Diversity of lichens and lichenicolous fungi in a primeval heathland and adjacent managed forest in southern Netherlands (Groote Heide and 't Leenderbos)

PIETER VAN DEN BOOM
Arafura 16
NL-5691JA, Son, The Netherlands
Email: pvdboom@zonnet.nl

BERN VAN DEN BOOM
Arafura 16
NL-5691JA, Son, The Netherlands

Accepted 17. 4. 2009

Key words: Lichens, lichenicolous fungi, - New records, foliicolous lichens, species list, survey. - Mycoflora of The Netherlands.

Abstract: A detailed lichenological survey of a nature reserve and surrounding areas in one of the most southern parts of the province Noord-Brabant (The Netherlands) has been undertaken from 1984 to 2008. This survey treats the biodiversity of the terricolous, corticolous, lignicolous, foliicolous and saxicolous lichens as well as lichenicolous fungi of an area of 25 km². In all, 215 sites, mainly conifer woodland and heathland habitats and their surrounding areas, were investigated, making this the most extensive lichenological survey ever made in this part of The Netherlands. During the survey, 221 taxa (196 lichens, four allied fungi and 21 lichenicolous fungi) were recorded, including Bacidia polychroa, Buellia physciicola and Micarea farinosa which are new to The Netherlands. A site with foliicolous lichens has been found for the first time in The Netherlands, being the most northern locality in western Europe.

Detailed inventories of lichens and lichenicolous fungi for 25 grid squares (each 1 × 1 km²), in the south of The Netherlands, province Noord-Brabant, situated between 51°22'-51°17'N and 5°29'-5°33'E (Fig. 1), were undertaken. The major habitat of the study area (25 km²), which lies mainly between 22 and 30 m s. m., is a conifer forest, 't Leenderbos, as well as the neighbouring southern part consisting of a heathland with the status of a nature reserve. The study area, delimited by the Belgian border to the south, a secondary road to the north, an open agriculture landscape with the stream Tongelreep to the west and a small village, Leenderstrijp, to the east, is situated within a highly urbanized region (see Figs. 2, 3). Eindhoven, a city with c. 200000 inhabitants, lies c. 15 km N of the area.
and a smaller village, Valkenswaard (c. 31000 inhabitants), lies within a distance of c. 3 km, in the NW.

The climate conditions are the same as published for another survey in the province Noord-Brabant by VAN DEN BOOM (2004).

According to local history sources (unpublished reports), from the Middle Ages to 1900, the entire study area was a Calluna heathland completely covered with low sandy dunes. After 1900, planting with Pinus sylvestris started, at first in a small amount, with a more intensive planting between 1932 and 1941 in connection with an employment project. The purpose of wood production was sprag for coal-mines. Some important smaller heathlands have been saved at that time, including a Pingo (a hydro-laccolith), “Klein Hasselsven” (see Fig. 4). In the northwestern part of the study area, a fish-nursery has been laid out in the 20th century. In fact, during the 20th century, the study area exhibits two major habitats, an extensive Pinus forest and a rather extensive heathland. Nowadays, the whole area has a more recreational purpose with a lot of footpaths, bridle-paths and cycling-tracks.

Biodiversity is demonstrated by the occurrence of a wide array of species, growing on a wide range of substrata in the study area. The area is dominated by conifer forests and Calluna heathlands, with vascular plants such as Carex lasiocarpa, Lycopodium clavatum, Menyanthes trifoliata, and Ranunculus lingua, however the most common one is Molinia caerulea. Further common vascular plants occurring throughout the area are species such as Agrostis vinealis, Calluna vulgaris, Corynephorus canescens and Nardus stricta. Disturbed places are accompanied by extensive populations of Urtica dioica and Rubus fruticosus s. l. A study about bryophytes has been made by VAN MELICK (1988), in which 139 mosses and 46 liverworts are presented, with important records such as Ptilium crista-castrensis, Leptodontium flexifolium, Lophozia hadensis and L. perssonii. Extensive studies about birds, insects or mammals have never been published. There is no history in lichenology at all in this area. Today, epiphytic, terricolous and lignicolous lichens are well represented, but saxicolous species are less frequent being found on concrete bridges and posts as well as brick walls scattered throughout the area. Follicolous lichens are very rare and only known from one site, being the only known locality in the country. The 221 taxa of lichens, allied fungi and lichenicolous fungi listed below, were compiled by the authors over a 24-year period. Some unidentified lichenicolous fungi (including undescribed species) have been found and are in need of further study.

This is the first survey of lichens and lichenicolous fungi ever made in this part of The Netherlands. Nearly all records published here are first records for the 25 grids, several are new for the province Noord-Brabant and three species are new for the country, viz. Bacidia polychroa, Buellia physiciola and Micarea farinosa. Records previously published for the study area include Psoroglaena abscondita (as Macentina abscondita) and Stereocaulon saxatile (BOOM 2000), Bacidia brandii (COPPINS & BOOM 2002), Micarea subviridescens (BOOM 2003), Micarea subcinerea (BOOM & BRAND 2004), Cladonia borealis and several more common species in BOOM (1997).
Fig. 1. Location of the study area in The Netherlands.

Fig. 2. Schematic map of the survey area showing the grid ref. of 5×5 km with the position of the collecting sites in the province Noord-Brabant. Lines are main roads.
Methods

During more than two decades (1984-2008), two major habitats have been sampled and the accompanying vegetation noted. Lichens, allied fungi and lichenicolous fungi were recorded from 25 grids (each 1 km²). In average c. eight spots for each grid were visited and investigated exhaustively, depending on the actual richness in lichens. The distance between each site varied from c. (50-)100 to 250 m. Some sites were surveyed nearby some years later for a second time, or even for a somewhat different habitat. Vascular plants and most dominant bryophytes were recorded. From all recorded species the complete range of substrata on which they occur, including all their habitats are given in the species list.

From 215 spots, c. 2600 samples of lichens and lichenicolous fungi were recorded; c. 1500 specimens were collected and deposited in the herbarium of the first author. For each spot, a species list and ecological notes were made. All data is databased in Access. Some duplicates are in the private herbarium of MAARTEN BRAND.

Air-dried specimens were examined anatomically and morphologically with a stereo-microscope and a light microscope. For some specimens, the standard microchemical methods have been used according to ORANGE & al. (2001). The collected specimens have been studied mostly according to WIRTH (1995) and PURVIS & al. (1992). Nomenclature of lichens follows HAFELLNER & TÜRk (2001) and COPPINS (2002). For lichenicolous fungi HAWKSWORTH (2003) and DIEDERICH & SERUSIAUX (2000) were consulted. Red List species are mentioned in Table 2. Notes on phytogeography of lichens generally follow WIRTH (1995). In the course of the survey, several specimens have been checked by specialists (see acknowledgements). The occurrence and distribution of lichens and lichenicolous fungi in The Netherlands have been taken from the “BLWG Dutch Lichen Atlas online” published by the Dutch Bryological and Lichenological Society [http://www.blwg.nl/lichatlas/].

Study area

The study area has partly the status of a nature reserve, and although formerly it was an homogenous Calluna heathland, most of the northern half is a conifer forest named “t Leenderbos”. The southern part, c. 3 km² is still a heathland “Groote Heide”. In this latter area, a lot of Cladonia species were found, and the solitary Quercus robur trees scattered throughout are suitable phorophytes. Some trees carried c. 25 lichen species, which were mainly on the branches. Although the Juniperus communis trees are poor in lichen growth, they are an important element in the landscape being endangered in the area for a long time.

The extensive conifer forest in the northern part consists mainly of Pinus sylvestris and sometimes P. nigra plantations. They are homogenous and contain a rather poor undergrowth. Common plant species here are Deschampsia flexuosa, Dryopteris dilatata, and D. carthusiana. Even bryophytes such as Pohlia nutans, Campylopus spec. and Dicranum spec. occur (VAN MELICK 1988). However, the lichen flora is very poorly developed in this kind of habitat. Even small forests (plantations) with Larix decidua, Picea abies, Quercus rubra or mature Pseudotsuga menziesii contain a very limited lichen flora. The most very common species have been found in the more open Larix forest where twigs are the suitable substrate for lichens.

In the eastern side, there is a small damp (alluvial) Salix woodland with a Salicion cinereae community, the margin of which consists of Betula and young Quercus trees as buffer to the dry Pinus forest in the surrounding. A second Salix woodland, developed in recent times, has been found in the southwestern most part of the area, just nearby the monastery Achelse Kluis. Small Populus plantations are present at the west side, along the stream Tongelreep partly mixed with Quercus rubra and Prunus shrubs. Roadside trees and trees and shrubs at the outer rim of forests are important phorophytes for corticolous lichens communities. Quercus robur and Betula trees are the most important
Phorophytes in the study area, carrying 64 and 59 different species, respectively. The five most common species in the study area are *Parmelia sulcata* (97 times recorded), *Physcia tenella* (88), *Hypogymnia physodes* (77), *Lepraria incana* (77), and *Candelariella reflexa* (70).

Recently, in a slowly way the conifer forests are going to be replaced by deciduous forests, and even open places in and alongside conifer forests are created. The purpose is to preserve and to recover the native vegetation. The study area has been indicated as a habitat of international importance by the European Union and should be protected by the state. Nowadays the heathlands are grazed by sheep. In the study area, in total there are c. 300 of a special breed of sheep, only known from southern Netherlands and northern Belgium, called “Kempense heideschappen”.

Fig. 3. Detailed map 1:50000 showing the study area, including the forests and heathlands (Topografische ondergrond © Kadaster, Emmen).
Results

1. Epiphytic communities in forests
Especially the conifer forests such as Pinus, Picea and Pseudotsuga are very poor in epiphytic lichens, mostly only Lecanora conizaeoides, or no lichens at all, have been found. Micarea micrococca, Micarea viridileprosa with the parasite Nectriopsis micareae, and Placynthiella dasaea are the only species which are able to colonize on rotting fallen trunks within such habitats. Larix forests which are more open and well lit, appear more suitable habitats with sometimes a rather high quantity of nitrophilous lichen flora, including species of the Xanthorion such as Buellia griseovirens, Candelariella reflexa, Parmelia s.l., Physcia spec. and Xanthoria spec. However the footpats in these forests are much more interesting, because at the edge of the forests, the more open places, often occupied by Betula, Quercus, Robinia and Sorbus trees or shrubs, can have more important lichen communities, including Diploicia canescens, Jamesiella anastomosans, Normandina pulchella, Platismatia glauca, several species of Parmelia s.l., Ramalina farinacea and Rinodina pityrea. The two Salicion cinereae communities are rather interesting, especially the most southern one. It accommodates Bacidina delicata, abundantly fertile. It is the only locality where Physcia aipolia was found and even the only habitat with fertile specimens of Halecania viridescens.

2. Epiphytic communities on free-standing or roadside trees
Especially the surrounding areas, just outside the forests, contain many roadside trees, but many solitary trees are also present along the cycle tracks, footpaths or on parking-lots. Although the Xanthorion is dominated in most situations with very common species, such as Candelariella reflexa, Physcia adscendens, P. tenella, Xanthoria parietina, and X. polycarpa, these trees are the best phorophytes for the rare species, such as Catillaria nigroclavata, Diploicia canescens, Lecania naegelii, Physcia clementei and Pleurosticta acetabulum. Many solitary Quercus robur trees are scattered all over the heathlands. Especially their branches accommodate sometimes rather rich lichen communities, with often more than 20 species on one tree.

3. Foliicolous communities
In the northern part of the study area outstanding shrubs of Rhododendron have been found.
Here, a rather well developed foliicolous lichens community is present with two Bacidina species (B. chloroticula, B. neosquamulosa), three species of Fellhanera (F. bouteillei, F. subtilis, F. viridisorediata), and Fellhaneropsis myrtillicola. The latter two where rather abundant on some leaves and F. viridisorediata was found with several apothecia. This is the first report of foliicolous lichens in The Netherlands as well as the most northern site with such a lichen community in western Europe. Previously the most northern locality of foliicolous species was the “Haute-Meuse”, where eight species have been found growing on living leaves of Buxus sempervirens (VAN DEN BOOM & SÉRUSIAUX 1996).

4. Terricolous communities with lichens on stumps
The terricolous flora is rather well developed and most interesting in smaller heathlands among the northern conifer forests. The most interesting site is Galberg (see
Fig. 5), where Stereocaulon saxatile has been found in an excellent condition in the year 1987. Nowadays there are only very small thalli present. In the most southern part of the study area, a hilly heathland area accommodates some well developed populations of Stereocaulon saxatile and Cladonia borealis, and in small amounts Micarea subcinerea and Stereocaulon condensatum, both being rather rare in The Netherlands. In open woodlands, Cetraria islandica was abundantly present in the past, but now it is extinct.

Many times, stumps have been found in open heathlands and although they can support interesting lichen communities, in only a few occasions we found Absconditella sphagnorum and A. pauxillum.

5. Saxicolous communities
Relatively few saxicolous species are recorded because of the limited variety of suitable substrata. 36 species is the result of inventarisation on mortar, concrete and a few brick walls. The genera Caloplaca, Lecanora and Verrucaria are present with some very common species. More interesting is the genus Porpidia, present with two species, P. soredizodes, not a rare species in the province, and P. crustulata, a Red List species rare in The Netherlands.

6. Other habitats
At the rim of forests, occasionally solitary or grouped, Sambucus nigra shrubs are found. This phorophyte accommodates sometimes well developed lichen communities, with more rare species such as Bacidia polychroa, Lecania cyrtellina and Psoroglaena abscondita. The latter is a Red List species and very rare in The Netherlands.

7. Data and comments on most interesting species

Absconditella aff. lignicola VĚZDA & PIŠÚT
The genus Absconditella is represented within the study area by three species. Most common is A. sphagnorum, while A. pauxilla has been found two times, and the third one is most probably related to A. lignicola. However, the apothecia are pinkish and the 3-septate ascospores are widely fusiform, with clearly pointed ends and relatively long (12-18 × 4-5 μm). Similar collections are also known from the Czech Republic (Z. PALICE, pers. comm.).

Specimens examined: SW of Leende, ’t Leenderbos, W side of main path, open place along Pinus wood, stumps of Picea, on rotting stump and on rotting wood, grid ref. 57.25.14, 24. 4. 2000, P. VAN DEN BOOM 24284, 24293 (herbarium v. []).

Absconditella sphagnorum VĚZDA & POELT
Absconditella sphagnorum is rather common in the eastern part of the province Noord-Brabant and in the study area, it was collected at least three times. It is always found on rotting wood of fallen trunks and more rarely on stumps. It was not reported from the province before. Most of the characters are similar to specimens found in the northern part of the country where it grows terricolous, on peat and rarely on rotting wood. The only difference to the terricolous or muscicolous specimens are the ascospores. The terricolous material from northern Netherlands contains ellipsoid 1(-2) septate spores of 9.5-13 × 3.4-4.0 μm, sometimes the spores are widely fusiform. The
material collected in the study area has widely fusiform 1(-2) septate spores of 8-12 × 2.5-3.5 μm, mostly widely fusiform and rarely ellipsoid. We regard these differences as normal variation within the species concept. However, further study, especially genetic analysis is needed to prove if one or two species are involved.

Specimens examined: W of Leende, Molenheide, W of Molenberg, open sand dune area, open place in Pinus forest, on rotting fallen Pinus trunk, grid. ref. 57.16.21, 23. 8. 2006, P. & B. VAN DEN BOOM 36976 (herbarium V. D. BOOM); SSW of Leende, Groote Heide, N rim of Calluna heathland, W of 'main road', path in E-W direction, along Pinus forest, on rotting fallen trunk, grid. ref. 57.25.24, 28. 12. 2008, P. VAN DEN BOOM 41420 (herbarium V. D. BOOM); SSW of Leende, Groote Heide, N of unpaved road, Calluna heathland with dunes and scattered trees, on rotting wood, grid. ref. 57.25.25, 29. 10. 2005, P. & B. VAN DEN BOOM 35681 (herbarium V. D. BOOM).

Bacidia polychroa (TH. FR.) KÖRB.
It is widely distributed throughout Europe and not a rare species in Central Europe. For example, it is mentioned from several parts of Germany (SCHOLZ 2000) but previously not known from Benelux and new for The Netherlands.

Specimen examined: SE of Valkenswaard, NE of Zeelberg, near log-cabin, mixed forest and path along stream with Sambucus, on twigs of Sambucus, grid ref. 57.15.32, 24. 10. 2005, P. & B. VAN DEN BOOM 35640 (herbarium V. D. BOOM, herbarium BRAND).

Buelliella physciicola POELT & HAFELLNER
In the study area it was abundantly present in only one locality, on one tree. It is rarely mentioned from the neighbouring countries, Germany (SCHOLZ 2000) and Luxembourg (DIEDERICH & SÉRUSIAUX 2000). New for The Netherlands.

Specimen examined: SSE of Valkenswaard, 't Leenderbos, Bruggerhuizen, S of unpaved road, some Populus trees in meadow near farm, on Populus, on Phaeophyscia orbicularis, grid ref. 57.15.52, 28. 10. 2006, P. & B. VAN DEN BOOM 37304 (herbarium V. D. BOOM).

Caloplaca holocarpa (HOFFM.) A. E. WADE
This species is not rare in The Netherlands and known from the most western and northern rim of the province Noord-Brabant. However in this SE part of the province, more than 1500 localities have been investigated and nevertheless, C. holocarpa has never been found here before.

Specimen examined: NW of Leende, Boschhoven, E edge of Pinus forest, with some Sambucus shrubs and Quercus robur at roadside, on Sambucus, grid ref. 57.16.21, 8. 3. 2008, P. VAN DEN BOOM 39626 (herbarium V. D. BOOM).

Cetraria islandica (L.) ACH.
Although this species is known from many inland localities in The Netherlands, the known populations are seriously threatened. In the study area it became extinct during this study. The first record is from 1984, at that time it was found in rather healthy and in rather extensive populations, but in 1987 the last specimens have been seen and they were in poor condition already. During excursions some years later not a single specimen could be found in the same area.

Fig. 4. View of the Pingo Klein Hasselsven, showing the eastern part of the circular fen.

Fig. 5. View of Galberg, the heathland with *Juniperus communis*.
Clypeococcum hypocenomycis D. HAWKSW.

Although this species is probably not rare in The Netherlands, there are only a few records known and these are the first records for the province.

Specimens examined: SW of Leende, 't Leenderbos, W of Heggerdijk, SW of farm, path along Pinus forest and field, on Betula, on Hypocenomyce scalaris, grid ref. 57.15.55, 9. 11. 2006, P. & B. VAN DEN BOOM 37015 (herbarium v. D. BOOM); SW of Leende, 't Leenderbos, NE side of Dorven, edge of Pinus forest and Calluna heathland, mixed trees, on Betula, on Hypocenomyce scalaris, grid ref. 57.15.54, 21. 4. 2007, P. & B. VAN DEN BOOM 37512 (herbarium v. D. BOOM).

Fellhaneropsis myrtillicola (ERICHSEN) SÉRUS. & COPPINS

The encountered population is unique in the country because it was found here foliicolous. This Red List species is rare in The Netherlands and previously known from two provinces (Utrecht and Drenthe), so it is new for the province Noord-Brabant. In Belgium it is known from leaves and twigs of Buxus, needles and twigs of Picea, branches of Calluna and Vaccinium (DIEDERICH & SÉRUSIAUX 2000).

Hypotrachyna afrorevoluta (KROG & SWINSCOW) KROG & SWINSCOW and H. revoluta (FLÖRKE) HALE s. str.

During the last few years it was clear that Hypotrachyna afrorevoluta was present and recognizable in the study area. All the years before it was recorded under the name H. revoluta. From all the collecting material, 16 specimens appeared to belong to H. afrorevoluta and 14 specimens belong to H. revoluta s. str. The number of remaining field observations are 17. Sometimes, both species appeared well developed and forming thalli up to c. 15 cm in diam.

Micarea farinosa COPPINS & APTROOT

This Micarea was found on overhanging soil along a ditch, in a wooded area. It was clearly growing on soil. It was found eight years ago. Recently it was described from Great Britain, so it is the first record for The Netherlands and also for continental Europe.

Stereocaulon condensatum HOFFM.

This species is a member of the Red List and although it is known from several localities in southern, central and northeastern parts of the country, it is a rare and vulnerable species. In the study area only small populations were found.

Stereocaulon saxatile MAGN.

This Red List species is very rare in the country. At the beginning of our study it was abundantly present in the northern heathlands and found in well developed populations. However, only very few and poorly developed populations are still present. This
species is seriously endangered.

8. Phytogeographic notes

The lichens and allied fungi were subdivided into seven phytoclimatical groups, based on their latitudinal and longitudinal ranges in Europe, according to WIRTH (1995) and NIMIS & TRETIAK (1995), with the exception of one additional group, “intermediate element”. This includes species with a limited distribution, mainly known from Central Europe only. The rather mild climate in connection with the strict lowland situated area with a strong oceanic influence results in the high percentage of the temperate element (see Table 1). It is formed by wide-ranging species that occur from Artic (or Boreal) to Mediterranean areas. Others are species with a more limited distribution. There is no data available regarding phytogeography for lichenicolous fungi.

Table 1. Frequences of lichen taxa of main phytoclimatic groups

<table>
<thead>
<tr>
<th>Phytoclimatic Group</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widespread temperate element</td>
<td>51.0 %</td>
</tr>
<tr>
<td>Southern temperate element</td>
<td>19.0 %</td>
</tr>
<tr>
<td>Northern temperate element</td>
<td>13.5 %</td>
</tr>
<tr>
<td>Intermediate element</td>
<td>10.0 %</td>
</tr>
<tr>
<td>Northern subatlantic element</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Widespread subatlantic element</td>
<td>1.0 %</td>
</tr>
<tr>
<td>Others</td>
<td>2.5 %</td>
</tr>
</tbody>
</table>

Endemic lichens have not been found.

9. Discussion

Lichen biodiversity is rather high in the investigated area and yielded in total 196 lichen taxa, more than 25 % of the known species in The Netherlands, of which 117 are recorded epiphytic, 36 saxicolous, 45 terricolous, 54 lignicolous (including stumps). However, eight species, which are less substrate specific, have been found epiphytic, terricolous as well as lignicolous. 78 macrolichens, 118 microlichens and 21 lichenicolous fungi are known from the area. The most rare lichen species in the country, occurring in the study area and currently known in this province only, are Absconditella pauxilla, Bacidia polychroa, Hypogymnia farinacea, and Micarea farinosa. Red List species (AP- TROOT & al. 1998) found during our study, including new findings of lichens for the country, are listed in Table 2.
Table 2. Red List (lichen) species with the number of records

<table>
<thead>
<tr>
<th>Species</th>
<th>Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absconditella pauxilla</td>
<td>2</td>
</tr>
<tr>
<td>Bacidia polychroa</td>
<td>1</td>
</tr>
<tr>
<td>Bryoria fuscescens</td>
<td>2</td>
</tr>
<tr>
<td>Cetraria islandica</td>
<td>3</td>
</tr>
<tr>
<td>Cladonia cornuta</td>
<td>1</td>
</tr>
<tr>
<td>Cladonia pulvinata</td>
<td>16</td>
</tr>
<tr>
<td>Cladonia strepsilis</td>
<td>4</td>
</tr>
<tr>
<td>Cladonia zopfii</td>
<td>22</td>
</tr>
<tr>
<td>Fellhanera subtilis</td>
<td>4</td>
</tr>
<tr>
<td>Fellhaneropsis myrtilluscola</td>
<td>1</td>
</tr>
<tr>
<td>Fuscidea lightfootii</td>
<td>3</td>
</tr>
<tr>
<td>Lecania cyrtellina</td>
<td>1</td>
</tr>
<tr>
<td>Lecania naegelii</td>
<td>3</td>
</tr>
<tr>
<td>Micarea farinosa</td>
<td>1</td>
</tr>
<tr>
<td>Micarea subcinerea</td>
<td>1</td>
</tr>
<tr>
<td>Normandina pulchella</td>
<td>2</td>
</tr>
<tr>
<td>Parmelina tiliaeae</td>
<td>2</td>
</tr>
<tr>
<td>Physcia aipolia</td>
<td>1</td>
</tr>
<tr>
<td>Physcia clementei</td>
<td>2</td>
</tr>
<tr>
<td>Piccolia ochrophora</td>
<td>2</td>
</tr>
<tr>
<td>Platismatia glauca</td>
<td>7</td>
</tr>
<tr>
<td>Porpidia crustulata</td>
<td>1</td>
</tr>
<tr>
<td>Rinodina pityrea</td>
<td>3</td>
</tr>
<tr>
<td>Stereocaulon condensatum</td>
<td>2</td>
</tr>
<tr>
<td>Stereocaulon saxatile</td>
<td>2</td>
</tr>
<tr>
<td>Usnea hirta</td>
<td>2</td>
</tr>
<tr>
<td>Vezdaea acicularis</td>
<td>1</td>
</tr>
</tbody>
</table>

Lichenicolous fungi are not comprehensively studied in The Netherlands by specialists, so this group was much neglected in the past. Buellia physicola is new to the country and species which are rare according to the recent checklist (Dutch Bryological and Lichenological Society [http://www.blwg.nl/lichatlas/]) and partly common in the study area, are Arthonyia phaeophysciae, Cladonicolata stauropsora, Clypeococcum hypocenomyces, Lichenoconium erodens, L. lecanorae, L. xanthoriae, Lichenodiplis lecanorae, Marchandiobasidium aurantiacum, Pronectria oligospora, Psammina stipitata, Syzygospora physciacearum, Taeniolella phaeophysciae, Trichonecrida rubefaciens and Tubeufia heteroderma. They are most probably overlooked.

One of the most remarkable species is Cetraria islandica. It is a Red List species and currently rare and endangered in the country. During the beginning of this study it was a rather common species in one grid and collected in 1987 in open forests. Thallii where abundantly present and sometimes c. 10 cm. However, C. islandica was the most dominating species, covering sometimes many m² in this locality until the fifties (forester, pers. comm.). We are sure that this species is now (2008) extinct. Another phenomenon is the occurrence of an unexpected foliicolous lichen community. Six lichen species were
found growing on leaves of *Rhododendron*. Previously the most northern known locality in western Europe was the valley of the Meuse in Belgium (BOOM & SÉRUSIAUX (1996).

In terms of bioclimate, the area is clearly homogeneous, so there is no gradient determining the distribution of species within the area. The medium large city (Eindhoven), N of the area with a lot of industrial activities and the dominating agriculture (intensive factory farming), eastern, western and southern alongside the area, have a significant influence all over the area. The pollution of the air with ammonia and other pollutants has a negative effect on the lichen vegetation. This nutrient enrichment is shown by the dominating amount of nitrophilous species. Even the quality of the native terricolous vegetation is strongly delimited by *Molinia caerulea*, the most dominating vascular plant.

Recreation is another factor with negative influence. The area is partly accessible for cars or other motor traffic, on a few unpaved roads. The paved road (N-S) throughout the centre of the area is not accessible for motor traffic, just for bicycles. Beside that, there are several bicycle-trails which cause a lot of tourist activities throughout the whole year.

10. Annotated species list

Legends of the species list
The number after the species name means: total number of records.
Abbreviations:

<table>
<thead>
<tr>
<th>Habitats:</th>
<th>Abbreviations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>cf</td>
<td>mw</td>
</tr>
<tr>
<td>ch</td>
<td>pb</td>
</tr>
<tr>
<td>db</td>
<td>pf</td>
</tr>
<tr>
<td>ds</td>
<td>pq</td>
</tr>
<tr>
<td>fh</td>
<td>ra</td>
</tr>
<tr>
<td>mp</td>
<td>rf</td>
</tr>
</tbody>
</table>

Phytogeography:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>alp</td>
<td>med</td>
</tr>
<tr>
<td>arct</td>
<td>mo</td>
</tr>
<tr>
<td>atl</td>
<td>submed</td>
</tr>
<tr>
<td>bor</td>
<td>subatl</td>
</tr>
<tr>
<td>mieur</td>
<td>subbor</td>
</tr>
<tr>
<td></td>
<td>subco</td>
</tr>
</tbody>
</table>

Substrata:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Ac</td>
</tr>
<tr>
<td>c</td>
<td>Ae</td>
</tr>
<tr>
<td>rw</td>
<td>Ap</td>
</tr>
<tr>
<td>s</td>
<td>An</td>
</tr>
<tr>
<td>st</td>
<td>Be</td>
</tr>
<tr>
<td>t</td>
<td>Ca</td>
</tr>
<tr>
<td>wp</td>
<td>Cr</td>
</tr>
</tbody>
</table>
Cv Calluna vulgaris
Cn Cornus spec.
Co Corylus avellana
Fa Fagus sylvatica
Ju Juniperus communis
La Larix decidua
Ma Malus spec.
My Myrica gale
Pc Picea abies
Pr Prunus spec.
Po Populus spp.
Ps Pseudotsuga menziesii
Py Pyrus spec.

Quercus robur
Quercus rubra
Rhododendron spec.
Rhus spec.
Robinia pseudacacia
Salix spp.
Sambucus nigra
Sorbus aucuparia
Tilia spec.
Vaccinium

(f) fertile
+ not clearly lichenized species

Absconditella aff. lignicola VÉZDA & PIŠÚT 2 ra; rw, st; mieur
Absconditella pauxilla VÉZDA & VIVANT 2 ch; rw; mieur, atl
Absconditella sphenogorum VÉZDA 3 ra; rw; bor-mieur
Amandinea punctata (HOFFM.) COPPINS & SCHEID. 59 ch, fh, mp, pb, pf, ra, rf; Aa, Be, Cr, La, Pc, Pn, Po, Qa, Qr, Sa, Sm, Ti, rw; (arct-)bor-med
Anisomeridium polymorpha (ELLIS & EVERH.) M. E. BARR 4 ds, mw; Po, Sa, Sm; mieur, subtatl-med

Arthonia muscigena Th. Fr. 1 ch; st; mieur-submed
+Arthonia punctiformis ACH. 5 ch, mw, ra; Be, My; subbor-med
Arthonia radiata (PERS.) ACH. 2 ch, mw, ra; Pr, Qr; (sub)bor-med
Arthonia spadicea LEIGHT. 1 mw; st; subbor-submed. mo
+Arthopyrenia punctiformis A. MASSAL. 6 ch, mw; Be, Qr; bor-med
Bacidia adastra SPARRIUS & APTROOT 2 mw, rf; Pr, Sm; mieur
Bacidia brandii COPPINS & VAN DEN BOOM 3 ra; Pc, st; mieur, subatl
Bacidia polychroa (Th. Fr.) KÖR. 1 ra; Sm; mieur, subtatl-submed(-med)
Bacidina arnoldiana (KÖR.) V. WIRTH & VÉZDA 19 ch, ds, mw, ra, rf; Pc, Fo, Pr, Qr, Sa, st, t, w; mieur-med
Bacidina chlorotica (NYL.) VÉZDA & POELT 2 mf, ra; Rd, st; (subbor)-submed
Bacidina delicata (LEIGHT.) V. WIRTH & VÉZDA 3 ds, mp, ra; Pc, Qr, Sa; mieur-submed
Bacidina neosquamulosa (APPROOT & VAN HERK) EKMAN 11 ch, ds, mw, ra, rf; Be, Pc, Pr, Rd, Sa, Sm, Va; mieur, atl
Baemomyces rufus (HUDS.) REBBENT. 5 ch, ra; t; bor-submed
Bilimbia sabuletorum (SCHREB.) ARNOLD 2 ra; b; bor-med
Bryoria fuscescens (GYELN.) BRODO & D. HAWKSW. 2 ch; st; bor-med, mo
Buellia griseovirens (TURNER & BORRER ex SM.) ALMB. 14 ch, ds, fh, mp, mw, ds, ra, rf; Be, La, Po, Pr, Qa, Qr, Sa; subbor-mieur, subtatl-med
Caloplaca citrina (HOFFM.) TH. Fr. 5 ra, rf; b, c; bor-med
Caloplaca decipiens (ARNOLD) BLOMB. & FORSS. 1 rf; c; (subbor-)miensch-(mo), (subco)
Caloplaca dichroa ARUP 1 ra; c; bor-mieur
Caloplaca flavovitrina (NYL.) H. OLIVIER 6 ra, rf; c; subbor-med
Caloplaca holocarpa (HOFFM.) A. E. WADEN 1 ra; Sm; arct-med
Caloplaca lithophila H. MAGN 7 ra, rf; c; arct-med
Caloplaca obscurella (J. LAHM) TH. FR. 3 ra, rf; Qr, Sm; (subbor)mieur-med
Caloplaca phlogina (ACH.) FLAGEY 2 rf; Po; mieur-med?
Caloplaca saxicola (HOFFM.) NORDIN 1 rf; c; bor-med
Candelaria concolor (DICKS.) STEIN 29 ds, fh, mw, ra, rf; Ac, Apl, Be, Pc, Po, Qr, Ro, Sa, Sm, Sr; subbor-med(mo)
Candelariella aurella (HOFFM.) ZAHLBR 14 ch, ra; c; arct-med
Candelariella reflexa (NYL.) LETTAU 70 ch, mw, ds, fh, pb, pq, ra, rf; Ac, Be, La, Pc, Pn, Po, Pr, Qr, Ro, Sa, Sm, Ti; mieur-med
Candelariella vitellina (HOFFM.) MÜLL. ARG. 6 ch, ra, rf; Qa, b, c; arct-med
Candelariella xanthostigma (ACH.) LETTAU 2 ch, ra; Qr, Sm; (arct)bor-med
Catillaria chalybeia (BORRER) A. MASSAL. 2 ra, rf; b, c; bor(atl)-mieur-med(mo)
Catillaria nigroclavata (NYL.) SCHÜLER 6 mp, ra, rf; Be, Po, Qa, Qr; subbor-med
Cetraria aculeata (SCHREB.) FR. 16 ch, ra; t; bor-med, mo
Cetraria islandica (L.) ACH. 3 mw; t; arct-mieur(-med, mo)
Cetraria muricata (ACH.) ECKFELDT 2 ch; t; arct-med, alp
Chaenotheca ferruginea (TURNER ex ACH.) MIG. 1 pf; Qr; bor-med, mo
Chaenotheca trichialis (ACH.) TH. FR. 1 pf; Pn; bor-med, mo
+Chaenothecopsis savonia (RĀŠĀKEN) TIBELL 2 mw, ra; rw, st; bor-mieur
Cladonia borealis S. STENROOS 2 ch; t; arct-mieur(mo)
Cladonia caespiticia (PERS.) FLÖRKE 5 mw, ra, rf; t; mieur, subatl-submed(-med, mo)
Cladonia cervicornis (ACH.) FLOTOW 20 ch; t; bor-med, subatl
Cladonia chlorophaea (FLÖRKE ex SOMMERF.) SPRENGEL s.s. 7 ch, mw, pf, ra; Be, Qr, rw, t; arct-med
Cladonia coccifera (L.) WILLD. 32 ch, mw, pf, ra, rf; st, t; (s’)bor(subatl)-mieur(subatl)-med, mo
Cladonia coniocraea (FLÖRKE) SPRENGEL 23 cf, ch, ds, mw, pf, ra, rf; Be, Pc, Po, Qr, Sa, rw, s, st, t; bor-submed(-med)
Cladonia cornuta (L.) HOFFM. 1 ch; st; (arct-)bor-mieur, mo
Cladonia crispata (ACH.) FLOTOW var. cetraiiiformis 20 ch; st, t; arct-mieur
Cladonia cryptochlorophaeas ASAH. 13 ch, mw, ra; Be, st, t; subbor-mieur, subatl
Cladonia digitata (L.) HOFFM. 3 mp, pf, ra; Be, st; bor-med
Cladonia fimбриata (L.) FR. 15 ch, ds, fh, mw, ra; Be, Pc, Pn, Pr, Qr, rw, st, s, t; (arct)bor-med
Cladonia florkeana (FR.) FLÖRKE 42 ch, db, fh, mw, pf, ra, rf; Be, rw, st, t; subbor-submed
Cladonia foliacea (HUDS.) WILLD. 18 ch; t; mieur, subatl-med
Cladonia furcata (HUDS.) SCHRAD. 7 ch, mw, pf, ra, rf; t; bor-med
Cladonia glauca FLÖRKE 16 ch, mw, pf, ra; Be, rw, st, t; (subbor)-mieur
Cladonia gracilis (L.) WILLD. 21 ch, db, ra, pf, st, t; arct-submed, mo
Cladonia humilis (WITH.) J. R. LAUNDON 3 ra, rf; st, t; mieur-med, subatl
Cladonia macilenta HOFFM. s. l. ch, db, ds, mw, pb, pf, ra, rf; Be, rw, st, t; subbor-submed(-med)
Cladonia bacillaris (LEIGHT.) ARNOLD 48
Cladonia macilenta HOFFM. s. str. 3
Cladonia meroclorophaeas ASAH. 19 ch, db, ds, mw, pf, ra; Be, rw, st, t; arct-mieur (submed)
Cladonia mitis (SANDST.) HUSTICH 7 ch, pf, pq, rw; t; arct-mieur(-submed, mo)

Cladonia monomorpha APTROOT, SIPMAN & VAN HERK 5 ch; t; mieur-med

Cladonia novochlorophaeae (SIPMAN) BRODO & AHTI 3 ch, pf, rw; rw, t; bor-mieur (med, mo)

Cladonia ochrochlora FLÖRKE 2 mw, ra; st; bor-med

Cladonia portentosa (DUF.) FOLLM. 42 ch, mw, pb, pf, pq, ra; Qr, st, t; mieur-(s)med, subatl

Cladonia pulvinata (SANDST.) VAN HERK & APTROOT 16 ch; rw, t; mieur, atl-med

Cladonia rammulosa (WITH.) LAUNDON 35 ch, db, mw, pf, pq, ra, rf; Be, Qr, Ro, rw, st, t; (subbor-)mieur, subatl-submed, subatl(-med)

Cladonia rei SCHAERF. 3 ch, rw; t; disturbed places; subbor-mieur

Cladonia scabriuscula (DELISE) NYL. 1 ra; t; bor-mieur, subatl

Cladonia streptisilis (ACH.) GROGNOT 4 ch; t; (bor, atl-)mieur, subatl-submed

Cladonia subulata (L.) WEBER ex WIGG. 18 ch, db, mw, pf, ra, rf; Be, st, t; bor-med

Cladonia verticillata (HOFFM.) SCHAER.. 2 ch; t; arct-med

Cladonia zopfii VAIN. 22 ch; t; bor-mieur, subatl

Coenogonium pineti (SCHRAD. ex ACH.) LÜCKING & KALB 18 cf, ds, mw, pf, pq, ra; Be, Pc, Pn, Po, Qr, Ro, Sa, st; bor, atl-med

+Cyrtidula quercus (A. MASSAL.) MINKS 2 fh; Co, Qr; mieur-submed

Diploicia canescens (DICKS.) ANZI 4 ra, rf; Be, La, Sm; mieur, subatl-med

Evernia prunastri (L.) ACH. 42 db, ds, fh, mw, pf, ra; Be, La, Pc, Pr, Qr, Sa, rw, st; bor-med

Fellhanera bouteillei (DESM.) VĚZDA 1 mw; Rd; mieur, subatl-med, mo

Fellhanera subtilis (VĚZDA) DIEDERICH & SÉRUS. 4 mw, ra; Pc, Rd; subbor-mieur, subatl

Fellhanera viridisoredata APROOT, BRAND & SPIER 24 ch, ds, mw, ra; Be, La, Pc, Pn, Pr, Rd, Ro, Sa, rw; mieur, atl

Fellhaneropsis myrtillicola (ERICHS.) SÉRUS. & COPPINS 1 mw; Rd; mieur-med

Flavoparmelia caperata (L.) HALE 55 ch, fh, db, ds, mw, pf, ra, rf; An, Be, La, Po, Qr, Sa, Sm, rw, st; subbor(subatl)-med

Flavoparmelia soredians (NYL.) HALE 18 ch, ds, fh, mw, ra; Be, Pn, Po, Qr, Sa, rw; mieur-med

Fusciidea lightfootii (SM.) COPPINS & P. JAMES 3 ds, rf; Qr, Sa; mieur, atl(subatl)-submed(-med)

Halecania viridescens COPPINS & P. JAMES 4 ds, mw, ra, rf; Co, Qa, Sa, st; (f) mieur, atl-submed, atl

Hyperphyscia adglutinata (FLÖRKE) H. MAYRHOFER & POELT 13 ch, mw, ra, rf; La, Po, Qr, Sa, Sm; mieur, subatl-med

Hypocenomyce scalaris (ACH.) CHOISY 15 ch, db, mw, pf, ra; Be; bor-med (mo)

Hypogymnia farinacea ZOPF 12 ch, mw, ra, rf; Be, La, Pr, Qr, rw; subbor-med, upper mo

Hypogymnia physodes (L.) NYL. 77 ch, ds, mw, pf, ra, rf; Be, Ca, La, Pn, Qr, Sa, So, rw, st, wp, t; arct-med

Hypogymnia tubulosa (SCHAER.) HAV. 29 ch, db, ds, mw, pf, ra; Be, Qr, Sa, st; bor-med

Hypotrichyna afriorevoluta (KROG & SWINSCOW) KROG & SWINSCOW 16 ch, ds, fh, mw, ra, rf; Pn, Qr, Qa; mieur-med?

Hypotrichyna revoluta (FLÖRKE) HALE 14 ch, mp, mw, ds, pf, ra, rf; Be, Ca, Cr, La, Pn, Po, Qr, Ro, Sr, Sa, rw, st; mieur, subatl-med
Jamesiella anastomosans (P. JAMES & VÉZDA) LUCKING, SÉRUS. & VÉZDA 20 ds, fh, ra; Be, Fa, Qr, Sa; mieur-med, (sub-)atl

Lecania cyrtella (ACH.) TH. FR. 11 ch, mp, mw, fh, pf, ra, rf; Be, Fa, Po, Sm, st; subbor-med

Lecania cyrtellina (NYL.) SANDST. 1 ra; Sm; bor-med

Lecania erysibe (ACH.) MUDD 2 rf; c; subbor-med

Lecania naegelii (HEPP) DIEDERICH & VAN DEN BOOM 2 ra, rf; Po, Sm; subbor-med

Lecania rabenhorstii (HEPP) ARNOLD 2 ra; c; subbor-mieur, subatl(-med)

Lecanora albescens (HOFFM.) BRANTH & ROSTR. 10 ra; c; bor-med

Lecanora barkmaniana APTROOT & VAN HERK 24 ch, ds, mp, mw, fh, ra, rf; An, Po, Qa, Qr, Sa, st; mieur, atl

Lecanora campestris (SCHAUER) HUE 1 ra; c; bor-med

Lecanora carpinea (L.) VAIN. 17 ch, fh, mw, ra, rf; Po, Qa, Qr, Sm, rw; bor-med

Lecanora chlorotera NYL. 19 ch, mw, fh, ra, rf; Be, Po, Pr, Qa, Qr, Sa, Sr, Ti, rw; bor-med

Lecanora conizaeoides CROMB. 42 ch, db, fh, pf, ra; Be, Ju, La, Pc, Po, Pn, Pc, Ps, Qr, rw, st; (bor-)mieur-submed

Lecanora dispersa (PERS.) SOMMERF. 22 mp, mw, fh, ra, rf; Be, Po, Pn, Qr, Sa, c, s, st; arct-med

Lecanora expallens ACH. 14 ch, ds, fh, mp, mw, ra, rf; Be, Ca, Po, Pn, Qr, Sm; subbor, subatl-med

Lecanora hagenii (ACH.) ACH. 18 ch, ds, mw, mp, fh, rf; Be, Po, Qa, Qr, Sa, Sm, rw; bor-med

Lecanora muralis (SCHREB.) RABENH. 11 ch, fh, ra, rf; Py, b, c, st; arct-med

Lecanora polytropa (EHRRH. ex HOFFM.) RABENH.1 ra; b; arct-med

Lecanora pulicaris (PERS.) ACH. 2 ra, rf; Qa, Qr; bor-med, mo

Lecanora saligna (SCHRAD.) ZAHLBR. 28 ch, db, fh, mw, ra, rf; Be, Pc, Pn, Qr, rw, st, wp; bor-med, mo

Lecanora semipallida SPRENG 4 ra; c; bor-submed, atl

Lecanora symmicta (ACH.) ACH. 19 ch, ds, fh, mp, mw, ra; Be, Pn, Pr, Qr, Ti, rw, st; bor-med

Lecidea fuscoatra (L.) ACHIL. 1 ra; rw; subbor-med

Lecidella achristotera (NYL.) HERTEL & LEUCKERT 37 ch, ds, fh, mp, mw, pq, rarf; Ae, An, Be, La, Po, Pr, Qr, Ro, Sa, Sm, Ti, wp; mieur?

Lecidella scabra (TAYLOR) HERTEL & LEUCKERT 4 rf; Qa, Qr, b; subbor(subatl)-med

Lecidella stigmatea (ACH.) HERTEL & LEUCKERT 9 ra, rf; c, plastic; arct-med

Lepraria incana (L.) ACH. 77 cf, ch, db, ds, fh, mp, mw, pb, pf, pq, ra, rf; An, Be, Ca, La, Pn, Po, Ps, Ro, Qa, Qr, Sa, rw, s, st; bor-med

Lepraria jackii TÖNSBERG 1 ra; t; bor-mieur(mo)

Lepraria lobificans NYL. 4 ds, rf; Be, Qa, Sa; bor-med

Lepraria rigidula (B. DE LESD.) TÖNSBERG 3 ch, fh, ra; Be, Qr; subbor-med

Melanelia elegantula (ZAHLBR.) ESSL. 1 ch, fh; Qr; mieur-med

Melanelia exasperatula (NYL.) ESSL. 18 ch, ds, fh, mw, ra; La, Pc, Pn, Qr, Sr, st; bor-med

Melanelia fuliginosa (FR. ex DUBY) ESSL. subsp. glabratula (LAMY) COPPINS 4 ds, mw, ra; Po, Qr, Sa; bor-med
Melanelia subaurifera (NYL.) ESSL. 55 ch, db, ds, fh, mw, pb, pf, ra, rf; Be, La, Fn, Po, Pr, Qr, Rd, Sa, rw, st; bor-submed
Milocrea botryooides (NYL.) COPPINS 1 ra; t; (subbor-)mieur, subatl(-med)
Milocrea denigrata (Fr.) HEDL. 34 ch, fh, mw, pf, ra, rf; Be, Ju, Pc, Pn, Pr, Qr, rw, st; bor-med
Milocrea farinosa COPPINS & APTROOT 1 ra; t; mieur, atl
Milocrea micrococca (KÖRB.) GAMS ex COPPINS 14 ch, ds, mw, mp, pf, pq, ps, ra; Be, La, Ps, Qr, Sa, rw, st; subbor-mieur
Milocrea misella (NYL.) HEDL. 6 ds, mw, ra; rw, st; bor-submed, mo(-med, mo)
Milocrea nitschkeana (J. LAHM ex RABENH.) HARM. 10 ch, ra; Ca, Cv, (subbor-)mieur(submed, mo)
Milocrea prasina Fr. 6 ch, mp, pf, ra; Be, Qr, rw, st; bor-med(mo)
Milocrea subcinerea BRAND & VAN DEN BOOM 1 ch; t; mieur, atl
Milocrea subviridescens (NYL.) HEDL. 1 ra; t; mieur-med, atl?
Milocrea viridileprosa COPPINS & VAN DEN BOOM 37 ch, ds, mp, mw, pb, pf, pq, ps, ra, rf; Be, Pn, Ps, Ro, Qr, rw, st, t; mieur-submed
Nonnandinapukhella (BORRER) NYL. 2 mw, ra; Fa, Qa; subbor-med
Parmelia saxatilis (L.) ACH. 4 ch, fh, rf; Be, Qr; arct-med, mo
Parmelia sulcata TAYLOR 97 ch, mw, ds, fh, mp, pf, ra, rf; An, Be, La, Pc, Pn, Po, Pr, Ro, Qa, Qr, Sa, Sm, rw, st; arct-med
Parmelina tiliaeae (HOFFM-) HALE 2 ch, ds; Sa, st; (subbor-)mieur-med
Parmeliopsis ambigua (WULFEN) NYL. 10 ch, db, fh, mw, ra; Be, Qr, st; bor-med, mo (med, mo)
Parmotrema perlatum (ESCHW.) M. CHOISY 36 ch, db, ds, fh, mw, ra, rf; Be, La, Po, Pr, Ro, Qa, Qr, Sa, Sm, rw, t; mieur, subatl-med(mo/subatl)
Peltigera didactyla (WITH.) J. R. LAUNDON 1 ch; t; arct-med
Phaeophyscia nigricans (FLÖRKE) MOBERG 3 mp, rf; Ac, Po, Qr; bor-med
Phaeophyscia orbicularis (NECK.) MOBERG 38 ch, ds, fh, mw, ra, rf; An, Be, Po, Qa, Qr, Sa, Sm, b, c, st; bor-med
Phlyctis argena (SPRENG.) FLOT. 3 ra, rf; Qa, Qr; subbor-med
Physcia adscendens (FR.) H. OLIVIER 54 ch, ds, fh, mp, mw, pb, pf, ra, rf; An, Be, La, Pn, Po, Qa, Qr, Sa, Sm, c, s, st; bor-med
Physcia aipolia (EHRH. ex HUMB.) FÜRNR. 1 ds; Sa; bor-med(mo)
Physcia caesia (HOFFM.) FÜRNR. 15 ch, mp, ra, rf; Po, Qa, Qr, b, c, st; arct-med
Physcia clementei (TURNER) MAAS GEEST. 1 rf; Qa; mieur, atl-med, subatl
Physcia dubia (HOFFM.) LETTAU 1 rf; Qr; arct-submed
Physcia stellaris (L.) NYL. 8 ch, fh, mw, ra; Po, Qr, Sm, st; bor-med(mo)
Physcia tenella (SCOP.) DC. 88 ch, db, ds, fh, mw, pb, pf, ra, rf; Ac, An, Be, La, Ma, Pc, Pn, Po, Qr, Sa, Sm, So, Ti, rw, st; (arct-)bor-med
Physcia tribacioides NYL. 1 rf; So; mieur-med, atl
Physciona grisea (LAM.) POELT 5 ds, mw, ra, rf; Ac, Po, Qr, Sa, Sm; mieur-med
Pilocolla ochrophora (NYL.) HAFELLNER 2 ra, rf; Po, Sm; bor-med
Placynthiella dasaea (STIRTON) TONSBERG 55 cf, ch, db, fh, mw, pf, ps, ra; Be, Pc, Pn, Ps, Qr, Ro, rw, st; bor-med
Placynthiella icmalea (ACH.) COPPINS & P. JAMES 16 ch, db, pb, pf, ra; rw, t; bor-med
Placynthiella oligotropha (LAUNDON) COPPINS & P. JAMES 11 ch, ra; t; bor-mieur
Placynthiella uliginosa (SCHRADER) COPPINS & P. JAMES 11 ch, ra; t; arct-med, mo
Platismatia glauca (L.) CULB. & C. CULB. ch, db, pf, ra; Be, Qr, st; bor-mieur-med, mo
Pleurosticta acetabulum (NECKER) ELIX & LUMBSCH mp; Ae; (subbor-)mieur-med
Porpidia crustulata (ACH.) HERTEL & KNOPH rf; b; bor-mieur-med
Porpidia soredizodes (LAMY ex NYL.) LAUNDON ra; Ae; (subbor-)mieur-med
Pseudevernia furfuracea (L.) ZOPF db, ds, fh, pf, ra; Be, Ca, Qr, rw, st; bor-mieur-med, mo
Psilolechia clavulifera (NYL.) COPPINS ra; t; subbor-mieur
Psilolechia leprosa COPPINS & PURVIS ra; b; bor-med
Psilolechia lucida (ACH.) M. CHOISY ra; b, s; subbor-mieur, subatl-submed(-med)
Psoroglæna abscondita (COPPINS & VÉZDA) HAFELLNER & TÜRK ra; fh; Sm; (bor) mieur
Punctelia borreri (SM.) KROG db, fh, mw, ra, rf; Ac, Pr, Qr, Sa, So; mieur-med (subatl)
Punctelia jeckeri (ROUM.) KALB 39 ch, fh, mw, ds, ra, rf; Be, La, Pc, Po, Qr, Sa, So, rw; mieur-med
Punctelia subrudecta (NYL.) KROG 49 ch, mw, ds, fh, mp, ra, rf; Be, La, Po, Pr, Qr, Sa, So, Sm, rw, st; mieur-med(subatl)
Ramalina farinacea (L.) ACH. ch, ds, fh, mw, fh, ra, rf; Be, La, Po, Qr, Sa, So, rw, st; bor-med
Ramonia interjecta COPPINS 4 ds, mw, ra; Sa, Sm; subbor-mieur
Rinodina oleae BAGL. 5 mw, ra, rf; Be, Po, c; subbor-med
Rinodina pityrea ROPIN & H. MAYRHOFER 3 mw, ra, rf; Be, Fa, Po; (f); subbor-med?
Sarcogyne regularis KÖRB. 3 mw, ra; c; arct-med
Scoliciosporum gallirae VÉZDA & POELT 4 ch, ds, fh, ra; Qr, Sa, Sm; subbor-med
Scoliciosporum umbrinum (ACH.) ARNOLD 2 ra, rf; b, s; bor-med
Stereocaulon condensatum HOFFM. 2 ch; t; bor-mieur
Stereocaulon saxatile H. MAGN. 4 ch; t; bor-mieur, subatl
Strangospora pinicola (A. MASSAL.) KÖRB. 7 ra, rf; An, Be, Po, Qr, rw; mieur
Thelocarpon impressellum NYL. 1 ra; t; bor-mieur
Thelocarpon lichenicola (FUCKEL) POELT & HAFELLNER 1 ra; t; subbor-mieur
Trapeliopsis coarctata (SM.) CHOISY 2 ra; b, s; bor-med, mo
Trapeliopsis flexuosa (FR.) COPPINS & P. JAMES 28 ch, db, fh, mw, pf, ra; Be, Pn, Sa, rw, st, t; bor-med
Trapeliopsis gelatinosa (FLÖRKE) COPPINS & P. JAMES 1 pf; t; subbor-mieur
Trapeliopsis granulosa (HOFFM.) LUMBSCH 44 ch, db, ds, fh, ra, rf; Be, Ju, Pn, Qr, Sa, st, t; arct-submed, mo(-med, mo)
Trapeliopsis pseudogranulosa COPPINS & P. JAMES 1 mw; st; bor-submed
Usnea hirta (L.) F. H. WIGG. 2 ch, fh; Qr; bor-mieur-med (mo)
Verrucaria macrostoma DUFOUR ex DC. 1 ra; c; mieur-med
Verrucaria muralis ACH. 5 ch, ra; b, c; (arct-)bor-med
Verrucaria ochrostroma (BORRER ex LEIGHT.) TREVIS. 1 ra; c; mieur, subatl?
Verrucaria viridula (SCHRAD.) ACH. 1 ra; b; bor-med
Vezdea acicularis COPPINS 1 ra; t; mieur
Vezdea retigera POELT & DÖBBELER 2 ra; t; (subbor-)mieur
Xanthoria candelaria (L.) TH. FR. 11 ch, fh, mw, ra, rf; Qr, Sm, rw; arct-med
Xanthoria parietina (L.) TH. FR. 64 ch, mp, mw, ds, fh, pf, ra, rf; Ae, Be, Cr, La, Pc, Po, Pr, Qa, Qr, Ro, Sa, Sm, Ti, Ul, rw, c, s; bor-med
Xanthoria polycarpa (HOFFM) TH. FR. ex RIEBER 54 ch, ds, fh, mp, pf, ra, rf; An, Be, La, Pc, Pn, Po, Pr, Qr, Ro, Sa, Sm, So, Ti, rw; bor-submed

Lichenicolous fungi

Arthothia phaeophysciae GRUBE & MATZER 5 mw, ra; Po, Sm; on Phaeophyscia orbicularis

Athelia arachnoidea (BERK.) JÜLICH 15 ch, ds, fh, mw, rf; Be, La, Po, Qr, Sa, Sm, t; on Bacidia spp., Cladonia spec., Cladonia caespiticia, Lecanora conizaeoides, Lepraria incana, Physcia spp., Xanthoria paretinana

Buellia physicola POELT & HAFELLNER 1 ra; Po; on Phaeophyscia orbicularis

Cladoniicola staurospona DIEDERICH, VAN DEN BOOM & APTROOT 4 ch; t, rw, on Cladonia spp.

Clypeococcum hypocenomycis D. HAWKSW. 2 ra; Be; on Hypocenomyce scalaris

Illosporiosis christiansenii (B. L. BRADY & D. HAWKSW.) D. HAWKSW. 1 ds; Sa, on Physcia tenella

Lichenocion erodens M. S. CHRIST. & D. HAWKSW. 11 ch, fh, mw, ra, rf; Be, Po, Qr, t; on Cladonia spp., Parmelia sulcata, Punctelia subrudecta

Lichenocion lecanorae (JAAP) D. HAWKSW. 1 pf; Po; on Lecanora conizaeoides

Lichenocion xanthoriae M. S. CHRIST. 3 ch fh, ra; La, Sm; on Xanthoria polycarpa

Lichenodiopsis lecanorae (VOUAUX) DYKO & D. HAWKSW. 10 ch, fh, mw, pf, ra; Be, Ju, Pc, Qr, rw, st; on Lecanora saligna

Marchandiohasidium aurantiacum DIEDERICH & SCHULTHEIS 7 ds, mw, ra, rf; Qa, Qr, Sa, Sm; on Physcia adscendens, P. tenella, Xanthoria paretinana

Muellerella lichenicola (SOMMERF.) D. HAWKSW. 1 ra; c; on Verrucaria spec.

Nectriopsis micareae DIEDERICH, VAN DEN BOOM & ERNST 7 mw, pf, ps, ra; Ps, rw, st; on Micarea viridileprosa

Paranectria oropensis (CES.) D. HAWKSW. & PIROZ. 10 ds, mp, mw, ra, rf; Ac, Po, Qr, Sa, Sm, Sr; on Candelariella reflexa, Lepraria incana, Physcia tenella

Proneckria oligospora LOWEN & ROGERSON var. octospora ETAYO 6 ch, fh, ds, ra; Be, La, Qa, Qr, Sa; on Punctelia subrudecta

Psammmina stipitata SAC. & ROUSSEAU ex E. BOMMER & M. ROUSSEAU 1 mw; Sm; on unidentified crust

Syzygospora physciacearum DIEDERICH 6 ch, ds, fh, ra; Qr, Sa, Sr; on Physcia tenella

Taeniolella phaeophysciae D. HAWKSW. 1 rf; Po; on Phaeophyscia orbicularis

Trichonecctria rubefaciens (ELLIS & EVERH.) DIEDERICH & SCHROERS 10 ch, ds, fh, mw, ra; Po, Pr, Qr, Sa; on Parmelia sulcata

Tubeufia heterodermae ETAYO 16 ch, ds, fh, mw, ra, rf; An, La, Qr, Sa; on Physcia adscendens, P. tenella

Xanthoriicola physciae (KALCHBR.) D. HAWKSW. 9 ch, fh, ra, rf; Qr, Sm, Sr; on Xanthoria paretinana

We are grateful to the following lichenologists and friends for their help with identifying some selected specimens: MAARTEN BRAND (Leiden), BRIAN COPPINS (Edinburgh), PAUL DIEDERICH (Strassen), JAVIER ETAYO (Pamplona), MARTIN KUKWA (Gdansk), ZDENEK PALICE (Prague), and HARRIE SIPMAN (Berlin). JAP SMITS (Heeze) is thanked for his helpful information about the study area.
References

— BOOM, P. P. G VAN DEN, 2002: Bacidia brandii, a new lichen species from the Netherlands, Belgium, France & Lithuania. – The Lichenologist 34: 327-332.
MELICK, H. VAN, 1988: De mosflora van de Boswachterij Leende. – Lindbergia 14: 196-204.
Artikel/Article: Diversity of lichens and lichenicolous fungi in a primeval heathland and adjacent managed forest in southern Netherlands (Groote Heide and 't Leenderbos). 25-45