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Summary

GURSKAYA M. A., HALLINGER M., ECKSTEIN D., & WILMKING M. 2012. Extreme
cold summers in western Siberia, concluded from light-rings in the wood of conifers.
— Phyton (Horn, Austria) 52 (1): 101-119, with 7 Figures.

Wood samples of larch (Larix sibirica LEDEB.), spruce (Picea obovata LEDEB.)
and pine (Pinus sibirica Du TouR), growing in the northern taiga of western Siberia,
were screened for the occurrence of light-rings — an anomaly of tree-ring formation in
extreme environments. Light-rings were dated and the resulting species-related
light-ring chronologies were used (1) to explore possible causes of light-ring forma-
tion and (2) to reconstruct past extreme climatic events. Light-rings in spruce and
larch were mainly formed by an unusually cool May, June, August and September,
whereas light rings in pine were associated with a cool July. Between 1740 and 1997
we identified seven years when all three species had formed light-rings and 15 years
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when light-rings were formed in larch and spruce, but not in pine. As concluded from
linear regression, summer temperatures explained 43 and 50% of the variability of
light-ring intensity in spruce and larch, respectively. However, not all light rings
were formed in below-average cold summers but in a few cases even in above-aver-
age warm summers, indicating the limitation of this approach.

Zusammenfassung

GURSKAYA M. A., HALLINGER M., ECKSTEIN D. & WILMKING M. 2012. Extreme cold
summers in western Siberia, concluded from light-rings in the wood of conifers.
[Extrem kalte Sommer in West-Sibirien, abgeleitet aus “light-rings” im Holz von
Nadelbdumen]. — Phyton (Horn, Austria) 52 (1): 101-119, mit 7 Abbildungen.

Bohrkerne von Lérche (Larix sibirica LEDEB.), Fichte (Picea obovata LEDEB.)
und Kiefer (Pinus sibirica Du ToUR) aus der nordlichen Taiga in West-Sibirien wur-
den auf helle Sp&tholzzonen (“light-rings”) — eine Anomalie der Holzbildung unter
extremen Lebensbedingungen - untersucht. Diese light-rings wurden datiert und die
daraus folgenden baumart-spezifischen light-ring-Chronologien genutzt, um (1)
mogliche Ursachen der light-ring-Bildung zu erkunden und (2) frithere Wetterex-
treme zu rekonstruieren. Light-rings in Fichte und Lé&rche wurden zumeist bei un-
gewohnlich kithlen Monaten Mai, Juni, August und September gebildet, wahrend
light-rings in Kiefer mit einem kiihlen Juli in Verbindung standen. Zwischen 1740
und 1997 gab es sieben Jahre, in denen alle drei Baumarten light- rings aufwiesen,
und 15 Jahre, in denen Lirche und Fichte, aber nicht die Kiefer light-rings gebildet
hatten. Die Analyse der linearen Regression der Sommertemperatur ergab eine Va-
riabilitat der light-ring-Intensitdt von 43 und 50% fiir Fichte bzw. Lirche. Light-
rings wurden jedoch nicht nur in kalten Sommern, sondern in wenigen Fillen auch
in warmen Sommern gebildet. Dies weist auf die Grenzen unseres Ansatzes hin.

1. Introduction

Weather extremes such as frosts, droughts or floods can affect the
physiology of plants and as a result the distribution of plant species as well
as the functioning of ecosystems (Gu & al. 2008, JENTSCH & al. 2007).
Tracking such extreme events back into the past is a need for a deeper
understanding of human history but at the same time a challenge because
of the short duration of such weather episodes, the limited number of
written records and the lack of climate data. Annual weather changes can
be reconstructed from tree-ring width (e. g., Cook & KAIRIUKSTIS 1990,
FriTTs 2001, SHIvATOV 1986, VAGANOV & al. 1996), isotope content of the
wood (e. g., WATERHOUSE & al. 2000, Siporova & al. 2009, YounG & al.
2011), wood density (e. g., WANG & al. 2001, Brirra & al. 2002, VacaNov &
Kirpyanov 2010) or, since recently, from anatomical time series (e. g., FONTI
& al. 2010). However, short-term detrimental weather events may occur in
summers which have, on the whole, been beneficial for tree growth. One
approach to detect such short-term and intense weather events in tree
rings is to look out for irregular anatomical tree-ring features, such as frost
rings (e. g., LAMARCHE & HIRSCHBOECK 1984, PAYETTE & al. 2010), density
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fluctuations (e. g., Masiakas & ViLLALBA 2004) or light-rings (e. g., DEL-
WAIDE & al. 1991). Whereas a frost ring indicates an extreme cold event of
hours or days and light-rings relate to extreme events of weeks to months
(e. g., DAY & PEACE 1937, FILION & al. 1986, LiaNG & al. 1997, GinDL 1999,
WanNG & al. 2000, GURSKAYA & SHivaTov 2002), density fluctuations can be
attributed to dry episodes during summer (e. g., HOFFER & TARDIF 2009,
RIGLING & al. 2002). Reconstructing extreme events from light-rings can
turn out to be difficult, as light-rings occur rather infrequently. In north-
ern latitudes, light-rings are usually formed when the growing season
temperature drops below a certain threshold (e. g., YaAmMAGUCHI & al. 1993,
GIRARDIN & al. 2009). But there are also biotically-induced light-rings de-
scribed (LianGg & al. 1997). Drought-induced light-rings have up to now
been reported only for semiarid areas (LIANG & ECKSTEIN 2006). Light-
rings are characterized by a narrow band of latewood with either normally
lignified cell walls (LIANG & ECKSTEIN 2006) or poorly lignified cell walls
making the latewood appearing light colored (FiLion & al. 1986, SzEicz
1996, GINDL 1999).

In north-west Siberia, frost and cold spells are among the most fre-
quent extreme weather events usually affecting large geographical areas.
As meteorological stations are rare and most meteorological records extend
back only to the 1930s and are sometimes incomplete, climate reconstruc-
tions based on tree-ring width, stable isotopes or wood density are an im-
portant source of annually resolved past climatic variability for this re-
gion. So far, climate reconstructions as well as research on light-rings in
western Siberia have mainly been done at altitudinal and latitudinal tree
lines (BRIFFA & al. 1998, HANTEMIROV & al. 2004, EspPErR & al. 2010). But
little is known about weather extremes in the northern taiga of western
Siberia, south of the northern tree line.

Our study is, therefore, aimed at (1) exploring the climatic causes for
light-ring formation of three coniferous tree species in the northern taiga
of western Siberia, (2) establishing species-specific, discontinuous light-
ring chronologies, and (3) using the occurrence of light-rings for the re-
construction of cold summers.

2. Material and Methods
2.1. Study Area

Our research area is situated at the transition between the taiga and the south-
ern forest tundra in western Siberia (Fig. 1). The climate is influenced both by arctic
air masses from the Arctic Ocean moving southward along the Ural Mountains
without any topographic barrier as well as by the warm water of the Ob River mov-
ing from south to north making the regional climate comparatively mild. The amount
of water runoff can indirectly influence the annual wood formation of trees growing
in that region by changing the air temperature and microclimatic conditions (AGa-
FoNov 1995, BogpANOV & AGAaFoNov 2001). The soil is characterized by permafrost
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Fig. 1. Contour map of Russia (inset in the upper left corner) showing the location of
the study area near the mouth of the Ob River [with the meteorological station Sale-
khard (grey triangle) and the study sites (grey circles)].

whereby the seasonal thawing does not exceed 50-150 cm in depth. The average an-
nual air temperature at the Salekhard weather station is —4.8 °C, with +14.9 °C in
July and -22.0 °C in January. The number of days with temperatures above 0 °C or 10 °
Cis on average 135 and 67, respectively. The snow cover lasts for around 220 days per
year (AGAFONOV & al. 2004). The region is only little disturbed by man. Moreover,
insect outbreaks were never registered here. This makes the Ob River floodplain area
very interesting for climatic studies.

2.2. Site Characteristics

In 1996 and 2000, we sampled increment cores from 60 larch (Larix sibirica LE-
DEB.), 24 pine (Pinus sibirica DU ToUR) and 15 spruce (Picea obovata LEDEB.) trees at
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two sites (Fig. 1). Site 1 is located on the southwest side of the Vojkar Sor Lake
(65°39'N, 64°20'E, 10 m a. s. 1.). The trees are growing in a mixed larch-pine forest
(Fig. 2) in a moist habitat with a loamy soil cover and an understory of marsh Lab-
rador tea (Ledum palustre L.). In the early 1980s, a fire has burned most of the young
trees whereas the old trees survived. The pine trees were on average 270 years and the
larch trees 230 years old. Site 2 is located on the northeast bank of the lake (65°41'N,
64°36'E, 5 m a. s. 1.). These trees are growing in a mixed spruce-larch forest on a long
narrow sandy cape extending into the lake. We did not find any traces of fires here
because the site seemed to be well protected by the water. Dogrose (Rosa sp.), grey
alder (Alnus incana L.), dwarf birch (Betula nana L.) and marsh Labrador tea are
forming the underbrush. All sampled trees were 15-17 m high and 40-45 cm in dia-
meter at breast height. The spruce trees were on average 170 years and the larch 270
years old.

2.3. Climate Data

We used monthly mean temperatures (AD 1883-1997) and monthly sums of pre-
cipitation (AD 1890-1997) recorded at the Salekhard meteorological station (Fig. 1)
(66°32'N 66°32'E, 16 m a.s.l.), 120 km northeast of our study area; this is the longest
continuous meteorological record in the area.

2.4. Light-rings

We identified light-rings under a microscope with incident light by comparing
the color and width of latewood as well as cell shapes with adjacent rings. Light-
rings with both, narrow latewood of thick-walled tracheids as well as broad late-
wood of thin-walled tracheids, were identified for spruce, larch and pine (Fig. 3).
Since both types occurred in any given year in different trees of the same species, we
did further-on not differentiate between them. Several larch trees had tree rings of
only 1-2 cell rows, especially in the beginning of the 19'" and during the 20" century,
what made the identification of light rings difficult. Nevertheless, we rejected the
possibility that such narrow rings were caused by insect attacks since no insect out-
breaks have been mentioned in the records. We also faced difficulties with Siberian
pine whose tree rings were characterized by a narrow latewood band of very often
thin-walled cells so that they could not be clearly distinguished from light-rings.
This phenomenon has well been elaborated by VOLNEY & MALLETT 1992 for jack pine
(Pinus banksiana LamB.) in Canada showing that light-rings may be a source of error
in determining tree ages, particularly in older stands.

Species-specific light-ring chronologies were derived as percentage values of
light-rings compared to the total number of rings in a given year. Henceforth only
those parts of the chronologies consisting of at least three trees were analyzed
(spruce, back to 1797; for once, we included the year 1783 because it is a well-known
and distinct light-ring year throughout the northern hemisphere (JacoBy & al. 1999,
HANTEMIROV & al. 2011 ); larch, 1620; pine, 1664). The period covered by instrumental
temperature measurements (back to 1883) and used for correlating climate with
light-ring formation was represented by a nearly constant number of trees (spruce,
13; larch, 35-37; pine, 24).

Then, these light-ring chronologies were correlated with the contemporaneous
monthly temperature and precipitation to identify the climatic signal contained in
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Fig. 2. Study site 1 with young Larix sibirica LEDEB. and Betula pubescens EHRH.
subsp. tortuosa (LEDEB.) NYMAN.
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Fig. 3. Light-rings (arrow heads) in coniferous trees in the northern
taiga in Russia. — A spruce. — B larch. — C pine.
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light-rings and thus to explore their potential to reconstruct extremely cold sum-
mers.

Finally, all light-rings were ranked according to their frequency in a given year
into three groups: (1) >30% light-rings, (2) between 30-10% and (3) <10%. To vali-
date the spatial extent and synchrony of years with extreme weather conditions, we
compared our data with light-ring chronologies for the Yamal peninsula (300-400 km
north of our study area) and for the Polar Ural Mts. (150 km apart from our study
area) (HANTEMIROV & al. 2004). These are the nearest regions where climatic extremes
and in particular light-rings have been studied.

3. Results
3.1. Light-ring Chronologies

In the Ob River flood plain, the light-ring frequency related to the to-
tal number of tree rings was 2.9% in spruce, 2.8% in larch and 1.5% in
pine.

Light-rings were unevenly distributed over time in all three species
(Table 1, Fig. 4). In the 20'® century, light-rings were formed in 14 years in
spruce, 24 years in larch and seven years in pine, whereas in the 19" cen-
tury we identified 12, 23 and 17 light-ring years, respectively. In the 18
century, we noticed 10 light-ring years in the larch chronology and 19
light-ring years in the pine chronology; the spruce chronology was not
considered in this period of time because it was covered by only two trees.

Seven years with light-rings were common to all three tree species
(1783, 1797, 1857, 1862, 1879, 1882, 1926) (Table 1). The two chronologies
with the highest percentage of light-rings (larch and spruce) showed a high
light-ring synchrony, that means, light rings common for larch and spruce
were identified for 22 years.

The width of light-rings and non-light-rings were statistically not
different; the mean values and standard deviations are 0.7+0.2 vs.
0.6 +0.2 mm for spruce, 0.6 +0.2 vs. 0.6 +0.2 mm for larch and 0.4+0.2 vs.
0.5+ 0.2 mm for pine.

Table 1. Light-ring years in three conifer species (Picea obovata, Larix sibirica and
Pinus sibirica) in the northern taiga of western Siberia.
<10% (+); 30-10% (++); >30% (+++) light-rings.

Years Spruce Larch Pine Spruce Larch Pine
1559 +++ 1848 +
1575 +++ 1849 +
1583 +++ 1852 ++ +++
1585 +++ 1857 +++ +++ +
1591 +++ 1858 ++ ++
1620 +++ 1860 +
1621 +++ 1862 +++ ++ ++
1627 +++ 1863 +
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Years Spruce Larch Pine Spruce Larch Pine
1630 +++ 1866 ++ +
1633 +++ 1868 +
1642 +++ 1872 +++ +++

1644 +++ 1873 ++

1683 +++ 1875 ++

1687 +++ 1878 ++ +++

1696 +++ 1879 ++ + +
1699 +++ 1880 +

1706 +++ 1882 ++ ++ +
1708 +++ 1884 +++ +++

1717 ++ 1885 ++

1730 ++ 1886 ++

1731 + 1891 +++ ++

1732 ++ 1895 +

1740 + 1901 + +
1742 + 1905 ++

1744 1906 +
1745 ++ ++ 1908 +

1746 ++ 1912 + +
1747 ++ ++ 1914 +
1752 ++ 1916 ++ +
1761 +++ 1917 + ++

1764 + 1918 +++ ++

1766 ++ 1921 +

1772 + 1924 +

1780 + 1925 + +

1783 +++ +++ +++ 1926 ++ + +
1786 + 1929 +

1792 +++ ++ 1933 ++ +

1794 1939 +

1797 ++ ++ 1942 +

1798 ++ 1943 +

1799 +++ 1944 +++ ++

1800 + 1952 ++

1804 + 1958 +++ ++

1808 ++ 1964 +
1810 + 1968 +

1811 + 1969 +++ +

1818 + 1970 ++

1819 + 1971 +

1825 ++ + 1978 +++ ++

1831 ++ + 1982 +

1832 ++ 1983 +

1843 ++ 1992 +

1844 + 1994 ++

1847 1996 ++
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Fig. 4. Distribution of light-rings over time. — LR light-rings (bar). — A spruce. - B
larch. — C pine. — Stepped line: number of trees; horizontal lines: 10 and 30% of light-
rings, respectively.

3.2. Climatic Response of Light-rings Between 1883 and 1997

The intensity of spruce light-rings (altogether 16) correlated nega-
tively with May, June, August and September mean temperatures (Fig. 5).
In the seven years with more than 30% of light-rings, the temperatures in
May, August and September were on average by 2.8/2.0/0.7 °C below their
long-term means, calculated from the 120-year climate record. If all 16
spruce light-rings were taken into account, 43% of the variability of their
intensity was explained by May, August and September temperatures
(Fig. 6 A); June temperature was by 1.8 °C below its long-term mean, but
explains only 9% of the variance of the light-ring intensity.
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The intensity of larch light-rings (altogether 29) correlated also nega-
tively with May, June, August and September mean temperature (Fig. 5).
The highest correlation, accounting for 50% of the variability, was found
for August-September temperature (Fig. 6 B) whereas May and June tem-
peratures accounted for only 5 and 9%, respectively. In years with more
than 10% of light-rings, the temperatures in August and September were
on average by 1.5/0.7 °C, respectively, below their long-term means.
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Fig. 5. Correlation between light-rings and air temperature, separated by tree spe-
cies; values significant at the 95% confidence level go below the horizontal line.

The pine light-ring chronology correlated weakly, but significantly,
only with July mean temperature (r = -0.22), thus explaining 5% of the
variability of the light-ring intensity.

A comparison between the highly significant temperature variables
(May/Aug./Sept. for spruce; Aug./Sept. for larch) registered from 1883 to
1997 and the temperature derived from the light-rings — according to the
regression equations in Fig. 6 — is given in Fig. 7. The temperature re-
construction, based on the larch light-ring chronology, was stronger asso-
ciated with the measured temperature than the temperature reconstruc-
tion, based on the spruce light-ring chronology.

3.3. Extreme Summers Between 1740 and 1997 Concluded from
Light-rings

The highest frequency of light rings was identified for seven years
(1783, 1797, 1857, 1862, 1879, 1882, 1926), when up to more than 30% of all
tree rings in all three species were light-rings. In these years the summers
are considered to have been extremely cool in the area. However, not in all
years with a cold onset and end of the vegetation period a light-ring was
formed. For example, in 1901 and 1986 light-rings were missing in larch
although these years were characterized by low temperatures during the
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Fig. 6. Linear regression between temperature per group of months and light-rings. —
A spruce, y = —0.047x + 4.266. — B larch, y = -0.206x + 8.505. — All correlations are
significant at p<0.05.

entire growing season and extremely low temperatures in August-Sep-
tember (according to the meteorological record of the Salekhard weather
station). Only in spruce, we observed a few light-rings in 1901. Light-rings
were even occasionally formed in summers warmer than the long-term
mean temperature.

Based on only spruce and larch light-rings, extremely cool summers
may have additionally occurred in the years 1792, 1872, 1884, 1891, 1958,
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1969, and 1978 (Table 1). Years in which less than 10% of all tree rings
were light-rings partly occurred during periods of positive June-July tem-
perature anomalies. Still, May, August and September temperatures of
these years were lower than the long-term mean.

3.4. Light-rings Formed in Warm Summers

Occasionally, light-rings were even formed in summers warmer than
the long-term mean temperature, for example, one light-ring each in 1908,
1944 and 1952 in spruce, or in 1905 in one larch. But this occurred in one
tree or, at maximum, two trees of either pine or spruce or larch, never in
two or three species at the same time. Currently, the data basis is too small
to decide whether this phenomenon is restricted to individual trees grow-
ing under specific, at present unknown, micro-site conditions. In any case,
the occurrence of such rare cases of light-rings indicates some limitation of
our approach. At least a sufficient number of trees must be investigated.

4. Discussion

4.1. Light-rings and Reconstruction of Extreme Events in the Ob River
Floodplain

In the Ob River floodplain, the weather conditions during the growing
season of most years vary within a narrow band so that the cambium and
its derivative cells do not show any distinctive features. In cold summers,
however, with a short growing season when light-rings are formed, cam-
bial cell division either begins essentially later than usual or stops earlier,
i. e., as soon as the weather conditions become unfavorable. Temperatures
at the end of the growing season (August-September) seem to be of high
importance for light-ring formation in larch, while the temperature both at
the beginning (May) and end of the growing season (August and Septem-
ber) were triggering light-ring formation in spruce. The lower negative
correlation between larch light-ring formation and early summer tem-
peratures (May-June), compared to spruce, might result from the yearly
renewal of the photo-assimilation system in larch. Because of the small
number of light-rings in pine during the period of instrumental tempera-
ture measurements, no clear climate/growth relationship with specific
months could be established for the light-ring formation in pine.

We found seven years with a high percentage of light-rings in spruce
and larch (and to a moderate extent in pine): 1783, 1857, 1872, 18384, 1958,
1969 and 1978. The year 1783 is known as one of the most extreme years
for the growth of conifers within the last 400 years (BriFra & al. 1998,
JacoBy & al. 1999) because the eruptions of the Icelandic volcanoes Laki
and Grimsvotn with a volcanic eruption index (VEI) of 4 caused a cold
northern hemisphere summer and subsequently the light-ring formation in
our study trees. The cold summer of 1857 was triggered by the eruptions of
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the volcanoes Sheveluch, Kamchatka, in 1854 (VEI=5) and Komaga-Take,
Japan, in 1856 (VEI=4). Two volcano eruptions in 1872 (Sinarka, Kuril Is-
lands and Merapi, Java, Indonesia; VEI=4) could have led to the light-ring
formation in 1872. The light-ring in 1884 could have been induced by the
explosion of the volcano Cracatoa, Indonesia in 1883 (VEI=6) (SIMKIN &
SIEBERT 1994). The light-ring in 1958 appears to be associated with the di-
rected blast eruption of the Bezymianny volcano, Kamchatka, in 1956
(VEI=5) (BELousov & al. 2007), whereas the light-ring in 1969 can be at-
tributed to the eruptions of the Kelut and Awu volcanoes, Indonesia, in
1966 (VEI=4) and of the Fernandina volcano, Galdpagos Islands, in 1968
(VEI=4) (HANTEMIROV & al. 2004). Finally, the light-ring in 1978 may have
been induced by the largest historical basaltic eruption of Tolbachik,
Kamchatka, in 1975-1976 (VEI= 4) (FEpoTOV 1984) and the eruption of
Augustine, Southwestern Alaska, in 1976 (VEI=4).

Interestingly, there are also years of eruptions with VEI=4 without any
light-ring formation in our study area. For example, eruptions with VEI > 6
in 1815 (Tambora, Lesser Sunda Islands, Indonesia) and in 1912 (Novar-
upta, Alaska Peninsula) did not lead to light-rings in the following 2-3
years. For 1816-17 though, light-ring formation has been reported for
black spruce in Northeast America (YamMaGucHI & al. 1993) indicating
large-scale heterogeneities in the expression of unfavorable growing con-
ditions. In these years, our three coniferous species in the Siberian north-
ern taiga reacted by displaying frequently narrow or missing rings. It
therefore seems that in years that are generally cold, all physiological
processes are slowed down but ring formation as such stays normal. Thus,
light-rings seem to form only when there is a temperature gradient from
cold to warm or vice versa during the growing season. The temperature
gradient in and after 1815 or 1912 was probably too weak to result in light-
ring formation. It is commonly observed in most light-ring studies, that not
all cold summers reaching the temperature threshold for light-ring for-
mation (FILION & al. 1986, GIRARDIN & al. 2009, Szricz 1996, YAMAGUCHI &
al. 1993) actually provoke the formation of light-rings. In our study area,
light-rings also occurred in years warmer than the long-term mean (1840—
60) probably caused by cold periods of shorter duration that did not affect
the mean temperature of the respective year. In general, tree growth as
concluded from our study seems more susceptible to episodes of cold
within warm periods (Gu & al. 2008).

4.2 Validation of the Reconstruction by Other Data of Extreme Events

A comparison of the spatio-temporal distribution of light-rings at the
West-Siberian latitudinal and altitudinal tree line (HANTEMIROV & al. 2004)
and in the northern taiga (our study area) showed many common years
characterized by cold air-mass circulation during the vegetative season,
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especially during cold periods. During warm periods, however, asynchro-
nous formation of light-rings could be observed (e.g. 1920-1930 and 1980-
1990): In the 1920s, many light rings formed in northern taiga trees, but not
so intensely and frequently in trees in the river floodplain of the Yamal Pe-
ninsula. In the 1980s, the opposite situation occurred with rare occurrence
of light-rings in the northern taiga, but frequent light-rings on the Yamal
Peninsula. At this point, we can only guess why this decoupling during
generally warm periods occurred; a more in-depth analysis of the spatio-
temporal pattern of light-ring formation in northern Eurasia is envisaged.
Our light-ring-based summer temperatures (Fig. 7) calculated for the
northern taiga resembled tree-ring width/density based temperature re-
constructions in western Eurasian regions, such as the Yamal Peninsula
and the Polar Ural Mountains (SHIivaTov & al. 1996, 2002, HANTEMIROV &
al. 2011), Fennoscandia (Brirra & al. 1990) and North-Eurasia (JoONES &
MOBERG 2003, SIDOROVA & al. 2007). Most low-temperature anomalies that
were characteristic for high latitude Eurasia are synchronous with years of
light-ring formation in our tree species of the northern taiga zone.
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5. Conclusions

Our exploratory study underlined the possibility of assessing extreme
climatic events in Siberia, such as a cold onset or a cold end of the vege-
tative season, from the climatic footprint contained in light-rings of dif-
ferent tree species, since each species reacts to a different set of monthly
drivers. Light-ring formation in larch was caused by August-September
temperatures below the long-term mean of these months. Light-rings in
spruce showed a joint effect of low temperatures during the onset and end
of the growing season. However, it is obvious that despite significant cor-
relations between temperature and light-ring occurrence, light-ring for-
mation does not follow simple causalities and therefore merits further re-
search. The study of light-rings and other anatomical tree-ring anomalies
remains promising as it has the unique potential to unveil past weather or
climate events that are of too short duration to be tracked by any other
climate proxy.
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