Über Involutionen höheren Grades auf nichtrationalen Trägern

von

Emil Weyr, w. M. k. Akad.

I. Gemeinsame Elementenpaare zweier Involutionen erster Stufe auf einem Träger vom Geschlechte Eins.

Wir denken uns die eine Involution J_1^m als Punktinvolution auf einer Raumeurve $R_{n,1}$ n^{ter} Ordnung vom Geschlechte Eins und verbinden je zwei einer Gruppe angehörigen Punkte durch eine Gerade; alle diese Geraden erfüllen die der Involution entsprechende Involutionsfläche φ .

Die durch irgend eine feste Gerade G gehenden Ebenen schneiden $R_{n,1}$ in einer Involution J_1^n n^{ten} Grades erster Stufe, und die den beiden Involutionen $J_1^m J_1^n$ gemeinschaftlichen Punktepaare liegen offenbar auf Erzeugenden der φ -Fläche, welche die Gerade G schneiden. Die Zahl g(m,n) der den beiden Involutionen m^{ten} und n^{ten} Grades gemeinschaftlichen Elementenpaare wird also zugleich den Grad der Involutionsfläche φ darstellen.

Da jeder Punkt von $R_{n,1}$ mit (m-1) anderen Punkten der Curve eine Gruppe der J_1^m bildet, so ist die Curve $R_{n,1}$ eine (m-1)-fache Curve von φ .

Wenn wir die Gerade G als durch einen Punkt a von $R_{n,1}$ hindurchgehend annehmen, so geht J_1^n tiber in eine J_1^{n-1} , welche also mit der J_1^m g(m, n-1) gemeinsame Paare haben wird, von denen jedes auf einer die G schneidenden Erzeugenden von φ gelegen ist; zu den so entstehenden g(m, n-1) Schnittpunkten von φ mit G tritt noch der (m-1)-fache Punkt a, so dass wir im

Ganzen g(m, n-1) + (m-1) Punkte haben. Dies gibt die Beziehung

$$g(m, n) = g(m, n-1) + m-1.$$
 1)

Diese Recursionsformel liefert, wenn man statt n der Reihe nach n-1, n-2, ..., 4, 3 setzt, die Gleichungen:

$$g(m, n-1) = g(m, n-2) + m-1$$

 $g(m, n-2) = g(m, n-2) + m-1$

$$g(m, 3) = g(m, 2) + m - 1$$

welche, zu 1) addirt, die Relation:

$$g(m, n) = g(m, 2) + (n-2)(m-1)$$
 2)

ergeben. Nun kann man für g(m, 2) die schon früher einmal ¹ gefundene Zahl (m-2) setzen, oder aber, wir setzen in 1) an Stelle von m die Zahl 2 und schreiben m statt n; dies gibt

$$g(2, m) = g(2, m-1) + 1$$
,

woraus, wenn statt m der Reihe nach m-1, m-2, ..., 3 gesetzt wird, sich die Gleichungen

$$g(2, m-1) = g(2, m-2) + 1$$

 $g(2, m-2) = g(2, m-3) + 1$

$$g(2,3) = g(2,2) + 1$$

ergeben, welche, zur obigen addirt, die Relation

$$g(2, m) = g(2, 2) + m - 2$$

liefern. Nun ist eine Paarinvolution durch ein Paar vollkommen bestimmt, so dass zwei Paarinvolutionen kein gemeinsames Elementenpaar besitzen, d. h. g(2, 2) = 0, somit

$$g(2,m) = m-2$$

was in 2) gesetzt, die Gleichung

¹ Siehe: Über Raumcurven fünfter Ordnung vom Geschlechte Eins, XC. Band, 1884, S. 210.

$$g(m, n) = (m-1)(n-1)-1$$
 3)

liefert.

"Zwei auf einem Träger vom Geschlechte Eins befindliche Involutionen erster Stufe m^{ten} und n^{ten} Grades besitzen [(m-1)(n-1)-1] gemeinschaftliche Elementenpaare."

Wird G als eine r-punktige Secante von $R_{n,1}$ vorausgesetzt, so erhält man statt 1) die Gleichung g(m,n) = g(m,n-r) + r(m-1), aus welcher für r = n-2 sofort die Gleichung 2) folgt.

Übrigens kann die Gleichung 3) direct geometrisch abgeleitet werden, wobei man entweder räumliche oder nur ebene Betrachtungen zu Grunde legen kann.

Wir beginnen mit Letzteren. Es seien \varkappa und \varkappa' zwei positive ganze Zahlen, welche der Gleichung $m-n=\varkappa-\varkappa'$ genügen, und wir setzen $m+\varkappa'=n+\varkappa=q$. Es sei $C_{q,1}$ eine beliebige ebene Curve q^{ter} Ordnung vom Geschlechte Eins, welche den Punkt a zu einem \varkappa -fachen und den Punkt b zu einem \varkappa' -fachen Punkte haben mag; da sie im Ganzen $\frac{(q-1)(q-2)}{2}-1$ Doppelpunkte besitzen muss, und da a, respective b, für $\frac{\varkappa(\varkappa-1)}{2}$, respective $\frac{\varkappa'(\varkappa'-1)}{2}$ Doppelpunkte zählt, so wird sie ausser den mehrfachen Punkten a, b noch weitere $\frac{(q-1)(q-2)}{2}-1-\frac{\varkappa(\varkappa-1)}{2}-\frac{\varkappa'(\varkappa'-1)}{2}$

Doppelpunkte δ besitzen. Die durch a gehenden Strahlen bestimmen auf C eine J_1^n und die durch b gehenden Strahlen eine J_1^m . Die diesen beiden $J_1^n J_1^m$ gemeinsamen Paare sind nun offenbar dargestellt: erstens durch die Doppelpunkte δ und zweitens durch die Paare, welche man aus den $(q-\varkappa-\varkappa')$ Schnittpunkten von C mit der Geraden \overline{ab} bilden kann und deren Zahl somit

$$\frac{(q-\mathbf{x}-\mathbf{x}')\,(q-\mathbf{x}-\mathbf{x}'-1)}{2}$$

ist. Die Zahl der beiden Involutionen gemeinsamen Paare ist somit:

$$\frac{(q-1)(q-2)}{2} - 1 - \frac{\varkappa(\varkappa - 1)}{2} - \frac{\varkappa'(\varkappa' - 1)}{2} + \frac{(q - \varkappa - \varkappa')(q - \varkappa - \varkappa - 1)}{2}$$

Diese Zahl ist aber gleich $(q-\varkappa-1)(q-\varkappa'-1)-1$ oder aber gleich (m-1)(n-1)-1 wie früher.

Betrachten wir eine Raumcurve $R_{q,1}$ vom Geschlechte Eins und von beliebiger Ordnung q(q>m,n); es sei A eine (q-n)-punktige und B eine (q-m)-punktige Secante derselben. Eine Gerade X, welche längs der Leitlinien R, A, B hingleitet, beschreibt eine Regelfläche (m+n) ter Ordnung, welche A zur m-fachen und B zur n-fachen Geraden hat, während R für die Fläche einfach ist. Das Ebenenbüschel A bestimmt auf R eine J_1^m und das Büschel B eine J_1^n ; die gemeinsamen Elementenpaare beider liegen offenbar auf Doppelerzeugenden der Regelfläche. Der ebene Schnitt der Regelfläche muss auch vom Geschlechte Eins sein, weil er ja punktweise eindeutig auf R bezogen erscheint; dieser Schnitt ist eine Curve (m+n) ter Ordnung mit einem m-fachen Punkte auf A und einem n-fachen auf B. Die Zahl seiner noch auftretenden Doppelpunkte ist nach Obigem gleich g(m,n). Wir haben also die Relation:

$$\frac{(m+n-1)(m+n-2)}{2} - \frac{m(m-1)}{2} - \frac{n(n-1)}{2} - g(mn) = 1,$$

woraus wie früher

$$q(m, n) = (m-1)(n-1)-1$$

folgt.

Aus dem Satze über die Anzahl gemeinschaftlicher Elementenpaare einer J_1^n und einer J_1^n auf einem Träger vom Geschlechte Eins folgen sofort die nachstehenden Sätze:

"Die Involutions curve einer auf einer ebenen Curve n^{ter} Ordnung vom Geschlechte Eins befindlichen Punktinvolution m^{ten} Grades (erster Stufe) ist eine Curve von der $[(m-1)(n-1)-1]^{\mathrm{ten}}$ Classe."

Diese Classenzahl reducirt sich um soviele Einheiten, als es in der Involution Elementenpaare gibt, welche durch Doppelpunkte des Trägers dargestellt werden.

Für m=2 ist die Curve von der $(n-2)^{\rm ten}$ Classe und vom Geschlechte Null (rational).

"Die Involutionsfläche einer auf einer Raumcurve nter Ordnung vom Geschlechte Eins befindlichen Punktinvolution mten Grades und erster Stufe ist eine Regelfläche [(m-1)(n-1)-1]ter Ordnung, welche die Trägercurve zur (m-1)-fachen Curve besitzt."

Für m=2 ist die Fläche rational und von der Ordnung (n-2); der Träger ist eine einfache Curve der Fläche. Für m=3 ist die Fläche vom Geschlechte Eins, weil auf die Curve abgebildet. Bei einer $J_1^m m>2$ auf einer R kann man auch von einer Involutionscurve sprechen; es ist die Curve, welche von den Verbindungsebenen je dreier Punkte einer Gruppe eingehüllt wird.

Diese Curve ist, wie man sofort sieht, rational für m=3 und vom Geschlechte Eins für m=4.

II. Gemeinsame Elementenpaare zweier Involutionen erster Stufe auf einem Träger von beliebigem Geschlechte.

Sind die beiden Involutionen $J_1^m J_1^n$ Punktinvolutionen auf einer Raumcurve R von beliebigem Geschlechte, so kann man die eine, z. B. J_1^n , wieder als durch ein Ebenenbüschel ausgeschnitten denken und erkennt sofort, dass auch hier die Reductionsgleichung

$$g(m, n) = g(m, n-1) + m-1$$
 1)

giltig bleibt. Nun kann eine Curve von höherem Geschlechte definirt werden dadurch, dass auf ihr im Allgemeinen J_1^m vorkommen, wenn m nicht unter eine bestimmte Grenze sinkt. Wenn β oberhalb dieser Grenze ist, wird man also in 1) auf der linken Seite statt n die Werthe $n-1, n-2, \ldots, \beta+1$ setzen können und erhält:

$$g(m, n-1) = g(m, n-2) + m - 1$$

 $g(m, n-2) = g(m, n-3) + m - 1$

$$g(m, \beta + 1) = g(m, \beta) + m - 1$$

was zu 1) addirt die Gleichung:

$$g(m, n) = g(m, \beta) + (n - \beta)(m - 1)$$
 1')

liefert.

Auf $g(m, \beta)$ kann man diese selbe Reductionsgleichung 1) anwenden, wenn man in 1) an Stelle von m und n die Werthe β , respective m, setzt. Dies gibt:

$$g(\beta, m) = g(\beta, m-1) + \beta - 1$$

und wenn hierin der Reihe nach statt m die Werthe m-1, m-2, ..., $\beta+1$ gesetzt werden:

$$g(\beta, m-1) = g(\beta, m-2) + \beta - 1$$

 $g(\beta, m-2) = g(\beta, m-3) + \beta - 1$

$$g(\beta, \beta + 1) = g(\beta, \beta) + \beta - 1$$

und durch Addition aller dieser Gleichungen:

$$g(\beta, \mathbf{m}) = g(\beta, \beta) + (\mathbf{m} - \beta)(\beta - 1).$$

Setzt man diesen Werth in 1') ein, so ergibt sich:

$$g(m, n) = (m-1)(n-1) - [(\beta-1)^2 - g(\beta, \beta)].$$
 4)

In dieser Gleichung ist also g(m,n) die Zahl der Elementenpaare, welche zwei Involutionen $m^{\rm ten}$ und $n^{\rm ten}$ Grades erster Stufe auf einem Träger von beliebigen Geschlechte gemeinschaftlich haben, und ebenso $g(\beta,\beta)$ die Anzahl der gemeinschaftlichen Elementenpaare zweier Involutionen $\beta^{\rm ten}$ Grades und erster Stufe auf jenem Träger.

Da die Gleichung 4) für ein beliebiges (zulässiges) β und für beliebige m, n giltig ist, so erkennt man, wenn m, n als constant und β als variabel gedacht wird, sofort, dass der Werth $[(\beta-1)^2-g(\beta,\beta)]$ unabhängig von β und nur von der Natur der Curve abhängig sein kann. Wir setzen:

$$(\beta - 1)^2 - g(\beta, \beta) = p$$
 5)

und bezeichnen p als das Geschlecht der Curve, wobei nun noch zu zeigen ist, dass diese Zahl in der That jene ist, welche gewöhnlich als Geschlecht der Curve bezeichnet wird. Zu dem Behufe betrachten wir eine ebene Curve n^{ter} Ordnung mit δ Doppelpunkten. Zwei Strahlenbüschel bestimmen auf ihr zwei J_1^n , welche also $g(n,n)=(n-1)^2-p$ gemeinsame Elementenpaare besitzen werden. Diese Zahl setzt sich zusammen: a) aus den δ Paaren, welche von den Doppelpunkten repräsentirt werden und b) aus den $\frac{n(n-1)}{2}$ -Paaren, die man aus den n Schnittpunkten der

Curve mit dem gemeinschaftlichen Strahle der beiden Büschel bilden kann. Es ist also

$$\delta + \frac{n(n-1)}{2} = (n-1)^2 - p$$
,

somit

$$\delta = \frac{(n-1)(n-2)}{2} - p,$$

und p ist daher in der That nichts Anderes, als das Geschlecht der Curve.

Ebenso für eine Raumcurve; da sind die beiden Strahlenbüschel durch zwei Ebenenbüschel mit sich schneidenden Axen zu ersetzen und δ ist die Zahl der scheinbaren Doppelpunkte. Wir haben also den Satz:

"Zwei Involutionen erster Stufe von m^{ter} und n^{ter} Ordnung auf einem Träger vom Geschlechte p besitzen

$$g(m, n) = (m-1)(n-1)-p$$
 6) ¹

gemeinsame Elementenpaare."

Aus diesem Satze ergibt sich unmittelbar:

"Die Involutionscurve (Enveloppe der Verbindungsgeraden je zweier einer Gruppe angehörigen Punkte) einer J_1^m auf einer ebenen Curve n^{ter} Ordnung vom Geschlechte p ist eine Curve $[(n-1)(m-1)-p]^{\text{ter}}$ Classe."

"Die Involutionsfläche einer J_1^m auf einer Raumcurve n^{ter} Ordnung vom Geschlechte p ist eine Regelfläche $[(n-1)(m-1)-p]^{\text{ter}}$ Ordnung. Die Curve ist (m-1)-fach für die Fläche."

III. Zahl der Doppelelemente einer J_1^m auf einem Träger vom Geschlechte p.

Wir denken uns die J_1^m als Punktinvolution auf einer ebenen Curve C vom Geschlechte p. Wenn man eine solche eindeutige Transformation durchgeführt denkt, dass das Curvenbüschel, welches aus C die Gruppen der J_1^m ausschneidet, in ein Strahlen-

¹ Siehe: Vorlesungen über Geometrie von Alfred Clebsch, I. Band, S. 446, Gleichung 13. Hier ist $\frac{(\varphi \varphi')}{2} = g(m,n)$, wenn $\alpha = \beta = m-1$, $\alpha' = \beta'$, $n-1=\gamma=\gamma'=1$ gesetzt wird.

büschel übergeht, so wird C in eine Curve C'_n nter Ordnung transformirt, welche ebenfalls vom Geschlechte p ist und für welche der Scheitel des Strahlenbüschels ein (n-m)-facher Punkt sein wird.

Die Curve C'_n möge ausser dem (n-m)-fachen Punkte noch δ Doppelpunkte und r Rückkehrpunkte besitzen. Die durch den (n-m)-fachen Punkt gehenden Strahlen schneiden aus C'_n die transformirte J^m_1 aus, und die Zahl Δ der Doppelelemente von J^m_1 wird somit gleich sein der Summe aus der Zahl t der durch den (n-m)-fachen Punkt gehenden Tangenten und r:

$$\Delta = t + r$$
.

Die Classe z von C'_n ist gegeben durch

$$z = n(n-1) - (n-m)(n-m-1) - 2\delta - 3r$$

und somit ist, da $t = \varkappa - 2(n-m)$:

$$t = n(n-1) - (n-m)(n-m-1) - 2\delta - 3r - 2(n-m)$$

und folglich

$$\Delta = n(n-1) - (n-m)(n-m-1) - 2(\delta+r) - 2(n-m)$$
.

Da C'_n vom Geschlechte p ist, so hat man

$$p = \frac{(n-1)\,(n-2)}{2} - \frac{(n-m)\,(n-m-1)}{2} - \delta - r\,,$$

folglich ist

$$(n-m)(n-m-1)+2(\delta+r)=(n-1)(n-2)-2p$$
,

somit

$$\Delta = n(n-1) - (n-1)(n-2) + 2p - 2(n-m)$$

oder

$$\Delta = 2(m+p-1).$$
 7) 1

"Eine Involution m^{ten} Grades erster Stufe auf einem Träger vom Geschlechte p besitzt 2(m+p-1) Doppelelemente."

¹ Siehe l. c., S. 460.

Hieraus sofort:

"Eine ebene (räumliche) Curve mter Ordnung vom Geschlechte p ist von der Classe (vom Range) [2(m+p-1)-r], wenn r die Zahl ihrer Rückkehrpunkte ist."

IV. Cubische Involutionen erster Stufe auf Trägern vom Geschlechte Eins.

"Durch zwei einer J_{m-1}^m entnommene Gruppen von je n Elementen eines Trägers vom Geschlechte Eins ist eine J_1^m vollkommen und unzweideutig bestimmt."

Denkt man sich die Involutionen etwa als Punktinvolutionen auf einer ebenen Curve, so werden durch die beiden m-elementigen Gruppen die zwei sie enthaltenden Curven der ∞^{m-1} -fachen linearen Schaar, welche die J_{m-1}^m bestimmt, festgelegt und durch dieselben wieder das Curvenbüschel, welches die J_1^m aus dem Träger schneidet. Da eine J_{m-1}^m durch eine Gruppe vollkommen bestimmt ist, und da der letzte Punkt einer Gruppe durch die übrigen m-1 Punkte gegeben erscheint, so kann man auch sagen:

"Eine J_1^m ist durch eine ihrer Gruppen und durch (m-1) Punkte einer zweiten ihrer Gruppen vollkommen bestimmt."

Insbesondere ist also eine J_1^3 durch ein Tripel und ein Paar vollkommen bestimmt.

Auf einer Curve $C_{3,1}$ dritter Ordnung vom Geschlechte Eins kann die durch ein Tripel $a_1a_2a_3$ und ein Paar b_1b_2 bestimmte eubische Punktinvolution J_1^3 erster Stufe folgendermassen vervollständigt werden. Ein dem Dreieck $a_1a_2a_3$ beliebig umschriebener Kegelschnitt (der auch als Geradenpaar verwendet werden kann) schneidet die Curve in einem Punktetripel $s_1s_2s_3$ und wird vom Kegelschnitte der fünf Punkte $s_1s_2s_3b_1b_2$ in einem Punkte $s_1s_2s_3$ und wird vom Kegelschnitten. Um nun die Gruppe zu vervollständigen, welche den beliebigen Punkt x_1 enthält, hat man $C_{3,1}$ mit dem Kegelschnitte $s_1s_2s_3sx_1$ in den Punkten x_2x_3 zum Durchschnitte zu bringen; $x_1x_2x_3$ ist eine Gruppe der J_1^3 .

Liegen die Punkte $a_1a_2a_3$, b_1b_2 auf einer Raumeurve vierter Ordnung $R_{4,1}$ vom Geschlechte Eins (erster Art), so schneidet die Ebene $a_1a_2a_3$ die Curve in einem Punkte O, durch welchen alle

Ebenen $x_1x_2x_3$ hindurchgehen; die Ebene $a_1a_2a_3$ wird von der Geraden b_1b_2 in einem Punkte getroffen, welcher mit O verbunden die Axe A des Ebenenbüschels liefert, dessen Ebenen die $R_{4,1}$ in den einzelnen Gruppen der J_1^3 schneiden.

Der Punkt x_1 wird also von jenem Punktepaar x_2 x_3 zu einer Gruppe der J_1^3 ergänzt, in welchem $R_{4,1}$ von der Ebene Ax_1 geschnitten wird.

Wenn auf $R_{4,1}$ drei Punktepaare a_1a_2 , b_1b_2 , c_1c_2 gegeben sind, so gibt es zwei Gerade A, A', welche einpunktige Secanten von $R_{4,1}$ sind und die drei Geraden a_1a_2 , b_1b_2 , c_1c_2 gleichzeitig schneiden. Die drei letztgenannten Geraden bestimmen nämlich ein Hyperboloid, welches $R_{4,1}$ ausser in den drei Punktepaaren noch in zwei Punkten α , α' schneiden wird; A, A' sind dann die beiden Erzeugenden des Hyperboloides H, welche dem anderen Systeme augehören und duech a, a' hindurchgehen. Wenn jedoch die drei Punktepaare einer und derselben J_1^2 angehören, so enthält H die Curve $R_{4,1}$ und die Geraden A, A' werden unbestimmt. Wir haben also den Satz:

"Durch drei Elementenpaare, welche nicht einer und derselben J_1^2 angehören, sind zwei J_1^3 bestimmt."

Wenn auf $R_{4,1}$ eine J_1^3 und eine J_1^2 gegeben sind, so gehen die Ebenen $x_1x_2x_3$ der Tripel der J_1^3 durch eine Gerade A, welche $R_{4,1}$ in einem Punkte O schneidet, während die Verbindungsgeraden xx' der Paare der J_1^2 ein durch R_4 gehendes Hyperboloid H erfüllen. Dieses wird von A ausser in O noch in einem zweiten Punkte p geschnitten, und die durch p gehende Erzeugende xx' von x' von x' der x' der x' von x' der x' der x' von x' der x'

"Eine J_1^2 hat mit einer conlocalen J_1^3 ein gemeinsames Elementenpaar."

Wenn wir je zwei Punkte einer Gruppe einer J_1^3 auf einer $R_{4,1}$ durch eine Gerade verbinden, so erfüllen alle diese Geraden eine Regelfläche, die Involutionsfläche der J_1^3 . Die Curve ist für die Fläche eine Doppelcurve, und die Gerade A, durch welche die Ebenen der Tripel der J_1^3 hindurchgehen, ist eine Doppelgerade der Fläche, da ja durch jeden Punkt von A zwei Bisecanten von $R_{4,1}$ gehen und diese offenbar Erzeugende der Fläche sind, da ja alle Erzeugenden der Fläche A schneiden müssen. Da

nun weiters in jeder durch A gehenden Ebene drei Erzeugende der Fläche liegen, so ist dieselbe von der fünften Ordnung.

"Die Involutionsfläche einer cubischen Punktinvolution erster Stufe auf einer Raumcurve vierter Ordnung erster Art ist eine Regelfläche fünfter Ordnung vom Geschlechte Eins, welche die Curve sowie die Axe A der Involution zu Doppellinien hat."

Hat man auf $R_{4,1}$ zwei cubische Involutionen J_1^3 , $J_2'^3$, so wird die Involutionsfläche der einen von der (geraden) Axe der anderen ausser in dem doppelt zu zählendem Punkte von $R_{4,1}$ noch in drei Punkten geschnitten; durch diese gehen Erzeugende der Involutionsfläche, welche $R_{4,1}$ in Punktepaaren schneiden, die den beiden Involutionen gemeinsam sind.

"Zwei cubische Involutionen erster Stufe auf einem Träger vom Geschlechte Eins besitzen drei gemeinschaftliche Elementenpaare."

Diese drei Paare bilden ein Tripel, wenn die beiden Involutionen einer und derselben Involution zweiter Stufe angehören; denn in diesem Falle schneiden sich die Axen der beiden Involutionen (in einem Punkte von $R_{4,1}$), und die sie verbindende Ebene schneidet $R_{4,1}$ in dem Tripel, welches beiden gemeinschaftlich ist.

Um zu den sechs Doppelelementen einer J_1^3 zu gelangen, denke man sich dieselbe als Punktinvolution auf einer ebenen $C_{3,1}$, und die J_2^3 , welcher ihre Tripel angehören, als die fundamentale J_2^3 der geraden Tripel; dann wird die J_1^3 durch ein Strahlenbüschel aus der $C_{3,1}$ geschnitten, und die Berührungspunkte der sechs durch den Scheitel des Büschels gehenden Tangenten von $C_{3,1}$ sind die Doppelpunkte der J_1^3 . Da zwei von ihnen die übrigen vier bestimmen, so hat man

"Die Sextupel der Doppelelemente aller J_1^3 , welche einer und derselben J_2^3 angehören, bilden eine J_2^6 ."

Ferner erkennt man sofort:

"Wenn eine J_1^3 einer gegebenen J_2^3 angehören soll, so ist sie durch zwei Elementenpaare eindeutig bestimmt."

Wird die J_2^3 zur fundamentalen J_2^3 der geraden Tripel einer $C_{3,1}$ gemacht, so bestimmen die zwei gegebenen Punktepaare

zwei Strahlen (ihre Verbindungsgeraden), welche sich im Scheitel des die J_1^3 aus $C_{3,1}$ schneidenden Büschels treffen.

Wird die J_2^3 auf eine R_4 , 1 verlegt, so ist durch die J_2^3 der Punkt O aus R_4 , 1 gegeben, durch welchen die Ebenen ihrer Tripel gehen; diese zwei Punktepaare liefern nun zwei Verbindungsgeraden, und die durch O zu diesen gelegte Transversale ist die Axe A der durch die Paare besimmten J_1^3 .

"Wenn die Paare zweier J_1^2 projectiv aufeinander bezogen sind, so gibt es vier Elemente, welche zwei einander entsprechenden Paaren angehören."

Man verlege die beiden J_1^2 auf eine $C_{3,1}$, so werden sie aus ihr durch zwei projective Strahlenbüschel geschnitten, deren Scheitel O, O' auf $C_{3,1}$ liegen. Diese Büschel schneiden sich in einer Curve zweiter Ordnung, welche $C_{3,1}$ ausser in 0, 0' noch in vier Punkten trifft, von denen offenbar jeder in zwei einander entsprechenden Paaren der beiden J_1^2 enthalten ist.

In derselben Art gelangt man zu den Sätzen:

"Wenn eine J_1^2 projectiv bezogen ist auf eine J_1^3 , so gibt es fünf Elemente, welche in einander entsprechenden Gruppen der beiden Involutionen enthalten sind."

"Wenn zwei J_1^3 projectiv aufeinander bezogen sind, so gibt es sechs Elemente, welche in einander entsprechenden Tripeln enthalten sind."

Verlegt man die beiden Involutionen auf eine $R_{4,1}$, so werden die sie aus der Curve schneidenden Ebenenbüschel projectiv sein und somit ein Hyperboloid erzeugen, welches $R_{4,1}$ in acht Punkten schneidet; zwei von diesen Punkten sind die Schnitte von $R_{4,1}$ mit den Axen der Büschel, die übrigen sechs sind die oben erwähnten.

V. Biquadratische Involutionen auf Trägern vom Geschlechte Eins.

Der Träger sei eine Raumeurve $R_{4,1}$ vierter Ordnung erster Art.

Jede J_3^4 kann durch Projection in die fundamentale J_3^4 der ebenen Quadrupel übergeführt werden. Als Projectionsstrahlen treten die Erzeugenden einer die $R_{4,4}$ enthaltenden Regelschaar

(Hyperboloid) auf; eine solche Regelschaar ist durch eine ihrer Erzeugenden (Bisecante von $R_{4,1}$) vollkommen bestimmt.

Ist nun d einer der vierfachen Punkte der J_3^4 und δ einer der vierfachen Punkte der fundamentalen J_3^4 der ebenen Quadrupel (Berührungspunkt einer stationären Schmiegungsebene), so bestimmt $\overline{d\delta}$ jene Regelschaar, welche die J_3^4 in die fundamentale J_3^4 projieirt.

Jede J_2^4 kann somit in eine centrale J_2^4 übergeführt werden. Die Quadrupel einer centralen J_2^4 liegen in Ebenen, welche durch einen festen, dem Träger nicht angehörigen Punkt das Centrum der J_2^4 hindurchgehen. Ist nun eine beliebige J_2^4 gegeben, so hat man die J_3^4 , der sie angehört, in die fundamentale der ebenen Quadrupel zu überführen, so wird die J_2^4 zugleich in eine centrale verwandelt.

Weiter erkennt man sofort, dass jede J_1^4 durch Projection in eine axiale J_1^4 , d. h. in eine solche überführt werden kann, deren Quadrupel in den Ebenen eines Ebenenbüschels liegen. Man hat nur die J_3^4 , der die J_1^4 angehört, in die fundamentale der ebenen Quadrupel zu transformiren. Dass eine J_1^4 , deren Quadrupel eben sind, eine axiale sein müsse, erkennt man aus dem Umstande, dass durch jeden Punkt von R_4 , nur eine Quadrupelebene hindurchgeht.

"Eine J_1^4 hat mit einer J_2^3 ein Tripel gemeinschaftlich."

Jede J_2^3 auf $R_{4,1}$ ist central, d. h. die Ebenen der Tripel schneiden $R_{4,1}$ in einem festen Punkte O; macht man nun die J_1^4 zu einer axialen, so geht eine Ebene des Büschels, welches J_1^4 aus $R_{4,1}$ schneidet, durch O hindurch, wodurch die Behauptung erwiesen ist. Das den beiden Involutionen gemeinsame Tripel ergänzt O zu einem Quadrupel der J_1^4 .

"Die Involutionscurve einer J_1^4 auf einer $R_{4,1}$ ist eine Raumcurve vierter Classe vom Geschlechte Eins."

Als Involutionscurve bezeichnen wir die Enveloppe der Verbindungsebenen je dreier Punkte eines Quadrupels. Solcher Ebenen gehen aber in der That vier durch jeden Punkt x_1 von $R_{4,1}$; erstens die Ebenen $x_1x_2x_3$, $x_1x_2x_4$, $x_1x_3x_4$, wenn $x_2x_3x_4$ die drei Punkte sind, welche x_1 zu einem Quadrupel ergänzen,

und dann die Ebene jenes Tripels $y_1y_2y_3$, welches der J_1^4 und jener J_2^3 , die x_1 zum Centrum hat, gemeinschaftlich ist.

Anmerkung. Ist y_4 der vierte Punkt, welcher $y_1y_2y_3$ zu einem Quadrupel der J_1^4 ergänzt, so entsprechen sich x_1 und y_4 in der *E*-Beziehung, welche durch die J_3^4 , der die J_1^4 angehört, auf $R_{4,1}$ gegeben ist.

Somit ist zunächst bewiesen, dass die Involutionscurve eine Raumeurve vierter Classe ist; dass sie vom Geschlechte Eins ist, folgt aus der eindeutigen Zuordnung ihrer Schmiegungsebenen $x_2x_3x_4$ zu den Punkten x_1 der Curve $R_{4,1}$.

"Eine J_1^4 hat mit einer J_2^4 vier Tripel gemein."

Macht man nämlich die J_2^4 durch Projection zu einer centralen, so gehen durch ihr Centrum vier Schmiegungsebenen der Involutionscurve vierter Classe der transformirten J_1^4 , wodurch der Satz bewiesen erscheint.

Eine J_1^4 hat mit einer J_3^4 selbstverständlich kein Quadrupel gemeinschaftlich oder aber alle.

"Eine J_1^2 hat mit einer J_1^4 zwei Paare gemeinschaftlich."

Überführt man die J_1^4 durch Projection in eine axiale J_1^4 , so schneidet ihre (gerade) Axe die Involutionsfläche zweiten Grades der J_1^2 in zwei Punkten; die durch diese zwei Punkte gehenden Erzeugenden des Hyperboloides schneiden $R_{4,1}$ in den oben erwähnten zwei Paaren.

"Die Involutionsfläche einer J_1^4 ist eine Regelfläche achter Ordnung, welche $R_{4,\,1}$ zur dreifachen Curve hat."

Letzteres ist sofort klar, da durch jeden Punkt x_1 von $R_{4,1}$ drei Erzeugende x_1x_2 , x_1x_3 , x_1x_4 der Involutionsfläche hindurchgehen. Betrachten wir nun irgend eine Bisecante B von $R_{4,1}$; eine um B rotirende Ebene schneidet $R_{4,1}$ in Punktepaaren einer J_1^2 , welche nach Obigem mit der J_1^4 zwei Elementenpaare gemeinsam hat. Es wird also B die Involutionsfläche ausser in den auf $R_{4,1}$ liegenden Punkten, von denen jeder dreimal zählt, noch in zwei Punkten geschnitten, also im Ganzen schneidet B die Involutionsfläche in acht Punkten w. z. b. w.

Hieraus folgt weiter:

"Eine J_1^4 und eine J_1^3 haben fünf gemeinsame Elementenpaare."

Die Axe der J_1^3 schneidet nämlich die Involutionsfläche der J_1^4 ausser in dem dreifach zu zählenden auf $R_{4,1}$ liegenden Punkte noch fünfmal, wodurch die Behauptung erwiesen ist.

"Zwei J_i^4 haben acht gemeinschaftliche Elementenpaare."

Überführt man die eine J_1^* durch Projection in eine axiale, so schneidet ihre Axe die Involutionsfläche der anderen J_1^* (respective ihrer Transformirten) in acht Punkten, woraus sofort die Richtigkeit des obigen Satzes folgt.

"Eine Involution J_1^3 ist durch ein Quadrupel und ein Tripel vollkommen bestimmt."

Durch das Quadrupel ist die J_3^4 gegeben, welcher die J_1^4 angehört, und man hat nur das gegebene Tripel in dieser J_3^4 zu einem Quadrupel zu ergänzen, um ein zweites Quadrupel der J_4^4 zu haben. Überführt man die J_3^4 in die der ebenen Quadrupel einer $R_{4,1}$, so hat man zwei ebene Quadrupel, deren Ebenen sich in der Axe des Büschels schneiden, welches aus $R_{4,1}$ die J_1^4 schneidet.

Ebenso erkennt man:

"Eine J_1^4 ist vollkommen gegeben durch ein Quadrupel und zwei Elementenpaare."

"Eine J_1^4 , welche einer gegebenen J_3^4 angehören soll, ist vollkommen gegeben durch zwei Tripel."

"Durch vier Elementenpaare erscheinen zwei J_1^4 bestimmt, welche einer gegebenen J_3^4 angehören sollen."

Macht man die J_3^* zur fundamentalen der ebenen Gruppen einer $R_{4,1}$, so bestimmen die vier gegebenen Punktepaare verbunden vier Bisecanten der Curve, welche zwei (reelle oder imaginäre) gemeinschaftliche Transversalen besitzen. Diese sind offenbar die Axen der Ebenenbüschel, welche die beiden J_1^* aus $R_{4,1}$ schneiden.

"Eine J_2^3 hat mit einer J_2^4 einfach unendlich viele Tripel, welche eine J_1^3 bilden, gemeinschaftlich."

Macht man die J_2^4 zu einer centralen, so ist die Verbindungsgerade ihres Centrums mit dem Centrum der J_2^3 die Axe jenes Ebenenbüschels, welches $R_{4\cdot 1}$ in der oben erwähnten J_1^3 schneidet. Eine J_2^4 hat mit einer J_3^4 keine Quadrupel gemein, oder alle Quadrupel der J_2^4 gehören der J_3^4 an.

"Zwei J_2^4 , welche derselben J_3^4 angehören, haben die Quadrupel einer J_1^4 gemeinschaftlich."

Macht man die J_3^4 zur fundamentalen J_3^4 der ebenen Quadrupel einer $R_{4,1}$, so werden beide J_2^4 central, und die Verbindungsgerade ihrer Centra ist Axe jenes Ebenenbüschels, welches $R_{4,1}$ in der beiden J_2^4 gemeinsamen J_1^4 schneidet.

"Die Involutionsfläche einer J_2^4 auf $R_{4,\,1}$ ist eine Fläche vierter Classe."

Unter der Involutionsfläche der J_2^4 verstehen wir die Enveloppe der Verbindungsebenen je dreier Punkte eines Quadrupels der J_2^4 . Um die Classe zu erhalten, hat man die Zahl der durch eine beliebige Gerade gehenden Tangentialebenen der Involutionsfläche zu bestimmen. Die Ebenen durch die Geraden schneiden $R_{4,1}$ in einer J_1^4 , welche mit der J_2^4 nach Früherem vier Tripel gemeinsam hat, wodurch die obige Behauptung bewiesen ist.

"Wenn zwei J_2^4 nicht derselben J_3^4 angehören, so haben sie einfach unendlich viele Tripel gemeinschaftlich; jedes Element kommt in vier solchen Tripeln vor."

Macht man die J_3^4 , welcher die eine J_2^4 angehört, zur fundamentalen der ebenen Quadrupel einer $R_{4,1}$, so wird die J_2^4 eine centrale, und durch ihr Centrum lässt sich der Involutionsfläche der anderen J_2^4 ein Kegel vierter Classe umschreiben, dessen Tangentialebenen die $R_{4,1}$ in solchen Tripeln schneiden, welche den beiden J_2^4 gemeinschaftlich sind. Da durch jeden Punkt von $R_{4,1}$ vier Tangentialebenen des Kegels gehen, so kommt jeder Punkt von $R_{4,1}$ in vier solchen gemeinschaftlichen Tripeln vor.

"Eine J_2^4 besitzt zwei neutrale Elementenpaare." Eine J_2^4 ist die doppelt unendliche Mannigfaltigkeit von Quadrupeln, von denen jedes durch Annahme zweier seiner Elemente vollkommen bestimmt erscheint; ist durch zwei Elemente das sie enthaltende Quadrupel nicht bestimmt, so bilden sie ein neutrales Paar.

Alle Elemententripel, welche mit einem festen Elemente x_1 Quadrupel der J_2^4 bilden, stellen eine J_1^3 dar; ebenso wird eine $J_1^{\prime 3}$ von den Tripeln dargestellt, welche mit dem Elemente y_1 Quadrupel der J_2^4 bilden. Die beiden $J_1^3J_1^{\prime 3}$ besitzen nach Früherem drei gemeinsame Paare; eines davon ist jenes, welches das Paar x_1y_1 zu einem Quadrupel der J_2^4 ergänzt. Die beiden anderen

Paare nn', mm' sind nun solche, dass jedes von ihnen sowohl mit x_1 als auch mit y_1 in einem Quadrupel der J_2^4 vorkommt. Es sind also nn', mm' die neutralen Paare der J_2^4 .

Damit ist auch bewiesen, dass eine ebene Curve vierter Ordnung vom Geschlechte Eins zwei Doppelpunkte und eine Raumcurve vierter Ordnung vom Geschlechte Eins zwei scheinbare Doppelpunkte besitzen müsse. Im ersten Falle sind nn', mm' die neutralen Paare der durch die geraden Quadrupel dargestellten J_2^a und zugleich die Nachbarpunkte der beiden Doppelpunkte, und im Falle der Raumcurve sind nn', mm' die neutralen Paare einer centralen J_2^a und zugleich die Schnittpunkte der Curve mit den beiden durch das Centrum der J_2^a gehenden Bisecanten derselben.

"Die Involutionsfläche einer J_2^4 auf $R_{4,1}$ ist eine geradlinige Fläche vierter Ordnung, welche einfach durch $R_{4,1}$ geht und die Verbindungsgeraden nn', mm' der beiden neutralen Paare zu Doppelgeraden hat."

Es bilden ja die Tripel $x_2 x_3 x_4$, welche mit einem Punkte x_1 Quadrupel der J_2^4 darstellen, eine J_1^3 , deren Axe X_1 eine die $R_{4,1}$ in einem Punkte ξ_1 schneidende Gerade ist, und da jede durch X_1 gehende Ebene $x_2 x_3 x_4$ Tangentialebene der Involutionsfläche ist, so ist X_1 eine Erzeugende der Involutionsfläche. Jedem x_1 ist ein ξ_1 zugeordnet, aber auch umgekehrt jedem ξ_1 ein x_1 , denn die durch ξ_1 gehenden Ebenen bestimmen auf $R_{4,1}$ eine J_2^3 , welche mit der J_2^4 eine J_1^3 gemeinschaftlich hat (nach Früherem), deren sämmtliche Tripel von dem Punkte x_1 zu Quadrupeln der J_2^4 ergänzt erscheinen. Die Beziehung zwischen x_1 und ξ_1 ist offenbar jene E-Beziehung, welche der die J_2^3 enthaltenden J_3^4 entspricht.

Es seien nun nn', mm' die beiden neutralen Punktepaare und N, M ihre Verbindungsgeraden. Der vierte Schnittpunkt von $R_{4\cdot 1}$ mit der Ebene $N\xi_1$ sei x'. Das Paar nn' bildet mit jedem Punkte, also auch mit x', ein Tripel der J_2^4 ; es ist also nn'x' ein Tripel, welches der J_2^4 und der J_2^3 , deren Centrum ξ_1 ist, gemeinschaftlich ist, folglich gehört es der J_1^3 an, deren $A \times X_1$ ist, $A \cdot A \cdot X_1$ schneidet die Gerade $A \cdot A \cdot X_2$. Ebenso muss $A \cdot X_3$ die Gerade $A \cdot X_4$ schneiden.

"Die Axen X_1 schneiden gleichzeitig M, N; die Involutionsfläche der J_2^4 ist somit jene Fläche vierter

Ordnung, welche von einer längs der Linien $R_{4,1}$, M, N hingleitenden Geraden beschrieben wird."

Durch die beiden Bisecanten M, N ist diese Involutionsfläche, damit auch die J_2^4 gegeben:

"Eine J_2^4 ist durch ihre beiden neutralen Paare vollkommen bestimmt."

"Die beiden neutralen Paare einer J_2^4 bilden ein Quadrupel jener J_3^4 , welcher die J_2^4 angehört."

Um die Richtigkeit dieses Satzes einzusehen, verwandle man die J_3^4 in die fundamentale der ebenen Quadrupel einer $R_{4,1}$; dann wird die J_2^4 eine centrale, und die beiden neutralen Paare derselben liegen ja in einer Ebene, bilden also ein Quadrupel der J_3^4 .

Wenn die beiden neutralen Quadrupel nn', mm', respective deren Verbindungsgeraden N, M gegeben sind, so kann die hiedurch bestimmte J_2^4 folgendermassen vervollständigt werden. Die E-Beziehung zwischen x_1 und ξ_1 ist gegeben, wenn man z. B. dem Punkte n den vierten Schnittpunkt ν von $R_{4,1}$ mit der Ebene n'mm' als entsprechenden zuordnet. Soll nun das Paar x_1x_2 zu einem Quadrupel vervollständigt werden, so bestimme man zu x_1 den Punkt ξ_1 . Zu dem Behufe lege man durch $x_1\nu$ eine beliebige Ebene, welche $R_{4,1}$ in zwei Punkten schneidet, deren Verbindungsgerade S sein möge; die Ebene Sn wird $R_{4,1}$ in ξ_1 schneiden. Die durch ξ_1 zu MN gelegte Transversale ist X_1 , und die Ebene X_1x_2 wird $R_{4,1}$ in den Punkten x_3x_4 schneiden, welche x_1x_2 zu einem Qnadrupel ergänzen.

¹ Siehe: Ein Beitrag zur Gruppentheorie auf den Curven vom Geschlechte Eins. LXXXVIII. Bd., S. 465.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Sitzungsberichte der Akademie der

Wissenschaften mathematisch-naturwissenschaftliche Klasse

Jahr/Year: 1891

Band/Volume: 100_2a

Autor(en)/Author(s): Weyr Emil

Artikel/Article: Über Involutionen höheren Grades auf nichtrationalen

Trägern. 589-606