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Summary

SoiA G. & Soja A.-M. 2005. Recognizing the sources of stress in wheat and bean by us-
ing chlorophyll fluorescence induction parameters as inputs for neural network models. - Phyton
(Horn, Austria) 45 (3): (157)-(168).

Bean and wheat plants were exposed to either ozone, drought or flooding stress in a pot
experiment for three weels. By measuring the fast kinetics of chlorophyll fluorescence induction at
anthesis, a large dataset for characterizing the stress effects and for developing models was created.
The specific differences in the effects of the individual stress types on chlorophyll fluorescence
could be used as stress-specific fingerprints. Artificial neural network models were trained to recog-
nize these fingerprints. The correct classification rate of the trained models was in the range of 71-
97 % for individual measurements, depending on the classification task, stress type and plant spe-
cies.

This study shows that a combination of measurements of the fast kinetics of fluorescence
induction and the use of these data as inputs for neural network models offers the possibility to
extract more information about the specifity of causes for stress effects (drougth, flooding, ozone or
unstressed) than the isolated consideration of individual photosynthetic parameters.

Introduction

Environmental stress conditions affect physiological behaviour of plants in
multiple ways. The effects on chlorophyll fluorescence (CF) are only one of differ-
ent aspects, and frequently CF is even not the primary target of the stress influence.
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Instead, the losses of rubisco-activity and rubisco-protein are early indicators of
oxidative stress, e.g. caused by ozone (REICHENAUER & al. 1997). Nevertheless,
sooner or later indirect effects are also exerted on the primary photochemical proc-
esses of electron transport. These reactions are analytically accessible via CF-
measurements.

Measurements of the fast kinetics of CF offer an opportunity to investigate
photosynthetic responses under field conditions on many leaves in a short time.
Consequently, this method has been frequently used as a screening tool for analyz-
ing stress resistance and reactions in field crops and cultivars (e.g. ozone - CIOMPI
& al. 1997, SoJA & al. 1998, water stress - LU & ZHANG 1999, YORDANOV & al.
1999, heat stress - REKIKA & al. 1997, flooding - GUIDI & SOLDATINI 1997, cold
tolerance - FRACHEBOUD & al. 1999, salt stress - PERCIVAL & GALLOWAY 1999).

The potential of interpreting the kinetics of the chlorophyll fluorescence
induction curve has been expanded through the works of STRASSER & STRASSER
1995 and STRASSER & al. 2000. These analyses, called JIP-test according to certain
stages of the induction curve during the first half second after illuminating a pre-
darkened leaf, aim at the context of light absorption and electron transport in pho-
tosystem II to generate assimilatory power. The authors have derived several new
phenomenological and biophysical expressions for describing the dynamics of elec-
tron flux in a photosynthetic sample. The potential of this test to screen for stress
effects on photosynthetic performance has been shown e.g. by MATOUSKOVA & al.
1999, CLARK & al. 2000 and NUSSBAUM & al. 2001,

This work is based on the assumption that not all CF parameters will be af-
fected in the same way if environmental stresses are as diverse as ozone, drought
and flooding. Hence the parallel analysis of the reaction pattern of different CF
expressions should reveal different mechanisms how CF is influenced by these
stresses. However, the results should not only be assessed with standard statistical
techniques but should also be used as inputs for the development of models that
could serve as a differentiation tool to distinguish different possible sources of
stress from one another. For such classification tasks artificial neural network mod-
els (ANN) offer a high potential. ANN are not process-oriented but statistical mod-
els which can reveal non-linear relationships between multiple input parameters to
explain one or several outputs. The development of ANN requires large datasets for
training as they can be provided by CF-measurement campaigns with efficient in-
duction curve monitoring instruments.

The objective of this study was twofold:

Analysis of the main differences in growth and chlorophyll fluorescence
reactions to different stresses in two crop species (wheat and bean).

Development of classification models to distinguish different sources of
stress and testing their performance.

Material and Methods

Bean (Phaseolus vulgaris cv. Maxi) and wheat (Triticum durum cv. Extradur) were grown
in 8-1 pots (n=5) with standard growth substrate (Frux Einheitserde ED 73; wheat: 2 | substrate per
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plant, bean: 4 1 substrate per plant). Three weeks before anthesis, three types of stress treatments
started in small open-top chambers:
o ozone stress (90 nL.I" ozone for 8 h.d™),
° drought stress (withholding irrigation till reaching a soil water capacity (S.W.C.) of 35 %
and maintaining this level)
° flooding stress (lower 50 % of root zone was flooded; 100 % S.W.C. in upper 50 %). Con-
trol plants were kept at ozone concentrations of <40 nl.I" and at S.W.C. of 60 to 70 %.

At flowering stage, at three consecutive days fast kinetics of chlorophyll fluorescence
were measured at both leaf sides of identical leaves (Hansatech PEA, 15 min pre-darkening). Only
leaves which had reached their full length at the start of the stress treatment were used. In wheat,
usually this was the flag leaf; in bean a corresponding leaf. Measurements were taken only at parts
of the leaves without visual. injury. From the fluorescence intensities at 5 points of the induction
curve (0.05, 0.1, 0.3, 2 and 30 ms), the classical CF parameters as well as additional CF-expressions
according to STRASSER & al. 2000 were calculated. This database of about 800 measurements was
further submitted to standard variance-analytical methods, principal component analysis (PCA) and
multiple regression analysis.

The CF data (absolute values) were used as inputs for the development of artificial neural
network models (Statsoft: STATISTICA, Neural Networks™). For the development of the models
the data set was split in training, verification and test data (3:1:1). The inputs were partly chosen
according to the PCA-results to ensure independence of the used parameters, partly the models were
allowed to self-optimize the number of inputs. The models were designed to fulfill classification
tasks with the correct recognition of the treatment as desired output. Sensitivity analysis, a tech-
nique to assess the relative contribution of the input variables to the performance of a neural net-
work, was used after establishing the networks: each input variable was set unavailable and the
performance of the network was tested for this case.

Total chlorophyll concentration (C, + C, with a Minolta SPAD 502) was measured at the
same attached leaves as used for the CF-measurements. Finally plants were harvested and above-
ground dry matter was determined.

Results

Productivity and chlorophyll concentration

Bean plants experienced flooding stress as most damaging. Both dry matter
and chlorophyll concentration were reduced by 30-40 % in this treatment (Table 1).
Drought had an adverse effect on dry matter only, but not on chlorophyll. Ozone
affected beans similar to wheat: a reduction was only statistically significant in
chlorophyll concentration but not in dry matter production.

Considering dry matter productivity, wheat was most affected by drought
(-40%) and by flooding (-30%), and least impaired by ozone (Table 1). Enhanced
chlorophyll degradation was only evident under ozone stress but not in the other
treatments.

Chlorophyll fluorescence?

For bean the flooding treatment that had caused the highest reductions in
productivity and chlorophyll concentration, also produced the most distinct
changes in the chlorophyll fluorescence parameters (Fig. 1). A part of the reaction

? For abbreviations of chlorophyll fluorescence expressions see legend to Table 2.
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Table 1. Above-ground dry matter of the experimental plants after three weeks of stress
treatment and chlorophyll concentrations of the measured leaves. Absolute values are means + s.d.;
means in columns followed by different letters are significantly different (Duncan-test, & =5 %).

bean dry matter relative chlorophyll a+b relative
treatment (g / plant) means (SPAD values) means
control 140+1.7a 100 325+03a 100
ozone 11.04+4.1 ab 79 266+1.7b 82
drought 9.7+0.7 be 69 302+15a 93
flooding 81+17¢ 58 238+22¢ 73
P of ANOVA 0.013 <0.001
wheat dry matter relative chlorophyll a+b relative
treatment (g / plant) means (SPAD values) means
control 12.1+04a 100 505+18a 100
ozone 122+09a 101 41.5+£22b 82
drought 6.8+0.6¢c 56 508+0.6a 101
flooding 87+1.1b T2 48.1+2.1a 95
P of ANOVA <0.001 <0.001
a b
ABSIRC o
FM
PIP TRIRC
Psi0 ETIRC
e control TFM
sroeee-QZONe
RCICS - drought
flooding
c d
ABS/RC FO
2 13
15 N FM
PIP TRIRC
Sm
Psio ETRC
Vi TFM

RC/CS

\"A]

Fig. 1. Chlorophyll fluorescence (CF) behaviour of bean plants under ozone, water and
flooding stress relative to non-stressed control plants. The individual graphs show the technical CF
expressions (b, d) and the specific and phenomenological fluxes (a,c) of the upper leaf side (a, b)
and the lower leaf side (c, d). Abbreviations see Table 2.
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centres had been inactivated but average absorption and trapping per active reac-
tion centre increased (Table 3). ABS/RC and TRy/RC increased by 90 and 70 %,
respectively, in the upper leafside. As a consequence My, the net rate of closure of
the RCs, was enhanced more than twofold. The number of closed reaction centers
usually is increased by trapping and decreased by electron transport. Consequently
the performance index for photochemical events was lowered by about 80 % in the
adaxial and 60 % in the abaxial leafside by flooding. The flooding treatment had no
effect on Sy/tpv, the average redox state of Qa (primary bound plastoquinone) in
the time span from 0 to tgy, on both leafsides. In contrast to wheat, in bean the up-
per leafside was generally more susceptible for all treatments than the lower leaf-
side. Ozone significantly affected 19 and 18, drought 15 and 12 of the evaluated
fluorescence parameters, respectively. In bean as well as in wheat the performance
index PIp exhibited a special sensitivity to ozone impacts: it was lowered by 40 and
30 % (upper and lower leafside), respectively. The parameters Fo, tem, Sw/tem, N
and TRy/CS were not significantly affected by ozone. In contrast, drought exerted
the greatest effect on Sy, the energy needed to close all reaction centers (the more
electrons are transferred from Q™ into the electron transport chain ET, the bigger
S becomes, when every Qj is only reduced once it is on its minimum) and N, the
turnover number of Qa, lowering them by 15 to 20 %.

In wheat it was ozone that had affected the chlorophyll fluorescence pa-
rameters most of all stress treatments (Fig. 2, Table 2), although dry matter produc-
tion had not been lowered (Table 1). 22 of the 24 parameters evaluated at the upper
leafside showed a significant difference to control when the plants were ozone-
fumigated, whereas in drought or flooding stress only 17 parameters exhibited sig-
nificant differences. At the lower leafside the trend was similar (23, 20 and 23, re-
spectively), but the plants were even more susceptible and the flooding effects
more pronounced. Generally Fy and Fy showed no influence of the treatments. The
parameters V;, Sw/tem and N did not react under the drought treatment. All stress
treatments influenced the "Performance Indices" to the greatest extent. PIp was
lowered by ozone by approximately 50 %, by the drought treatment by 30 %, and
by the flooding treatment by 25 and 40 % for the upper and lower leafside, respec-
tively.

Neural network models

In Table 4 some features of a model family developed for the task of dis-
tinguishing between four treatments (control + 3 stress treatments) are shown. Al-
though the use of additional inputs slightly improved the performance of the mod-
els (= correct classification rate in test measurement data which were not used dur-
ing model development), the models still had some weaknesses to recognise certain
treatments correctly: the bean model was only moderately successful in the correct
classification of ozone stress, and the wheat model performed badly for flooding
stress. The number of input variables recommended by principle component analy-
sis (PCA) was 11 for wheat and 19 for bean (Table 7). The selected variables were
not always those with the highest significant differences between the treatments.
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Fig. 2. Chlorophyll fluorescence reactions of wheat plants under ozone, water and flood-
ing stress relative to non-stressed control plants. Abbreviations see Table 2.

Table 4. Characteristics of artificial neural network models (ANN) to distinguish 4 treat-
ments (control, ozone, drought, flooding) of wheat and bean.

ANN correct classification rate (in %)
plant number of  hidden  hidden  control  ozone  drought flooding total
_species inputs layers nodes
bean 19 2 12-12 88.8 68.8 92.6 96.7 86.7
wheat 11 2 6-8 90.6 94.7 84.0 44.2 78.4

Table 5. Characteristics of neural network models (ANN) to distinguish 2 treatments (con-
trol, stress) of wheat and bean.

ANN correct classification rate (in %)
plant number of  hidden hidden control stress total
species inputs layers nodes
bean 7 1 3 86.7 87.1 87.0
wheat 4 1 5 89.6 89.4 89.5

wheat 25 2 13-12 90.6 90.5 90.5
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In an alternative approach the classification task was split in two: at first
models were developed that should distinguish between control plants and any
stress treatment (Table 5 and 7). The first two models used the inputs recom-
mended by PCA (or even less) and achieved acceptable classification rates of about
90 % correct. A further increase in the number of inputs did not result in greatly
improved performance (third model in Table 5).

Table 6. Characteristics of neural network models (ANN) to distinguish 3 treatments
(ozone, drought, flooding) of wheat and bean.

" ANN correct classification rate (in %)
plant number of  hidden hidden 0zone drought  flooding total
species inputs layers nodes
bean 7 1 10 87.1 92.6 96.7 92.1
wheatl 7k 1 5 87.4 71.3 72.6 77.1
wheat2 2 1 2 87.4 92.6 32.6 70.8

Table 7. Input variables used in the artificial neural network (ANN) models (presented in
Tables 4-6) in the order of their relative contribution to the performance of the network). Abbrevia-
tions see Table 2.

ANN Table 4 ANN Table 5 ANN Table 6

bean wheat bean wheat bean wheatl wheat2
leafside 1 1 3 3
Fo
Fu 6
Fy 3 6
Fy/Fy 13 7 5 6 4
teMm 7 7 5
Area 9 2 1
V; 15 6 1 2
Vi 4 1 1
Mg 14 8
S 19 2 5
Sm/ trm 3
N 5 T
ABS/RC 12
TRyRC 16 4 4 4
ETy/RC 7 5 . 4 2 1 2
Ppo 17
Wo 6 11
Pro 10 9
RC/CS 2 10 2
ABS/CS 11
TR/CS .
ETy/CS 8
Pl 3

Ply 18
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For the plants classified as stressed, separate models were developed which
only had the task to discern between ozone, drought and flooding. These models,
based on the PCA-recommended selection of inputs, achieved a correct classifica-
tion rate of 71-97 % (Table 6 and 7). An extremely simplistic model with only 2
inputs (V, the fraction of closed reaction centres at the inflection point I of the
fluorescence induction curve, and ET¢/RC, the specific energy flux or the electron
transport per reaction centre at the start of illumination) was surprisingly good in
recognising ozone and drought effects in wheat but had no higher hit rate for flood-
ing stress than by chance (third line in Table 6).

Discussion

Although ozone had enhanced chlorophyll degradation of wheat more than
the other stress treatments, dry matter productivity was not yet impaired. Appar-
ently photosynthetic capacity had been maintained at a high level during most of
the ozone treatment with visual injury and photosynthetic impairment starting late.
This is in accordance with observations of SoJA & Sosa 1995 and PLEUEL & al.
1997 who had observed higher sensitivity to ozone in grain yield than in straw
yield and who explained this difference with the higher assimilate demand of the
developing ear in comparison to the build-up of vegetative dry matter.

In bean the electron flux rate expressions for photosystem II were much
less affected by drought stress than by ozone stress. This was paralleled by similar
changes in the chlorophyll concentration, indicating that the higher yield reductions
by drought probably were rather due to stomatal limitations of CO,-uptake whereas
ozone apparently had damaged the photosynthetic capacity more profoundly. Also
BoTAa & al. 2004 concluded from their observations that photosynthesis depres-
sions because of drought in Phaseolus are rather caused by decreased stomatal
conductance during progressing drought except under very severe stress. Another
characteristic feature of bean was the higher sensitivity of fluorescence parameters
on the upper leaf side compared to wheat, indicating the sensitivity of bean to light
stress. A distinct sensitivity of bean to a combination of light with other stresses
was also observed by GUIDI & al. 2000.

Although it is sometimes assumed that changes in the parameters of the
JIP-test are mainly due to differences in the chlorophyll content per leaf area, our
observations do not support this assumption. Although drought treatments of bean
and wheat as well as flooding stress in wheat did not decrease chlorophyll content
of the leaves significantly, several fluorescence expressions e.g. describing the spe-
cific and phenomenological fluxes changed significantly. These observations show
that the decrease of the leaf chlorophyll content is not a primary reaction to the
stress treatments but that the primary photosynthetic processes of electron transport
in photosystem II are more sensitive indicators for stress effects.

Our results show that a combination of chlorophyll fluorescence expres-
sions is a much more potent screening tool than the use of individual measured or
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" calculated parameters. The combination of the information provided by a Kautsky-
curve with artificial neural network models offers
— anew possibility to extract more specifity from fluorescence signals otherwise
unspecific for different stresses (NUSSBAUM & al. 2001).
— an extension of the application of neural network models to ecophysiology
whereas hitherto they rather have been used for forecasting tasks in environ-
mental and economical sciences (KOLEHMAINEN & al. 2001).
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