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In different plant species, different strategies have evolved to acclimate to low-
temperature and high-light stress. The emphasis of this review will be to discuss the following
topics of low-temperature and high-light stress 1) the evidence for involvement of reactive oxygen
intermediates (ROI) 2) the roles of enzymatic and non-enzymatic ROI-scavenging and antioxidant
systems 3) the avoidance mechanisms of ROI production in chloroplast. To increase the
understanding of the oxidative-stress responses induced, for example, by low temperatures in
plants, we have to pinpoint the subcellular compartments and processes, which initiate the specific
signalling cascades.

I n t r o d u c t i o n

During evolution trees have developed a number of molecular/ anatomical/
morphological and physiological adaptations that enhance the probability of
survival in harsh environments. The focus of this presentation will be the role of
the active oxygen scavenging systems in trees and the physiological and
biochemical processes and mechanisms that govern protective, repair and
acclimation processes. It is our belive that an understanding of these strategies will
pave way to create improved stress tolerance of trees and enable a better
acclimation of trees to harsh environments.

Woody plants exhibit marked seasonal acclimation, a very active process
that is triggered by daylength and low temperature. The two step process, where
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low temperature is needed for full hardening is still not fully resolved at the
molecular level. Characteristics which enable the plant to endure low temperature
tolerance are both constitutive and facultative. Most stresses also have in common
their effect on plant water status (WEISER 1970, KACPERSKA 1989). Accumulating
evidence implies that the plant hormone abscisic acid (ABA) also plays a central
role in cold (PALVA 1994, WELIN & al. 1996). ABA exhibits a transient increase
during cold acclimation (DAIE & CAMPBELL 1981, LALK & DORFFLING 1985) and
ABA can substitute for the low temperature stimulus (CHEN & GUSTA 1983).
WEISER originally 1970 proposed that cold acclimation require transcriptional
activity of specific genes and alteration i gene expression ha been earlier discussed
in detail (CLOUTIER 1983, GUY 1990, THOMASHOW 1994, PALVA 1994, HUGHES &
DUNN 1996). Genes falling into a few categories will produce protective proteins,
such as COR-polypeptides (Cold regulated proteins), CAPs (Cold acclimation
proteins), AFPs (anti freeze proteins), and proteins involved in lipid or protein
protection have been presented.

The major determinant for cells to survive freezing is their ability to
tolerate dehydration and withstand repeated dehydration/rehydration cycles. The
plasma membrane appears to be the primary site of injury (STEPONKUS 1984,
LYNCH & STEPONKUS 1987), and the extent of injury depend on lipid composition
of the membranes and the presence of specific cryoprotectants (HINCHA & al.
1990, LIN & THOMASHOW 1992, NISHIDA & MURATA 1996). To compensate for
the reduced osmotic potential of the extracellular liquid during ice formation water
is diffusing out of the cells leading to dehydration of the cytoplasm.
Cryoprotectants and osmolytes stabilise membranes and maintain protein
comformation at low water potential.

Accumulation of compatible solutes including sugar alcohols (e.g. pinitol),
amino acids such as proline, quartemary ammonium compounds (e.g. glycine
betaine,) polyols and polyamines are known to correlate with increased
dehydration tolerance in plants (GUY 1990, BOHNERT & al. 1995, INGRAM &
BARTELS 1996). Other mechanisms are also involved and have been described
(HÄLLGREN & ÖQUIST 1990, HÄLLGREN & al. 1991) and the protective
mechanisms are still a matter of debate. Plants increase their capacity for protein
synthesis during cold acclimation (CLOUTIER 1983). An example of protective
proteins are dehydrins which have been suggested to protect cytoplasmic proteins
against denaturation (CLOSE 1996). Proteins of the dehydrin family are also of
interest since they exhibit a high affinity for metals (MANTYLA 1997), and it is well
known that metals play a major role in the production of reactive oxygen
intermediates (ROIs) (HALLIWELL & GUTTERIDGE 1992).

L o w - t e m p e r a t u r e - i n d u c e d o x i d a t i v e s t r e s s

A few experiments show direct evidence for ROI formation during low
temperature stress (KENDALL & MCKERSIE 1989). The evidence for a higher
production rate of ROIs during low temperature stress in plants is mostly indirect
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and is based on observations of changes in the levels of different ROI-scavengers
and antioxidants (BOWLER & al. 1992). The amplitude of an ESR signal,
representing unidentified organic free radicals from Scots pine needles, increased
with a step-wise decrease in temperature to -40°C (TAO & al. 1992). The best
known site for O2" production in a plant is by autooxidation of the thylakoid-
membrane-bound primary electron acceptor of PSI and of the peripheral reduced
ferredoxin (ASADA & al. 1974, FURBANK & BADGER 1983, ASADA 1994). Most of
the O2" produced in the thylakoid membrane is converted in a O2'"-mediated
cyclic electron flow to O2 and by non-catalytic dismutation to H2O2, before it
reaches the stroma or lumenal space (ASADA 1994).

For chloroplasts, mitochondria and peroxisomes the electron-transfer
chains are well-documented sources of H2O2 (CADENAS 1989, ASADA 1994,
PASTORI & al 1998). Chloroplasts are thought to be the major H2O2 producers
(ASADA 1994). It has been shown that H2O2 induces membrane energization that
leads to the down-regulation of PSII and, in consequence, can provide protection
against photoinhibitory damage (SCHREIBER & al. 1991). H2O2 is also a strong
nucleophilic-oxidizing agent and has been reported to react with SH-groups.
Increased levels of H2O2 have been shown to be a general response to low
temperature stress in chilling-sensitive plants (PRASAD & al. 1994a).

It is a well-known fact that H2O2 and 02"" can react together in
biochemical systems to form the hydroxyl radical (OH"). In addition, there are
other metal-catalysed reactions involving H2O2 that produce OH'. Thus, the
cellular location of metals and reductants such as thiols and AsA, and the site of
production of both 02'" and H2O2, will determine the significance of the OH'
toxicity.

Additional forms of ROIs are the singlet species. Singlet chlorophyll
(•Chi*) is generated by light excitation. The carotenoid pigments appear to have a
dual protective role quenching both iChl* and singlet oxygen (*02). The
chloroplast membranes are particularly susceptible to 102-induced lipid
peroxidation since approximately 90 % of the fatty acid of the thylakoid
glycolipids, phospholipids and sulpholipids is the unsaturated fatty acid a-
linolenate (KNOX & DODGE 1985). According to our current knowledge there is no
direct proof that the singlet species increase during low temperature stress. The
mechanism of free-radical-mediated lipid peroxidation involves at least three
different phases. There are only a few examples of lipid peroxidation during
freezing. Lipid peroxidation was eg. observed in spruce subjected to frost events
during the spring (POLLE & al. 1996). On the one hand polyunsaturation of the
membrane lipids due to low temperature would increase the potential for oxidative
stress damage, but on the other it provides new mechanistic features for
membranes (KÜSTERS & al. 1991).

Low temperature causes an increase in ROI levels and induces oxidative
stress in plants. However, the precise mechanisms remain to be established.
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A n t i o x i d a n t s

Protective mechanisms can be divided into two separate categories, those
involved in removing ROIs and those involved in reducing ROI production.
Generally, the defence system against ROIs in plant cells is a net result of
suppression mechanisms, scavenging and repair systems. Higher plants contain
numerous enzymatic and non-enzymatic ROI-scavengers and antioxidants, both
water- and lipid-soluble, localised in different cellular compartments (LARSSON

1988, DALTON 1995, WISE 1995). Non-enzymatic antioxidants include: pigments,
reduced glutathione (GSH), ascorbate (AsA), vitamin E and many others.
Interactions between different ROI-scavengers and antioxidants is reviewed by
DALTON 1995 and WINKLER & al. 1994.

Non-enzymatic antioxidants
a-Tocopherol is one of the most acknowledged antioxidant (LARSSON

1988, HESS 1993, POLLE & RENNENBERG 1994). oc-Tocopherol is the most
abundant tocopherol of the four forms found in plants (a-, ß-, y-, S-tocopherol).
Its main location is within the chloroplast. In Scots pine, older needles contain
higher a-tocopherol levels than younger and only a small increase in a-tocopherol
content can be detected during the autumn in the needles needles (WiNGSLE &
HÄLLGREN 1993).

The central roles of AsA and dehydroascorbate (dAsA) in physiological
processes in cells has been thoroughly reviewed (LEWIN 1976, FOYER 1993,
ARRIGONI 1994, ASADA 1994, DALTON 1995). Ascorbate, and enzymes that
metabolize AsA-related compounds, are involved in the control of several plant
growth processes (CORDOBA & GONZALEZ-REYES 1994).

Seasonal changes in AsA have been documented in several investigations
of frost-tolerant tree species (POLLE & RENNENBERG 1994). Dormant needles
show a significantly higher content of both AsA and dAsA, although the ratio of
AsA/dAsA was significantly lower (WiNGSLE & MORITZ 1997). These and other
findings indicate that AsA metabolism play an important role in low-temperature-
induced oxidative stress.

The most abundant thiol in higher plants is glutathione (FOYER &
HALLIWELL 1976, FOYER 1997, MULLINEAUX & CREISSEN 1997). The general
picture is that the levels of glutathione in its reduced form (GSH) increase several-
fold during the winter-time in evergreens and the diurnal and seasonal changes is
well documented for tree species (ESTERBAUER & GRILL 1978, SMITH & al. 1990,
ANDERSON & al. 1992, WINGSLE & HÄLLGREN 1993, POLLE & RENNENBERG 1994,

WILDI & LUTZ 1996). Plants normally have a low GSSG level, for example in
Scots pine it is approximately 20-fold lower than the GSH content (WINGSLE & al.
1989). Many factors, including low temperature and other environmental stresses,
have been shown to change the ratio or redox status of glutathione [GSH/(GSSG
+GSH)] (KARPINSKI & al. 1997) and an accumulation of GSSG can be an indicator
of higher oxidative stress (SMITH & al. 1990). The precise roles of glutathione in
the oxidative stress response still remain to be established and recent data indicate
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that GSH levels play a fundamental role in the regulation of the photosynthetic
electron transport (KARPINSKI & al. 1997). The regulatory impact of glutathione
and/or the redox status of the glutathione pool on plants' oxidative stress response
is discussed below.

The enzymatic ROI-scavenging system
In plant cells the enzymatic ROI-scavenging system consists of such

enzymes as: Superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase
(APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase
(DHAR), glutathione peroxidase (GPX) and glutathione reductase (GR) (FOYER &
HALLIWELL 1976, ASADA 1994, BOWLER & al. 1992, FOYER 1993, INZE &

MONTAGU 1995, FOYER 1997, MULLINEAUX & CREISSEN 1997).
The enzyme SOD can be taken as an example of the complexity in

studying the role of the enzymatic defence system. Different SOD isoforms in
plants are differentially expressed and also localised in different compartments
within and outside the cell (WiNGSLE & al. 1991, PERL-TREVES & GALUN 1991,
TSANG & al. 1991, BOWLER & al. 1992, KARPINSKI & al. 1992a,b, KARPINSKI & al.
1993, STRELLER & WINGSLE 1994, BUENO & al 1995, WINGSLE & KARPINSKI

1996, ScHiNKEL&al. 1998).
In pine trees there are several isoforms of CuZn-SOD in the chloroplast

and in the cytoplasm (WINGSLE & al. 1991, KARPINSKI & al. 1992a,b,1993). There
are also extracellular isoforms of SOD (STRELLER & WINGSLE 1994). In addition
there exist three Mn-SODs in the needles (STRELLER & al. 1994, SCHINKEL & al.
1998).

SOD mRNA levels have been observed to increase during recovery from
naturally-established winter stress, a combination of high light and low
temperature stress (KARPINSKI & al. 1993, 1994). In this experiment, in needles
protruding above snow, higher mRNA levels were observed for chloroplastic and
cytosolic isoforms of CuZn-SOD, in comparison with needles covered by snow.
Changes in transcript levels were not reflected in a corresponding increase in
protein levels. Moreover, CuZn-SOD activity levels were similar in covered and
protruding needles. These results suggest higher turnover rates of CuZn-SOD in
needles protruding above the snow. The lack of correlation between mRNA levels
and protein activity for CuZn-SODs in response to oxidative stress, has been
observed before and was also suggested to be a result of higher turnover rates of
CuZn-SODs during oxidative stress (KARPINSKI & al. 1992b).

SOD isoforms are differentially expressed during recovery from winter
stress. A comparison of chloroplastic and cytosolic CuZn-SOD mRNA levels
showed a 4-fold higher transcript level for the chloroplastic form until mid-May
(KARPINSKI & al 1993). This higher transcript level was also associated with a
higher chloroplastic CuZn-SOD activity. Transcript levels were reduced for both
chloroplastic and cytosolic CuZn-SODs and reached similar low levels after the
repair process of the photosynthetic apparatus was completed and photosynthetic
capacity had fully recovered from winter stress (KARPINSKI & al. 1993, 1994).
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These data indicate that chloroplasts in evergreens play a major role in generation
of ROIs during low-temperature-induced oxidative stress.

The total GR activity was also measured in Scots pine needles (WINGSLE

& HÄLLGREN 1993), and a well-known pattern with higher activities in winter and
lower in summer was observed (ESTERBAUER & GRILL 1978, ANDERSON & al.
1992, POLLE & RENNENBERG 1994). Different responses and regulatory
mechanisms from that for SOD genes have been observed for chloroplastic GOR.
In the same experiment (KARPINSKI & al. 1993) GR enzyme activity was induced
but the transcript levels of chloroplastic GOR gene were not changed. Later it was
demonstrated that GR activity in Scots pine needles can be up-regulated by redox
intraconvertion of the enzyme without change in its mRNA and protein levels
(WINGSLE & KARPINSKI 1996). Additionally, an estimation of mRNA molecule
number for chloroplastic CuZn-SOD and chloroplastic GOR showed that transcript
levels were at least 20-fold higher for CuZn-SOD than GOR. However, the protein
levels for CuZn-SODs were approximately 4-fold higher than for GR. This result
strongly suggests higher turnover rates for CuZn-SOD than GR during low-
temperature-induced oxidative stress and indicates different regulation of
expression of these genes.

The key enzyme involved in H2O2 scavenging is APX, which catalyses the
reaction: 2 AsA + H2O2 —> 2 monodehydroascorbate (mdAsA) + 2H2O.
Chloroplasts photoregenerate AsA from mdAsA or dAsA. mdAsA is converted to
AsA either by reduced ferredoxin or NAD(P)H with MDAR. DHAR is thought to
regenerate AsA using GSH as an electron donor. GPX has generated much
attention as an important enzyme in the scavenging of H2O2 or the products of
lipid peroxidation. The role and function of the chloroplastic GPX during cold
hardening and low-temperature-induced oxidative stress in trees is under
investigation (MULLINEAUX & al. 1998).

Expression of genes encoding different isoforms of the same ROI-
scavenging enzyme are regulated differently in response to low-temperature-
induced oxidative stress (KARPINSKI & al. 1993). Conflicting results have been
presented for seasonal changes in total APX activities in spruce (ANDERSON & al.
1992, POLLE & RENNENBERG 1994, POLLE & al. 1996). MDAR showed elevated
levels in the needles during autumn and winter. During bud break, both APX and
MDAR showed higher activity levels (POLLE & al. 1996). In Scots pine, activities
of such enzymes as SOD, MDR, APX and DHAR increased during cold-
acclimation (TAO & al. 1998). However, in many other experiments, total SOD
activities have not shown any seasonal variation (KRÖNINGER & al. 1993, WINGSLE

& HÄLLGREN 1993). Catalases have also received much attention in respect of
plants response to chilling and are thought to play a major role in inducing chilling
tolerance (PRASAD 1996). Fig. 1 summarizes changes of different non-enzymatic
and enzymatic antioxidants during acclimation to low temperature and long nights
in Scots pine. In general both non-enzymatic and enzymatic antioxidants increase
in Scots pine due to the cold acclimation.

It can be concluded that regulation of expression of the ROI-scavenging
enzymes can occur at different levels, e.g. regulation of enzyme activity, regulation

©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at



(259)

of amounts of isoforms, as well as and posttranslational processes, steady-state
levels of enzymes and transcripts, and regulation of the transcription.

S i g n a l l i n g a n d R e g u l a t i o n

Agents involved in signalling include salicylic acid (SA); H2O2 (LEVINE &
al. 1994, PRASAD & al. 1994a, PRASAD 1996); O2" (TSANG & al. 1991); GSH and
GSSG (HEROUART & al. 1993, WINGSLE & KARPINSKI 1996, KARPINSKI & al.
1997); Calcium (Ca2+; PRICE & al. 1994, KNIGHT & al. 1996); photoreceptors with
Ca2+

 (NEUHAUS & al. 1993); ABA (GIRAUDAT 1995) and recently the redox status
of plastoquinone pool (KARPINSKI & al. 1997). However, veiy little is known about
the signalling cascades initiated by these responses. ROIs are known to be involved
in the regulation of such diverse processes as the hypersensitive response and
systemic acquired resistance (DIXON & LAMB 1990, LEVINE & al. 1994); chilling
responses (PRASAD & al. 1994b); cross tolerance to different abiotic stresses
(BOWLER & al. 1992) and regulation of photosynthesis (HORMANN & al. 1993).
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APX

SOD

Long Night
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Fig. 1. Summary of changes of different non-enzymatic and enzymatic antioxidants during
acclimation to long nights and low temperature in Scots pine (WINGSLE & HÄLLGREN 1993,
KARPINSKI & al. 1992b, 1993, 1994, KIROSHEEVA & al. 1996, WINGSLE & MORITZ 1997, TAO &

al. 1998).

Generally, Ca2+ is considered to function as a secondary messenger in
plants' oxidative stress response (NEUHAUS & al. 1993, KNIGHT & al. 1996). It was
demonstrated that Ca2+ can regulate enzymatic ROI-scavengers and the oxidative
stress response (PRICE & al. 1994). ABA plays an important role in signalling of
drought and low temperature stress. ZHU & SCANDALIOS 1994 demonstrated that
different members of the Mn-SOD gene family in maize respond differently to
ABA and high osmoticum. ABA has recently been shown to increase both GR and
APX activities in Arabidopsis (O'KANE & al. 1996).
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A regulatory role for H2O2 as a signalling molecule in different secondary
messenger systems in humans and in animals is well documented (RAMASASARMA

1982, MEYER & al. 1993, GINNPEASE & WHISLER 1996). In plants the ability to
control H2O2, O2" and GSH levels is an important factor in biotic and abiotic
stress responses. Recently, it was shown that CuZn-SOD4 and CuZn-SOD4A
transcript levels in maize increase in response to H2O2 treatment (KERNODLE &
SCANDALIOS 1996).

Relevant functions of GSH in the context of oxidative stress, are those
where GSH participates in redox reactions and therefore oxidised glutathione
(GSSG) is generated (FOYER & HALLIWELL 1976). In plants, high concentrations
of GSH, but not GSSG, enhanced the expression of genes encoding enzymes
involved in phytoalexin and lignin biosynthesis and suggested a general role for
GSH in signalling systems in biological stress (WINGATE & al. 1988). Recently, we
reported that changes in the glutathione levels and/or redox status of glutathione
pool have a regulatory impact on the expression of genes encoding cytosolic and
chloroplastic isoforms of CuZn-SOD in Scots pine (WINGSLE & KARPINSKI 1996)
and cytosolic APX in Arabidopsis (KARPINSKI & al. 1997). Our results, that GSH
reduced the cytosolic CuZn-SOD transcript level, are in agreement with findings
for human CuZn-SOD and Mn-SOD genes which were found to be down-
regulated by thiols (SUZUKI & al. 1993). It is suggested, that the levels of GSH and
GSSG, or the redox state of the glutathione pool, play an important role in the in
vivo regulation of the expression of genes encoding the enzymatic ROI-scavenging
system in plants. We conclude that the mechanisms regulating the expression of
SOD and GOR genes respond differently to altered levels of GSH and GSSG in
Scots pine needles (WINGSLE & KARPINSKI 1996). The activity of GR increased
per se (but not the GOR transcript level) in response to higher levels of GSSG,
suggesting that the enzyme itself undergoes redox intraconversion in vivo.
However, the transcript levels of cytosolic and chloroplastic CuZn-SOD were
reduced by GSH.

Recently, we have demonstrated that exogenous GSH and GSSG can
inhibit APX1 and APX2 gene expression in Arabidopsis during excess-light
stress. Regulation of these genes in Arabidopsis is partly controlled by the redox
status of the plastoquinone pool (KARPINSKI & al. 1997). To our knowledge there
is no data indicating that the changes in the levels of AsA and dAsA and/or the
redox status of the ascorbate pool have a regulatory impact on the expression of
genes encoding the enzymatic ROI-scavenging system in plants.

The network of signalling pathways regulating expression of genes
encoding the enzymatic ROI-scavenging system in plant cells is complex. One
gene can be regulated by more than one signalling pathway. Interactions between
different signalling pathways are not understood. Fig. 2 shows a schematic outline
for the regulation of the ROI-scavenging system.
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Fig. 2. A schematic outline for the regulation and acclimation to oxidative stress of the
ROI-scavenging system in plants.

R O I s in P h o t o s y n t h e s i s a n d L o w T e m p e r a t u r e

Photosynthesis is generating ROIs, but it can also be involved in the
removal of and protection against ROIs. Several excellent reviews exist on
photosynthesis, covering the role of oxygen in photoinhibition (KRAUSE 1994),
oxygen metabolism (FOYER & HARBINSON 1994) and chilling stress (BAKER 1994,
WISE 1995, HUNER & al. 1998).

Photooxidation of needles of conifers in hars environments is manifested
as a light and O2-dependent bleaching of photosynthetic pigments. Chlorophyll
bleaching in conifers is much greater in sun-exposed than shaded habitats
(KARPINSKI & al. 1994). In Scots pine, during the winter-time, the chlorophyll
concentration is lower and the carotenoid levels remain equal, or even increase. At
the end of the winter, when the quantum flux density is relatively high, the pigment
levels are lowest (KARPINSKI & al. 1994). This coincides with a very low PSII
efficiency and reorganisation of the photosynthetic apparatus allow rapid recovery
of photosynthesis in the spring (LUNDMARK & al. 1988, ÖQUIST & al. 1992,
KARPINSKI & al. 1993, 1994, OTT ANDER & al. 1995).

The Dl protein, and the reaction centre in PSII, is generally described as
the most sensitive part of the photosynthetic apparatus when plants are subjected to
high light and low temperature stress (ARO & al. 1993, BARBER 1995, RUSSELL &
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al. 1995, KARPINSKI & al. 1997). In the chloroplast, light reactions will continue
while the energy consuming biochemical reactions are more limited in low
temperature. Chloroplasts subjected to low temperature may reduce the generation
of ROIs by dissipating energy through a number of mechanisms (WISE 1995).
Increased energy dissipation can be achieved through decreasing the
photochemical PSII activity; by increasing the photorespiratory activity; by the
Mehler-peroxidase reaction (SCHREIBER & NEUBAUER 1990); and by an increased
conversion of absorbed light into heat (HORTON & al. 1996). The thermal
dissipation process occurs within the antenna and the [(violaxanthin (V) +
antheraxantin (A) + zeaxanthin (Z); VAZ] cycle is suggested to play a major role
(DEMMIG-ADAMS & ADAMS III 1994, HORTON & al. 1996). Between October and
January, the VAZ cycle pigments in Scots pine changed their epoxidation state
from 0.9 to 0.1 and the Dl proteins content decreases (OTTANDER & al. 1995)

Adaptation of photosynthesis to low temperature is expressed by at least
two different strategies in overwintering plants. One is to maintain photosynthetic
capacity throughout the winter by different adjustments in the photosynthetic
apparatus, and the other is to photosynthesise during warm periods and down-
regulate photosynthesis during winter. A correlation between photosynthetic
capacity at low temperature and freezing tolerance in winter cereals results from
photosynthesis providing energy for cellular metabolism (ÖQUIST & al. 1993).

Cold acclimation does not affect the susceptibility of photosynthesis to
photoinhibition in Scots pine. However, there is a distinct increase in resistance to
photoinhibition at the level of PSII reaction centres, limiting photoinhibition
despite suppression of the capacity for photosynthesis (KRIVOSHEEVA & al. 1996).
Clearly, under the similar excitation pressures of PSII as defined by qp, needles of
cold-acclimated Scots pine were much more resistant to photoinhibition than
needles of non-hardened pine. Unlike winter varieties of iye and wheat, which1;
respond to cold acclimation by increased capacities for photosynthesis, seedlings
of Scots pine respond to cold acclimation by a 25% inhibition of photosynthesis
over the studied range of absorbed photon flux density. This is accompanied by
increased activities and levels of several enzymes and metabolites of the enzymatic
ROI-scavenging system (KRIVOSHEEVA & al. 1996).

The oxygenase reaction leading to photorespiration and the donation of
electrons to oxygen to form Superoxide in a pseudocyclic electron flow seem to be
the major oxygen-consuming reactions, (OSMOND & GRACE 1995). BIEHLER &
FOCK 1996, concluded that the Mehler-peroxidase reaction increased in wheat
during drought stress when the availability of CO2 was limited. The reaction of
As A with H2O2 is efficient (ASADA 1994) and there is accumulating evidence that
the Mehler-peroxidase reaction serves as an important sink for excess electrons
(KRIVOSHEEVA & al. 1996), although the role is not well understood and the
significance under debate. KRIVOSHEEVA and co-workers, hypothesize that the
H2O2~scavenging system has two roles in protection of cold acclimated needles
from photoinhibition: i) protection from ROIs formed upon excessive excitation in
general ii) allows O2 to function as an electron acceptor, thus opening a fraction of
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photosystem II reaction centres and consuming electrons in excess of the
requirements of CO2-fixation.

The photorespiratory pathway is theoretically a possible protection
mechanism, however, to our knowledge, no data can be found in the literature to
support the hypothesis that increased photorespiration during low temperature
stress would protect the photosynthetic machineiy in plant leaves. The protective
role of photorespiration cannot be explained simply in quantitative terms by energy
dissipation (KRAUSE 1994). Heber and co-workers (Wu & al. 1991) argued that the
limited rate of coupled electron flow facilitated by photorespiration protects the
photosynthetic machineiy in two ways: i) by maintaining the primary electron
acceptor, plastoquinone, in a partly oxidised state and ii) by building up a high
proton gradient over the thylakoid membrane. This highly-energized state of the
thylakoid membrane may be dependent on cyclic electron flow in the proximity of
PSI (Wu & al. 1991). Acidification of the thylakoid interior will lead to an
increased dissipation of excitation energy via chlorophyll-fluorescence and this
energy-dependent quenching mechanism is known to protect against
photoinhibition (KRAUSE & WEIS 1991, HORTON & al. 1996).

The above data indicate that the ability of trees to adjust the defence
systems against low-temperature-induced oxidative stress depends on a number of
factors. The relative role of antioxidants should be considered in further studies on
improvement of plants' oxidative stress tolerance.

Recently HUNER & al. 1998 reviewed the question of energy balance and
acclimation to light and cold and concluded that changes in environmental
conditions result in an imbalance between the light energy absorbed by PSII and
the energy utlilized by metabolism. The energy imbalance is sensed by alterations
in PSII exitation pressure, and thus the reduction state. This is suggested to give
rice to a chloroplastic reduction signal and to initiate a signal transduction
pathway. This signal reduction pathway apparently coordinate photosynthesis-
related gene expression and influence nuclear expression of genes. Hence, HUNER

& al. 1998 suggest that the photosynthetic apparatus might be an environmental
sensor.

Finally we would like to add that our experiments showed that there exist a
systemic acquired acclimation to excess.light in Arabidopsis (KARPINSKI & al.
1998). In essence: a leaf treated with high (excess) light render other leaves on the
same plant more resistant to subsequent high light treatment. The signal might well
be associated with the redox state of plastoquine pool in the chloroplast
(KARPINSKI & al. 1997) but the nature of the signal is not known. Further
experiments in this area are underway.
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