Phyton (Austria)				
Special issue:	Vol. 45	Fasc. 4	(125)-(131)	1.10.2005
"APGC 2004"				

Effects of Elevated CO₂ and Nitrogen Availability on Nodulation of Alnus hirsuta Turcz.

By

H. TOBITA¹⁾, M. KITAO¹⁾, T. KOIKE²⁾ & Y. MARUYAMA¹⁾

K e y w o r d s: Nitrogen fixation, nitrogen resorption efficiency, leaf nitrogen, C:N ratio, leaf litter.

Summary

TOBITA H., KITAO M., KOIKE T. & MARUYAMA Y. 2005. Effects of elevated CO2 and nitrogen availability on nodulation of Alnus hirsuta Turez. - Phyton (Horn, Austria) 45 (4): (125)-(131).

The effects of elevated CO2 and soil nitrogen (N) availability on nodulation and N2 fixation of alder (Alnus hirsuta Turcz.) were investigated. Our objective was to determine if elevated CO₂ concentrations enhance nodule mass and alter the inhibitory effect of soil N on nodulation. Potted seedlings of alder were grown at either ambient or elevated CO2 concentrations (36 Pa and 72 Pa CO₂), with different levels of N supplied as liquid fertilizer (52.5, 5.25 and 0 mgN pot⁻¹ week ¹ for High-N, Low-N and N-free, respectively) in a natural daylight phytotron.

Elevated CO₂ increased both whole-plant mass and nodule mass per plant, but the ratio of nodule mass to whole-plant mass (NMR) was not affected. At High-N, NMR declined under both CO2 treatments, indicating an inhibitory effect of soil N availability on nodulation regardless of CO2 concentration. The total amount of N2 fixation in plants without added N was enhanced under elevated CO2 conditions, with an increase of nodule mass. At elevated CO2, both whole-plant N concentration and area-based leaf N decreased.

Leaf litter C:N ratio increased (+14%) under elevated CO2, suggesting that leaf litter decomposition rates are decreased by elevated CO2. However, area-based leaf litter N did not decrease under elevated CO₂ due to decreased retranslocation of leaf N per area during leaf senescence. Furthermore, leaf area per plant increased under elevated CO2 in each of the N-treatments. These results suggest that total leaf litter N input to soil should increase under elevated concentrations of atmospheric CO₂, and that alder may increase soil N availability under elevated CO₂.

²⁾ Boreal Forest Conservation Research, Hokkaido University Forests, Sapporo, Hokkaido

060-0809, Japan.

¹⁾ Hokkaido Research Center, Forestry and Forest Products Research Institute, 7 Hitsuji-Toyohira, Sapporo, Hokkaido 062-8516, Japan. Fax: +81-11-851-4167, e-mail: tobi@ffpri.affrc.go.jp

Introduction

Many plant species grown under elevated CO₂ ([CO₂]°) exhibit an enhanced CO₂ assimilation rate and growth when other environmental resources do not limit productivity (NORBY & al. 1999). Forest ecosystems are usually nitrogen (N) -limited (VITOUSEK & HOWARTH 1991), and plants growing under low N conditions usually respond much less to [CO₂]° (HARTWIG & al. 1996). As trees with symbiotic N₂-fixing capability are largely independent of soil N, they could be more responsive to [CO₂]° than non-N₂-fixers. In fact, increased growth, N₂ fixation, and nitrogenase activity of nodules or the nodule mass have been documented (NORBY 1987, ARNONE & GORDON 1990, SCHORTEMEYER & al. 1999, THOMAS & al. 2000). However, added fertilisers usually reduce nodule formation or N₂ fixation (EKBLAD & HUSS-DANELL 1995, KOIKE & al. 1997, VOGEL & al. 1997). Because the supply of photosynthate to nodules may increase by enhanced photosynthesis under [CO₂]° (NORBY 1987), these inhibitions may be reduced as concentrations of atmospheric CO₂ rise (THOMAS & al. 2000).

Nitrogen derived from N_2 fixation cycles into the soil mainly through leaf litter. Many tree species were reported to have decreased leaf N and whole-plant N under $[CO_2]^e$ (COTRUFO & al. 1998), which may result in decreased leaf litter N (O'NEILL & NORBY 1996). Since the decline in leaf N under $[CO_2]^e$ conditions was less in N_2 -fixers than in non- N_2 -fixers (COTRUFO & al. 1998), the decrease in the leaf litter N of N_2 -fixers may also be small. An increase in N biomass through N_2 fixation by litter N under $[CO_2]^e$ conditions may promote the productivity of associated non- N_2 -fixers (NORBY 1987, HARTWIG & al. 1996).

Actinorhizal N₂-fixing species, including *Alnus hirsuta* Turcz., can contribute significant amounts of fixed N to temperate forest ecosystems (DAWSON 1983, Koike & al. 1997). We examined the effects of $[CO_2]^e$ and soil N availability on nodulation and growth of *A. hirsuta* to determine if $[CO_2]^e$ enhances nodule mass, alters nodulation, or increases total N₂ fixation and leaf litter N input of *A. hirsuta* seedlings.

Material and Methods

One-year-old seedlings of *Almus hirsuta* Turcz. obtained from a commercial nursery (Oji Forestry & Landscaping, Sapporo, Japan), were transplanted into five liter pots filled with 1:1 (v/v) Kanuma pumice and clay loam and grown in a natural daylight phytotron. The CO₂ partial pressure was regulated with a CO₂ controller (DAIWA Air, Sapporo, Japan) at either 36 Pa (ambient) or 72 Pa (elevated) CO₂ from mid-May. Each treatment was replicated twice. Seedlings were supplied with nitrogen (N) at 52.5 mgN pot⁻¹ week⁻¹ (High-N), 5.25 mgN pot⁻¹ week⁻¹ (Low-N) or no N ('N-free') in 0.5x Hoagland solution. Other nutrient concentrations were the same. Air temperature was maintained at 26/16 °C (day/night) from May to September. Pots were set in trays with water in order to avoid desiccation. After 100 days (late-August), six seedlings of each treatment were harvested, and dry mass and N content of each organ were determined by combustion using an NC analyzer (NC-800; Sumica Chem., Osaka, Japan). Twenty-five seedlings were harvested before treatment to provide a baseline for the initial mass and N content of plants.

Leaf gas exchange measurements were made on six mature leaves of each treatment on day 59 (mid-July). Light-saturated net photosynthetic rates per leaf area (P_{max}) were determined

using an open gas exchange system (LI-6400; Li-Cor Inc., Lincoln, NE, USA) at each CO₂ condition (36 Pa or 72 Pa CO₂).

Total N_2 fixation (TNF) was calculated only in the N-free treatments. Because symbiotic N_2 fixation was considered to be the only source of N at N-free, TNF was considered to be equal to the total plant N (TPN) increment during two harvests. The average specific nitrogenase activity (SNA) was calculated as: $SNA = TPN * NW^{-1} * [day]^{-1}$, where NW is the average nodule mass per plant during two harvests and [day] is the period of the treatment when it was harvested (TISSUE & al. 1997).

Leaf litter from each individual was collected daily as leaves abscised after gradually decreasing the ambient temperature from 20/10 °C to 14/10 °C (day/night) from September to November. Area-based N resorption efficiency (RE) before senescence was calculated as: RE = $100 * (1 - [N]_{fallen} * [N]_{green}^{-1})$, where $[N]_{fallen}$ was average area based leaf litter N within each treatment and $[N]_{green}$ was average area-based leaf N of each plant harvested in August (VAN HEERWAARDEN & al. 2003).

Analysis of variance (ANOVA) was used to evaluate the effects of CO_2 and N-treatments on biomass, leaf area, P_{max} and N content at the probability level p<0.05 using StatView Version 5.0 (Abacus Concepts, Inc., Berkeley, CA). The probability level p<0.1 was considered to indicate a trend. Analysis of co-variance (ANCOVA) was used to compare the relationship between whole-plant mass and nodule mass per plant. Statistically significant differences of SNA of the seedlings in the N-free treatment between CO_2 treatments were tested using Student's t-test (p<0.05).

Results and Discussion

Elevated CO_2 ($[CO_2]^e$) had a significant positive effect on whole-plant mass, leaf mass and leaf area per plant as well as on the P_{max} of mature leaves despite of N treatments (Table 1). Trees growing under $[CO_2]^e$ conditions tended to have a higher nodule mass per plant than control plants at ambient CO_2 concentrations (Fig. 1). Elevated CO_2 , however, had no effect on the relationship between whole-plant mass and nodule mass (Fig. 2, ANCOVA, p>0.1) as reported for *Alnus rubra* (HIBBS & al. 1995), suggesting that $[CO_2]^e$ increased the nodule mass of *A. hirsuta* as a function of the increase in whole-plant mass rather than by an increase in the ratio of nodule mass to whole-plant mass (NMR).

Table 1. Whole-plant mass (g plant⁻¹), leaf mass (g plant⁻¹) and area (m² plant⁻¹) per plant, and light-saturated photosynthesis (P_{max}) (µmol m⁻² s⁻¹) of *Alnus hirsuta*. * = p<0.05, ** = p<0.01, *** = p<0.001, n.s. = not significant at p<0.1.

	High-N		Low-N		N-free		Source of variance		
	ambient	elevated	ambient	elevated	ambient	elevated	CO_2	N	CO_2xN
whole-plant mass	34.5	43.5	34.3	40.6	39.2	51.6	**	n.s.	n.s.
leaf mass	13.1	16.3	12.6	14.8	14.3	17.7	*	n.s.	n.s.
leaf area	0.37	0.42	0.34	0.40	0.43	0.50	*	*	n.s.
P _{max}	13.8	16.7	12.8	14.3	11.4	14.2	***	**	n.s.

Increased N availability had a negative effect on both nodule mass (Fig. 1) and NMR (Fig. 2) regardless of CO_2 concentration, indicating that the inhibitory effect of high soil N availability on nodulation of A. hirsuta was retained under $[CO_2]^e$. Some Alnus species had a similar inhibitory effect on nodulation under

[CO₂]^e (NORBY 1987, KOIKE & al. 1997, TEMPERTON & al. 2003), though some legume species showed no limitation (THOMAS & al. 2000).

The whole-plant N content after 100 days tended to be higher under $[CO_2]^e$ (Table 2). The enhanced whole-plant N uptake under $[CO_2]^e$ with N-free soil amendment means that N_2 fixation increased under $[CO_2]^e$. On the other hand, the average specific nitrogenase activity (SNA) tended to decrease under $[CO_2]^e$ (2.5 mmolN g nodule⁻¹ day⁻¹ under ambient conditions and 2.2 mmolN g nodule⁻¹ day⁻¹ under $[CO_2]^e$; t-test, p=0.06). Some studies of *Alnus* species have shown that $[CO_2]^e$ increased the total amount of N_2 fixation per plant by having greater nodule nitrogenase activity (TEMPERTON & al. 2003), by greater nodule mass (HIBBS & al. 1995) or by both (NORBY 1987, ARNONE & GORDON 1990, VOGEL & al. 1997). This current work suggests that the increase in N_2 fixation under $[CO_2]^e$ occurred mainly because of an increase in nodule mass proportionate with whole-plant mass, and not by increased SNA.

Fig. 1. Nodule mass per plant of *Almus hirsuta* after 100 days. Values shown are means + SE (n = 6). *** = p<0.001, n.s. = not significant at p<0.1.

Fig. 2. Relationships between whole-plant mass and nodule mass per plant. Lines represent statistically significant (p<0.05) power functional regression at each treatment [(nodule mass) = $a * \text{(whole-plant mass)}^b$]. Dotted lines; ambient CO₂, solid lines; elevated CO₂.

Since the nitrogenase activity of nodules was not measured, we could not evaluate N_2 fixation at High-N and Low-N. In an earlier study, it was reported that $[CO_2]^e$ had no effect on the proportion of nitrogen derived from symbiotic fixation (VOGEL & al. 1997, SCHORTEMEYER & al. 1999). As whole-plant N accretion was larger under $[CO_2]^e$ in each of the N-treatments (Table 2), it is possible that N_2 fixation at High-N and Low-N are greater under $[CO_2]^e$ conditions than under ambient concentrations.

Elevated CO₂ had a negative effect on whole-plant N concentration and mass-based and area-based leaf N (Table 2), but no effect on area-based leaf litter N (Fig. 3a). These results suggest that the resorption efficiency (RE) of leaf N was affected by CO₂ concentrations, and indeed RE tended to decrease under [CO₂]^e at low N and N-free (Fig. 3b). Thus, N resorption from leaves to seedlings before abscision, seems to be lower in [CO₂]^e than in ambient CO₂. Because [CO₂]^e increased total leaf area (Table 1) and had no effect on area-based leaf litter N in all N-treatments (Fig. 3a), total per plant leaf litter N input into soil may increase under [CO₂]^e. VOGEL & al. 1997 also reported that total leaf litter N of *Alnus glutinosa* increased with [CO₂]^e, though autumnal leaf N resorption of *A. glutinosa* was minimally affected by [CO₂]^e.

Fig. 3. Area based leaf litter N (a) and N resorption efficiency (b) of *Almus hirsuta*. Values shown are means + SE (n = 6). *= p<0.05, *** = p<0.001, n.s. = not significant at p<0.1.

Table 2. Whole-plant N increment (g plant⁻¹), whole-plant N concentration (mg g⁻¹), leaf N (mass and area based, mg g⁻¹, g m⁻²), and leaf litter N (mass based, mg g⁻¹) and C:N ratio of *Alnus hirsuta*. *=p<0.05, **=p<0.01, ***=p<0.001, n.s. = not significant at p<0.1.

	High-N		Low-N		N-free		Source of variance		
	ambient	elevated	ambient	elevated	ambient	elevated	CO ₂	N	CO ₂ xN
plant N increment	0.72	0.81	0.61	0.72	0.80	0.90	0.07	*	n.s.
whole-plant N	21.4	19.2	18.5	18.0	20.9	17.7	***	*	n.s.
mass based leaf N	34.8	31.0	31.1	29.9	36.1	28.7	***	0.07	*
area based leaf N	1.23	1.20	1.13	1.11	1.18	1.02	*	**	0.08
leaf litter N	18.1	15.8	17.7	15.4	19.2	16.3	***	n.s.	n.s.
leaf litter C:N	29.0	33.2	29.0	33.9	26.8	32.3	***	n.s.	n.s.

Elevated CO_2 increased the C:N ratio of leaf litter of A. hirsuta (14 \pm 0.35 %, mean of three N-treatments \pm SE) compared to ambient CO_2 (Table 2). The initial C:N ratio of leaf litter is one of the main factors that affects decomposition rates (O'NeIll & Norby 1996). Though Alnus glutinosa exhibited a modest increase of 8 % in litter C:N ratio (25.9 \pm 0.35) under $[CO_2]^e$, Vogel & al. 1997 proposed that there would be little effect of CO_2 concentration on litter decomposition rates. Further study will be needed to evaluate the effect of $[CO_2]^e$ on leaf litter decomposition rates.

In conclusion, it was suggested that *A. hirsuta* would accumulate a greater biomass N through increased N_2 fixation by increased nodule mass, and may increase soil N availability by increased leaf litter N under $[CO_2]^e$.

Acknowledgements

We would like to thank Mrs. H. TAOKA and Mr. K. MIMA for assistance.

References

- Arnone III J. A. & Gordon J. C. 1990. Effect of nodulation, nitrogen fixation and CO₂ enrichment on the physiology, growth and dry mass allocation of seedlings of *Alnus rubra* Bong. New Phytol. 116: 55-66.
- COTRUFO M. F., INESON P. & SCOTT A. 1998. Elevated CO_2 reduces the nitrogen concentration of plant tissues. Global Change Biol. 4: 43-54.
- DAWSON J. O. 1983. Dinitrogen fixation in forest ecosystems. Can. J. Microbiol. 29: 979-992.
- EKBLAD A. & HUSS-DANELL K. 1995. Nitrogen fixation by *Alnus incana* and nitrogen transfer from *A. incana* to *Pinus sylvestris* influenced by macronutrients and ectomycorrhiza. New Phytol. 131: 453-459.
- HARTWIG U. A., ZANETTI S., HEBEISEN T., LÜSCHER A., FREHNER M., FISCHER B., VAN KESSEL C., HENDREY G. R., BLUM H. & NÖSBERGER J. 1996. Symbiotic nitrogen fixation: One key to understand the response of temperate grassland ecosystems to elevated CO₂? In: KÖRNER C. & BAZZAZ F. A. (Eds.), Carbon dioxide, populations, and communities, pp. 253-264. Academic Press, San Diego.
- HIBBS D. E., CHAN S. S., CASTELLANO M. & NIU C.-H. 1995. Response of red alder seedlings to CO_2 enrichment and water stress. New Phytol. 129: 569-577.
- KOIKE T., IZUTA T., LEI T. T., KITAO M. & ASANUMA S. 1997. Effects of high CO₂ on nodule formation in roots of Japanese mountain alder seedlings grown under two nutrient levels. In: ANDO T., FUJITA K., MAE T, MATSUMOTO H., MORI S. & SEKIYA J. (Eds.), Plant nutrition for sustainable food production and environment, pp. 887-888. Kluwer Academic Publishers, Japan.
- NORBY R. J. 1987. Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO_2 enrichment of the atmosphere. Physiol. Plant. 71: 77-82.
- , WULLSCHLEGER S. D., GUNDERSON C. A., JOHNSON D. W. & CEULEMANS R. 1999. Tree responses to rising CO₂ in field experiments: implications for the future forest. Plant Cell Environ. 22: 683-714.
- O'NEILL E. G. & NORBY R. J. 1996. Litter quality and decomposition rates of foliar litter produced under CO₂ enrichment. In: KOCH G. W. & MOONEY H. A. (Eds.), Carbon dioxide and terrestrial ecosystems, pp. 87-103. Academic Press, San Diego.
- SCHORTEMEYER M., ATKIN O. K., McFarlane N. & Evans J. R. 1999. The impact of elevated atmospheric CO₂ and nitrate supply on growth, biomass allocation, nitrogen partitioning and N₂ fixation of *Acacia melanoxylon*. Aust. J. Plant Physiol. 26: 737-747.

- TEMPERTON V. M., GRAYSTON S. J., JACKSON G., BARTON C. V. M., MILLARD P. & JARVIS P. G. 2003. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in *Alnus glutinosa* in a long-term field experiment. Tree Physiol. 23: 1051-1059.
- THOMAS R. B., BASHKIN M. A. & RICHTER D. D. 2000. Nitrogen inhibition of nodulation and N₂ fixation of a tropical N₂-fixing tree (*Gliricidia sepium*) grown in elevated atmospheric CO₂. New Phytol. 145: 233-243.
- TISSUE D. T., MEGONIGAL J. P. & THOMAS R. B. 1997. Nitrogenase activity and N₂ fixation are stimulated by elevated CO₂ in a tropical N₂-fixing tree. Oecologia 109: 28-33.
- VAN HEERWAARDEN L. M., TOET S. & AERTS R. 2003. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization.

 J. Ecol. 91: 1060-1070.
- VITOUSEK P. M. & HOWARTH R. W. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochem. 13: 87-115.
- VOGEL C. S., CURTIS P. S. & THOMAS R. B. 1997. Growth and nitrogen accretion of dinitrogenfixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide. - Plant Ecol. 130: 63-70.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn

Jahr/Year: 2005

Band/Volume: 45 4

Autor(en)/Author(s): Tobita H., Kitao M., Maruyama Y., Koike Takayoshi

Artikel/Article: Effects of Elevated CO2 and Nitrogen Availability on

Nodulation of Alnus hirsuta Turcz. 125-131