Photosynthetic Acclimation in Plants Growing Near a Carbon Dioxide Spring

By

D. VODNIK, H. PFANZ, Ch. WITTMANN, I. MAČEK, D. KASTELEC, B. TURK & F. BATIČ

Key words: Photosynthesis, elevated CO₂, mofette, natural CO₂ spring.

Summary

VODNIK D., PFANZ H., WITTMANN C., MAČEK I., KASTELEC D., TURK B. & BATIČ F. Photosynthetic acclimation in plants growing near a carbon dioxide spring. - Phyton (Horn, Austria) 42 (3): (239) - (244).

Photosynthesis of several plant species (Phleum pratense, Echinochloa crus-galli, Juncus effusus, Plantago major), grown under naturally elevated CO₂ at the Stavešinci mofette area, NE Slovenia, was studied. Plants were selected for photosynthetic measurements according to soil CO₂ concentration measured within the rooting zone and/or according to their height. Plant height was in good agreement with soil CO₂. Differences in several decisive photosynthetic parameters (photosynthesis measured at different CO₂ concentrations, carboxylation efficiency and CO₂ compensation point) were affected in various C₃ species and also in the C₄ grass E. crus-galli. Results show that both C₃ and C₄ plants had adapted to extreme CO₂ conditions and had adjusted respiration and photosynthetic carbon assimilation according to the CO₂ exposure.

Introduction

Atmospheric carbon dioxide concentration has a significant impact on leaf photosynthesis in C₃ (BOWES 1993) and also in C₄ plants (ZISKA & BUNCE 1997). Elevated CO₂ concentrations usually result in a significant increase in leaf photosynthesis and vegetative growth (BOWES 1993, CONSTABLE & al. 1992, DRAKE & al. 1997, ZISKA & BUNCE 1997). This has been shown in many short-term experiments, mainly related to the problem of increasing atmospheric CO₂ concentrations. Extending the duration of elevated (e.g. doubled) CO₂ to weeks or years, however, often leads to down-regulation of photosynthesis, i.e. to a
reduction or even a loss of the initial photosynthetic response. This long-term response can vary with species, developmental stage, temperature, resource availability and internal factors, such as source-sink balance. Despite much effort in dissecting physiological, metabolic, and even molecular features of acclimatory down-regulation of photosynthesis among species, functional types and ecosystems, its implications and consequences are still matters of intensive debate (see Badiani & al. 1999).

Natural CO₂ springs offer a good method to study the effects of long-term CO₂ exposure on ecosystems (Raschi & al. 1997, Badiani & al. 1999). Vegetation at springs has been exposed to high CO₂ for long periods, allowing time for acclimation, and perhaps genetic adaptation. The main reason for increased research activity at these sites is the expected increase of atmospheric CO₂ concentration (WMO 1990, Bowes 1993). However, investigation of ecophysiological processes at CO₂ springs can be related also to other issues than global change. Plants growing close to CO₂ springs are temporarily exposed to extreme (toxic) CO₂ concentrations and have to cope with huge and frequent diurnal fluctuations of local CO₂ conditions. There is little information on plant physiological responses at such conditions and present knowledge is limited to few plant species (e.g. Cook & al. 1998). In our study photosynthetic performance of different C3 and C4 species growing at different CO₂ regimes (high, medium or low CO₂ exposure) was studied at mofette Stavešinci, NE Slovenia.

Material and Methods

The study was conducted between 1999 and 2001 at the geothermal mofette field near Stavešinci, Slovenia (see Kaligarić 1999, Turk & al. 2001). At this site very pure CO₂ is released into the atmosphere by several vents in a flat area of ca. 3000 m². CO₂ concentrations in air strongly depended on weather (wind) conditions and fluctuated from 0.036% to at least 1%. Plants of different species were found growing at locations with soil CO₂ ranging from 0.4 to 26% (w/v) (Pfanz & al. unpublished). The soil is a reduced gley on quaternary alluvium, consisting of silty clay material derived from different parent rocks. The vegetation at the study area at which agriculture was stopped in 1998 consists of C3 and C4 grasses and several (pioneer) herbs. The CO₂ exposure of plants differs according to irregular distribution of the gas releasing vents and cracks. Individual plant height is highly variable, the smallest plants can be found in the close neighborhood to the vents.

For our research the following plant species were selected: Phleum pratense L., Juncus effusus L., Echinochloa crus-galli (L.) P.B. and Plantago major L. Plants differently exposed to CO₂ were selected at different distances from the gas releasing vents according to their height and/or soil CO₂ concentration measured within the rooting zone using a landfill gas analyzer GA 2000 (Ansyco, FRG). Holes of 10, 25 and 40 cm depth were drilled into the soil with a borer and the gas-piping tubing of the analyzer was immediately inserted and values recorded.

Gas exchange measurements of intact leaves that were still attached to the plants were made with a portable porometer system (LI-6400, LI-COR Inc., Lincoln, USA). Light response curves were obtained under constant climatic conditions (20°C, 65-70% relative humidity; 24°C, 50-55% relative humidity for E. c.-g.) and a controlled CO₂ supply (350 μmol mol⁻¹). CO₂ response curves were performed at 20°C, 75% RH (24°C, 50-55% RH E. c.-g.) and 800-1000 μmol photons m⁻² s⁻¹. The response of net CO₂-exchange (A) to changing intercellular CO₂ concentrations (C) were conducted at 20°C, 65% rel. humidity (24°C, 55% RH E. c.-g.) and light-saturating conditions (800 μmol photons m⁻² s⁻¹). Statistical analysis showed that the relationship can be described most...
appropriately by the exponential functions \(y = y_0 + A*(1 - \exp(-B*x)) \) or \(y = A*(1 - \exp(-B*(x - y_0))) \) (E. c.-g.), \(r^2 = 0.99 \). Net CO\(_2\)-exchange was measured 10-15 min after CO\(_2\)-supply when all parameters and the total coefficient of variation (CV, %) indicated stable leaf chamber conditions.

The carboxylation efficiencies (CE, mol m\(^{-2}\) s\(^{-1}\)) equivalent to the initial slope (B) of the A/C\(_2\)-response curves were read. Saturating external CO\(_2\) concentrations for maximal photosynthesis (SEC, %) were calculated from the individual hyperbolic equation of the A/C\(_2\)-response curves. Statistical analysis and calculations were performed using Sigma Plot 5.0 (SPSS Science Software) and Statgraphics Plus 4.0 (Statistical Graphics Corp.).

Results and Discussion

Simultaneous measurements of CO\(_2\), CO, O\(_2\), CH\(_4\) and H\(_2\)S in the soil or in the air revealed that the CO\(_2\) spring in Stavesinci is emitting very pure CO\(_2\). No significant influence of contaminating gases on the plants could therefore be expected. The soil CO\(_2\) measured at the depth of 20 cm was thought to be indicative for the CO\(_2\) conditions during plant growth. When plant height and average soil CO\(_2\) concentration were compared, a strong correlation can be found (data not shown). Plants growing at higher soil CO\(_2\), which is closer to the vents, were smaller. This indicates that gaseous regime directly or indirectly influences plant growth.

Gas exchange measurements revealed a significant influence of the CO\(_2\) growth conditions on several decisive photosynthetic parameters. For *Phleum pratense*, a C3 grass, maximum net photosynthesis measured at 2% CO\(_2\), net photosynthesis measured at 0.7 and 0.35% were higher in low CO\(_2\) grown plants than in plants exposed to elevated CO\(_2\) (Table 1). In addition a lower carboxylation efficiency was found for plants exposed to elevated CO\(_2\). Similar differences were found for other C3 plants *Juncus effusus* and *Plantago major* (data not shown) but not for the C4 plant *Echinochloa crus-galli*. For the species studied literature data on elevated CO\(_2\) effects are limited to growth responses in short term experiments. Although the results of these studies vary, at least a transient growth stimulation under doubled ambient CO\(_2\) was observed for *Phleum pratense* (NORTON & al. 1999, MORTENSEN 1999, WILEY 2001), *Plantago major* (THOMAS & al. 1999, FONSECA & STOLEN 2000) and *Echinochloa crus-galli* (ZISKA & BUNCE 1997). Information on the growth response of *Juncus effusus* is scarce (KANG & al. 2001). The photosynthetic response in these plant species has not been studied in detail with the exception of *Plantago major* growing at a CO\(_2\) spring (FORDHAM & BARNES 1999). Results of this study suggest that long-term adaptation at elevated CO\(_2\) does not appear to be linked to the intrinsic capacity for photosynthesis. In our case a clear decrease in carboxylation efficiency was found for *Plantago major*, as also for *P. pratense* and *Juncus effusus*. Hence it is concluded that a decreased activity/efficiency of Rubisco (MOORE & al. 1999) is involved in down-regulation of photosynthesis.
Table 1. Photosynthetic parameters of *Phleum pratense* and *Echinochloa crus-galli* at the CO₂ spring Stavešinci. Means and SE are presented (n = 4-5 for soil gas and gas exchange measurements and 6-20 for the plant height).

<table>
<thead>
<tr>
<th>Plant</th>
<th>CO₂ exposure(1)</th>
<th>Mean height (cm)</th>
<th>A₃₅₀(2)</th>
<th>A₇₀₀(3)</th>
<th>A₂₀₀₀(4)</th>
<th>CE(5)</th>
<th>CO₂ compensation point(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phleum pratense</td>
<td>Low (0.4%)</td>
<td>135 ± 15</td>
<td>16.9</td>
<td>21.6</td>
<td>23.0</td>
<td>4.2</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Medium (3.3%)</td>
<td>47 ± 7</td>
<td>8.9</td>
<td>15.2</td>
<td>20.4</td>
<td>2.2</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>High (26%)</td>
<td>23 ± 5</td>
<td>7.8</td>
<td>14.9</td>
<td>20.3</td>
<td>2.3</td>
<td>144</td>
</tr>
<tr>
<td>Echinochloa crus-galli</td>
<td>Low</td>
<td>66 ± 2</td>
<td>14.3 ± 1</td>
<td>15.7 ± 1.3</td>
<td>17.3 ± 1.2</td>
<td>19 ± 3</td>
<td>5.1 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>34 ± 2</td>
<td>11.1 ± 1.0</td>
<td>13.8 ± 1.0</td>
<td>15.8 ± 1.0</td>
<td>15 ± 2</td>
<td>7.2 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>15 ± 3</td>
<td>12.4 ± 1.8</td>
<td>15.3 ± 2.1</td>
<td>18.0 ± 1.8</td>
<td>13 ± 3</td>
<td>9.0 ± 5.9</td>
</tr>
</tbody>
</table>

(1) Plants were selected at different distances from the gas releasing vents according to their height and soil CO₂ concentration at the rooting zone (*P. pratense* only). For soil CO₂ values in % are given in parentheses. (2-4) Net assimilation rates measured at 350 (A₃₅₀), 700 (A₇₀₀) or 2000 (A₂₀₀₀) μmol CO₂ mol⁻¹ in (μmol CO₂ fixed m⁻² s⁻¹). (5) Carboxylation efficiency (μmol m⁻² s⁻¹). (6) CO₂ compensation point (μmol mol⁻¹).

In general, studies of photosynthetic acclimation at natural CO₂ springs revealed inconsistent results (BADIANI & al. 1999, VAN GARDINGEN & al. 1997). In spite of acclimation-promotive conditions, which are typical for spring sites, poor availability of mineral nutrients for example, photosynthetic down-regulation, in terms of photosynthetic capacity, carboxylation efficiency, and Rubisco content was rarely found. In the work of COOK & al. 1998 photosynthesis of the sub-Arctic grass *Nardus stricta* was studied. Comparisons between plants growing at elevated CO₂ (estimated mean air CO₂ = 790 μmol mol⁻¹) and plants growing in adjacent areas exposed to ambient CO₂ concentrations (± 360 μmol mol⁻¹) showed reductions in photosynthetic capacity, reductions in the content, activity and activation state of Rubisco and decreased chlorophyll content under elevated CO₂. On the other hand no acclimation of photosynthesis has been reported for grasses from temperate regions, or grassland species of agricultural importance (BADIANI & al. 1999). In *Agrostis canina* for example, no change in light saturated photosynthesis, carboxylation efficiency and the content of Rubisco was found (FORDHAM & al. 1997). Our research at Stavešinci however, suggests a general tendency to photosynthetic acclimation in C₃ species. A plausible rationale for down-regulation is that it optimizes carbon gain with respect to the lower capacity of the plant for carbon utilization. This lower capacity is a direct (CO₂ toxic action) or indirect result (anoxia in the soil and concomitant effects on the roots,
absorption of mineral nutrients etc.) of CO₂ exposure. There is no evidence for similar acclimation in C4 plant E. crus-galli. Still, a slight but not significant decrease in CE under elevated CO₂ can be observed.

In all plant species measured the CO₂ compensation point of the ACi curves strongly depended on the prevailing CO₂ conditions (Table 1). In Phleum CO₂ compensation point was at 48, 97 and 170 µmol mol⁻¹ CO₂ for low-, medium- and high-CO₂ grown plants, respectively. A similar trend was observed for Plantago and Juncus (data not shown). Interestingly, a shift in the CO₂ compensation point was observed in C4 plant E. crus-galli, too. Values 5.2, 7.2 and 9.0 µmol mol⁻¹ CO₂ were recorded for low-, medium- and high-CO₂ exposure, respectively. Results show that both C3 and C4 plants adapted to extreme CO₂ conditions and had adjusted photosynthetic carbon assimilation and respiration according to the CO₂ exposure. There is abundant evidence that a reduction in dark respiration occurs when atmospheric CO₂ is increased (DRAKE & al. 1999) and similar effect can be described for photorespiration. However, no data on changes in photorespiration are available from natural CO₂ springs and information on dark respiration is very scarce indicating stage-specific increase (see BADIANI & al. 1999). More detailed physiological and biochemical studies of vegetation at the mofette Stavešinci are therefore needed to explain the observed effects.

Acknowledgements

We are grateful to Dr. A. RASCHI for literature, field trips and helpful discussions. The work was granted by grants J4-2186 and Z4-3196 from the Ministry of Science, Education and Sport of Slovenia (DV) and by the Forschungs-Pool 2001 (09112000) of the University of Essen (HP). Research was performed in the frame of COST 627 Program. We express our deepest thanks to the families Kurbus and Šiško who hosted us with great hospitality and interest in our work.

References

FONSECA F. & STULEN I. 2000. Effect of a switch from elevated to ambient CO\textsubscript{2} on growth and carbohydrate allocation of Plantago major ssp pleiosperma. – Phyton (Horn, Austria) 40: 45 - 50.

FORDHAM M. & BARNES J. 1999. Growth and photosynthetic capacity in Agrostis canina and Plantago major adapted to contrasting long-term atmospheric CO\textsubscript{2} concentrations. - In: RASCHI A., VACCARI F. P. & MIGLIETTA F. (Eds.), Ecosystem response to CO\textsubscript{2}: the MAPLE project results, pp. 143 - 157. - RDG European Commission, Brussels.

KALIGARIĆ M. 1999. Vegetation mapping around CO\textsubscript{2} springs at Strmec (Radenci, Slovenija). - In: KALIGARIĆ M. & ŠKORNIK S. (Eds.), SNACA, FACE and OTC’s CO\textsubscript{2} enrichment at the leaf/air interface and/or the root/soil interface; results in growth and development of plants, pp. 22 - 23. - University of Maribor.

TURK B., PFANZ H., VODNIK D., BATIC F. & SINKOVIC T. 2001. The effects of elevated CO\textsubscript{2} in natural CO\textsubscript{2} springs on bog rush (Juncus effusus L.) plants. I. Effects on shoot anatomy. - Phyton (Horn, Austria), in press

