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The tripeptide glutathione is not only essential in the sulfur metabolism of plants, but also
an important redox buffer responsible for antioxidative protection and redox regulation of the cell
functions. Changes in foliar glutathione concentrations occur upon various stress impacts, such as
drought, cold acclimatisation, high altitude stress, and air pollution impacts. In general, results indi-
cate an increase in glutathione concentrations with increasing stress level, which is ascribed a higher
capacity for antioxidative protection, but stress impacts may also cause changes in the glutathione
redox state which may have further implications on metabolism, such as enzyme regulation and
gene expression. The present paper reviews the effects of environmental stress on glutathione me-
tabolism in plants.

I n t r o d u c t i o n

The tripeptide glutathione (GSH, y-glutamyl-cysteinyl-glycine) is the most
abundant low molecular weight thiol in plant tissues. Due to the particular proper-
ties of the molecule it plays multiple roles in the cellular metabolism. It is a central
compound in sulfur metabolism and is considered the main transport form of re-
duced sulfur (RENNENBERG & LAMOUREUX 1990). It links the sulfur reduction
pathways to the protein synthesis and functions as a buffer for reduced sulfur. On
the other hand, GSH is also a strong reductant which makes it an effective scaven-
ger of toxic active oxygen species (AOS). Oxidative stress is an inescapable feature
of life and AOS are involved in nearly all effects of environmental stresses to
plants (DE KOK & STULEN 1993). The capacity of the glutathione redox system to
detoxify dangerous AOS is dependent on the pool size of total GSH, on the ratio
GSH/GSSG (GSSG = oxidized glutathione), and on the activity of the regenerating
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enzyme system, the NADPH dependent glutathione reductase. Elevated levels of
GSH appear to be correlated to active plant responses to environmental stresses and
responses of GSH synthesis, GSH redox status, and GSH related enzyme activities
have been found repeatedly in plants under stress.
Given the extensive literature on the subject the present review is confined to se-
lected points with emphasis on the role of glutathione in forest trees in response to
environmental stresses.
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Fig. 1. Possible mechanisms of AOS formation in plant cells under stress: Every stress
impact that causes a slower function or malfunction of the Calvin cycle (5) leads to the exhaustion
of the primary electron acceptor NADP and to a block in the electron transport to NADP (1). Elec-
trons leak to oxygen (3) yielding Superoxide and, via Superoxide dismutase reaction (4), H2O2. Ex-
cess excitation energy may be directly transferred to molecular oxygen yielding singlet oxygen (2).

The common mechanism of stress induced free radical production is based
on an imbalance between the consumption of reductant (NADPH) in carbon fixa-
tion, and the need of the electron transport chain for regenerated electron acceptor
at the PS I site (NADP). Stress impacts such as low temperatures, drought (through
stomatal closure), or chemical agents impair the function of the carbon fixation in
the Calvin cycle, but they do not slow down light driven electron transport. This
leads to an overreduction of the electron transport chains and forces electrons to
leak to alternate acceptors, predominantly molecular oxygen yielding Superoxide
anion (V (Fig. 1). Superoxide is detoxified enzymatically forming H2O2 which is
enzymically detoxified by ascorbate, also the most effective chemical scavenger of
AOS. Compared to ascorbate, GSH is less effective in this function, but the regen-
eration of oxidized ascorbate in the Halliwell-Asada cycle requires GSH (Fig. 2).

Furthermore, the redox pool of GSH/GSSG is able to modify protein struc-
tures via interaction with protein-SH groups and disulfide bonds. Hence, this redox
state which may change under stress conditions, can regulate enzyme activities or
gene expressions (FOYER & al. 1997).
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Biosynthesis

Fig. 2. Some possible roles of glutathione in protection against stress. Composed after DE
KOK & STULEN 1993 and FOYER & al. 1997. PS I = Photosystem I, Aox = oxidized substrate, Ared
= reduced substrate, Prot = proteins, Asc = reduced ascorbate, DHAsc = dehydroascorbate, AOS =
active oxygen species, GSH = reduced glutathione, GSSG = oxidized glutathione. 1 = glutathione
reductase activity, 2 = chemical antioxidant property of glutathione, 3 = interaction with proteins
and formation of mixed disulfides, 4 = enzymic activities of the Halliwell-Asada cycle.

A i r P o l l u t i o n

In its role as a central compound in sulfur metabolism glutathione concen-
trations in plant tissues are affected by exposure to sulfurous air pollutants. Early
studies on spruce trees revealed significantly higher GSH concentrations in needles
harvested in SO2 polluted areas. In fumigation experiments, exposure to SO2 and
H2S both significantly increased GSH concentrations in leaf tissues of different
plants (TAUSZ & al. 1998a). Although SO2 is known to induce oxidative stress in
chloroplasts, the role of enhanced glutathione concentrations for the stress protec-
tion is questionable in this case. Glutathione rather functions as a buffer for reduced
organic sulfur.

Oxidative air pollutants, such as ozone, induce oxidative stress in plant tis-
sues. Increases of the GSH pool were regarded a protective response of plant me-
tabolism against this stress (MEHLHORN & al. 1986). However, results in literature
are highly inconsistent, since under many experimental conditions GSH pools
showed no responses to ozone fumigations, although other effects, e.g. chromoso-
mal anormalities in meristems, were found (WONISCH & al. 1999). A field study on
the ozone sensitive species Pinus ponderosa showed changes in the GSH/GSSG
ratios as an early symptom of ozone injury rather than changes in the total glu-
tathione pool (Fig. 2).
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Fig. 3. The glutathione system in needles of Pinus ponderosa trees growing at an ozone
impacted field plot in Southern California with (Sympt.) and without (Asymptom.) severe crown
thinning. The total pool of glutathione (columns) consists of GSH (open part of the column) and
GSSG (closed part of the column). Columns show medians of 5 individual trees, error bars show
median deviations (omitted when within the symbol). Sunlight adapted needles (L) and needles after
overnight darkening of detached branches (D). Asterisks indicate significant differences between
light and dark adapted stage. Modified from TAUSZ & al. 1999.

In a comparison between sensitive and tolerant cultivars of different spe-
cies, a protective effect of enhanced GSH level against ozone was reported in some
(e.g. in tobacco), but not in all species (WELLBURN & WELLBURN 1996). Modifica-
tion of GSH levels in genetically transformed tobacco (about 5-fold the wildtype
concentrations) coincided with a slight increase in ozone tolerance (WELLBURN &
al. 1998), but studies on similarity transformed poplar did not confirm this result
(NOCTOR & al. 1998, STROHM & al. 1999). Ozone sensitive tobacco cultivar BelW3
showed oxidation of the glutathione pool together with a decrease in glutathione
reductase (GR) activity upon ozone fumigation, whereas the resistant BelB main-
tained a high GSH/GSSG ratio and a high GR activity (PASQUALINI & al. 1999).

L i g h t S t r e s s

Glutathione levels are strongly affected by the light environment. Sun
needles of Picea abies contain more GSH than shade needles (GRILL & al. 1987). A
study by SCHUPP & RENNENBERG 1989 revealed a light dependent daily course of
GSH concentrations in spruce needles with a midday maximum. This might be due
to the biochemistry of GSH synthesis which is clearly light dependent (NOCTOR &
al. 1997), or due to transportation processes exporting GSH from the needles, or a
combination of both. In pine trees even a small increase of GSH levels was ob-
served upon darkening. In this study, branches were detached after sampling in the
light, i.e. GSH export was impaired (TAUSZ & al. 1999, Fig. 3).
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D r o u g h t S t r e s s

Higher plants respond to water deficiency with stomatal closure which
causes a lack of CO2 in the chloroplasts. This results in increased oxidative stress
in illuminated chloroplast, possibly affecting the glutathione system. Results on
non-dessication tolerant plants are contradictory. Some studies reported oxidation
of the glutathione pool only at very low relative water content, probably reflecting
severe (and probably irreversible) biochemical damages to the tissues at that stage
of desiccation (SMIRNOFF 1993). Other studies showed an increase in the
GSSG/GSH ratio as the first symptom in the antioxidative system in conifers (S.
MONSCHEIN, M. TAUSZ & D. GRILL, unpublished results on spruce, and M. TAUSZ,
A. WONISCH, J. PETERS, D. MORALES, M. S. JIMENEZ & D. GRILL, unpublished
results on pine). These changes in glutathione redox state underwent lightmodu-
lated variations, sometimes showing recovery of the oxidized state in the dark
(compare results in Fig. 3).

The situation is clearly different in desiccation tolerant (poikilohydric)
plants or in desiccation tolerant resting stages of plants, e.g. seeds. The dehydrated
tissues contained a high proportion of GSSG which is clearly not a sign for damage
in this case. Upon rehydration, the glutathione pool was quickly conversed to a
high GSH/GSSG ratio (KRANNER & GRILL 1993).

C o l d A c c l i m a t i s a t i o n

GSH levels in conifers undergo annual concentration changes with maxima
in winter and minima in summer (ESTERBAUER & GRILL 1978). A role in winter
hardening is ascribed to increasing GSH levels in fall, but the mechanisms are still
unclear (WiNGSLE & al. 1999). However, results are not always that clear and in
some studies no pronounced seasonal change of GSH content was found in field
grown conifer needles (STECHER & al. 1999).

Experiments in climate chambers showed that the increase in foliar GSH
concentrations in spruce needles can be triggered by low temperatures (4 °C), but
not by a shortening of the day length (HERBINGER & al. 1999). In this experiment,
like observations in other field studies (STECHER & al. 1999), changes in the redox
state of the GSH pool were not found in winter conditions (HERBINGER & al. 1999).
The substantial increase of GR activity which is associated with the increase of
GSH levels during winter adaptation (ESTERBAUER & GRILL 1978) might account
for the stable redox state of the GSH pool.

S t r e s s C o m b i n a t i o n s

The complex impacts of environmental stress combinations on the glu-
tathione system of field grown plants were mainly studied in forest research pro-
jects. Altitude profiles provided a gradient of natural and man-made stresses. Ir-
radiance, climatic stress, and atmospheric ozone concentrations increase with in-
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creasing altitude causing potentially elevated oxidative stress at higher altitudes.
Gradient studies on forest trees (TAUSZ & al. 1997) and several herbaceous high
alpine plants (WILDI & LUTZ 1996) revealed increasing concentrations of glu-
tathione with increasing altitude (i.e. increasingly stressful conditions). Fig. 4
shows this observation on spruce trees, but only without the impact of local air pol-
lution above local inversion layers.

D i s c u s s i o n a n d P r o s p e c t i v e s

The mechanisms through which GSH is involved in stress protection
and/or stress responses remain largely unclear. Some results contradict each other
with respect to an increased protective capacity due to increased GSH levels. GSH
is only one component of the cellular antioxidant defence, and plant response is a
concerted action of the whole metabolism. WILDI & LUTZ 1996 showed that differ-
ent antioxidants may respond differently to stress (e.g. high altitude), and that these
responses depend on the species. The study of antioxidative response patterns in-
stead of single responses (such as GSH alone) seems to be more promising (TAUSZ
&al. 1998).

Another important aspect is the potential of the glutathione redox pool to
participate in enzyme regulation (MAY & al. 1998). Recent results indicate not only
a direct regulation of the expression of antioxidant enzymes via glutathione or a
redox regulation of enzyme molecules on the protein level in vivo (e.g. for glu-
tathione reductase, WiNGSLE & al. 1999). The regulatory aspects of GSH metabo-
lism have also been demonstrated by the capacity of glutathione to induce damages
on chromosomes in meristematic tissues observable on the structural level (ZELL-
NIG & al. 2000).
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Fig. 4. Altitudinal pattern of water extractable thiols (which is by about 95% glutathione)
in previous year's spruce needles of field plots in Austria (modified from TAUSZ & al. 1997). Sites
below 1000 m are impacted by local pollution (SO2), above 1000 m altitudinal increase of thiol
contents are observed.

Further research on the initial stages of changes in the redox systems in-
cluding enzyme activations and metabolic adaptations upon stress is needed.
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