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Maize (Zea mays L.), a very important C4 crop, is a chill-sensitive plant. Its chill resis-
tance is related to various elements of the antioxidative system at the cellular level. The specific
anatomy and physiology of the C4 photosynthetic type makes its antioxidative strategy more com-
plex compared to C3 plants. The chill resistance of maize depends on several Superoxide dismutase
(SOD) isozymes which are unequally distributed among the bundle sheath and mesophyll cells, and
also on catalase (CAT) and ascorbate peroxidase (APX) activity. CAT is present as three isoforms
in both types of photosynthetic cells, whilst APX is restricted to the bundle sheath. CATs show
differentiated susceptibility to thermal inhibition. The role of xanthophyll cycle components, a-
tocopherol and polyamines in literature dealing with the chill resistance of maize is also reviewed.
Difficulties can be encountered with the construction of chill-resistant maize transformants because
signalling processes in the mesophyll and bundle sheath are not properly recognised.

I n t r o d u c t i o n

In the literature dealing with plant physiology, the term 'chilling' means

the exposure of plants to temperatures of 0-15°C. Many crops, e.g. maize, tomato,

cucumber, and bean, are thermophilic, and their chill sensitivity is the reason for

their late sowing date compared to other cultivated species. The physiological ef-

fect of chilling is different from that of frost because there is no ice nucleation in
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plant cells; however, it may be severe enough to lead to yield loss. Chilling stress is
often accompanied by oxidative stress - an overproduction of reactive oxygen spe-
cies (ROS) (WISE & NAYLOR 1987, PASTORI & al. 2000b).

A large number of studies dealing with the chill sensitivity of plants (VlGH
& al. 1981, MUSTARDY & al. 1982, STAMP 1987) and chill-dependent oxidative
stress (PRASAD & al. 1994a,b, 1995, PRASAD 1997, BURGENER & al. 1998,
PASTORI & al. 2000b, DE GARA & al. 2000, BACZEK-KWINTA & KOSCIELNIAK
2003) have been performed on maize. In addition, some attempts to improve chill
resistance via manipulating the antioxidative pathways have been performed on
this species (VAN BREUSEGEM & al. 1999a,b, PASTORI & al. 2000a). However,
maize is just one of ca. 7500 species of C4 plants (SAGE & al. 1999), strong eco-
nomic pressure is pushing their cultivation towards cool climate zones. The spe-
cific anatomy and physiology of C4 plants gives an intriguing insight into chill-
associated oxidative stress and defence strategies (HE & EDWARDS 1996, DOULIS
& al. 1997, PASTORI & al. 2000a,b).

C4 plants have two types of photosynthetic cells: mesophyll and bundle
sheath cells (Kranz anatomy). Atmospheric CO2 is bound in mesophyll cells by the
primary acceptor, phosphoenolpyruvate (PEP). This reaction is catalysed by PEP-
carboxylase. Organic acid (in maize - malate) containing 4 carbon atoms is formed
and, as a storage of CO2, transported to the thick-wall cells of the bundle sheath.
The released CO2 is fixed again by the secondaiy acceptor, ribulosebisphosphate
(RuBP), and 3-phosphoglycerate (PGA) is formed. Its reduction to the primaiy
photosynthetic sugar, 3-phosphoglyceride aldehyde, requires back transportation to
mesophyll cells because of the lack of NADPH in the bundle sheath, equipped with
photosystem I (PS I) only (HATCH & OSMOND 1976, LEEGOOD & EDWARDS 1996).
In C4 plants, the efficiency of the dark phase of photosynthesis is improved
through reduced photorespiration.

Like the components of the photosynthetic machinery, those of the anti-
oxidant system are distributed - between mesophyll and bundle sheath cells - and
require an efficient transport system (PASTORI & al. 2000b, KOPRIVA & al. 2001).
This means that any disturbances in the flow of metabolites between these types of
tissue may enhance ROS production (KINGSTON-SMITH & FOYER 2000a, PASTORI
& al. 2000b). However, these compounds may act signally diminishing susceptibil-
ity to chill (PRASAD & al. 1994a,b), and this is dependent on the capacity of the
antioxidative system.

The range of chilling injuries depends on the plant organ, the duration of
stress, and whether the stress affects the plant at night or during illumination. The
range of chilling temperatures, different in the various experiments (5-7 vs. 14-
15°C), makes it difficult to compare obtained results.

G e n e r a t i o n and T o x i c i t y of ROS d u r i n g C h i l l i n g

According to LYONS 1973, the primary reason for chilling injury is the
membrane lipid phase transition from liquid-crystalline state to a more viscous
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structure, which leads to enhanced permeability of mitochondrial and chloroplast
envelopes (LYONS & al. 1964, D E SANTIS & al. 1999, MURATA & YAMAYA 1984).

The disturbance in membrane integrity results in the enhancement of reactions gen-
erating free radical compounds (WISE & NAYLOR 1987) and lipid peroxidation,
especially in chill-sensitive genotypes ( D E SANTIS & al. 1999). Other sources of
chill-dependent oxidative stress are mainly considered to be chloroplasts and mito-
chondrial electron transport chains. Photochemical energy in chloroplasts is often
excessive due to the suppression of the enzyme-dependent dark phase of photosyn-
thesis. In C4 plants, the photosynthetic performance of both the mesophyll and
bundle sheath is constrained during chilling (STAMP 1987, LONG 1983, LEEGOOD &
EDWARDS 1996). In this case, Superoxide anion O2" is formed, mainly within PS I
in a Mehler reaction (MEHLER 1951). O2" may react with numerous biomolecules,
causing them to be disrupted. H2O2 is formed via disproportionation (dismutation)
of O2", which is both spontaneous and catalysed by Superoxide dismutase (SOD)
(SCANDALIOS 1993). Hydrogen peroxide may be decomposed by catalases (CATs)
to H2O and O2, or to H2O by peroxidases (PRASAD & al. 1994a,b). However, in the
presence of transition metals (and in the presence of FeS complexes present in bio-
chemical systems), H2O2 reacts with O2", generating a powerful oxidiser, hydroxyl
radical OH, which may destroy many cellular constituents, leading to various
metabolic dysfunctions (ELSTNER 1982, JAKOB & HEBER 1996, SONOIKE 1996,

TERASHIMA & al. 1998). PS II is the source of singlet oxygen '02, formed within
the photosynthetic antenna when the excitation energy of chlorophyll (3Chl) is
transfeiTed to triplet oxygen in a ground state 3O2 (ASADA 1994a,b). Singlet oxygen
may be also formed in the PS II core (for a review, see NlYOGi 1999). *O2 induces
damage to Dl protein, and this results in a limitation in the light phase of photosyn-
thesis, called photoinhibition (SOMERSALO & KRAUSE 1989). Dl degradation is
reversible, but under strong stress, e.g. during the interaction of chill and excessive
light, the process of resynthesis is restricted, resulting in irreversible limitation of
photosynthetic efficiency (GONG & NiLSON 1989, FEIERABEND & al. 1992). In mi-
tochondria, O2 is formed as a by-product of the respiratory chain (for a review, see
M0LLER2OO1).

It has been emphasised that oxidative stress always accompanies the pri-
mary effects of chilling stress, and the resistance of some genotypes of chill-
sensitive plants is linked to the ability of tissues to activate various elements of the
antioxidative system (JAHNKE & al. 1991, MASSACCI & al. 1995, HODGES & al.
1997a, SKRUDLIK & al. 2000, BACZEK-KWTNTA & KOSCIELNIAK 2003).

D i s t r i b u t i o n a n d C h i l l R e s p o n s e o f t h e A n t i o x i d a -
t i v e S y s t e m i n M a i z e L e a v e s

Antioxidative enzymes are characterised by differentiated sensitivity to
chilling temperature. Usually, SOD is primarily taken into consideration as a scav-
enger of O2" generated rapidly in photosynthetic and non-photosynthetic tissues.
The SOD (EC 1.15.1.1.) family in plants consists of the FeSOD, MnSOD and
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CuZnSOD classes. The presence of plant SOD isozymes and their genes was first
demonstrated in experiments performed on maize (BAUM & SCANDALIOS 1979,
1982). SOD protein is relatively resistant both to low and high temperatures
(JAHNKE & al. 1991, BURKE & OLIVIER 1992, MISZALSKI & al. 1998). There are 10
genetically and biochemically different forms of SOD in maize (SCANDALIOS 1993,
VANBREUSEGEM & al. 1999b, PASTORI & al. 2000b). The abundance of SODs may
complicate the analysis of experimental data due to the different responses of par-
ticular enzymes to environmental factors. For example, studies by HODGES & al.
1997a,b performed on several maize genotypes (inbreds and hybrids) did not show
any relationship between total leaf SOD activity and resistance to chilling stress.
Intriguingly, the mesophyll of maize is equipped only with FeSOD, present in
chloroplasts, and the other isoforms are located in the bundle sheath (DOULIS & al.
1997, PASTORI & al. 2000b). PASTORI & al. 2000b demonstrated that in the total
SOD pool, all Cu/Zn isoforms and FeSOD activities were enhanced by chill
(15°C), whereas MnSOD was inactivated. However, in this study, enzyme activity
was related to chlorophyll content, therefore cannot be directly compared with the
literature data referring to the protein content. Additionally, 14-15°C in many ex-
periments was considered not as chilling temperature per se, but rather as acclima-
tory/hardening treatment prior to stress (4-5°C, ANDERSON & al. 1995, LEIPNER &
al. 1997).

The next links in the antioxidative system chain are CATs and peroxidases.
CAT (EC 1.11.1.6) in maize leaves exists as three isoforms: in peroxysomes and
glyoxysomes (CAT-1), cytosol (CAT-2) and mitochondria (CAT-3) (PRASAD
1994a,b, SCANDALIOS & al. 1997). CAT enzymes are equally distributed between
the mesophyll and bundle sheath (DOULIS & al. 1997). However, as a haemoprotein
containing ferroporphyrin, CAT is prone to photoinactivation (FEIERABEND & al.
1992, and references therein, LEE & LEE 2000). Recovery processes associated
with protein turnover are hindered by chill, due to the stimulative effect of low
temperature on proteases and inhibitory on post-translative modification
(FEIERABEND & al. 1992, WISE 1995, STREB & FEIERABEND 1995). The mitochon-
drial CAT-3 isoform seems to be the most susceptible to thermal inhibition (AUH &
SCANDALIOS 1997), and it is noteworthy that the respiratory chain is the source of
O2", and consequently, of H2O2. Rapid and long-term accumulation of H2O2 en-
hances low-temperature sensitivity (PRASAD & al. 1994a,b). The efficiency of the
prevention of CAT proteolysis and activation of the enzyme together with its syn-
thesis de novo is higher in chill-resistant than in chill-sensitive plants (SARUYAMA
& TANIDA 1995, AUH & SCANDALIOS 1997). A function similar to that of mito-
chondrial catalase related to H2O2 scavenging during severe chilling may be per-
formed by cytochrome c peroxidase (EC 1.1.1.5) (PRASAD & al. 1995). Another
peroxidase, ascorbate peroxidase (APX, EC 1.11.1.11), is the key enzyme in re-
moving H2O2 from chloroplasts (ASADA 1992). DE GARA & al. 2000 reported that
the seedlings of maize inbred with elevated APX activity possessed high vigour.
HULL & al. 1997 showed that APX in the leaves of chill-tolerant Zea diploperennis
had ca. 3-fold higher kinetic power (Vmax/Km) than APX in Zea mays leaves. It is
noteworthy that in maize chloroplasts, APX probably exists as two isoforms: stro-
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mal and membrane-bound (CHEN & ASADA 1989, DOULIS & al. 1997). However,
their presence is restricted to the bundle sheath (DOULIS & al. 1997); ascorbate
(AsA), an electron donor of APX, may be regenerated in the mesophyll in the
ascorbate-glutathione cycle, and then must be transported to the bundle sheath. The
efficiency of transport processes may be reduced in chilling conditions (PASTORI &
al. 2000b) leading to inactivation of the enzyme (CHEN & ASADA 1989). The con-
sequence of this is an overproduction of H2O2 in the chloroplasts of the bundle
sheath (PASTORI & al. 2000b) causing oxidative damage to its proteins (KINGSTON-
SMITH & FOYER 2000a).

Among non-enzymatic antioxidants, tripeptide glutathione (GSH) should
be considered first. GSH plays a number of roles in plant physiology (for a review,
see KOCSY & al. 2001, TAUSZ & al. 2004). Its antioxidative role involves scaveng-
ing oxygen free radicals and singlet oxygen (HALLIWELL & GUTTERIDGE 2000),
and it plays a part in the antioxidative systems detoxifying H2O2. GSH is also a co-
factor of glutathione peroxidase (GPX, EC 1.11.1.9), the enzyme that decomposes
H2O2 (ESHDAT & al. 1997), and in the ascorbate-glutathione cycle GSH serves as
an electron donor for the regeneration of ascorbate from its oxidised form, dehy-
droascorbate (NOCTOR & FOYER 1998). As a consequence, the oxidised form of
glutathione, glutathione disulphide (GSSG), is generated. GSH is then reconstituted
by NADPH-dependent glutathione reductase (GR, EC 1.6.4.2). The enzymes in-
volved in glutathione recycling are considered the key ones in the chill resistance
of maize (VAN BREUSEGEM & al. 1998, KOCSY & al. 2000, and references therein).
Another protective role of GSH in plant metabolism that has been proposed is the
protection of sulhydryl (thiol -SH) groups of proteins from oxidation (FOYER &
HALLIWELL 1976, KRANNER & GRILL 1996). In maize leaves, both GSH synthesis
and regeneration are dependent on transport processes between the mesophyll and
bundle sheath. Cysteine, one of the three amino acids forming this tripeptide, is
synthesised in the bundle sheath, whereas GSH resynthesis and its regeneration
from GSSG by glutathione reductase occurs in mesophyll cells (BURGENER & al.
1998, KOPRIVA & al. 2001). The absence of GR in the cells of the bundle sheath is
related to post-transcriptional regulation. This is considered to be one of the factors
involved in maize chill sensitivity, triggered in a transport-dependent mechanism
similar to that described for APX (Table 1, PASTORI & al. 2000b).

If enzymatic antioxidants fail, a mechanism for dissipating excessive light
energy is required. Carotenoid pigments seem to be good candidates for mode of
action study in chill-resistant genotypes of chill-sensitive plants. The xanthophyll
cycle increases during long-term chilling in maize (C4) and in various species of
tomato (C3) of differentiated sensitivity (HALDIMANN 1996, VENEMA & al. 1999),
so this response seems unrelated to the type of photosynthesis. This mechanism for
photochemical energy dissipation is located mainly in the inner chloroplast mem-
brane, forming thylacoids. However, the chloroplasts of bundle sheath are capable
for cyclic electron transport (KUBICKI & al. 1996). As this process creates electro-
chemical gradient sufficient for ATP synthesis, thus, NPQ-related dissipation of
excess light energy should also be considered there. A similar question may be
raised regarding the level of alpha-tocopherol, a membrane-bound protectant of

©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at



PO)

lipid membranes. Interestingly, its level may be correlated with chilling tolerance,
as was shown in model maize genotypes (LEIPNER & al. 1999). Also, polyamines
may be considered chill-protectants (SZALAI & al. 1997) due to their membrane-
protective and antioxidative properties (DROLET & al. 1986, ROBERTS & al. 1986).

Another point which has not been established is the location of polyamines in the
mesophyll and bundle sheath.

Table 1. Characteristics of two types of photosynthetically active cells of maize and dis-
tribution of antioxidants. The sources: DOULIS & al. 1997, BURGENER & al. 1998, KOPRIVA & al.
2001, PASTORi&al. 2000b.

Characteristics
NADPH+H+

Photosystem
chloroplasts
PEP-carboxylase
RuBisCo and RuBP
Photosynthates synthesised
SOD

APX

Ac A

DHAR
MDAR
Cysteine
GSH
GR
CAT
polyamines
xanthophyll cycle

Mesophyll
regenerated from NADP+
PS II and PS I
granal
+
traces
sucrose
1 chloroplastic isoenzyme
(Fe-SOD)
-
regenerated from monodehy-
droascorbate
+
+
taken from the bundle sheath
regenerated from GSSG
+
+
?

Bundle sheath
taken from the mesophyll
PS I
non-granal
-
+
starch
9 isoenzymes

+
taken from the mesophyll

-
+
synthesised
taken from the mesophyll
-, but transcripts present
+
?
7

C a n R O S P r o t e c t P l a n t s f r o m C h i l l ?

ROS formation with chilling stress is potentially harmful; however, it is
also considered as (1) a dissipative mechanism of excitation energy in chloroplasts
and (2) a signalling mechanism in various organelles and tissues. The mode of ac-
tion of ROS depends on their concentration in relation to the pool of scavengers.

The dissipative mechanism is linked with PS I, where O2 is reduced, giving
a Superoxide radical. O2" may be scavenged in a cycle named the water-water cy-
cle, or the Mehler-ascorbate peroxidase reaction (ASADA 1999, NlYOGl 1999). An-
other possibility is pseudocyclic electron transport. In maize, the participation of
enzymes involved in the water-water cycle (elevated SOD and APX activity) was
demonstrated by MASSACCI & al. 1995, but in mild chilling treatment (16/14°C,
day/night), not in severe chill conditions. The Mehler reaction itself, due to proton
consumption, may partly enhance ApH between the lumen and stroma, resulting in
increased ATP formation. However, the role of this process in chill-sensitive C4
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plants has been questioned (LAISK & EDWARDS 1998, and references therein); a pH
gradient is also necessaiy for the non-photochemical quenching (NPQ) of exces-
sive absorbed light energy (SCHREIBER & NEUBAUER 1990). NPQ is important in
maize leaves as it protects PS II from photoinhibition and may also reduce the risk
of oxidative damage caused by 'O2 (HARBINSON & FOYER 1991).

The signalling role of hydrogen peroxide in chilling stress per se (in dark
treatment) was shown by PRASAD & al. 1994a,b. The pre-treatment of roots with
0.1 mM H2O2 at 14°C had an inductive effect on mitochondrial catalase transcript
levels in mesocotyl and caused increased CAT and guaiacol peroxidase activity
during subsequent chilling at 4°C. Non-acclimated seedlings accumulated an ex-
cess of H2O2 in mitochondria, which was too high to be scavenged, resulting in
oxidative damage to proteins (PRASAD 1997).

H2O2 is the universal signalling molecule involved in a wide range of plant
responses to various stress factors (FOYER & al. 1997, NEILL & al. 2002). As a non-
charged molecule it is able to cross biological membranes. Its relatively long life
span (half-life ca. 1 ms) allows it to diffuse to various distances from the sites of
origin (VRANOVÄ & al. 2002). DESIKAN & al. 2001 showed a large number of
genes up-regulated by H2O2, and among them antioxidants. These experiments
were performed on Arabidopsis culture cells, and it would be worth clarifying this
mechanism in maize. Interestingly, aox-1, one of the genes encoding mitochondrial
protein, alternative oxidase, is also activated in this way (WAGNER & KRAAB
1995). Such activation may reduce O2" production in maize mitochondria in the
cyanide-resistant respiratory pathway (VAN DE VENTER 1985, STEWART & al.
1990).

H2O2 also affects the functioning of stomata. Stomatal closure, preventing
the plants from experiencing excessive water loss via transpiration, is an important
physiological response to stress. The mechanism of stomatal movement in maize
during chilling has been studied for many years (MeWILLIAM & al. 1982,
JANOWIAK & DÖRFFLING 1996). It has been established that stomata closure is of-
ten disturbed in chill-sensitive plants, and this accelerates leaf desiccation
(MCWILLIAM & al. 1982). The fact that H2O2 promotes stomatal opening in both
ABA-dependent and -independent mechanisms (WAGNER & KRAAB 1995, ALLAN
& FLUHR 1997, LEE & al. 1999, PEI & al. 2000, ZHANG & al. 2001) may be signifi-
cant in such studies.

P r o b l e m s w i t h t h e C o n s t r u c t i o n o f C h i l l - R e s i s t a n t
T r a n s f o r m a n t s

The antioxidative system consists of numerous elements, so the first obvi-
ous conclusion is that one of the ROS scavengers, depending on its pool, may af-
fect the functioning of others, in some cases paradoxically enhancing oxidative
stress (BRÜGGEMANN & al. 1999, CREISSEN & al. 1999). The other problem is that
the ROS pool, and its ratio to nitric oxide, may be active in terms of signalling
(NEILL & al. 2002, VRANOVÄ & al. 2002). Taken together, the disruption of the
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redox balance in the cell, or in the particular cellular compartment, may give un-
predictable results. Genes encoding various antioxidative proteins are subject to
redox control (PFANNSCHMIDT & al. 2001, PFANNSCHMIDT 2003). As described
earlier, NADPH and GSH pools vary as regards mesophyll and bundle sheath cells,
and this may serve as such a signal (PASTORI & al. 2000a, WINGATE & al. 1988,
KARPINSKI & al. 1997, KOCSY & al. 2001). It was demonstrated that not only na-
tive, but also targeted, genes are subject to such regulation. Transformation of
maize with MnSOD enhanced total foliar SOD activity (VAN BREUSEGEM & al.
1999b, KINGSTON-SMITH & FOYER 2000b); however, this was still restricted to
bundle sheath cells (KINGSTON-SMITH & FOYER 2000b). On the other hand, GR
activity in transformants occurred in the mesophyll only (PASTORI & al. 2000a).

The issue of how to overcome chill sensitivity via manipulation of antioxi-
dants has not yet been resolved. The C4 photosynthetic type causes additional
problems, and transformation of C3 chill-sensitive plants such as tomato
(BRÜGGEMANN & al. 1999) and cotton (KORNYEYEV & al. 2003, LOGAN & al.
2003) to better ROS tolerance did not improve thermotolerance. Interestingly, ex-
pression of animal antiapoptotic genes delayed the development of chilling injury
in tomato seedlings, and increased the level of anthocyanin (Xu & al. 2004). Is this
the appropriate strategy for new maize transgenes? Conventional breeding pro-
grammes focusing on high yield and pest resistance dominate and are effective.
Irrespective of this, basic studies on maize chill sensitivity, including gene manipu-
lation, are still of interest.
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