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Summary

Younis M. E., HASANEEN M. N. A. & ABDEL-Az1z H. M. M. 2012. Certain growth
and metabolic indices of stress induced by visible light and UV radiation in broad
bean seedlings. — Phyton (Horn, Austria) 52 (2): 203-218.

The effects of either visible light or UV-radiation on growth and metabolism of
broad bean (Vicia faba) seedlings were investigated. Exposure of seedlings to low and
high visible light and UV-radiation, either alone or in combination, induced variable
significant decreases in the levels of growth parameters throughout the experimental
period, as compared with values of control seedlings grown in darkness or ambient
visible light. In addition, induced pronounced significant changes in the total amount
and in the relative composition of pigment fraction contents, associated with sig-
nificant variable decreases in photosystem II (PSII) activity were observed. In rela-
tion to controls, direct exposure of broad bean seedlings to visible light and UV-ra-
diation, induced significant variable changes in the total amount and in the relative
composition of the carbohydrate pool. Concurrently with carbohydrate changes,
significant variable increases in the activities of both invertase and a-amylase of
broad bean seedlings were maintained throughout the entire period of the experi-
ment.

*) M. E. Younis, M. N.A. HASANEEN, H. M. M. ABDEL-AZ1z, Department of Bot-
any, Faculty of Science, Mansoura University, Mansoura, Egypt. Corresponding
author: e-mail: ME_Younis@mans.edu.eg
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Zusammenfassung

Younis M. E., HASANEEN M. N. A. & ABDEL-Az1z H. M. M. 2012. Certain growth
and metabolic indices of stress induced by visible light and UV radiation in broad
bean seedlings. [Durch Lichtstress (UV und sichtbares Licht) hervorgerufene Ande-
rungen der Wachstums- und Stoffwechselparameter bei Keimpflanzen der Sau-
bohne]. - Phyton (Horn, Austria) 52 (2): 203-218.

Die Effekte, die sichtbares Licht bzw. UV-Licht auf das Wachstum und den
Stoffwechsel von Keimpflanzen der Saubohne (Vicia faba) haben, wurden unter-
sucht. Die Keimlinge, die starkem und schwachem sichtbaren Licht bzw. UV-Licht
einzeln, oder in Kombination, ausgesetzt waren, zeigten, im Vergleich zu im Dunklen
oder im Umgebungslicht aufgewachsenen Kontrollpflanzen, wihrend des gesamten
Untersuchungszeitraumes eine signifikante Abnahme der gemessenen Wachs-
tumsparameter. Aulerdem verringerte sich der Gesamtpigmentgehalt, genauso wie
sich das Verhéltnis der einzelnen Pigmente zueinander dnderte. Dies war verbunden
mit einer signifikant verringerten Aktivitdt des Photosystems II. Der Kohlenhydrat-
Pool war sowohl in Menge, wie auch in der Zusammensetzung signifikant unter-
schiedlich zur Kontrolle. Wahrend der gesamten Versuchsdauer ging mit diesen Ver-
adnderungen eine Abnahme der Aktivitaten von Invertase und a-Amylase einher.

Introduction

Light is a critical environmental signal that affects nearly every aspect
of plant growth, development and metabolism. Plants require sunlight for
photosynthesis and thus are constantly also exposed to potentially dama-
ging ultraviolet radiation (UV) that is present in sunlight (KuceEra & al.
2003). Ultraviolet radiation is categorized into several components based
on different wavelength ranges (UV-A 320-400 nm, UV-B 280-320 nm and
UV-C shorter than 280 nm) in the biological sciences. Of these UV-B and
UV-C have been known to affect most organisms harmfully.

The biological effects of UV radiation have received little attention
and questions arise as to how plants combat the effects of UV. Thus, the
negative effects of UV-A and UV-C radiation of various plant species result
in deformed morphological parameters; decreased length of radicle, length
of plumule, decreased leaf area per unit plant, biomass and dry mass ac-
cumulation (WEIH & al. 1998, KriZEK & al. 1998, ZUK-GOLASZEWSKA & al.
2003). Species, cultivar and age are determining factors in the degree of
susceptibility of plants to increased UV-radiation (TEVINI & TERAMURA
1989, CALDWELL & al. 1995). Because UV-A and photo-synthetically active
radiation (PAR, 400-700 nm) can ameliorate the damaging effects caused
by UV-B radiation by inducing photoreactivation processes in living cells
(CALDWELL & al. 1995), the ratios of UV-B/UV-A and UV-B/PAR determine
the susceptibility of organisms, as well as plant tissues, to UV exposure
(BARNES & al. 1996).

Furthermore, MusiL 1996 and SALEH & al. 2006 indicated that in-
creasing supplemental doses of UV decreased significantly total carbohy-
drates; the reduction in carbohydrate contents in response to elevated UV



205

radiation was attributed to the destructive damage of photosystems in-
duced by UV radiation, which led to the decrease in photosynthetic effi-
ciency (SALEH & al. 2006). UV-A irradiation was also shown to damage the
primary photochemistry of PSII to a larger extent than that of photosystem
I (PSI) (Navak & al. 2003, Ivanova & al. 2008).

The present study (ABDEL-Az1z 2008) was carried out in an attempt to
obtain better understanding towards the induced radiation stress effects
and mechanisms involved either by UV-A and UV-C radiation or visible
light either alone or in combination in Vicia faba seeds during germination.
As a test plant, Vicia faba L. is one of the most important winter crops of
high nutritive value in Egypt as well as in the world. Although faba beans
are consumed less in western countries, it is one of the main sources of
protein and energy for much people in Africa, Asia and Latin America. In
this paper, the approach applied was to follow the effects of visible light
and UV irradiations on growth and photosynthetic components as well as
on the changes in carbohydrate constituents and certain related enzyme
activities.

Material and Methods
Plant Material and Growth Conditions

In this investigation, a series of experiments, embodied in two separate sections
were carried out. A homogeneously-sized lot of Vicia faba (cv. Egyptl) seeds was se-
lected and surface sterilized by soaking in 10~ M mercuric chloride solution for
3 min, washed thoroughly with sterile distilled water and then soaked for 24 h in
sterile distilled water at 256 + 1°C, with aeration to avoid anaerobiosis as a compli-
cating factor. The seeds were divided into a number of sets; each of 25 seeds. These
sets were allowed to germinate in plastic boxes (22 x 14 x10 cm) furnished with
Whatman No.1 paper moistened by adding 20 cm® of sterile distilled water. During
the experimental period, each box was supplied with 20 cm? of sterile distilled water
every other day.

In the first section (A), the germination boxes were incubated in the dark at
25 + 0.1°C. After 14 days from the start, the boxes containing seedlings were sub-
divided into six subgroups, each of 4 boxes. One of the subgroups was left without
treatment to serve as control and the other five subgroups were irradiated, one h
daily, for six days, then quickly returned back to the original germination conditions
in darkness. The treatment scheme adopted in this first section (A) can be summar-
ized as follows:

1) Control.

2) Exposure of seedlings for 1 h to low visible light level (LL) (40 W m™2).

3) Exposure of seedlings for 1 h to UV-C radiation (UV-C) (254 nm).

4) Exposure of seedlings for 1 h to low visible light level (40 W m™?) in combi-
nation with UV-C radiation (254 nm) (LL + UV-C).

5) Exposure of seedlings for 1 h to UV-A radiation (UV-A) (365 nm).

6) Exposure of seedlings for 1 h to low visible light level (40 W m™) in combi-
nation with UV-A radiation (365 nm) (LL + UV-A).
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In the second section (B), the germination boxes were incubated in ambient light
(12 h day and 12 h night, photosynthetically active radiation, PAR = 280 pmol m>s™%)
at 26 + 0.1°C. After 14 days from the start of germination, the appropriate boxes
containing seedlings were sub-divided into four subgroups each of 4 boxes; one of
them was left without treatment to serve as control and the other three subgroups
were irradiated, one h daily, for six consecutive days, and then quickly returned back
to the original ambient light germination conditions. The treatment scheme adopted
in the second section (B) can be summarized as follows:

1) Control.

2) Exposure of seedlings for 1 h to high visible light level (HL) (160 W m3).

3) Exposure of seedlings for 1 h to UV-C radiation (UV-C) (254 nm).

4) Exposure of seedlings for 1 h to high visible light level (160 W m™2) in com-
bination with UV-C radiation (254 nm) (HL + UV-C).

All the exposure treatments were performed in UV-light boxes (70 x 50 x 70 cm) in
which UV radiation was supplied from a compact UV lamp, 365 nm and 254 nm (8 W
m™2) (UVP factory, USA) which was suspended above and perpendicular to the ger-
mination boxes at a distance of 50 cm. Low visible light level was supplied from fila-
ment lamps with soft white bulbs (40 W m 2, 400-700 nm) (Express factory, China) and
high visible light level was supplied from blended-light mercury lamps (160 W m™2,
400-700 nm) (Simlux factory, Egypt) fixed at the same distance.

It should be mentioned that the broad bean seedlings appeared unable to
tolerate the specified UV-radiation doses for a long 6-h period; most seedlings
failed to survive. Thus, as an alternative, consecutive 6 h treatment period; one h
daily for 6 days was used throughout the experimental period as the sustainable
treatment.

The differently treated seedlings were examined every other day for mor-
phological appearance and for determination of length of radicle and plumule.
Other growth parameters, as well, were also determined over a period of six days
from the date of exposure to different wavelengths of light, either alone or in
combination.

Since seed coat, in general, is considered as not being utilized in germination,
the decoated seed represents the living portion, i.e. embryo and cotyledons, in which
resides the potential for growth. Thus, decoated triplicate samples of broad bean
seedlings were taken for determination of their water contents, fresh and dry matter
accumulation, photosynthetic pigments, PSII activity, carbohydrates and carbohy-
drate-related enzyme activities. All measurements were carried out on the 2nd, 4th
and 6th days from the date of exposure immediately after treatment.

It should be mentioned that the results obtained from the analyses of duplicate
determinations and triplicate samples were remarkably close, thus the data pre-
sented in the corresponding tables are the means of triplicate samples. The full data
of the different stressed groups of seedlings were statistically analyzed using one-
way analysis of variance (ANOVA) and comparison among means was carried out by
calculating the Post Hoc L.S.D. with a significant level at *P<0.05 . The Pearson’s
correlation coefficients between the growth parameters and the various metabolic
changes were also carried out in order to substantiate our conclusions. All the ana-
lyses were made using the SPSS 13.0 for Windows software package (SPSS Inc.,
Chicago, IL, USA).



207

For better quantitative comparison among the different treatments, the percen-
tage of change (increase or decrease) in response to each treatment, in relation to
control level, was calculated throughout this investigation as follows:

e Percentage change (increase or decrease) immediately after each specific

treatment: [(level after treatment — control level) / control level] x 100.

Determination of Photosynthetic Components

The photosynthetic pigments (Chl a, Chl b, and Car) were determined in fresh
tissues after extraction with 85% acetone using the spectrophotometeric method as
described and recommended by METZNER & al. 1965.

PSII activity, as indicated by the rate of 2,6-dichlorophenol indophenol (DCPIP)
was monitored at 600 nm using a spectrophotometer. According to ARNON 1949, 4 g of
fresh tissues were used for preparation of chloroplast pellets that were suspended in
1 mM Na-Tricine (pH 7.8), 10 mM NaCl and 10 mM MgCl, and then kept at 0-4 °C
until required. The assay reaction mixture for determination of PSII activity con-
tained 200 mM Na-phosphate (pH 7.2), 2 mM MgCl, and 0.5 mM 2,6-DCPIP. A cali-
bration curve in terms of micromoles of dye reduced (DEAN & MiskiEwicz 2003) was
made using 2,6-DCPIP range between 10-50 uM in the reaction mixture (4 cm?).

Estimation of Carbohydrates

The method of extraction of different carbohydrate fractions (glucose, fructose,
sucrose and starch), used was patterned after those adopted by YEMM & WiILLIS 1954
and Van HANDEL 1968. In the ethanolic extract of the broad bean seedlings, glucose
was estimated using the o-toluidine procedure of FETERIS 1965. Fructose was esti-
mated in the ethanolic extract using the resorcinol method of Ror 1934 as described
by DEvI 2002. Sucrose was determined by first degrading reactive sucrose present in
0.1 cm? extract with 0.1 cm® 5.4 N KOH at 97 °C for 10 min. Three cm?® of freshly
prepared anthrone reagent [150 mg anthrone + 100 em® 72% (w/w) H,SO,] were then
added to the cooled reaction products and the mixture was heated at 97 °C for 5 min,
cooled and the developed colour was read at 620 nm, using spectrophotometer (Van
HANDEL 1968). Polysaccharides were determined by the method of THAYUMANAVAN &
SADASIVAM 1984.

Invertase Activity

Extraction of crude invertase was performed using the method of PRESSEY &
AvVANTS 1980. The reaction mixture for the invertase assay consisted of 0.1 em® en-
zyme preparation, 0.2 cm® of 0.1 M sodium acetate (pH 5), 0.1 cm® of 0.15 M NaCl,
and 0.1 cm? of 0.73 M sucrose. The enzyme preparation was diluted with 0.15 M NaCl
to produce approximately l-umol reducing groups. The blank prepared for each
sample was the same as the assay mixture but was heated before the addition of su-
crose (NELSON 1944).

a-Amylase Activity

a-amylase was extracted and assayed according to the methods adopted by
GiBBs 1955 and STREET & CLOSE 1956.
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Results and Discussion
Changes in Growth Parameters

The length of both radicle and plumule as well as fresh and dry mass
accumulation and water content of the control as well as of the differently
radiated broad beans appeared to increase progressively and significantly
throughout the duration of the experiment reaching a maximum on the
sixth day. Exposure of broad beans to LL, UV-C and UV-A either alone or
in combination led, in general, to significant decreases in all the above
mentioned growth parameters throughout the germination period as com-
pared with control values (Table 1). The apparent decreased levels main-
tained for all the various growth parameters, in response to treatment with
UV radiations, seem, in general, to be slightly augmented when LL was
used in combination with UV-C and UV-A. The following sequence of
treatments: LL+UV-C > LL+UV-A > LL > UV-C > UV-A, and LL+UV-
A > LL > LL+UV-C > UV-A > UV-C, were displayed with respect to the
percentage decrease in the length of both radicle and plumule and the
percentage decrease in the water content and fresh and dry matter accu-
mulation respectively (Table 1).

Again in both control and irradiated seedlings grown in ambient light,
there were progressive significant increases in length of radicle and plu-
mule, fresh and dry mass accumulation, throughout the entire period of
germination. But, as compared with control, all the detected growth para-
meters were variably and significantly decreased in response to irradiation
of the seedlings with HL., UV-C and HL+UV-C (Table 1). Thus, the follow-
ing sequence of treatments (UV-C > HL+UV-C > HL) was displayed with
respect to the percentage decrease maintained in all the growth parameters
during the experimental period (Table 1).

These induced negative alterations in all growth parameters may be
attributed to photomorphogenetic UV-radiation effects associated with
changes in cell division and/or cell elongation (GEHRKE 1999). In hypoco-
tyls of sunflower seedlings, a clear interaction with the growth regulator
indole-3-acetic acid (IAA) was detected (TEVINI & al. 1991). IAA absorbs in
the UV waveband and can be converted in vitro and in vivo to various
photo-oxidative products. One of these products is 3-methylene-oxindole
which inhibits hypocotyl growth when applied exogenously. The primary
effect of enhanced UV-radiation appears to be subtle photomorphogenic
responses that induce altered carbon partitioning and allocation rather
than significant reductions in growth or biomass accumulation (CALDWELL
& al. 2003, SALEH & al. 2006).

In support of the present results, MusiL & al. 1998 found that germi-
nation of Leucadendron laureolum seeds was depressed following short (7-
day) exposures to UV radiation. This depression was intensified with in-
creased UV exposure dose, and most pronounced at shorter UV-B wave-
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lengths. One explanation for this discrepancy in UV dose effectiveness may
be the greater penetration into tissues of longer UV-A wavelengths (LowE
& SHAATH 1990, ALENIUS & al. 1995). This suggests a much greater impact
of solar UV radiation on seed deterioration processes under natural con-
ditions, since the UV-A component of the solar UV flux constitutes a much
greater fraction (39%: 3.45 kJ m2 d™') of the total daily biologically effec-
tive flux, according to the QUAITE & al. 1992 action spectrum, than that
supplied by the fluorescent sun lamps (0.45 kJ m~2 d™?).

WEIH & al. 1998 stated that enhanced UV-A decreased leaf area per unit
plant biomass (leaf area ratio). Qualitative effects of solar UV-A radiation
on higher plants have been reported (TEZUKA & al. 1994), but quantitative
data are minimal. Recent UV-exclusion studies conducted on cucumber
(KRIZEK & al. 1997) and a red-pigmented lettuce (Krizek & al. 1998) indicate
that ambient UV-A greatly inhibits leaf enlargement, stem elongation and
biomass production over and above that under ambient UV-B. The above
mentioned reports and conclusions lend a strong support to our results.

Changes in Photosynthetic Parameters

It is apparent from Table 2 that the irradiation with LL, UV-A or UV-
C, either alone or in combination, induced variable significant decreases in
all the detected pigment contents below the control levels. The inter-
relationships between Chl a and Chl b fractions can be better evaluated
when the values of Chl a/b ratios are taken into consideration. In broad
bean seedlings, treatment with LL, UV-A or UV-C, either alone or in com-
bination, lowered these ratios below those of controls maintained
throughout the entire period of the experiment (Table 2). In response to
irradiation, the calculated percentage negative change in all pigment con-
tents of broad bean seedlings are also shown in Table 2.

In broad bean seedlings treated with HL, UV-C and HL+UV-C, the
pigment contents as well as Chl a/b ratios appeared to be lowered below
those of control throughout the experimental period except on the 6th day
when the ratio of HL irradiated seedlings appeared comparable with that
of control seedlings (Table 2).

The calculated percentages of decrease in all pigment fraction con-
tents of the variously treated seedlings (Table 2) are in accord with the
following sequence of treatments: (LL > UV-C > LL+UV-A > UV-A >
LL+UV-C) and (HL. > HL+ UV-C > UV-C) in the case of the dark and
ambient-light germinated seeds, respectively.

As compared with dark- or ambient light-grown broad bean seedlings,
exposure of the seedlings to LL, UV-A, UV-C and HL, either alone or in
combination, induced a significant decrease in PSII activity (Table 2). The
sequence of the maintained percent change (decrease) in the activity of PSII
of the variously treated broad bean seedlings appeared as follows: (LL+UV-
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A > UV-A > LL+ UV-C > UV-C > LL) and (HL > HL+ UV-C > UV-C) in
case of the dark- and ambient-light germinated seeds, respectively.

Thus, the present results, concerning the negative effects of UV irra-
diation upon the photosynthetic machinery (pigment content and PSII ac-
tivity) appeared to coincide with the negative effects on growth compo-
nents. In accord with the above mentioned results, Yao & Liu 2007 de-
monstrated that enhanced UV-radiation significantly decreased Chl a, Chl
b, Chl a+b and Car contents of Picea asperata seedlings. A parallel chan-
ging trend in Chl a and Chl b resulted in no significant change in Chl a/b
ratio under enhanced UV-radiation. Furthermore, the decreasing tendency
of chl content and chl fluorescence appeared parallel to the biomass re-
duction in plants. The decrease in Chl a+b content was mainly attributed
to the distribution of Chl b, which is more sensitive to radiation than Chl a
(Yao & Liu 2007). In addition the decreases of total chlorophyll content
may be due to the decreases of Car, since Car protect chlorophyll from
photooxidative destruction (SINGH 1996).

The decrease in content of Car due to enhanced UV- or high light in-
tensity radiations was attributed to considerable oxidative stress by accu-
mulation of reactive oxygen species (ROS) (Yao & Liu 2007). Carotenoids,
being considered as a quenching agent of short wave with high energy,
could exert their protective function as antioxidants to inactivate UV- in-
duced radicals in the photosynthetic membranes (GoTz & al. 1999).

Moreover, PSII inactivation can be induced by both visible (LoNG & al.
1994) and UV irradiation (KRAUSE & al. 1999). That PSII inactivation can
be increased by abiotic stresses, such as nutrient deficit (Grossman &
TarAHASHI 2001). UV-A also causes PSII inactivation and contributes to
oxidative pressure (WHITE & JAHNKE 2002).

Recently, VASS & al. 2002 and Ivanova & al. 2008 studied the effect of
UV-A radiation on the function of the photosynthetic apparatus in thyla-
koid membranes and they suggested that the primary target of UV-A ra-
diation in thylakoid membranes is the PSII complex. Several UV sensitive
sites are supposed to exist in this complex, including the redox-active tyr-
osine, the Mn cluster on the donor side and the plastosemiquinones on the
acceptor side (IvaANOvA & al. 2008). The primary site of UV-A radiation da-
mage is thought to be the catalytic Mn cluster of the oxygen evolving system
(Vass & al. 2002).The inactivation of the electron transport between the Mn
cluster and the tyrosine electron donors was proposed to be the immediate
cause for the loss of O, evolution by UV radiation (Ivanova & al. 2008).

Changes in Carbohydrate Content and Carbohydrate-Related
Enzyme Activities

The pattern of changes herein obtained (Table 3) indicates that glu-
cose, fructose, sucrose, starch and total saccharide contents of the control
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as well as of the differently treated broad bean seedlings appeared to show
a significant progressive increase throughout the experimental period.
Exposure of dark- or ambient light-grown seedlings to LL, HL., UV-C, UV-
A radiations, either alone or in combination, throughout the experimental
period, led to significant variable decreases in all saccharide contents in
relation to levels of control seedlings. The following sequence of treat-
ments; (LL+UV-A > UV-A > LL+UV-C > LL > UV-C) for the dark ger-
minated seedlings and (HL. > HL+UV-C > UV-C) for the light germinated
ones, were displayed with respect to the percentages of decrease in the
various saccharide contents, calculated as percentage of control (Table 3).
On the other hand, sucrose content showed significant variable increases
above the control levels (Table 3). The following sequence of treatments:
(LL+UV-A > UV-A > LL+UV-C > LL > UV-C) for the dark germinated
seedlings and (UV-C > HL+UV-C > HL) for the light germinated ones
were displayed with respect to percentages of increase in the sucrose con-
tent.

Furthermore, broad bean seedlings grown under dark and ambient
light conditions, when exposed to LL, HL,, UV-A and UV-C, either alone or
in combination, showed significant variable increases in the activities of
invertase and a-amylase throughout the experimental period, as compared
with controls levels (Table 3). The order of the calculated percentages of
increase in the activities of both enzymes goes along the following se-
quence of treatments: LL+UV-A > UV-A > LL+UV-C > LL > UV-C for
dark-germinated seeds and HL > HL+UV-C > UV-C for ambient-light
germinated seeds (Table 3).

In support of the present results, MusiL 1996 and SALEH & al. 2006
indicated that increasing supplemental doses of UV radiations sig-
nificantly decreased the concentration of total carbohydrates of certain
plant species. When soybean cultivars were irradiated with UVa,p
12.8 kJ m2 d!, the percentage of inhibition in total carbohydrates were
25.9, 28.1 and 36.5 for Giza-22, Giza-35 and Giza-111, respectively in
comparison with control (SALEH & al. 2006). Also, in a long term study,
enhanced UV-radiations significantly decreased the ratio of storage starch
to chloroplast area in field-grown silver birch leaves (KosTiNa & al. 2001).

The reduction in glucose, fructose, starch and total saccharide con-
tents of broad bean seedlings grown under dark or ambient light condi-
tions, in response to exposure to LL, HL,, UV-A, UV-C, either alone or in
combination, throughout the experimental period, could be attributed to
the destructive damage of photosynthetic machinery induced by UV ra-
diation. As already stated by ALLEN & al. 1998 and SALEH & al. 20086, it is
evident that UV-radiation can potentially impair the performance of the
main component processes of photosynthesis; the photophosphorylation
reactions of the thylakoid membrane, the CO,-fixation reactions of the
Calvin cycle and stomatal control of CO, supply.
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Moreover, in accord with our results, BROECKLING & al. 2005 reported
increases in the activities of some carbohydrate-related enzymes due to
exposure of seedlings of certain plant species to UV-radiation. Also, of in-
terest in this connection, DARBELLEY & al. 1997 investigated the changes in
both invertase and a-amylase activities and in starch and free sugar con-
tents in correlation with lipid mobilization in Helianthus annuus during
the first 15 days of seedling growth in discontinuous light and in darkness.
Throughout the seedlings development, invertase and a-amylase activities
increased more significantly in light than in darkness. The study of in-
duced changes in several soluble sugars indicated that: 1) sucrose stored in
cotyledons of mature seeds was used at the onset of seedling growth, more
rapidly in light than in darkness, 2) glucose, fructose and maltose accu-
mulated in old etiolated cotyledons in contrast to what occurred in the
light.

The data herein obtained clearly demonstrate that optimum levels of
starch and reducing soluble sugars reached in light-grown broad bean
seedlings do not coincide with the maintained maximal amount of chlor-
ophyll. These results might be the reflection of much more stronger mobi-
lization of carbohydrates in light than in darkness, in correlation with a
more rapid development of embryo axis in light, as was observed in lupin
cotyledons (CrawsHAW & REID 1984). These data were consistent with the
fact that the 12-day-old cotyledons of sunflower kept less glucose and
fructose in light than in darkness (DARBELLEY & al. 1997).

In view of the above mentioned changes in growth and metabolism
induced by visible light and UV-radiation, we can finally conclude that a
close parallelism appeared to exist between the growth pattern and dry
matter accumulation throughout the experimental period. This appears to
be a consequence of the maintained disruption of the functional intensity
of the photosynthetic apparatus which also led to decreased levels in the
various carbohydrate fractions as well as in the total carbohydrate con-
tent. However, the increased levels of sucrose content can be explained on
the basis of contribution to the maintenance of osmotic pressure in the
rapidly expanding cells of broad bean seedlings, as was proposed by
PrEIFFER & KUTSCHERA 1996 during light induced expansion of sunflower
cotyledons.
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