses anomalen Verhaltens erkennen. Das spezifische schwerere Cadmiumbromid sammelt sich im unteren Teile der Schmelze an und kann nicht mit der gesamten Menge des oben befindlichen Kaliumbromids zur Bildung von Doppelsalz kommen. Weiter zeigen die Dünnschliffe deutlich, daß außer dieser Saigerung eine Umhüllung der primär gebildeten Kaliumbromidkristalle von neu gebildetem Doppelsalz diese von der flüssigen Schmelze abschließt, und so die Herstellung des Gleichgewichts verhindert.

<sup>&</sup>lt;sup>1</sup> E. Rimbach, a. a. O.

Das Schliffbild der Schmelze F' zeigt fiederförmig ausgebildete Kristalle von Kaliumbromid, die von einer Zone der schwach doppeltbrechenden Verbindung Fumgeben sind. Außerdem ist eutektische Grundmasse zu beobachten.

In bezug auf die aus dem Schmelzfluß sich bildenden Verbindungen stimmen die Systeme Cadmiumchlorid—Kaliumchlorid—Kaliumchlorid—Kaliumchlorid—Kaliumchlorid—berein, denn in beiden ergab die thermische und mikroskopische Untersuchung die Existenz von Doppelsalzen im molekularen Verhältnis 1:1 und 1:4, von denen die ersteren einen kongruenten, die letzteren einen inkongruenten Schmelzpunkt besitzen. Im System Cadmiumjodid—Kaliumjodid tritt hingegen ein Doppelsalz CdJ2.2KJ auf, das auch beim Schmelzen in eine flüssige Phase und eine neue Kristallart zerfällt.

# 2. Das binäre System Cadmiumbromid—Natriumbromid.

Die homogenen flüssigen Mischungen aus Cadmiumbromid und Natriumbromid werden im Konzentrations-Temperatur-Diagramm Fig. 2 durch das Gebiet α dargestellt.

| Tabelle 2. | Konzentrations-Temperatur-Diagramm | der  | Mischungen |
|------------|------------------------------------|------|------------|
|            | aus Cadmiumbromid und Natriumbrom  | aid. |            |

| No. | Gehalt an NaBr  Molekül- Gewichts- prozente prozente |       | Beginn<br>der<br>Kristalli-<br>sation | Eutektische<br>Kristalli-<br>sation | Dauer<br>der<br>eutektischen<br>Kristalli-<br>sation |  |
|-----|------------------------------------------------------|-------|---------------------------------------|-------------------------------------|------------------------------------------------------|--|
| . 1 | 0                                                    | 0     | 5670                                  |                                     | _                                                    |  |
| 21  | 10                                                   | 4,03  | 543                                   | 3670                                | 90(sec)                                              |  |
| 22  | 20                                                   | 8,64  | 520                                   | 367                                 | 180                                                  |  |
| 23  | 30                                                   | 13,94 | 490                                   | 367                                 | 250                                                  |  |
| 24  | 40                                                   | 20,13 | 448                                   | 367                                 | 340                                                  |  |
| 25  | 50                                                   | 27,44 | 387                                   | 367                                 | 460                                                  |  |
| 26  | 60                                                   | 36,19 | 449                                   | 368                                 | 430                                                  |  |
| 27  | 70                                                   | 46,87 | 552                                   | 367                                 | 330                                                  |  |
| 28  | 80                                                   | 60,19 | 633                                   | 368                                 | 220                                                  |  |
| 29  | 90 77,29                                             |       | 694                                   | 368                                 | 150                                                  |  |
| 30  | 100                                                  | 100   | 746                                   | -                                   |                                                      |  |

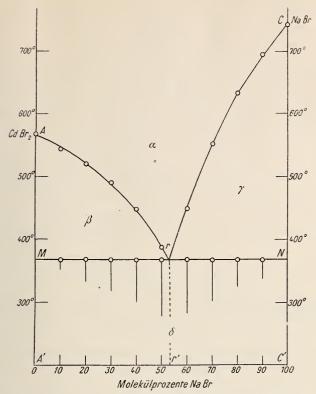



Fig. 2. Konzentrations-Temperatur-Diagramm der Mischungen aus Cadmiumbromid und Natriumbromid.

- a Existenzgebiet der homogenen flüssigen Mischungen.
- β Gleichgewichtsgebiet von Cd Br<sub>2</sub> und Schmelzen α.
- γ Gleichgewichtsgebiet von Na Br und Schmelzen α.
- $\delta$ Existenzgebiet von eutektischen Gemengen aus  $\operatorname{Cd}\operatorname{Br}_2$  und Na $\operatorname{Br}_*$

Die Kristallisationskurve ArC besteht nur aus den beiden Ästen Ar und Cr, die sich im eutektischen Punkter bei der Konzentration 47 Mol.-% Cd Br $_2+53$  Mol.-% Na Br und der Temperatur 368° schneiden. Als kristallisierte Phasen treten demnach nur die beiden Komponenten auf. Mischfähigkeit im festen Zustande zeigt sich nicht, da die eutektische Gerade MN bis an die Temperaturachsen AA' und CC'heranreicht.

Mit diesem Ergebnis stimmt die mikroskopische Untersuchung von Dünnschliffen überein. In den Schmelzen von A' bis r' liegen primär kristallisierte hexagonale Blättchen von Cadmiumbromid in doppeltbrechender eutektischer Grundmasse deren Struktur äußerst feinkörnig ist.

Das erste Ausscheidungsprodukt der Schmelzen von r' bis C' bildet einfachbrechendes Natriumbromid, das sich in regulären Wachstumsformen in der eutektischen Grundmasse vorfindet.

Beim Vergleich der binären Systeme der Chloride, Bromide und Jodide, des Cadmiums und Natriums kommt eine Übereinstimmung zwischen den Systemen Cadmiumbromid—Natriumbromid und Cadmiumjodid—Natriumjodid zum Ausdruck. In beiden schneiden sich die Kristallisationskurven der Komponenten im eutektischen Punkte. Das System Cadmiumchlorid—Natriumchlorid weist die inkongruent schmelzende Verbindung CdCl<sub>2</sub>. 2NaCl auf.

# 3. Das ternäre System Cadmiumbromid—Kaliumbromid—Natriumbromid.

Die ternären Mischungen aus Cadmiumbromid, Kaliumbromid, Natriumbromid lassen sich in einem gleich seitigen Dreieck (Fig. 3) darstellen, dessen Ecken A', B', C' die drei Komponenten repräsentieren. Die Seite A' B' gibt das binäre System Cadmiumbromid—Kaliumbromid mit den beiden Doppelsalzen D und F in der Projektion wieder. Auf der Seite A' C' findet sich das System Cadmiumbromid—Natriumbromid mit dem Eutektikum r. Im dritten binären System, das auf der Seite B' C' liegt, bildet sich eine kontinuierliche Reihe von Mischkristallen aus Kaliumbromid und Natriumbromid.

Denkt man sich in den Ecken A', B', C' senkrecht zur Ebene des Dreiecks die Temperaturachsen errichtet, so entsteht das Konzentrations-Temperatur-Diagramm des ternären Systems. Im folgenden soll vermittelst von Schnitten durch dieses Raumdiagramm seine Projektion auf die Ebene der Fig. 3 konstruiert werden.

Die Untersuchung der Schmelzen des

#### Schnittes I,

die sich aus den beiden Komponenten Doppelsalz Cd Br<sub>2</sub>. K Br und Natriumbromid zusammensetzen, ist in Tabelle 3 zusammengestellt. Das danach konstruierte Konzentrations-

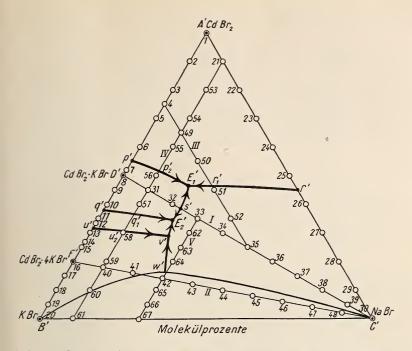



Fig. 3. Konzentrationsdreieck des ternären Systems Cadmiumbromid— Kaliumbromid—Natriumbromid.

Tabelle 3. Konzentrations-Temperatur-Diagramm des Schnittes I.

| No. | Cd Br. R Br. Na |    | Cd Br <sub>2</sub> | Gewichtsprozente  K Br Na Br |       |       | Eutektische<br>Kristalli-<br>sation | Eutektische<br>Kristalli-<br>sation<br>Dauer der<br>eutektischen<br>Kristalli-<br>sation |         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------|------------------------------|-------|-------|-------------------------------------|------------------------------------------------------------------------------------------|---------|
| 8   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 | _                  | 69,58                        | 30,42 |       | 3540                                |                                                                                          | _       |
| 31  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45 | 10                 | 65,74                        | 28,74 | 5,52  | 339                                 | 3220                                                                                     | 90(sec) |
| 32  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40 | 20                 | 61,49                        | 26,89 | 11,62 | 325                                 | 321                                                                                      | 230     |
| 33  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35 | 30                 | 56,78                        | 24,82 | 18,40 | 371                                 | 321                                                                                      | 180     |
| 34  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 | 40                 | 51,51                        | 22,52 | 25,97 | 443                                 | 321                                                                                      | 160     |
| 35  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 | 50                 | 45,60                        | 19,93 | 34,47 | 524                                 | 320                                                                                      | 150     |
| 36  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 | 60                 | 38,89                        | 17,00 | 44,11 | 584                                 | 321                                                                                      | 130     |
| 37  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 | 70                 | 31,23                        | 13,66 | 55,11 | 640                                 | 321                                                                                      | 110     |
| 38  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 | 80                 | 22,41                        | 9,80  | 67,79 | 680                                 | 319                                                                                      | 100     |
| 39  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | 90                 | 12,13                        | 5,31  | 82,56 | 714                                 | 315                                                                                      | 80      |
| 30  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -  | 100                | _                            | _     | 100   | 746                                 | _                                                                                        |         |

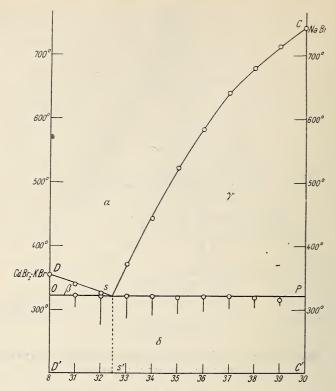



Fig. 4. Konzentrations-Temperatur-Diagramm der Mischungen aus Doppelsalz Cd  $\mathrm{Br_2}$ , KBr und Natriumbromid. Schnitt I.

- a Existenzgebiet von homogenen flüssigen Mischungen.
- $\beta$  Gleichgewichtsgebiet von Cd Br<sub>2</sub> . K Br und Schmelzen  $\alpha$ .
- $\gamma$  Gleichgewichtsgebiet von Na Br und Schmelzen  $\alpha$ .
- $\delta$  Existenz<br/>gebiet von eutektischen Gemengen aus  $\operatorname{Cd}\operatorname{Br}_2$ . K<br/> Br und Na $\operatorname{Br}$

Temperatur-Diagramm Fig. 4 weist nur zwei Äste der Kristallisationskurve DsC auf, die sich im eutektischen Punktes treffen. Mischfähigkeit im festen Zustande ist nicht vorhanden, weil die eutektische Gerade OP sich bis an die Temperaturachsen DD' und CC' erstreckt. Für Fig. 3 ergibt sich aus Fig. 4 der Punkt s'.

In den Dünnschliffen dieser Schmelzen waren auch nur zwei Kristallarten zu beobachten. Die Schmelzen D' bis s' lassen das Doppelsalz D im Eutektikum erkennen, während reguläres Natriumbromid als erstes Ausscheidungsprodukt in den Schmelzen s' bis C' zu beobachten ist, umgeben vom gleichen Eutektikum.

Da der Schnitt I den einfachsten Fall eines binären Systems ergeben hat, so folgt daraus, daß er vom ternären System Cd Br $_2$ —KBr—Na Br ein Teilsystem abtrennt, das sich aus den drei Komponenten Cd Br $_2$ , Cd Br $_2$ . KBr und Na Br zusammensetzt. Das noch übrig bleibende System Cd Br $_2$ . KBr—Na Br—KBr enthält die inkongruent schmelzen de Verbin dung Cd Br $_2$ . 4 KBr.

Der

#### Schnitt II

wurde von dieser Verbindung aus zum Natriumbromid gelegt. Die aus den Abkühlungskurven der Schmelzen der Geraden II gewonnenen Temperaturen sind in Tabelle 4 zusammengestellt und daraus ist das Diagramm Fig. 5 gewonnen.

Tabelle 4. Konzentrations-Temperatur-Diagramm des Schnittes II.

| No. | 1  | olek<br>ozei |     | Gewichtspr<br>Cq Br<br>K Br |       | zente<br>Na Br | Erste<br>Kristallisation | Zweite<br>Kristallisation | Umsetzung zu<br>Cd Br <sub>2</sub> . 4K Br | Dauer<br>der Umsetzung | Ternäre eutekt.<br>Kristallisation | Dauer der<br>ternären eutekt.<br>Kristallisation |
|-----|----|--------------|-----|-----------------------------|-------|----------------|--------------------------|---------------------------|--------------------------------------------|------------------------|------------------------------------|--------------------------------------------------|
| 16  | 20 | 80           |     | 36,38                       | 63,62 |                | 6050                     |                           | 325°                                       | 120(sec)               | <del></del>                        | -                                                |
| 40  | 18 | 72           | 10  | 33,80                       | 59,10 | 7,10           | 594                      | !                         | 320                                        | 110                    | 2880                               | 100(sec)                                         |
| 41  | 16 | 64           | 20  | 31,04                       | 54,29 | 14,67          | 574                      | $356^{\circ}$             | 319                                        | 100                    | 287                                | 90                                               |
| 42  | 14 | 56           | 30  | 28,10                       | 49,14 | 22,76          | 571                      | 465                       | 318                                        | 100                    | 288                                | 90                                               |
| 43  | 12 | 48           | 40  | 24,95                       | 43,62 | 31,43          | 572                      | 453                       | 315                                        | 90                     | 288                                | . ,80                                            |
| 44  | 10 | 40           | 50  | 21,55                       | 37,70 | 40,75          | 598                      | 449                       | 316                                        | 90                     | 288                                | 70                                               |
| 45  | 8  | 32           | 60  | 17,91                       | 31,32 | 50,77          | 620                      |                           | 317                                        | 70                     | 285                                | 60                                               |
| 46  | 6  | 24           | 70  | 13,97                       | 24,42 | 61,61          | 654                      |                           | 314                                        | 60                     | 284                                | 30                                               |
| 47  | 4  | 16           | 80  | 9,70                        | 16,96 | 73,34          | 680                      |                           | 298                                        | 60                     |                                    |                                                  |
| .48 | 2  | . 8          | 90  | 5,06                        | 8,85  | 86,09          | 712                      |                           | 293                                        | 50                     | · — , ·                            | <u></u>                                          |
| .30 | -  | -            | 100 |                             |       | 100            | 746                      |                           |                                            |                        | · — ·                              | er <del>an</del> ( , )                           |
|     |    | ٠,           |     |                             |       |                |                          |                           |                                            |                        |                                    |                                                  |

Aus dem kontinuierlichen Verlauf der primären Kristallisationskurve B<sub>1</sub>C folgt, daß das erste Ausscheidungsprodukt aus Mischkristallen besteht und daß die Mischfähigkeit von Kaliumbromid und Natriumbromid sich von der Seite BC aus noch über den Schnitt II hinaus in das Raumdiagramm des ternären Systems hinein erstreckt,

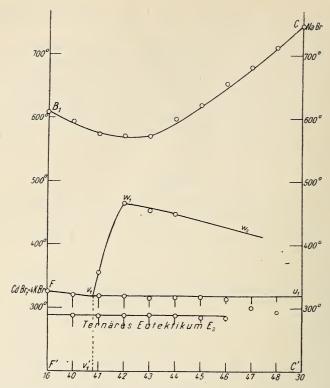



Fig. 5. Konzentrations-Temperatur-Diagramm der Mischungen aus Doppelsalz Cd  ${\rm Br_o}$ .  $4\,{\rm K}\,{\rm Br}$  und Natriumbromid.

Da in Fig. 5 eine Kurve der primären Kristallisation des Doppelsalzes  $\operatorname{CdBr_2}$ .  $\operatorname{4KBr}$  nicht vorhanden ist, so ist zu schließen, daß für das Teilsystem  $\operatorname{CdBr_2}$ .  $\operatorname{KBr-NaBr-KBr}$  der in meiner Dissertation unter B,  $2^1$  angeführte Fall

¹ H. Brand, Diss. Berlin 1911. Dies. Jahrb. Beil.-Bd. XXXII. p. 653. In bezug auf Fall B, 1 (p. 644) macht H. E. Boeke (Centralbl. f. Min. etc. 1911. p. 266) den Einwand, daß der Punkt M, von dem ab die Umsetzungslinie U M in die Grenzkurve M E₂ übergeht, willkürlich angenommen sei. M ist von mir (p. 646) durch den gegenseitigen Verlauf der Kristallisationsflächen von C und D im Raumdiagramm vollständig bestimmt, so daß eine Definition seiner Projektion M' in der Ebene nicht mehr notwendig war. Auch weist die Kurve U E₂ in M sowie ihre Projektion U' E₂' in M', wie die Fig. 5—7 zeigen, keinen Knick auf, und der Punkt M' liegt derart, daß er den Berührungspunkt der von D' an die Kurve U' E₂' gezogenen Tangente bildet.

eines ternären Systems mit inkongruent schmelzender binärer Verbindung vorliegt. Danach bleibt die Kristallisationsfläche der Verbindung F auf das Teildiagramm DFC beschränkt, in dem dann außer dem ternären eutektischen Punkte  $\mathbf{E}_2$  auch der Schnittpunkt der Kristallisationsflächen des Systems FCB liegt.

In Fig. 5 wird die gleichzeitige Bildung zweier Mischkristallarten durch die Kurve  $v_1w_1w_2$  angedeutet, die aus den Abkühlungskurven nur bis zur Schmelze 44 bestimmt werden konnte. Ihren höchsten Punkt erreicht sie bei der Schmelze 42, die der Grenzkurve w'v' (vergl. Fig. 3) am nächsten liegt. Die Temperaturen, bei denen die Umsetzung von Kaliumbromid zu Doppelsalz Cd Br<sub>2</sub>. 4 K Br stattfindet, bestimmen die Kurve Fu<sub>1</sub>, die von v<sub>1</sub> bis u<sub>1</sub> horizontal verläuft, da die Kristallisationsbahnen der Schmelzen v<sub>1</sub>' bis u<sub>1</sub>' immer den Punkt v' (Fig. 3) der Umsetzungslinie u'v' treffen.

Durch die bis zur Schmelze 46 beobachtete eutektische Kristallisation kommt auch hier zum Ausdruck, daß sich bei der Umsetzung das Gleichgewicht nicht vollständig herstellt. So konnte im Dünnschliff der Schmelze 43 das Eutektikum an seiner hohen Doppelbrechung erkannt werden. Das Doppelsalz CdBr<sub>2</sub>. 4KBr bildet die Ränder von einfachbrechen den Komplexen, die als Mischkristalle angesehen werden müssen, aus denen das Kaliumbromid zum Teil herausgelöst ist.

Um für das Teilsystem  $\operatorname{Cd}\operatorname{Br_2}$ — $\operatorname{Cd}\operatorname{Br_2}$ . K  $\operatorname{\dot{B}r}$ —Na Br die Lage des ternären eutektischen Punktes  $\operatorname{E}_1$  zu bestimmen, wurden die Kristallisationsvorgänge im

#### Schnitt III

untersucht und das Ergebnis in Tabelle 5 und Fig. 6 vereinigt..

Es treten zwei Kurven  $A_1r_1$  und  $C_1r_1$  der primären Kristallisation auf, so daß vom Schnitt III eine Grenzkurve getroffen ist. Längs  $A_1r_1$  bildet sich Cadmiumbromid und längs  $C_1r_1$  Natriumbromid. Die Kristallisation je zweier Stoffe findet auf den Kurven  $p_1e_1$ ,  $e_1r_1e_2$  und  $s_1e_2$  statt, und zwar auf  $p_1e_1$  Cadmiumbromid und Doppelsalz Cd Br<sub>2</sub>. KBr, auf  $e_1r_1e_2$  Cadmiumbromid und Natriumbromid, auf  $s_1e_2$  Natriumbromid und Doppelsalz Cd Br<sub>2</sub>. KBr. Die ternäre eutektische Kristallisation erfolgt bei 300°.

Tabelle 5. Konzentrations-Temperatur-Diagramm des Schnittes III.

| No.                       | Cd Br <sub>2</sub><br>R Br   K Br   Na Br |                            | Gewichtsprozente  Na Br Na Br |                                           | Erste<br>Kristallisation                  | Zweite<br>Kristallisation       | Ternäre eutekt.<br>Kristallisation | Dauer der<br>ternären eutekt.<br>Kristallisation |   |                               |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------|------------------------------------|--------------------------------------------------|---|-------------------------------|
| 4<br>49<br>50<br>51<br>52 | 75<br>65<br>55<br>45<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25<br>25<br>25<br>25<br>25 | -<br>10<br>20<br>30<br>40     | 87,28<br>81,56<br>74,84<br>66,89<br>57,33 | 12,72<br>13,71<br>14,87<br>16,25<br>17,90 | 4,73<br>10,29<br>16,86<br>24,77 | 488°<br>453<br>387<br>344<br>447   | 345°<br>320<br>316<br>320<br>312                 |   | 180(sec)<br>200<br>180<br>150 |
| 35                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                         | 50                            | 45,60                                     | 19,93                                     | 34,47                           | 524                                | 320                                              | - |                               |

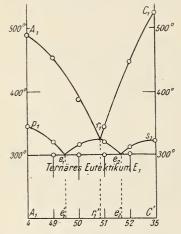



Fig. 6. Konzentrations-Temperatur-Diagramm des Schnittes III.

Für Fig. 3 liefert das Diagramm des Schnittes III den Punkt  $r_1$ , durch den die Grenzkurve  $r'E_1'$  geht. Die Punkte  $e_1$  und  $e_2$  geben, in Fig. 3 eingetragen und durch Gerade mit den entsprechenden Ecken verbunden, die Lage des ternären eutektischen Punktes bei 46 Mol.-% Cd Br $_2$  + 22 Mol.-% K Br + 32 Mol.-% Na Br an. Seine Temperatur liegt bei 300°.

Schnitt IV,

der parallel der Seite AB durch das Raumdiagramm geht

(Tab. 6, Fig. 7), gehört bis zur Schmelze 31 dem Teilsystem  $\operatorname{Cd} \operatorname{Br}_2$ — $\operatorname{Cd} \operatorname{Br}_2$ .  $\operatorname{K} \operatorname{Br}$ — $\operatorname{Na} \operatorname{Br}$  an. Durch den Schnittpunkt  $p_2$  der primären Kristallisationskurven  $\operatorname{A}_2 p_2$  und  $\operatorname{D}_1 p_2$ , längs denen Cadmiumbromid bezw. Doppelsalz  $\operatorname{Cd} \operatorname{Br}_2$ . K Br zur Ausscheidung kommt, ist für Fig. 3 der Punkt  $p_2$  der Grenzkurve  $p'E_1$  gegeben. Die gleichzeitige Bildung von Cadmiumbromid und Natriumbromid findet bei Temperaturen der Kurve  $p_3 e_3$  statt. Längs  $e_3 p_2 e_4$  kristallisieren Cadmiumbromid und Doppelsalz D und längs  $s_2 e_4$  Doppelsalz D und

Tabelle 6. Konzentrations-Temperatur-Diagramm des Schnittes IV.

| _         |    |          |    |       |                                 |          |                          | -                         |                                    |                                                  |                                            |                        |
|-----------|----|----------|----|-------|---------------------------------|----------|--------------------------|---------------------------|------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------|
| No.       |    | prozente |    |       | Gewichtsprozente  K Br.  Na Br. |          | Erste<br>Kristallisation | Zweite<br>Kristallisation | Ternäre eutekt.<br>Kristallisation | Dauer der<br>ternären eutekt.<br>Kristallisation | Umsetzung zu<br>Cd Br <sub>2</sub> . 4K Br | Dauer<br>der Umsetzung |
|           |    |          |    | Ī     |                                 |          | 1                        |                           |                                    |                                                  |                                            |                        |
| 21        | 90 | -        | 10 | 95,97 |                                 | 4,03     | 5430                     | 367⁰                      |                                    |                                                  | _                                          |                        |
| 53        | 80 | 10       | 10 | 90,75 | 4,96                            | 4,29     | 532                      | 322                       | 2990                               | 80(sec)                                          |                                            | -                      |
| 54        | 70 | 20       | 10 | 84,82 | 10,60                           | 4,58     | 481                      | 314                       | 301                                | 150                                              |                                            |                        |
| 49        | 65 | 25       | 10 | 81,56 | 13,71                           | 4,73     | 453                      | 320                       | 300                                | 180                                              |                                            |                        |
| 55        | 60 | 30       | 10 | 78,03 | 17,05                           | 4,92     | 411                      | 323                       | 302                                | 110                                              |                                            |                        |
| 56        | 50 | 40       | 10 | 70,16 | 24,54                           | 5,30     | 330                      | 314                       | 299                                | 70                                               |                                            |                        |
| 31        | 45 | 45       | 10 | 65,74 | 28,74                           | 5,52     | 339                      | 322                       | "                                  |                                                  |                                            | _                      |
| 57        | 40 | 50       | 10 | 60,94 | 33,30                           | 5,76     | 314                      | 296                       | 288                                | 100                                              | _                                          |                        |
| <b>58</b> | 30 | 60       | 10 | 49.99 | 43,71                           | 6,30     | 330                      | _                         | 287                                | 240                                              | 3180                                       | 90(sec)                |
| 59        | 20 | 70       | 10 | 36,78 | 56,27                           | 6,95     | 538                      |                           | 288                                | 180                                              | 319                                        | 100                    |
| 40        | 18 | 72       | 10 | 33,80 | 59,10                           | 7,10     | 594                      | _                         | 288                                | 100                                              | 320                                        | 110                    |
| 60        | 10 | 80       | 10 | 20,51 | 71,73                           | 7,76     | 656                      | 446                       | 289                                | 90                                               | 318                                        | 80                     |
| 61        | _  | 90       | 10 | _     | 91,23                           | 8,77     | 708                      |                           | _                                  | <u>-</u>                                         |                                            |                        |
|           |    | -        |    |       | 1                               | <i>'</i> |                          |                           |                                    |                                                  |                                            |                        |

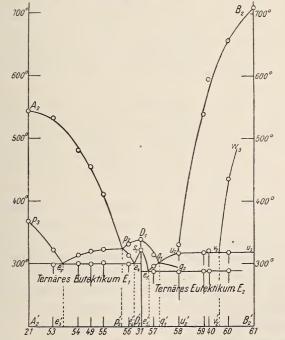



Fig. 7. Konzentrations-Temperatur-Diagramm des Schnittes IV.

Natriumbromid. Die Schnittpunkte e<sub>3</sub> und e<sub>4</sub> dieser drei Kurven bestimmen in Fig. 3 den ternären eutektischen Punkt E<sub>1</sub>' bei derselben Konzentration, wie sie schon Schnitt III ergeben hat.

Der Teil der Fig. 7 zwischen den Vertikalen  $D_1D_1'$  und  $B_2B_2'$  durchschneidet das Raum diagramm des Systems Cd  $Br_2$ . KBr—Na Br—KBr.

Getroffen wird in D<sub>1</sub> q<sub>1</sub> die Kristallisationsfläche des Doppelsalzes D, in u2 q1 die des Doppelsalzes F und in B2 u2 die Fläche, welche die Kristallisation von Kaliumbromid- oder von Grenzmischkristallen angibt, die sich in ihrer Zusammensetzung nur wenig vom reinen Kaliumbromid unterscheiden. Die Bildung von Doppelsalz D und Natriumbromid findet längs der Kurve s<sub>2</sub> e<sub>5</sub> statt, während längs e<sub>5</sub> q<sub>1</sub> q<sub>2</sub> die Doppelsalze D und F gleichzeitig kristallisieren. Bei Temperaturen, die auf u. u. liegen, setzt sich Kaliumbromid zu Doppelsalz F um. Die Abkühlungskurve der Schmelze 60 ließ vor der Umsetzung eine gleichzeitige Kristallisation zweier Stoffe bei 4460 erkennen. Diese Temperatur bestimmt in Fig. 7 die Kurve v. w., längs der sich zwei Arten von Grenzmischkristallen ausscheiden. Sie kann nicht bis an die Seite B2 B2' heranreichen, weil im binären Systeme Kaliumbromid-Natriumbromid eine kontinuierliche Reihe von Mischkristallen dieser beiden Stoffe auftritt. die sich im ternären System bis zu einer bestimmten Grenze fortsetzen wird.

Eutektische Kristallisation zeigt sich außer in den Schmelzen 57—59 auch noch in den Schmelzen 40 und 60, die dem System FCB angehören. Hieraus ist wieder zu entnehmen, daß bei der Umsetzung das Gleichgewicht zwischen Kaliumbromid und flüssiger Schmelze sich nicht vollständig herstellt.

Die Schnittpunkte  $q_1$  und  $u_2$  der primären Kristallisationskurven geben in Fig. 3 auf der Geraden IV die Punkte  $q_1'$  und  $u_2'$ , durch welche die von q' und u' in das ternäre System verlaufenden Kurven q'  $E_2'$  und u' v' gehen. Der Punkt  $e_5$  liefert, auf die Gerade IV der Fig. 3 übertragen und mit D' geradlinig verbunden, einen geometrischen Ort für  $E_2'$ . Ebenso ist durch den Punkt  $v_2'$  ein Ort für v' gegeben, wenn er durch eine Gerade mit B' verbunden wird.

Zur näheren Bestimmung von E2', v' und w' wurde der

Tabelle 7. Konzentrations-Temperatur-Diagramm des Schnittes V.

| No. | 11 | Br B |    |       | Gewichtsprozente  K Br Na Br Na Br |       | Erste<br>Kristallisation | Zweite<br>Kristallisation | Ternäre eutekt.<br>Kristallisation | Dauer der<br>ternären eutekt.<br>Kristallisation | Umsetzung zu<br>Cd Br <sub>2</sub> . 4 K Br | Dauer<br>der Umsetzung |
|-----|----|------------------------------------------|----|-------|------------------------------------|-------|--------------------------|---------------------------|------------------------------------|--------------------------------------------------|---------------------------------------------|------------------------|
| 33  | 35 | 35                                       | 30 | 56,78 | 24,82                              | 18,40 | 3710                     | 3210                      | _                                  |                                                  |                                             |                        |
| 62  | 30 | 40                                       | 30 | 50,99 | 29,73                              | 19,28 | 434                      | 298                       | 289°                               | 120(sec)                                         | _                                           | _                      |
| 63  | 25 | 45                                       | 30 | 44,63 | 35,12                              | 20,25 | 480                      | 370                       | 289                                | 110                                              | 3190                                        | 80(sec)                |
| 64  | 20 | 50                                       | 30 | 37,59 | 41,09                              | 21,32 | 522                      | 454                       | 290                                | 100                                              | 319                                         | 110                    |
| 42  | 14 | 56                                       | 30 | 28,10 | 49,14                              | 22,76 | 571                      | 465                       | 288                                | 90                                               | 318                                         | 100                    |
| 65  | 10 | 60                                       | 30 | 21,02 | 55,14                              | 23,84 | 607                      | _                         | _                                  | _                                                | 319                                         | 60                     |
| 66  | 5  | 65                                       | 30 | 11,17 | 63,49                              | 25,34 | 629                      |                           |                                    |                                                  | 314                                         | 50                     |
| 67  | -  | 70                                       | 30 |       | 72,96                              | 27,04 | 647                      | _                         |                                    |                                                  |                                             | _                      |
| 1   |    |                                          | 1  |       |                                    | l     |                          |                           |                                    |                                                  |                                             |                        |

#### Schnitt V

parallel zum Schnitt IV in der Entfernung 30 Mol.-% Na Br durch das Raumdiagramm gelegt (Tab. 7, Fig. 8).

Die Kurve B<sub>3</sub>C<sub>2</sub> gibt das Gleichgewicht zwischen einer Kristallart und der flüssigen Schmelze an. Diese besteht von B<sub>3</sub> bis zur Schmelze 42 aus Mischkristallen. Von Schmelze 42 ab entstehen Grenzmischkristalle, die sich in ihrer Zusammensetzung dem reinen Natriumbromid nähern, je mehr die Konzentration der Schmelze an Cadmiumbromid zunimmt. Neben diesen Grenzmischkristallen scheiden sich gleichzeitig kaliumbromidreiche längs der Kurve va W4 aus. Längs va e6 kristallisieren Natriumbromid und Doppelsalz F und längs sae Natriumbromid

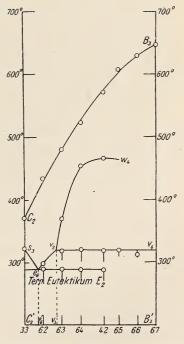



Fig. 8. Konzentrations-Temperatur-Diagramm des Schnittes V.

und Doppelsalz D. Die Umsetzung von Kaliumbromid zu Doppelsalz F erfolgt 'bei Temperaturen der Geraden  $v_3 v_4$ .

Ternäre eutektische Kristallisation wurde bis zur Schmelze 42 beobachtet, während in den Schmelzen 65 und 66 des Systems FCB der Kristallisationsvorgang mit der Umsetzung beendet ist.

Aus Fig. 8 lassen sich für das Konzentrationsdreieck Fig. 3 die nach Fig. 7 noch nicht genügend bestimmten Punkte  $\rm E_2'$  und v' festlegen unter der Voraussetzung, daß bis zur Schmelze 63 die Kristallisationsbahnen geradlinig von C' ausstrahlen.

Es wurde der Punkt  $\rm E_2'$  gefunden bei der Konzentration 34 Mol.-% Cd  $\rm Br_2+43$  Mol.-% K Br + 23 Mol.-% Na Br. Die Temperatur der ternären eutektischen Kristallisation in  $\rm E_2$  liegt bei 288°.

Die Projektion v' des Schnittpunktes v der Kristallisationsflächen des Systems FCB ergab sich bei der Konzentration 29 Mol.-% Cd Br $_2$  + 47 Mol.-% KBr + 24 Mol.-% NaBr, und die Temperatur von v bei 319°.

Der Ursprung w der Grenzkurve wv kann, wie aus den Schnitten II und V zu entnehmen ist, nicht weit entfernt von der Schmelze 42 liegen. Er wurde bei der Konzentration 61 Mol.-% Cd Br $_2$  + 55 Mol.-% K Br + 29 Mol.-% Na Br und der Temperatur 466° festgelegt.

Verbindet man in Fig. 3 den Punkt w' durch eine Kurve mit B' und C', so wird ein Gebiet B' w' C' B' abgegrenzt, das die Konzentration von Schmelzen angibt, aus denen primär Mischkristalle in allen Mischungsverhältnissen sich bilden können.

Auf einen Zerfall der Mischkristalle, der von N. S. Kurnakow und S. F. Zemczuznyj (vergl. p. 9) im binären System Kaliumbromid—Natriumbromid nicht beobachtet wurde, konnte auch aus den Abkühlungskurven in den ternären Schmelzen nicht geschlossen werden. Schon bei den Chloriden¹ war es schwierig, die Entmischung aus den Abkühlungskurven zu bestimmen, weil sie bei einer gewissen Temperatur einsetzt, dann langsam fortschreitet und bei Zimmertemperatur noch nicht vollendet ist. Die Stabilität der Mischkristalle der Bromide ist indessen noch größer.

<sup>&</sup>lt;sup>1</sup> H. Brand, Diss. a. a. O. p. 687.

So waren im Dünnschliff der binären Schmelze 67 Entmischungserscheinungen nicht wahrzunehmen, da alles isotrop einheitlich ist. In den Schmelzen 65 und 66 kann ein Zerfall nur so weit angenommen werden, als bei der Reaktion mit der flüssigen Schmelze das Kaliumbromid sich aus dem Mischkristall herauslöst und zur Bildung von Doppelsalz Cd Br<sub>2</sub>. 4 K Br verbraucht wird. Die Dünnschliffe zeigen isotrope Kristalle und dazwischen eingeklemmt das Doppelsalz.

Die beiden ternären Systeme Cadmiumchlorid-Kaliumehlorid-Natriumehlorid und Cadmiumbromid - Kalium bromid - Natrium bromid unterscheiden sich im wesentlichen nur dadurch voneinander, daß im ersteren System neben den analogen Cadmium-Kalium-Doppelsalzen noch das Doppelsalz Cd Cl2. 2 Na Cl auftritt, das ein Teilsystem mehr bedingt. Sonst ist durchweg ein ähnliches Verhalten der Chloride und Bromide zu beobachten. Der Schnitt I ergibt ein binäres Diagramm der Komponenten Natrium bromid und Doppelsalz Cd Br<sub>2</sub>. K Br mit zwei Kristallisationskurven, die sich im eutektischen Punkte schneiden. Im Diagramm des Systems aus den Komponenten Natriumbromid und Doppelsalz Cd Br. 4KBr (Schnitt II) zeigt sich eine Kristallisationskurve des Doppelsalzes nicht; infolgedessen reicht seine Kristallisationsfläche im ternären Diagramm nicht über den Schnitt II in das Diagramm des Systems FCB hinein. Die vollständige Mischbarkeit von Kaliumbromid und Natriumbromid wurde bis zu einer bestimmten Grenze auch im ternären System beobachtet.

Berliu, Mineralogisch-petrographisches Institut der Universität, Juni 1912.

# ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie

Jahr/Year: 1913

Band/Volume: 1913

Autor(en)/Author(s): Brand H.

Artikel/Article: Der Kristallisationsverlauf im ternären System Cadmiumbromid—Kaliumbromid—Natriumbromid. 9-27