Über Vervollständigung von Involutionen auf Trägern vom Geschlechte Eins und über Steiner'sche Polygone

(II. Mittheilung)

Emil Weyr,

M. k. Akad.

(Mit 3 Textfiguren.)

1. Wir haben gezeigt, wie bei der Vervollständigung einer durch eine Elementengruppe $a_1a_2\ldots a_n$ auf einem Träger vom Geschlechte Eins gegebenen J^n Involutionen J^{n-1} und Involutionen J^2 verwendet werden können. Man kann in derselben Art Involutionen beliebiger Grade k < n zur Anwendung bringen. Soll die Gruppe $b_1b_2\ldots b_{n-1}$ durch Construction des Elementes b_n vervollständigt werden, so wähle man unter den Elementen $a_1a_2\ldots a_n$ beliebige k (also k < n) z. B. $a_1a_2\ldots a_k$, so wird durch diese k-elementige Gruppe eine J^k bestimmt; alle Elemente, welche die übrig bleibenden n-k Elemente $a_{k+1}a_{k+2}\ldots a_n$ zu Gruppen der J^n vervollständigen, bilden jene J^k , welche durch die Gruppe $a_1a_2\ldots a_k$ bestimmt ist. Wenn man also das Element c_k aufsucht, welches mit $b_1b_2\ldots b_{k-1}$ eine Gruppe der J^k bildet, so stellt $b_1b_2\ldots b_{k-1}$ c_k $a_{k+1}\ldots a_n$ ebenfalls eine Gruppe der J^n dar.

Nun verbinde man c_k mit beliebigen k'-1-Elementen aus der Gruppe $a_{k+1}a_{k+2}$. a_n , z. B. mit $a_{k+1}a_{k+2}$. $a_{k+k'-1}$ zu der k'-elementigen Gruppe c_k $a_{k+1} \dots a_{k+k'-1}$, durch welche eine

Siehe: Ȇber Raumcurven fünfter Ordnung vom Geschlechte Eins.« III. Mittheilung. Sitzungsber. Bd. XCVII, S. 606, und »Über Vervollständigung von Involutionen u. s. w.« Sitzungsber. Bd. CI, S. 1457.

 $J^{k'}$ bestimmt erscheint, und construire jenes Element $c_{k+k'-1}$, welches die k'-1 Elemente b_kb_{k+1} . $.b_{k+k'-2}$ zu einer Gruppe der $J^{k'}$ ergänzt, so bilden die Elemente $b_1b_2b_3$. $.b_{k+k'-2}$, $c_{k+k'-1}$, $a_{k+k'}$. $.a_n$ wieder eine Gruppe der J^n . In derselben Art kann man weiter gehen und wird b_n als das Element erhalten, welches eine gegebene Gruppe von $k^{(n)}-1$ Elementen zu einer Gruppe einer gegebenen Involution $k^{(n)}$ ten Grades ergänzt.

Von den Zahlen k, k', k'' . $k^{(n)}$ können auch einige oder alle gleich sein.

Für k = k' = k'' = 2 erhält man die in Bd. XCVII, S. 606 der Sitzungsberichte gegebene Vervollständigung.

Wird die J^n als Punktinvolution auf einer ebenen Curve dritter Ordnung C_3 behandelt, so können statt der geradlinigen Polygone (siehe l. c.) auch solche verwendet werden, deren Seiten Curven zweiter oder höherer Ordnung sind.

Ist a_1a_2 . a_n die Gruppe, welche die J^n bestimmt, und soll zu $b_1b_2\ldots b_{n-1}$ der Punkt b_n construirt werden, so legen wir durch a_1a_2 und drei beliebige feste Punkte m_1, m_2, m_3 von C_3 einen Kegelschnitt C_2 , welcher C_3 noch in einem sechsten Punkte o_1 schneiden wird; der durch o_1b_1 und $m_1m_2m_3$ gehende C_2 trifft C_3 zum sechsten Male in c_2 . Dann gehören a_1a_2 und b_1c_2 einer J^2 an und somit bilden die Punkte $b_1c_2a_3a_4\ldots a_n$ ebenfalls eine Gruppe der J^n . Der durch $c_2a_3m_1m_2m_3$ gelegte C_2 schneidet C_3 noch in c_3 u. s. w. Wir erhalten so (2n-3) Kegelschnitte, welche sämmtlich durch $m_1m_2m_3$ hindurchgehen und welche C_3 der Reihe nach noch in den Tripeln $a_1a_2o_1$, $o_1b_1c_2$, $c_2a_3o_2$, $o_2b_2c_3\ldots c_{n-1}a_no_{n-1}$ schneiden; der durch $m_1m_2m_3$, o_{n-1} und b_{n-1} gehende Kegelschnitt wird C_3 noch in b_n schneiden.

Wir können die sich so ergebende Figur als ein einfaches der C_3 eingeschriebenes 2(n-1)-Eck betrachten, dessen Seiten Kegelschnitte sind, welche durch die drei festen willkürlichen Punkte $m_1m_2m_3$ von C_3 hindurchgehen. Die Punkte $a_1o_1c_2o_2$. $c_{n-1}o_{n-1}b_n$ treten als Ecken auf; $a_2a_3a_4\ldots a_n$ sind dann die letzten (sechsten) Schnittpunkte von C_3 mit den ungeradstelligen Seiten, und $b_1b_2\ldots b_{n-1}$ sind die letzten Schnittpunkte von C_3 mit den geradstelligen Seiten dieses Polygons. Wenn die Seiten

eines Polygons Kegelschnitte (C_2) sind, so sollen sie C_2 -Seiten, das Polygon ein C_2 -Polygon heissen.

Wir können nun sagen:

»Ist einer C_3 ein nichtgeschlossenes C_2 -Polygon von 2(n-1) Seiten eingeschrieben, dessen Seiten durch dieselben drei Punkte von C_3 hindurchgehen, so bildet der Anfangspunkt mit den letzten Schnittpunkten der ungeradstelligen Seiten eine Gruppe, und der Endpunkt mit den letzten Schnittpunkten der geradstelligen Seiten eine zweite Gruppe von je n Punkten, und diese beiden Gruppen gehören einer und derselben J^n an«.

Ist das C_2 -Polygon geschlossen, d. h. fällt a_1 mit b_n zusammen, so müssen die beiden Gruppen a_2a_3 . a_n und b_1b_2 . b_{n-1} einer J^{n-1} angehören; setzt man n statt n-1, so hat man den Satz:

»Ist einer C_3 ein geschlossenes C_2 —2n-Eck eingeschrieben, dessen Seiten durch dieselben drei Punkte von C_3 hindurchgehen, so bilden die letzten Schnittpunkte der geradstelligen und der ungeradstelligen Seiten je eine n-punktige Gruppe auf C_3 und diese beiden Gruppen gehören einer J^n an«.

Wenn drei Punkte von C_3 mit drei anderen Punkten $m_1m_2m_3$ von C_3 in einem C_2 liegen, so liegen sie mit je drei Punkten $m_1^\prime m_2^\prime m_3^\prime$, welche eine Gruppe der durch das Tripel $m_1m_2m_3$ bestimmten J^3 bilden in einem C_2 . Man kann also die drei Punkte $m_1m_2m_3$ ersetzen durch irgend ein Tripel derselben J^3 und kann die beiden letzten Sätze allgemeiner so aussprechen:

»Wenn die C_2 -Seiten eines nichtgesschlosenen, der C_3 eingeschriebenen C_2 -Polygons von 2(n-1) Seiten dürch Tripel einer J^3 hindurchgehen, so bildet der Anfangspunkt mit den letzten Schnittpunkten der ungeradstelligen Seiten u. s. w«.

»Ist einer C_3 ein geschlossenes C_2 -2n-Eck eingeschrieben, dessen Seiten durch Tripel einer J^3 hindurchgehen, so bilden die letzten Schnittpunkte der geradstelligen und der ungeradstelligen Seiten je

eine n-punktige Gruppe auf C_3 und diese zwei Gruppen gehören einer und derselben J^n an«.

2. Die Kegelschnitte, welche als Seiten des eingeschriebenen Polygons auftreten, kann man durch Curven C_p beliebiger $(p^{\rm ter})$ Ordnung ersetzen und hat dann ein eingeschriebenes C_p -Polygon. Wählt man dann auf C_3 beliebige feste 3p-3 Punkte m, so werden alle C_p -Seiten durch diese Punkte zu legen sein. Endlich kann man die 3p-3 festen Punkte bei jeder Seite ersetzen durch irgend eine Gruppe einer J^{3p-3} und hat dann allgemein:

»Wenn die C_p -Seiten eines nicht geschlossenen, der C_3 eingeschriebenen C_p -Polygons von 2(n-1) Seiten durch Gruppen einer J^{3p-3} hindurchgehen, so bildet der Anfangspunkt mit den letzten $(3p^{\text{ten}})$ Schnittpunkten der nichtgeradstelligen Seiten eine Gruppe, und der Endpunkt mit den letzten Schnittpunkten der geradstelligen Seiten eine zweite Gruppe von je n Punkten, und diese beiden Gruppen gehören einer und derselben J^n an«.

»Ist der C_3 ein geschlossenes C_p-2n -Eck eingeschrieben, dessen Seiten durch Gruppen einer J^{3p-3} hindurchgehen, so bilden die letzten Schnittpunkte der geradstelligen und der ungeradstelligen Seiten je eine n-elementige Gruppe auf C_3 , und diese beiden Gruppen gehören einer und derselben J^n an«.

3. Auch diese letzten Sätze stellen sich als Specialfälle der folgenden allgemeinen Sätze dar.

Auf C_3 wählen wir beliebige 2n-1 Punkte, die wir 1, 2, 3. .2n-1 nennen wollen, wobei wir den Anfangspunkt 1 auch mit a, und den Endpunkt 2n-1 auch mit b bezeichnen. Diese Punkte betrachten wir als Ecken eines der Curve eingeschriebenen nichtgeschlossenen 2(n-1)-Eckes, dessen Seiten Curven C_p vom Grade p sein sollen. Wir legen also durch 1 und 2 irgend eine C_p als erste Seite; sie schneidet C_3 ausser in 1 und 2 noch in 3p-2 Punkten, welche Gruppe wir a_1 nennen wollen. Die beliebig durch 2 und 3 gelegte C_p wird ebenso die Gruppe b_1 von 3p-2 Punkten auf C_3 bestimmen, die durch 3 und 4 gelegte Curve C_p liefert die Gruppe a_2 u. s. w., endlich

wird auf der durch 2n-2 und 2n-1 gelegten letzten Seite die Gruppe b_{n-1} von 3p-2 Punkten liegen.

Die zwei 3q-punktigen Gruppen, in denen C_3 von irgend zwei Curven $q^{\rm ter}$ Ordnung geschnitten wird, gehören einer J^3q an (und zwar jener Fundamentalen, welche man erhält, wenn man die 3q Punkte, in denen irgend q Gerade die C_3 treffen, zu einer Gruppe vereinigt und durch diese die J^{3q} bestimmt). Nun stellen die (n-1) ungeradstelligen Seiten unseres C_p -Polygons eine Curve (n-1) $p^{\rm ter}$ Ordnung dar, und ebenso die geradstelligen. Es gehören folglich die beiden 3(n-1)p-punktigen Gruppen: $12a_134a_256a_3$. $.(2n-3)(2n-2)a_{n-1}$ und $23b_145b_267b_3$. $.(2n-2)(2n-1)b_{n-1}$ einer und derselben $J^{3(n-1)p}$ an, und da beide Gruppen die 2n-3 Elemente 2345. .(2n-2) gemeinsam haben, so gehören die beiden (n-1)(3p-2)+1-punktigen Gruppen (wenn a,b statt 1 und 2n-1 geschrieben wird):

$$a a_1 a_2 \dots a_{n-1}; b_1 b_2 \dots b_{n-1} b$$

einer und derselben $J^{(n-1)(3p-2)+1}$ an.

Wir haben also den Satz:

»Ist der C_3 einem nichtgeschlossenen C_p -Polygon von 2(n-1) Seiten eingeschrieben, so bildet der Anfangspunkt mit den Schnittpunkten der ungeradstelligen Seiten und der Endpunkt mit den Schnittpunkten der geradstelligen Seiten je eine Gruppe von (n-1)(3p-2)+1 Punkten und diese beiden Gruppen gehören einer und derselben Involution [(n-1)(3p-2)+1]ten Grades, (n-1)(3p-2)ter Stufe an«.

Macht man das Polygon zu einem geschlossenen, so hat man:

»Wird der C_3 ein einfaches geschlossenes C_p-2n -Eck eingeschrieben, so bilden die Schnittpunkte der ungeradstelligen Seiten, und die Schnittpunkte der geradstelligen Seiten je eine Gruppe von n(3p-2) Punkten und diese beiden Gruppen gehören einer und derselben $J^{n(3p-2)}$ an«.

Wenn man jede der (3p-2)-punktigen Gruppen $a_i b_i$ in zwei Gruppen $a_i a_i'$, $\beta_i \beta_i'$ respective zerfällt, von denen die erste

r Elemente und die zweite r' Elemente enthält (r+r'=3p-2), so gehören die Gruppen:

$$a \alpha_1 \alpha_1' \alpha_2 \alpha_2' \dots \alpha_{n-1} \alpha_{n-1}'; \beta_1 \beta_1' \beta_2 \beta_2' \dots \beta_{n-1} \beta_{n-1}' b$$

einer und derselben $J^{(n-1)(3p-2)+1}$ an.

Wenn nun die zwei r(n-1)-punktigen Gruppen:

$$\alpha_1 \alpha_2 \ldots \alpha_{n-1}; \beta_1 \beta_2 \ldots \beta_{n-1}$$

einer und derselben $J^{r(n-1)}$ angehören, so müssen die beiden r'(n-1)+1-elementigen Gruppen

$$a\alpha'_1\alpha'_2$$
. α_{n-1} ; $\beta'_1\beta'_2$. $\beta'_{n-1}b$

ebenfalls einer und derselben $J^{r'(n-1)+1}$ angehören, wobei wie schon bemerkt, r'+r=3 p-2 ist:

»Wenn auf C_3 zwei beliebige Gruppen einer Involution $(n-1)r^{\rm ten}$ Grades gegeben sind und man zerfällt jede in beliebiger Art in (n-1) Gruppen von je r Punkten, und construirt nun ein einfaches, nichtgeschlossenes, der C_3 eingeschriebenes $C_p-2(n-1)$ -Eck [3p>r] so, dass seine Seiten abwechselnd durch eine Partialgruppe der einen und der anderen (n-1)r-elementigen Gruppe hindurchgehen, so bildet der Anfangspunkt des Polygons mit den übrigen Schnittpunkten der ungeradstelligen Seiten eine Gruppe von (3p-r-2)(n-1)+1 Punkten, und der Endpunkt bildet mit den übrigen Schnittpunkten der geradstelligen Seiten eine zweite solche Gruppe und diese beiden Gruppen gehören einer und derselben Involution $[(3p-r-2)(n-1)+1]^{\rm ten}$ Grades an«.

Lässt man das Polygon ein geschlossenes 2n-Eck werden, so hat man:

»Wenn auf C_3 zwei beliebige Gruppen einer Involution nr^{ten} Grades gegeben sind und man zerfällt jede in beliebiger Art in n Gruppen von je r Punkten, und construirt nun ein einfaches geschlossenes C_p-2n -Eck [3p-2>r] so, dass seine Seiten abwechselnd durch eine Partialgruppe der einen und

der anderen nr-elementigen Gruppen hindurchgehen, so bilden die sämmtlichen übrigen Schnittpunkte der ungeradstelligen Seiten des Polygons mit C_3 eine n(3p-r-2)-elementige Gruppe, und die übrigen Schnittpunkte der geradstelligen Seiten bilden eine zweite solche Gruppe, und diese beiden Gruppen gehören einer und derselben Involution $n(3p-r-2)^{\text{ten}}$ Grades an«.

Es ist selbstverständlich, dass alle die Partialgruppen, und zwar jede nur einmal zur Verwendung kommen müssen.

Wir bemerken, dass die beiden Gruppen, von denen im Eingange des letzten und vorletzten Satzes gesprochen wird, identisch werden können, so zwar, dass man von beliebigen (n-1)r (vorletzter Satz), respective nr (letzter Satz) festen Punkten der C_3 ausgehen kann, deren Gruppe dann in doppelter Art beliebig in (n-1), respective n Partialgruppen zerlegt werden kann.

Man kann auch eine Gruppe von beliebigen r Punkten der C_3 (n-1)-fach, respective n-fach gezählt, zum Ausgange nehmen und erhält dann sofort die Sätze:

»Gehen die Seiten eines nichtgeschlossenen einfachen, der C_3 eingeschriebenen $C_p-2(n-1)$ -Ecks durch dieselben r < 3p-2 festen Punkte von C_3 hindurch, so bildet der Anfangspunkt mit den übrigen Schnittpunkten der ungeradstelligen Seiten eine Gruppe und der Endpunkt bildet mit den übrigen Schnittpunkten der geradstelligen Seiten eine zweite Gruppe, und diese beiden Gruppen gehören einer und derselben Involution $[(3p-r-2)(n-1)+1]^{\rm ten}$ Grades an«.

»Gehen die Seiten eines gechlossenen, der C_3 eingeschriebenen, einfachen C_p —2n-Ecks durch dieselben r < 3p—2 festen Punkte von C_3 hindurch, so bilden die übrigen Schnittpunkte der ungeradstelligen Seiten eine Gruppe, und die übrigen Schnittpunkte der geradstelligen Seiten eine zweite Gruppe und beide gehören derselben Involution $(3p-r-2)n^{\rm ten}$ Grades an«.

Endlich kann die Gruppe der r festen Elemente ersetzt werden durch jede andere Gruppe der durch erstere bestimmten J^r ; dies gibt die Sätze:

»Enthält jede Seite eines einfachen nichtgeschlossenen, der C_3 eingeschriebenen $C_p-2(n-1)$ -Ecks eine Gruppe einer $J^r,\ r<3p-2,$ so bildet der Anfangspunkt mit den. u.s. w.«

*Enthältjede Seite eines einfachen geschlossenen, der C_3 eingeschriebenen C_p —2n-Ecks eine Gruppe einer J^r , r < 3p—2, so bilden die übrigen Schnittpunkte der ungeradstelligen Seiten. u. s. w.«

4. Den letzten Satz kann man auch folgendermassen aussprechen:

»Es seien auf C, zwei Punktgruppen einer Involution nr'ten Grades gegeben. Wir zerfällen die eine Gruppe in beliebiger Art in n Gruppen von je r' Punkten, welche Gruppen $a_1 a_2$. a_n heissen sollen, und ebenso seien b_1b_2 . b_n n in beliebiger Art aus der zweiten Gruppe gebildete Partialgruppen von je r' Punkten. Nun gehen wir von einem beliebigen Punkte x, der C, aus und verbinden ihn mit einer der a-Gruppen, z.B. mit den r' Punkten a, durch eine Curve pter Ordnung, wobei 3p-2 > r', also etwa 3p-2 = r'+r sein mag. Diese Curve wird die C_3 ausser in x_1 und den Punkten a_1 , noch in weiteren 3p-1-r'=r+1 Punkten schneiden, von denen wir einen, x, absondern, um ihn mit einer der b-Gruppen, z. B. mit b, durch eine Curve pter Ordnung zu verbinden, welche entweder durch die übrigen r Punkte oder durch eine Gruppe von r Punkten hindurchgeht, welche eine Gruppe jener J^r bilden, die durch jene r Punkte bestimmt erscheint. Diese Curve wird C_3 ausser in diesen r Punkten, dann in den r' Punkten b_1 und in jenem einzelnen Punkte, noch in weiteren 3p-r-r'-1=1, d. i. in einem Punkte, x_3 , schneiden, welchen wir in derselben Art mit einer weiteren a-Gruppe, z.B. mit a, und einer Gruppe jener J^r , durch eine C_p verbinden, dies liefert wieder einen letzten Schnittpunkt, x4, den

wir mit b_2 und einer beliebigen Gruppe der J^r durch eine C_p verbinden u. s. w. Wenn so alle a- und b-Gruppen abwechselnd verwendet und erschöpft sind, wobei jede nur einmal zur Verwendung kommen darf, so muss man wieder zum Ausgangspunkte x_1 zurückkehren, so zwar, dass $x_{2n+1} \equiv x_1$ wird«.

5. Wenn einer C_3 ein einfaches, geradliniges, geschlossenes 2n-Eck eingeschrieben ist, so bilden die dritten Schnittpunkte der ungeradstelligen Seiten eine Gruppe und die dritten Schnittpunkte der geradstelligen Seiten bilden eine zweite Gruppe einer Involution n^{ten} Grades (siehe Bd. CI, S. 1461).

Auch diesen Satz kann man zur Vervollständigung einer J^n anwenden. Ist a_1a_2 . a_n die gegebene, und b_1b_2 . b_{n-1} die durch Construction von b_n zu vervollständigende Gruppe, so verbinde man einen beliebigen Punkt x_1 von C_3 mit a_1 , den dritten Schnitt x_2 von $\overline{x_1a_1}$ und der Curve verbinde man mit b_1 , den dritten Schnitt x_3 von $\overline{x_2b_1}$ verbinde man mit a_2 u. s. w.; verwende der Reihe nach die Punkte b_2 , a_3 , b_3 , a_4 u. s. w., so wird man nach dem Durchgange durch a_n zu einem Punkte x_{2n} gelangen; dann schneidet die Gerade $\overline{x_{2n}x_1}$ die Curve C_3 in dem gesuchten Punkte b_n .

Anmerkung. Aus der Definition des Geschlechtes folgt bekanntlich sofort, dass alle Curven $n^{\rm ter}$ Ordnung, welche durch beliebige 3n-1 feste Punkte einer allgemeinen ebenen Curve dritter Ordnung C_3 hindurchgehen, diese Curve noch in einem $3n^{\rm ten}$ festen Punkte schneiden müssen. Der letzte Schnittpunkt kann nicht beweglich sein, weil sonst die durch jene 3n-1 festen Punkte von C_3 und durch weitere beliebig, ausserhalb C_3 gewählte $\frac{n(n-3)}{2}$ feste Punkte hindurchgehenden C_n , ein

Büschel bildend, die C_3 in variablen einzelnen Punkten schnitten, so dass die Punkte der C_3 eindeutig auf die Curven jenes Büschels bezogen wären, und C_3 rational wäre. Von den 3n-Schnittpunkten der C_3 mit einer C_n ist also einer durch die übrigen 3n—1, die man beliebig wählen kann, eindeutig bestimmt.

»Es bilden also die 3n-punktigen Gruppen, in welchen C_3 von Curven $n^{\rm ter}$ Ordnung geschnitten wird, eine J^{3n} «.

»Diese J^{3n} ist offenbar identisch mit jener, welche man erhält, wenn man C_3 mit beliebigen n Geraden zum Durchschnitte bringt und die 3n Schnittpunkte zu einer Gruppe, welche die J^{3n} bestimmt, vereinigt.« Jene n Geraden stellen nämlich auch eine C_n dar.

Lässt man die n Geraden zusammenfallen, so erkennt man, dass die drei Schnittpunkte von C_3 mit einer Geraden, als n-fache Punkte aufgefasst, auch eine Gruppe der J^{3n} bilden.

»Es ist also die J^3 der geraden Punktetripel eine der n^2 aus der J^{3n} abgeleiteten $J^{3.4}$

Schneidet man C_3 mit zwei beliebigen C_n , so erhält man zwei Punktgruppen dieser J^{3n} . Wenn man also von irgend einem Punkte von C_3 als erster Ecke eines der C_3 eingeschriebenen b_n -Eckes ausgeht, dessen Seiten abwechselnd durch einen Punkt der einen und anderen Gruppe hindurchgehen, wobei jeder Punkt jeder der beiden Gruppen nur einmal zur Verwendung zu kommen hat, so wird das b_n -Eck immer ein geschlossenes sein (vergleiche die Abhandlung von Herrn P H. Schoute im 95. Bande des Crelle'schen Journal: »Die Steiner'schen Polygone« [Nachtrag] S. 324).

Auf Grund der bisherigen Betrachtungen ergibt sich eine einfache Lösung der

Aufgabe: »Von den 3n Schnittpunkten der C_3 mit einer C_n sind 3n-1 gegeben, man soll den letzten $(3n^{\text{ten}})$ Schnittpunkt construiren.«

Die gegebenen Punkte seien b_1b_2 . b_{3n-1} , der gesuchte b_{3n} . Wenn wir C_3 mit beliebigen n Geraden schneiden, so erhalten wir 3n Punkte, welche mit a_1a_2 . a_{3n} bezeichnet werden sollen; ihre Gruppe bestimmt die J^{3n} , in welcher die Gruppe b_1 b_{3n-1} von dem gesuchten b_{3n} ergänzt wird. Ist also x_1 ein beliebiger Punkt von C_3 und ziehen wir die Gerade $x_1a_1x_2$ (wobei x_2 den dritten Schnittpunkt von C_3 mit der Geraden x_1a_1 bezeichnen soll) und ziehen wir weiter die Geraden $x_2b_1x_3$, $x_3a_2x_4$, $x_4b_2x_5$, $x_5a_3x_6$ u. s. w., endlich $x_{6n-1}a_{3n}x_{6n}$, so muss die Gerade x_1x_{6n} die C_3 zum drittenmal in dem Punkte b_{3n} schneiden.

¹ Siehe: Ȇber Vervollständigung von Involutionen u. s. w. Sitzungsber. vom 20. October 1892, Art. 8.

Wir können die n Geraden in eine zusammenfallen lassen, so dass die 3n Punkte a durch die drei Schnittpunkte $a_1a_2a_3$ von C_3 mit irgend einer Geraden dargestellt werden. Man lege dann in $a_1a_2a_3$ der Reihe nach auch $a_4a_5a_6$, $a_7a_8a_9\ldots a_{3n-2}a_{3n-1}a_{3n}$. Dann hat man also zu ziehen die Geraden $x_1a_1x_2$, $x_2b_1x_3$, $x_3a_2x_4$, $x_4b_2x_5$, $x_5a_3x_6$, $x_6b_3x_7$, $x_7a_1x_8$, $x_8b_4x_9$, $x_9a_2x_{10}$. $x_{6n-1}a_3x_{6n}$, so wird $x_{6n}x_1$ die C_3 in b_{3n} schneiden.

Lässt man die Gerade in eine Inflexionstangente übergehen, so fallen $a_1a_2a_3$ in dem Wendepunkte zusammen.

Wenn also a ein Wendepunkt von C_3 ist, so stellt sich die Construction von b_{3n} folgendermassen dar. Es sei x_1 ein beliebiger Punkt von C_3 ; wir ziehen die Geraden x_1ax_2 , $x_2b_1x_3$, x_3ax_4 , $x_4b_2x_5$, x_5ax_6 , $x_6b_3x_7$. $x_{6n-1}ax_{6n}$, so schneidet $x_{6n}x_1$ die C_3 in b_{3n} .

6. Wir wenden uns nun zu der Vervollständigung der J^n auf einer Raumcurve R_4 vierter Ordnung, erster Species.

Eine durch ein Paar a_1a_2 bestimmte J^2 ist folgendermassen zu vervollständigen. Eine durch a_1a_2 gelegte Ebene schneidet R_4 in zwei Punkten, deren Verbindungsgerade S sei. Dann ist der mit dem Curvenpunkte x_1 ein Paar bildende Punkt der vierte Schnittpunkt x_2 von R_4 mit der Ebene Sx_1 . Die Geraden x_1x_2 sind Erzeugende eines durch R_4 gehenden Hyperboloides, und die Geraden S bilden die zweite Erzeugendenschaar desselben Hyperboloides (l. c.)

Wenn wir zwei Paare von R_4 , wie a_1a_2 , x_1x_2 , deren Verbindungsgeraden Erzeugenden desselben Systems eines durch R_4 gehenden Hyperboloides als zwei »hyperboloidische Punktepaare« bezeichnen, so ist also eine J^2 die Gesammtheit aller Paare, welche mit einem und demselben Paare (also auch untereinander) hyperboloidisch sind.

Ist nun auf R_4 durch eine gegebene n-punktige Gruppe $a_1a_2\ldots a_n$ eine J^n bestimmt, und soll man den Punkt b_n construiren, welcher mit den gegebenen n-1 Punkten $b_1b_2\ldots b_{n-1}$ eine Gruppe dieser J^n bildet, so hat man nach dem allgemeinen Verfahren folgendermassen vorzugehen. Wir construiren den

¹ Siehe: »Ein Beitrag zur Gruppentheorie auf den Curven vom Geschlechte Eins«. Sitzungsber. Bd. LXXXVIII, S. 459.

Punkt c_2 , so dass b_1c_2 und a_1a_2 zwei hyperboloidische Paare sind; dann ist, da man in der Gruppe $a_1a_2a_3$. a_n jedes Paar durch ein mit ihm hyperboloidisches ersetzen kann, auch $b_1c_2a_3a_4$. a_n eine Gruppe der J^n . Nun suchen wir die Punkte c_3 , c_4 . c_{n-1} , so dass b_2c_3 mit c_2a_3 , b_3c_4 mit c_3a_4 , b_4c_5 mit c_4a_5 u. s. w., endlich $b_{n-2}c_{n-1}$ mit $c_{n-2}a_{n-1}$ hyperboloidisch ist. Dann ist nach Früherem auch $b_1b_2c_3a_4a_5$. a_n eine Gruppe von J^n , ebenso $b_1b_2b_3c_4a_5$. a_n u. s. w., endlich ist also auch $b_1b_2b_3$. $b_{n-2}c_{n-1}a_n$ eine Gruppe. Wird nun schliesslich der Punkt b_n so gefunden, dass die Paare $b_{n-1}b_n$, $c_{n-1}a_n$ hyperboloidisch sind, so ist auch b_1b_2 . $b_{n-1}b_n$ eine Gruppe der J^n , also b_n der gesuchte Punkt.

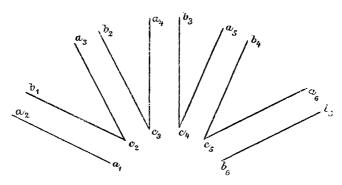


Fig. 1.

Wir können die Construction durch die schematische Figur 1 verbildlichen. Es haben hyperboloidische Lage die Paare (Sekanten von R_4) a_1a_2 , b_1c_2 ; c_2a_3 , c_3b_2 ; c_3a_4 , c_4b_3 ; c_4a_5 , c_5b_4 ; c_5a_6 , b_5b_6 und die beiden Sextupel $a_1a_2a_3a_4a_5a_6$, $b_1b_2b_3b_4b_5b_6$ gehören einer und derselben J^6 an.

Wird ein Punkt a von R_4 mit einem zweiten b und dieser mit einem dritten c verbunden, so bilden die zwei Paare ab, bc (oder die zwei Sekanten ab, bc) ein offenes Tripel abc. Aus drei Punkten kann man offenbar drei offene Tripel (abc, bca, cab), aber nur ein geschlossenes Tripel bilden. Jedes der Tripel kann man in einem oder in dem entgegengesetzten Sinne durchlaufen denken. Die beiden offenen Tripel abc, cba sind identisch, jedoch in verkehrtem Sinne zu durchlaufen; in beiden ist b Mittelelement, im ersten a, im zweiten c Anfangselement, im

ersten c, im zweiten a Endelement, im ersten ab erstes, bc zweites Paar, im zweiter cb erstes, ba zweites Paar.

Zwei offene Tripel *abc*, *def* sollen hyperboloidisch (verknüpft) heissen, wenn das zweite Paar *bc* des ersten Tripels hyperboloidisch mit dem ersten Paar des zweiten Tripels ist.

Dann haben wir in unserer Construction eine Reihe von hyperboloidisch verknüpften, offenen Tripeln: $b_1c_2a_3$, $b_2c_3a_4$, $b_3c_4a_5$. $.b_{n-1}c_{n-1}a_n$, so zwar, dass jedes mit dem folgenden hyperboloidisch ist. Das Paar a_1a_2 ist hyperboloidisch mit dem ersten Paar b_1c_2 des ersten Tripels, und das Paar $b_{n-1}b_n$ ist hyperboloidisch mit dem zweiten Paar $c_{n-1}a_n$ des letzten Tripels. Wir können also sagen:

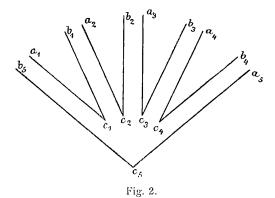
»Ist auf R_4 eine Reihe von offenen Tripeln gegeben, von denen jedes mit dem folgenden hyperboloidisch ist, so bilden die Anfangspunkte mit einem zum zweiten Paar des letzten Tripels hyperboloidischen Paar eine Gruppe, und die Endpunkte bilden mit einem zum ersten Paar des ersten Tripels hyperboloidischen Paare eine zweite Gruppe von Punkten, und diese beiden Punktgruppen gehören einer und derselben Involution an.« Sind n-2 Tripel in der Reihe, so ist die Involution vom Grade n.

Wenn die beiden Paare a_1a_2 , $b_{n-1}b_n$ einen Punkt gemeinschaftlich haben, wenn also z. B. $a_1 \equiv b_n \equiv c$, so bilden die zwei (n-1)-punktigen Gruppen a_2a_3 . a_n , b_1b_2 . b_{n-1} mit einem und demselben Punkte c Gruppen einer J^n und folglich gehören sie einer und derselben J^{n-1} an. In diesem Falle ist $b_{n-1}ca_1$ ein Tripel, welches sowohl mit dem ersten, als auch mit dem letzten Tripel der Reihe der übrigen Tripel hyperboloidisch liegt. Wir haben also den Satz (wenn wir n statt n-1 setzen):

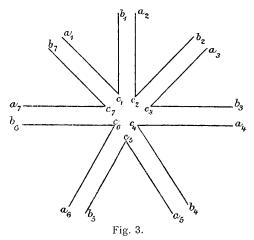
»Ist auf R_4 eine Reihe von n offenen Tripeln von der Art, dass jedes mit dem folgenden und das letzte mit dem ersten hyperboloidisch ist, so bilden die Anfangspunkte und die Endpunkte je eine Gruppe von n Punkten und diese beiden Gruppen gehören einer und derselben J^n an.«

Die schematische Figur 2 oder Figur 3 stellt uns die Beziehung der offenen Tripel dar; die Reihe derselben ist in Fig. 2:

 $a_1c_1b_1$, $a_2c_2b_2$, $a_3c_3b_3$, $a_4c_4b_4$, $a_5c_5b_5$ und die Quintupel $a_1a_2a_3a_4a_5$, $b_1b_2b_3b_4b_5$ gehören einer J^5 an. In Fig. 3 sind sieben offene Tripel: $a_1c_1b_1$, $a_2c_2b_2$. $a_7c_7b_7$ und die beiden Gruppen a_i , b_i (i=1 .7) gehören einer J^7 an.



Die Vervollständigung einer durch die Gruppe a_1a_2 . a_n gegebenen J^n , d. h. die Construction des Punktes b_n , wenn b_1b_2 . b_{n-1} gegeben sind, kann nun auf die Herstellung der



Tripelreihe $a_1c_1b_1$, $a_2c_2b_2$. $a_nc_nb_n$ zurückgeführt werden, in welcher Reihe jedes Tripel mit dem folgenden und das letzte mit dem ersten hyperboloidisch ist.

Zu dem Behufe kann man c_1 auf R_4 beliebig wählen, wodurch das Tripel $a_1c_1b_1$ gegeben ist; aus c_1 folgt c_2 , weil ja c_2a_2

mit c_1b_1 hyperboloidisch sein muss. Ebenso wird man c_3c_4 . c_n erhalten, und nun ergibt sich b_n aus der hyperboloidischen Lage von c_nb_n mit a_1c_1 .

7 Hat man n offene Tripel, von denen jedes hyperboloidisch ist, mit dem folgenden, und das letzte mit dem ersten, und bezeichnet man sie, von irgend einem ausgehend, mit $a_1c_2b_2$, $a_2c_3b_3$, $a_3c_4b_4$. $a_nc_1b_1$, so sind also c_1b_1 und a_1c_2 zwei hyperboloidische Paare, d. h. Paare einer J^2 , wenn wir also eine E-Beziehung dadurch festsetzen, dass wir dem a_1 den Punkt b_1 zuordnen (wir wollen dann diese E-Beziehung mit $E(a_1b_1)$ bezeichnen), so entspricht nach dieser E-Beziehung 1 dem Punkt c_1 der Punkt c_2 . Man erkennt ebenso, dass dem c_2 der Punkt c_3 in der $E(a_2b_2)$ und allgemein dem c_k der Punkt c_{k+1} in der $E(a_kb_k)$ entspricht, endlich entspricht in der $E(a_nb_n)$ dem c_n der Ausgangspunkt c_1 .

Wenn man also die Elemente aus zwei beliebigen Gruppen einer J^n zu n Paaren, etwa a_1b_1 , a_2b_2 . a_nb_n vereinigt, so dass in jedem Paare jede der beiden Gruppen durch einen Punkt vertreten erscheint und alle Punkte zur Verwendung kommen, und man geht von einem beliebigen Punkte c_1 aus, zu welchem man nach der $E\left(a_1b_1\right)$ den entsprechenden c_2 aufsucht, zu diesem den nach der $E\left(a_2b_2\right)$ entsprechenden c_2 zu diesem den nach der $E\left(a_3b_3\right)$ entsprechende c_4 u. s. w., endlich zu dem Punkte c_n den nach der $E\left(a_nb_n\right)$ entsprechenden, so wird dieser letztere der Punkt c_1 sein.

Wenn man für einen beliebigen Träger vom Geschlechte Eins zwei Paare, welche derselben J^2 angehören, als hyperboloidisch bezeichnet, so erkennt man sofort, dass die Betrachtungen des letzten und dieses Artikels für beliebige Träger (Curven, Flächen) vom Geschlechte Eins Geltung haben. So kann man also allgemein sagen:

»Ist auf einem Träger vom Geschlechte Eins eine Reihe von n offenen Elemententripeln, von denen jedes mit dem folgenden und auch das letzte mit dem ersten hyperboloidisch ist, so bilden die Anfangs-

¹ Siehe: Ȇber eindeutige Beziehungen auf einer allgemeinen ebenen Curve dritter Ordnung«. Sitzungsber. Bd. LXXXVIII, S. 856.

elemente eine Gruppe und die Endelemente eine zweite Gruppe einer J^n .«

»Sind auf einem Träger vom Geschlechte Eins zwei Gruppen a_1a_2 . a_n , b_1b_2 . b_n einer J^n gegeben und man construirt, von einem beliebigen Elemente c_1 ausgehend, die Elementenreihe $c_1c_2c_3c_4...c_n$, so dass dem c_k das Element c_{k+1} in der eindeutigen E-Beziehung $E(a_kb_k)$ entspricht, so entspricht dem c_n in der $E(a_nb_n)$ wieder das Anfangselement c_1 .«

Dabei ist es jedoch nicht nothwendig, dass die Elemente c_k alle von einander verschieden sind, nur kann nie c_k mit c_{k+1} zusammenfallen $(c_{n+1} \equiv c_1)$, weil eine E-Beziehung keine sich selbstentsprechenden Elemente hat, ausser es sind alle Elemente sich selbst entsprechend.

Wenn alle a_k identisch werden mit einem Elemente a und ebenso alle b_k identisch mit einem Elemente b, so sind also a und b zwei n-fache Elemente der J^n . Alle die Beziehungen $E\left(a_kb_k\right)$ werden identisch mit der Beziehung $E\left(a\,b\right)$, welche also die Eigenschaft hat, dass, wenn man von einem Elemente c_1 ausgeht, und die Reihe c_1c_2 . c_n construirt, so dass jedes Element dem vorangehenden als nach der $E\left(a\,b\right)$ entsprechendes Element zugeordnet ist, dann dem Elemente c_n wieder das Element c_1 entspricht. Die $E\left(a\,b\right)$ ist also eine cyclische E-Beziehung:

»Wenn man zwei n-fache Elemente einer J^n als einander entsprechende Elemente einer E-Beziehung betrachtet, so ist dieselbe immer cyclisch.«

Aus der obigen Betrachtung geht hervor, dass c_{n+1} identisch ist mit c_1 ; es kann aber geschehen, dass schon c_{k+1} (k < n) mit c_1 identisch wird, so dass sich der Cyclus c_1c_2 . c_k wiederholen wird. In diesem Falle muss also k ein Theiler von n sein. Wenn n eine Primzahl ist, so kann dieser Fall nicht eintreten und wird also jeder Cyclus c_1c_2 . . c_n aus n von einander verschiedenen Elementen bestehen.

Wenn n = km ist, so gibt es m^2 Involutionen k^{ten} Grades J^k , welche aus der J^n abgeleitet werden können. Die k-fachen

¹ Siehe: Ȇber Vervollständigung der Involutionen auf Trägern u. s. w.« Sitzungsber. vom 20. October 1892, Art. 9.

Elemente jeder dieser Involutionen sind auch n-fache Elemente der J^n . Ist nun k eine Primzahl und sind a, b k-fache Elemente einer solchen J^k , so wird die E(ab) aus k-elementigen Cyclen bestehen.

8. Wir stellen uns nun die Frage: »Wann sind zwei Punkte von C_3 oder von R_4 n-fache Punkte einer J^n ?«

Auf C_3 möge ein beliebiger Punkt a als n-facher Punkt einer J^n angenommen werden, wodurch die J^n bestimmt erscheint. Einen zweiten, zunächst beliebig gewählten Punkt b von C_3 betrachten wir als (n-1)-fachen Punkt der J^n und construiren nach Art. 5 den Punkt b_n , welcher mit dem (n-1)-fachen Punkt b eine Gruppe von J^n bildet. Zu dem Behufe gehen wir von einem beliebigen Punkte x_1 der C_3 aus, und ziehen die Geraden x_1ax_2 , x_2bx_3 , x_3ax_4 , x_4bx_5 . $x_{2n-1}ax_{2n}$, so wird die Gerade x_1x_{2n} die Curve C_3 zum drittenmal in dem gesuchten Punkte b_n schneiden. Soll nun b ein n-facher Punkt der J^n sein, so muss b_n mit b zusammenfallen, und wir haben ein (Steiner'sches) 2n-Eck $x_1x_2x_3$. x_2n vor uns, dessen Seiten abwechselnd durch a und b hindurchgehen.

Man erkennt sofort, dass in der Reihe $x_1x_3x_5$. $...x_{2n-1}x_1$ jeder Punkt dem vorangehenden als entsprechender in der $E\left(ab\right)$ zugeordnet ist, während in der Reihe $x_2x_4x_6$. $...x_{2n}x_2$ jeder Punkt dem folgenden in derselben $E\left(ab\right)$ zugeordnet ist.

Es sind also $x_2x_4x_6$. x_{2n} und $x_{2n-1}x_{2n-3}$. $x_5x_3x_1$ zwei cyclische n-punktige Gruppen in der cyclischen E-Beziehung E(a,b).

Wenn umgekehrt auf C_3 eine cyclische, n-elementige Cyclen liefernde E-Beziehung gegeben ist und wenn in derselben dem Punkte a der Punkt b entspricht, so sind a und b zwei n-fache Punkte einer und derselben J^n .

Denn construirt man, von irgend einem x_2 ausgehend, durch Ziehen von x_2bx_3 , x_3ax_4 , x_4bx_5 die Punktreihe $x_2x_4x_6x_8$

in welcher jedem Punkte der folgende nach der E(ab) entspricht, so muss sich die Reihe, weil die E(ab) nach Voraussetzung cyclisch ist, mit dem n^{ten} Punkte x_{2n} schliessen, d. h. dem x_{2n} entspricht wieder x_2 nach der E(ab)-Beziehung. Die hierbei auftretenden Punkte $x_{2n-1}x_{2n-3}$. x_3x_1 bilden einen zweiten Cyclus der E(ab) und es sind der Construction gemäss

(nach Früherem) a, b zwei n-fache Punkte einer und derselben J^n , w. z. b. w.

Unsere cyclische E(ab) kann auch als $E(x_2x_4)$, $E(x_4x_6)$ u.s.w. allgemein $E(x_{2k}, x_{2k+2})$, oder als $E(x_{2n-1}, x_{2n-3})$, oder $E(x_5x_3)$, $E(x_3x_1)$, $E(x_1x_{2n-1})$ allgemein $E(x_{2k+1}x_{2k-1})$ bezeichnet werden.

Hat man in der cyclischen E-Beziehung irgend zwei Cyclen $x_2x_4x_6$. x_{2n} , $x_{2n-1}x_{2n-3}$. x_3x_1 und sind a, b die dritten Schnittpunkte von C_3 mit x_2x_1 und x_2x_3 , so muss auch $\overline{x_3x_4}$ durch a gehen, denn es sind x_2x_4 und ab zwei Paare einer E-Beziehung, so dass also x_2b und x_4a sich in einem Punkte von C_3 schneiden müssen, aber x_2b geht durch x_3 , also geht x_4a auch durch x_3 , oder x_3x_4 geht durch a; ebenso sieht man, dass auch $\overline{x_3x_6}$, $\overline{x_7x_8}$ $x_{2n-1}x_{2n}$ durch a und $\overline{x_4x_5}$, $\overline{x_6x_7}$. x_2nx_1 durch b gehen

müssen, d. h. a, b sind Fundamentalpunkte eines Steiner'schen 2n-Eckes, in welchem $x_2x_4x_6$. x_{2n} die paaren, und $x_1x_3x_5$. x_{2n-1} die unpaaren Ecken sind.

Durch Projection von x_1 und x_3 aus x_2 auf C_3 haben wir ab erhalten; der Punkt x_3 entspricht dem x_1 in der E(ab). Aber in derselben E(ab) entspricht dem x_5 der Punkt x_3 , wenn man also x_3x_5 aus x_2 projicirt, so erhält man wieder ein Paar der E(ab). Nun gibt x_3 zur Projection den Punkt b und es wird also der dritte Schnittpunkt von C_3 mit x_2x_5 der Punkt c sein, welcher dem b in der E(ab) entspricht. Man sieht, dass durch Projection von $x_1x_3x_5$... x_{2n-1} aus x_2 auf die Curve C_3 eine n-punktige Gruppe abc. ... hklm entsteht, so dass jeder Punkt dem folgenden und der letzte (m) dem ersten (a) in der E(ab) als entsprechender zugeordnet ist. Es ist also abc. ... lm auch ein Cyclus der E(ab). Da man durch Projection von x_3 aus x_4 wieder den Punkt a erhält, so wird dieselbe Gruppe abc... hklm zum Vorschein kommen, wenn man die Gruppe x_3x_5 ... $x_{2n-1}x_1$ aus x_4 , oder x_5x_7 ... $x_{2n-1}x_3x_1$ aus x_3 u. s. w. projicirt.

Es erscheint so jeder Punkt der Gruppe x_2x_4 . x_{2n} mit jedem Punkte der Gruppe x_1x_3 . x_{2n-1} durch eine Gerade verbunden; die sich ergebenden n^2 Geraden schneiden die C_3 in den n Punkten abc...m, so dass durch jeden dieser Punkte n von den Geraden hindurchgehen.

Aus den beiden beliebigen Cyclen x_2 . x_{2n} , x_1 . x_{2n-1} ist so der dritte Cyclus abc. .m abgeleitet; man sieht sofort, dass

jeder der drei Cyclen aus den beiden anderen abgeleitet ist. Wir haben drei connexe Involutionsgruppen vor uns. (Siehe Küpper: »Über Steiner'sche Polygone auf einer Curve dritter Ordnung u. s. w.« Abhandlung der königl. böhm. Gesellsch. der Wissenschaften, VI. Folge, 6. Bd., oder Mathem. Annalen, Bd. 24, S. 18).

Irgend zwei Cyclen einer cyclischen E-Beziehung kann man als die paaren, respective unpaaren Ecken eines Steiner'schen 2n-Ecks betrachten, dessen Fundamentalpunkte irgend zwei aufeinanderfolgende Punkte a, b der dritten, mit den beiden ersten connexen, Gruppe sind. Dies folgt unmittelbar aus dem Vorhergehenden.

9. Ist auf C_3 eine cyclische E-Beziehung mit n-punktigen Gruppen gegeben, und c_1c_2 . $.c_n$ ein Cyclus von Punkten dieser E-Beziehung, so gelangt man, wenn man die E zweimal nach einander anwendet, vom Punkte c_1 zum Punkte c_3 , von c_2 zu c_4 u. s. w. allgemein von c_k zu c_{k+2} ; wendet man E dreimal nacheinander an, so wird dem c_1 der Punkt c_4 , dem c_2 c_5 , u. s. w., dem c_k der Punkt c_{k+3} als entsprechender zugeordnet sein. Die E, welche entsteht, wenn man unsere cyclische E-Beziehung p-mal nacheinander zur Anwendung bringt, kann man mit $\frac{EEE$. E p-mal oder mit E^p bezeichnen. In der E^p entspricht also dem Punkte c_k der Punkt c_{k+p} , dem c_{k+p} der Punkt c_{k+2p} , diesem der Punkt c_{k+3p} u. s. w.

Da c_{n+1} identisch ist mit c_1 , c_{n+2} identisch mit c_2 u. s. w., allgemein c_{n+k} identisch mit c_k , also auch $c_{\lambda n+k}$ identisch mit c_k (λ eine positive oder negative ganze Zahl), so wird der Punkt c_{k+p} mit c_k identisch, sobald pp ein Vielfaches von n wird, also

$$\mu p = \lambda n \text{ oder } \mu = \frac{\lambda n}{p}$$

Wenn p und n relativ prim sind, so muss $\lambda = p$ und $\mu = n$ werden, damit $c_{k+\mu p}$ mit c_k identisch wird. Wir haben somit den geschlossenen Cyclus c_k , c_{k+p} , c_{k+2p} ... $c_{k+(n-1)p}$, in welchem jedes Element dem folgenden und das letzte dem ersten in der E^p entspricht (dem letzten Element $c_{k+(n-1)p}$ entspricht c_{k+np} , aber c_{k+np} ist mit c_k identisch). Es ist also die E^p ebenfalls eine cyclische Beziehung mit n-elementigen Gruppen, von denen jede

auch eine n-elementige Gruppe der E ist. Ist p ein Theiler von n, also $\frac{n}{p} = \nu$, so wird für $\mu = \nu$ $\mu p = \nu p = n$ und somit schon $c_{k+\nu p}$ identisch mit c_k . Es ist also schon der ν -elementige Cyclus c_k , c_{k+p} , c_{k+2p} . $c_{k+(\nu-1)p}$ geschlossen, indem $c_{k+\nu p} \equiv c_{k+n} \equiv c_k$ ist. Die E^p ist also wieder cyclisch, liefert aber nur ν -elementige Cyclen.

Für $p\equiv n$ entspricht dem c_k das Element c_{k+n} , aber dieses ist mit c_k identisch, so dass also die E^n die fundamentale E-Beziehung ist, nach welcher jeder Punkt von C_3 sich selbst entspricht.

Wenn p > n etwa $p \equiv n + p'$ wäre, so kann man, da $c_{k+n+p'} \equiv c_{k+p'}, p$ durch p' ersetzen. Man kann also, wenn auch der Fall $p \equiv n$, da er zu der identischen E-Beziehung führt, ausgeschlossen wird, p < n voraussetzen. Wir haben somit das Resultat:

»Wenn E eine cyclische Beziehung mit n-elementigen Gruppen ist, so ist E^p ebenfalls eine cyclische Beziehung. Ist p kein Theiler von n, so hat die E^p ebenfalls n-elementige Cyclen und jeder Cyclus von E ist zugleich Cyclus von E^p , nur mit anderer Anordnung der Elemente. Wenn p ein Theiler von n ist, so ist E^p eine cyclische Beziehung mit $\frac{n}{p}$ -elementigen Cyclen.«

Wenn n eine gerade Zahl ist, und wenn $p=\frac{n}{2}$ gesetzt wird, so liefert die $E'^{\frac{n}{2}}$ zweielementige Cyclen, sie ist also eine der drei fundamentalen E-Beziehungen, in denen Vertauschungsfähigkeit der Elemente herrscht.

»Enthalten die Cyclen einer cyclischen E-Beziehung eine gerade Anzahl n von Elementen, so ist die $E^{\frac{n}{2}}$ eine der drei fundamentalen E-Beziehungen, in welchen Vertauschungsfähigkeit der Elemente herrscht. Auf einer C_3 sind dann c_k und $c_{k+\frac{n}{2}}$ zwei

correspondirende Punkte (Punkte mit gemeinsamem

¹ Siehe Sitzungsber., Bd. XC, S. 213 und Bd. LXXXVII, S. 846.

Tangentialpunkte) eines der drei Systeme. Es sind dann für beliebige c und k c_k und $c_{k+\frac{n}{2}}$ correspondirende Punkte desselben Systems. Jeder Cyclus der E setzt sich also aus $\frac{n}{2}$ Paaren correspondirender Punkte desselben Systems zusammen«.

Ebenso erkennt man allgemein:

»Enthalten die Cyclen einer cyclischen E-Beziehung n'p Elemente, so setzt sich jeder Cyclus aus p Cyclen einer cyclischen E-Beziehung mit n'-elementigen Cyclen zusammen.«

10. Aus dem Gesagten geht hervor, dass, wenn $c_1c_2 \ldots c_k \ldots c_n$ ein Cyclus einer cyclischen E-Beziehung mit n-elementigen Gruppen auf C_3 ist, zwei Punkte c_k , c_{k+p} dann Fundamentalpunkte für Steiner'sche eigentliche 2n-Ecke sind, wenn p kein Theiler von n ist; ist jedoch p Theiler von n, so sind c_k , c_{k+p} Fundamentalpunkte für Steiner'sche eigentliche $\frac{2n}{p}$ -Ecke, weil sie ja auch zwei Punkte eines Cyclus einer E-Beziehung mit $\frac{n}{p}$ -punktigen Gruppen sind.

Bekanntlich gibt es nur drei cyclische E-Beziehungen mit zweielementigen Cyclen (auf der C_3 dargestellt durch die drei Systeme conjugirter Punkte), dann vier cyclische E-Beziehungen mit dreielementigen Cyclen (auf der C_3 den vier Wendedreiseiten entsprechend); wir werden uns bei einer anderen Gelegenheit mit der Frage nach der Anzahl der cyclischen E-Beziehungen mit n-elementigen Cyclen zu beschäftigen haben, und werden erkennen, dass es sechs solche Beziehungen mit vierelementigen Cyclen gibt, zwölf mit fünfelementigen Cyclen u. s. w.

Die E(ab) wird cyclisch mit vierelementigen Cyclen, wenn ab als Punkte auf C_3 aufgefasst, einen gemeinschaftlichen zweiten Tangentialpunkt besitzen (ohne dass sie schon den ersten gemein haben); sie wird cyclisch mit achtelementigen Cyclen, wenn a,b den dritten Tangentialpunkt gemeinsam haben (ohne einen vorhergehenden gemeinsam zu haben); allgemein ist E(ab) cyclisch mit 2^{λ} -elementigen Cyclen, wenn a,b den

λten Tangentialpunkt gemein haben (ohne einen vorhergehenden gemeinsam zu haben).

11. Ist auf einer Raumcurve vierter Ordnung erster Species R_4 durch die Punktgruppe a_1a_2 a_n eine J^n gegeben, und soll b_1b_2 . b_{n-1} durch Construction von b_n zu einer Gruppe der J^n vervollständigt werden, so hat man die Reihe der Punkte c_1c_2 . c_n so zu construiren, dass bei beliebig gewähltem c_1 die Paare c_1c_2 , c_2c_3 , c_3c_4 $c_{n-1}c_n$ Paare entsprechender Punkte der Beziehungen $E(a_1b_1)$, $E(a_2b_2)$. $E(a_{n-1}b_{n-1})$ sind, d. h. also so, dass die Secantenpaare b_1c_1 , a_1c_2 ; b_2c_2 , a_2c_3 ; b_3c_3 , a_3c_4 . $b_{n-1}c_{n-1}$, $a_{n-1}c_n$ hyperboloidisch sind. Dann wird dem c_n der Punkt c_1 in der $E(a_nb_n)$ entsprechen, d. h. b_n ist jener Punkt von R_4 , welcher auf der durch c_n gehenden, mit a_nc_1 hyperboloidischen Secante liegt (so dass die Paare a_nc_1 , b_nc_n hyperboloidisch sind). Vergl. Art. 7

Fallen alle Punkte a_1a_2 ... a_n in einen Punkt a, und b_1b_2 ... b_{n-1} alle in b zusammen, so hat die J^n den Punkt a zum n-fachen Punkte und der (n-1)-fache, beliebig gewählte Punkt b wird von jenem Punkte $b' \equiv b_n$, den die obige Construction liefert, zu einer Gruppe der J^n ergänzt. Wir haben also von einem beliebigen Punkte c_1 auf R_4 auszugehen, c_1b zu ziehen, dann durch a die mit c_1b hyperboloidische Secante ac_2 zu ziehen, ferner bc_2 zu ziehen, durch a zu bc_2 die hyperboloidische Secante ac_3 zu ziehen u. s. w., die Punkte c_4c_5 ... c_n aufzusuchen, so dass ac_4 zu bc_3 , ac_5 zu bc_4 ... ac_{k+1} zu bc_k . ac_n zu bc_{n-1} hyperboloidisch ist; wird dann durch c_n die Secante gezogen, welche mit ac_1 hyperboloidisch ist, so ist ihr zweiter Schnittpunkt mit ac_1 hyperboloidisch Punkt ac_2 0 mit ac_3 1 beenfalls ein ac_4 2 punkt der ac_4 3 mit ac_5 3 zusammen, so ist ac_5 4 eenfalls ein ac_5 6 punkt ac_5 7 mit ac_5 8 so ist ihr zweiter Schnittpunkt mit ac_5 9 der gesuchte Punkt ac_5 9 mit ac_5 9 mit

»Wenn a, b zwei n-fache Punkte einer J^n auf R_4 sind, und man construirt von einem beliebigen Punkte c_1 von R_4 ausgehend, die Punkte $c_2c_3c_4$. . c_n auf R_4 , so dass die Secantenpaare: ac_2 , bc_1 ; ac_3 , bc_2 . ac_k , $bc_{k-1} \ldots ac_n$, bc_{n-1} hyperboloidisch sind (jedes mit R_4 auf einer R_2 liegend), so ist dann auch das Paar ac_1 , bc_n hyperboloidisch.«

Die Gruppe $c_1c_2...c_n$ bildet offenbar einen Cyclus von Punkten in der cyclischen E(ab).

Lässt man c_1 mit a zusammenfallen, so wird c_2 mit b zusammenfallen, und weil bc_2 die Tangente von b wird, so ist c_3 jener Punkt, in welchem die durch a gehende, zur Tangente von b hyperboloidische Secante R_4 schneidet; dann sind c_4c_5 . $.c_n$ so zu construiren, dass die Secantenpaare bc_3 , ac_4 ; bc_4 , ac_5 $.bc_{n-1}ac_n$ hyperboloidisch sind, und da endlich auch bc_n mit ac_1 hyperboloidisch sein muss, und ac_1 die Tangente von a ist, so ist also bc_n mit der Tangente von a hyperboloidisch. Die Punkte a, b, c_3 , c_4 $.c_n$ oder also c_1 , c_2 $.c_n$ bilden den aus a abgeleiteten Cyclus der cyclischen E(ab).

*Ist c_1c_2 . $.c_n$ ein Cyclus einer cyclischen E-Beziehung auf R_4 und sind C_1 , C_2 $.c_n$ die Tangenten von R_4 in c_1c_2 . $.c_n$ respective, so ist $\overline{c_1c_3}$ hyperboloidisch mit C_2 , und ebenso $\overline{c_2c_4}$ mit C_3 . allgemein $\overline{c_kc_{k+2}}$ hyperboloidisch mit C_{k+1} und endlich $\overline{c_nc_2}$ hyperboloidisch mit C_1 . «

Es ist dieser Satz nur eine specielle Anwendung des folgenden:

»Ist c_1c_2 . c_n ein Cyclus einer cyclischen E-Beziehung auf R_4 , so sind die beiden Secanten $\overline{c_kc_l}$, $\overline{c_{k+1}c_{l-1}}$ hyperboloidisch.«

Denn in der E-Beziehung sind ja $c_k c_{k+1}$, $c_{l-1} c_l$ zwei Paare entsprechender Punkte, so dass die beiden Paare $c_k c_l$, $c_{k+1} c_{l-1}$ einer J^2 angehören müssen.

Macht man k=2, so erhält man den vorletzten Satz, da die Secante $c_k c_k$ die Tangente von R_4 in c_k ist.

Wendet man den letzten Satz auf das Paar $c_{k+1}c_{l-1}$ an, so findet man, dass auch $c_{k+2}c_{l-2}$ mit $c_{k+1}c_{l-1}$ hyperboloidisch ist, und durch m-fache Anwendung ergibt sich:

»Ist c_1c_2 . c_n ein Cyclus einer cyclischen E-Beziehung auf R_4 , so sind c_kc_l , $c_{k+m}c_{l-m}$ zwei hyperboloidische Secanten«. Hiebei ist $c_{k\pm hn}$ identisch mit c_k .

Es ist also z. B. die Reihe der Secanten $c_k c_l$, $c_{k\pm 1} c_{l\mp 1}$, $c_{k\pm 2} c_{l\mp 2}$, $c_{k\pm 3} c_{l\mp 3}$ u. s. w. eine Reihe von Erzeugenden eines und desselben durch R_4 gehenden Hyperboloides; ebenso gehören die Tangente von R_4 in c_k und die Secanten $c_{k+1} c_{k-1}$, $c_{k+2} c_{k-2}$. als Erzeugende einem und demselben Hyperboloide an.

Es seien $c_1c_2c_3$ die Punkte eines Cyclus einer cyclischen E-Beziehung mit dreielementigen Gruppen, so muss, wenn $C_1C_2C_3$ die Tangenten von R_4 in $c_1c_2c_3$ sind, nach der letzten Bemerkung C_1 mit c_2c_3 , C_2 mit c_3c_1 und C_3 mit c_1c_2 hyperboloidisch sein.

12. Es seien a,b zwei dreifache Punkte einer J^3 auf der R_4 . Es muss dann, wenn c_1 ein beliebiger Punkt von R_4 ist, und wenn man ac_2 hyperboloidisch macht zu bc_1 , ferner ac_3 hyperboloidisch zu bc_2 , auch ac_1 hyperboloidisch zu bc_3 sein. Man hat also die drei Paar hyperboloidischer Secanten bc_1 , ac_2 ; bc_2 , ac_3 und bc_3 , ac_1 .

Lässt man c_1 mit a zusammenfallen, so fällt c_2 mit b zusammen; ac_1 wird die Tangente A von a und bc_2 die Tangente B von b, und nun ist bc_2 mit A und ac_3 mit B hyperboloidisch:

*Sind a, b zwei dreifache Punkte einer J^3 auf R_4 und sind A, B deren Tangenten, so schneidet die durch a gehende, zu B hyperboloidische, und die durch b gehende zu A hyperboloidische Secante die R_4 in demselben Punkte $c (\equiv c_3)$.

Da die Punkte abc (d. h. $c_1c_2c_3$) einen Cyclus der E(ab) bilden, so muss nach der Schlussbemerkung des letzten Artikels die Tangente C von c hyperboloidisch sein zur Secante \overline{ab} ; somit sind auch b, c (oder a, c) zwei dreifache Elemente einer J^3 , d. h. c ist ebenfalls dreifaches Element der J^3 , welcher a und b als dreifache Elemente angehören.

Die drei Punkte $a\,b\,c$ bilden ein der R_4 eingeschriebenes Dreieck von der Beschaffenheit, dass jede seiner Seiten zu der Tangente der Gegenecke hyperboloidisch ist.

»Wenn von den Seiten eines der R_4 eingeschriebenen Dreieckes zwei hyperboloidisch sind mit den Tangenten ihrer Gegenecke, so ist auch die dritte Seite hyperboloidisch mit der Tangente der Gegenecke. Die drei Ecken sind dreifache Punkte einer und derselben J^3 auf R_4 .«

»Das Tripel der Ecken ist ein Tripel jener J^3 , für welche die Ecken dreifache Punkte sind.«

Bezeichnet man a als dreifaches Element der J^3 mit a_1, a_2, a_3 , ferner b mit b_1 und c mit b_2 und construirt nun b_3 , so dass $b_1b_2b_3$

ein Tripel von J^3 wird, so hat man von dem beliebigen Punkte c_1 von R_4 ausgehend, die Punkte $c_2\,c_3$ so zu construiren, dass a_1c_2 zu b_1c_1 , $a_2\,c_3$ zu $b_2\,c_2$ hyperboloidisch ist. Dann ist b_3 der zweite Schnittpunkt von R_4 mit der durch c_3 gehenden, zu $a_3\,c_1$ hyperboloidischen Secante. Legt man c_1 in b_1 , so kommt c_2 in b_2 und c_3 wieder in b_1 zu liegen, so dass b_3 mit a identisch wird, w. z. b. w.

Es sei d der vierte Schnittpunkt der Ebene abc mit R_n ; so ist abcd ein Quadrupel der Fundamentalen J^4 , welche aus R_4 durch die sämmtlichen Ebenen des Raumes geschnitten wird. Betrachtet man irgend einen Punkt von R_{h} als dreifachen Punkt in dieser J4, so wird er durch den Schnittpunkt seiner Schmiegungsebene zu einer Gruppe der J^4 ergänzt. Wir bezeichnen die Punkte des Quadrupels abcd mit a, 2, 2, 2, und betrachten einen der drei Punkte a, b, c, z. B. a als dreifachen Punkt $\beta_1 \equiv \beta_2 \equiv \beta_3 \equiv a$, und construiren den Punkt β_3 , welcher mit β_{123} ein Quadrupel der J^4 bildet, die durch die Gruppe $\alpha_1 \alpha_2 \alpha_3 \alpha_4$ bestimmt erscheint. Geht man von einem beliebigen Punkte 71 von R_4 aus und construirt $\gamma_2\gamma_3\gamma_4$ so, dass $\beta_1\gamma_1$ mit $\alpha_1\gamma_2$, $\beta_2\gamma_2$ mit $\alpha_2 \gamma_3$, $\beta_3 \gamma_3$ mit $\alpha_3 \gamma_4$ hyperboloidisch ist, so wird die durch γ_4 zu $\alpha_4 \gamma_1$ hyperboloidisch gelegte Secante R_4 in β_4 schneiden. Legt man (da γ , willkürlich auf R_{μ} gewählt werden kann) den Punkt γ , nach α_1 , so fällt auch γ_2 nach α_1 , während γ_3 nach α_3 und γ_4 wieder nach α_1 fällt. Die durch γ_4 zu $\alpha_4\gamma_1$ hyperboloidische Secante ist (weil $\gamma_4 \equiv \gamma_1 \equiv \alpha_1$) dieselbe Gerade $\alpha_4 \gamma_1$, oder also $\alpha_4 \gamma_4$, so dass β_u mit α_u identisch wird.

Es schneidet also die in a zu R_4 gelegte Schmiegungsebene die Curve im Punkte d; dasselbe gilt von den Schmiegungsebenen der Punkte b, c.

»Ist abc ein Cyclus einer cyclischen E-Beziehung auf R_4 , so gehen die Schmiegungsebenen dieser drei Punkte durch den vierten Schnittpunkt ihrer Ebene mit der Curve.«

Es bilden also abc ein sogenanntes Punktetripel auf R_4 . (Siehe: H. Schröter, »Grundzüge einer rein geometrischen Theorie der Raumcurve vierter Ordnung, erster Species«, Leipzig 1890, S. 25.)

13. Betrachten wir eine cyclische E-Beziehung auf R_4 , welche vierpunktige Cyclen liefert. Wenn $a_1a_2a_3a_4$ ein Cyclus

derselben ist, das einfache eingeschriebene Viereck $a_1a_2a_3a_4$ bildend, so muss nach Früherem das Secantenpaar a_1a_2 , a_3a_4 und ebenso das Secantenpaar a_2a_3 , a_4a_1 hyperboloidisch sein. Ausserdem muss die Secante a_1a_3 hyperboloidisch sein mit der Tangente in a_2 und mit jener in a_4 , und die Secante a_2a_4 ist ebenso hyperboloidisch mit den Tangenten in a_1 und a_3 :

»Jeder Cyclus einer cyclischen E-Beziehung mit vierpunktigen Cyclen auf R_4 bildet ein der Curve eingeschriebenes, einfaches Viereck, in welchem je zwei Gegenseiten hyperboloidisch sind; ausserdem ist jede Diagonale hyperboloidisch mit den Tangenten in den Endpunkten der anderen Diagonale. Je zwei Gegenecken sind correspondirende Punkte von R_4 (weil ihre Tangenten hyperboloidische Lage haben).« »Die beiden Gegeneckenpaare a_1a_3 , a_2a_4 gehören als Paare correspondirender Punkte demselben (von den drei Systemen) an.«

Denn weil a_1a_2 und a_3a_4 hyperboloidisch sind, so wird jede Secante S von R_4 , welche $\overline{a_1a_2}$ schneidet, auch $\overline{a_3a_4}$ schneiden, und jedes der Paare a_1a_3 , a_2a_4 erscheint als Projection des anderen aus der Secante S.

Ein vierpunktiger Cyclus $a_1a_2a_3a_4$ als Gruppe einer J^4 aufgefasst, bestimmt diese J^4 ; wenn wir nun einen der Punkte, z. B. a_1 als dreifachen Punkt mit $b_1b_2b_3$ bezeichnen und b_4 so suchen, dass $b_1b_2b_3b_4$ ebenfalls eine Gruppe der J^4 wird, so hat man bei beliebigem c_1 die Punkte $c_2c_3c_4$ so zu finden, dass die Secantenpaare b_1c_1 , a_1c_2 ; b_2c_2 , a_2c_3 ; b_3c_3 , a_3c_4 hyperboloidisch sind, so wird die durch c_4 gehende, zu a_4c_1 hyperboloidische Secante R_4 in b_4 schneiden. Legt man c_1 in a_1 , so fällt auch c_2 in a_1 , ferner fällt c_3 in a_4 und a_4 in a_2 , so dass also a_4 in a_3 , d. h. in die Gegenecke von a_1 fällt.

»In der J⁴, welche durch einen vierpunktigen Cyclus bestimmt erscheint, wird jeder Punkt des Cyclus als dreifacher Punkt aufgefasst, von jenem Punkte des Cyclus, welcher zu ihm correspondirender Punkt ist, zu einer Gruppe ergänzt.«

Man erkennt ebenso leicht, dass je zwei aufeinanderfolgende Punkte des Cyclus, wenn man jeden von ihnen als Doppelpunkt auffasst, ebenfalls eine Gruppe der J^4 darstellen, welche durch den Cyclus als Gruppe bestimmt erscheint.

14. Wenn die Punkte a, b von R_4 n-fache Punkte einer J^n sind, und man construirt, von einem beliebigen Punkte c_1 von R_4 ausgehend, die Reihe $c_1c_2c_3$. $.c_n$, so dass die Secantenpaare bc_1 , ac_2 ; bc_2 , ac_3 . $.bc_{n-1}$, ac_n hyperboloidisch sind, so muss endlich auch bc_n mit ac_1 hyperboloidisch sein.

Lässt man c_1 in a fallen, so fällt c_2 in b und bc_2 , ac_1 werden die Tangenten von R_4 in b, respective a. Die Gruppe c_1c_2 . c_n stellt einen Cyclus in der cyclischen E(ab) dar.

15. Es seien auf einem Träger vom Geschlechte Eins eine J^n und eine E(xy) gegeben; zu jeder Gruppe x_1x_2 . x_n der J^n können wir die Elemente y_1y_2 . y_n construiren, welche den Elementen x_1x_2 .. x_n , respective nach der E(xy) zugeordnet sind. Man erkennt sofort, dass alle die Gruppen y_1y_2 .. y_n wieder eine $J^{\prime n}$ bilden, die aus der J^n durch die E(xy) abgeleitet ist. Denn es bilden die Gruppen $y_k(k=1,2.$ n) eine solche (n-1)-fache Mannigfaltigkeit, dass jede derselben durch n-1 ihrer Elemente bestimmt erscheint. In der That wählt man y_1y_2 .. y_{n-1} beliebig, so sind durch die E(xy) auch die Elemente x_1x_2 .. x_{n-1} und somit auch x_n gegeben, welch' letzterem nach der E(xy) das Element y_n zugeordnet erscheint.

Auch erkennt man sofort, dass aus den n-fachen Elementen der J^n durch die E(xy) die n-fachen Elemente der J'^n abgeleitet erscheinen.

Soll also eine gegebene J^n in eine gegebene J'^n durch eine E-Beziehung übergeführt werden, so hat man nur irgend einem der n-fachen Elemente x von J^n irgend eines der n-fachen Elemente y von J'^n als entsprechendes zuzuweisen, so wird durch die E(xy) die J^n in die J'^n übergeführt werden.

Geht man von einem n-fachen Elemente x der J^n aus, so kann ihm jedes der n^2 n-fachen Elemente y der J^n als entsprechend zugewiesen werden, wodurch man n^2 von einander verschiedene E-Beziehungen erhält, von denen jede die J^n in die J^n überführt.

»Es gibt n^2 (von einander verschiedene) E-Beziehungen, durch welche eine gegebene J^n in eine gegebene J^n übergeführt erscheint; man erhält sie,

wenn man einem der n-fachen Elemente der J^n der Reihe nach jedes der n^2 n-fachen Elemente der $J^{\prime n}$ als entsprechend zuweist.«

Lässt man J'^n identisch werden mit J^n und sieht man von der identischen E-Beziehung ab, welche jedes Element sich selbst zuweist, so hat man sofort den Satz:

»Es gibt (n^2-1) von einander verschiedene E-Beziehungen, durch welche eine gegebene J^n in sich selbst übergeführt wird; man erhält sie, wenn man einem der n-fachen Elemente der J^n der Reihe nach jedes der übrigen (n^2-1) n-fachen Elemente der J^n als entsprechend zuweist.«

Der früher bewiesene Satz, dass die E-Beziehung, welche man erhält, wenn man zwei n-fache Elemente einer J^n einander als entsprechende zuweist, eine cyclische sein müsse, kann auch unmittelbar aus dem vorletzten Satze abgeleitet werden.

Denn sind a, b zwei n-fache Elemente einer J^n , so wird die J^n durch die E(ab) in sich übergeführt, es wird also das dem Elemente b entsprechende c ebenfalls ein n-faches Element der J^n sein, und in der Reihe der Elemente a, b, c, d, e. in welchem jedes dem folgenden, auch der E(ab) entspricht, wird jedes ein n-faches Element der J^n sein; da nun die J^n eine endliche Anzahl n^2 von n-fachen Elementen besitzt, so muss sich die Reihe abcd. schliessen. Sie muss sich aber mit dem Elemente a schliessen; denn würde das dem Endelemente a entsprechende nicht a, sondern a. a0 sein, so würde in der a1 entsprechen, was nicht möglich ist, da jedem Elemente nur ein einziges zugeordnet ist. Die Reihe abc...l stellt dann einen Cyclus der a1 stellt dann einen Cyclus der a2 schliesen.

16. Wenn wir sagen, $c_1c_2\ldots c_n$ bilden einen Cyclus auf einem Träger vom Geschlechte Eins, so soll dies bedeuten, dass jedes Element dem vorhergehenden, und das erste dem letzten in einer E-Beziehung (die also cyclisch ist) als entsprechend zugeordnet ist. Wir sagen dann, dass der Cyclus dieser E angehört. Jedes Element ist dann in einem durch dasselbe bestimmten Cyclus der dieser E angehört, enthalten. Wenn ange-

deutet werden soll, dass eine cyclische E-Beziehung n-elementige Cyclen liefert, so soll sie mit E_n bezeichnet werden.

»Je zwei einander in einer E_n entsprechenden Elemente sind n-fache Elemente einer und derselben J^n .«

Es seien a, b zwei solche Elemente und c_1c_2 . c_n irgend ein Cyclus der E_n . Wir betrachten a als n-faches Element einer J^n , wodurch dieselbe bestimmt ist, und fragen nach jenem Elemente b_n , welches das als (n-1)-faches Element aufgefasste b zu einer Gruppe derselben J^n ergänzt. Die Reihe c_1c_2 . c_n ist nach Voraussetzung so beschaffen, dass die Paare bc_1 , ac_2 ; bc_2 , ac_3 . $.bc_{n-1}$, ac_n ; bc_n , ac_1 hyperboloidisch sind (siehe Art. 11) und man wird nach Art. 11 das Element b_n als jenes erhalten, welches b_nc_n zu ac_1 hyperboloidisch macht. Nun sind aber bc_n und ac_1 hyperboloidisch, also ist b_n identisch mit b, d. h. b ist ebenfalls n-faches Element derselben J^n , w. z. b. w.

Die sämmtlichen Elemente eines n-elementigen Cyclus sind n-fache Elemente einer und derselben J^n .«

Denn je zwei aufeinanderfolgende sind ja entsprechende Elemente einer E_n .

»Die sämmtlichen Elemente eines n-elementigen Cyclus sind νn -fache Elemente einer und derselben $J^{\nu n}$, wobei ν eine beliebige, positive, ganze Zahl bedeutet.«

Denn es stellt ja jeder n-elementige Cyclus y-mal durchlaufen auch einen yn-elementigen Cyclus dar. In dieser Art kann jede E_n auch als eine E_m betrachtet werden.

Der letzte Satz folgt auch aus der Bemerkung, dass zwei n-fache Elemente einer J^n auch n-fache Elemente einer J^n sind, nämlich jener, für welche die J^n eine der n-abgeleiteten ist.

Ist n durch p theilbar, so sind in einem Cyclus c_1c_2 . $.c_n$ c_k und c_{k+p} entsprechende Elemente einer E_n und somit $\frac{n}{p}$ -fache Elemente einer $J^{\frac{n}{p}}$ (Siehe Art. 9.)

»Ist n durch p theilbar, so sind in jedem n-elementigen Cyclus c_1 . c_n die $\frac{n}{p}$ Elemente c_k c_{k+p} c_{k+2p} . $c_{k+(n-1)p}$ $\frac{n}{p}$ -fache Elemente einer und derselben $J^{\frac{n}{p}}$

»Wenn a, b zwei n-fache Elemente einer J^n sind, und wenn n prim ist, so liefert die E(ab) n-elementige Cyclen, d. h. sie ist eine $E_{n\cdot }$ «

Wir wissen nach Früherem, dass, wenn man von einem Elemente c_1 ausgehend, die Reihe $c_1c_2\ldots c_n$ so construirt, dass jedes Element dem vorangehenden in der E(ab) entspricht, dem Element c_n das Element c_1 zugeordnet erscheint $c_{n+1}\equiv c_1$ (Art. 7), d. h., dass die E(ab) eine cyclische ist. Der Cyclus c_1c_2 könnte sich nur dann früher z. B. mit c_q schliessen, wenn q ein Theiler von a wäre, weil ja $c_{q+1}\equiv c_1$, $c_{q+2}\equiv c_2$ u.s.w. $c_{2q+1}\equiv c_1$, $c_{2q+2}\equiv c_2$ u.s.w. sein müsste, und da c_1 einmal auch als c_{n+1} wiederkehren muss, so müsste in der Reihe c_{q+1} , c_{2q+1}

 $c_{\nu q+1}$ einmal $\nu q = n$, also $q = \frac{n}{\nu}$ werden. Da aber n Primzahl ist, so kann nur $\nu = 1$ sein und q = n.

Wenn n nicht prim ist, also etwa $n = \nu q$, so gibt es $\nu^2 J^q$, welche aus der J^n abgeleitet sind (siehe die erste Mittheilung über diesen Gegenstand, dieser Band, Sitzung vom 20. October 1892, Art. 8). Sind um a, b zwei q-fache Elemente einer solchen J^q , so sind sie auch n-fach für die J^n , aber die E(ab) wird, falls q eine Primzahl ist, nur q-elementige Cyclen liefern.

»Ist $n=\nu q$ und q eine Primzahl, und sind a,b zwei n-fache Elemente einer J^n und zugleich q-fache Elemente einer der ν^2 aus der J^n abgeleiteten J^q , so ist die E(ab) eine E_q , d. h. sie liefert q-elementige Cyclen«.

Da nun je zwei Elemente eines q-elementigen Cyclus q-fache Elemente einer J^q sind, so können wir sagen:

»Wenn a,b zwei n-fache Elemente einer J^n sind, ohne q-fache Elemente einer der aus der J^n abgeleiteten J^q zu sein, so liefert die E(ab) n-elementige Cyclen.«

17 Wenn man zwei n-fache Elemente einer J^n als entsprechende einander zuweist, so erhält man eine cyclische E-Beziehung; und umgekehrt sind je zwei einander entsprechende Elemente einer cyclischen E-Beziehung mit n-elementigen Cyclen n-fache Elemente einer J^n . Wir werden also die sämmtlichen cyclischen E-Beziehungen auf einem Träger vom Geschlechte Eins erhalten als jene E(ab), in denen a und b n-fache Elemente einer J^n sind. Wenn n eine Primzahl ist, so wird die E(ab) n-elementige Cyclen liefern; ist dagegen n keine Primzahl, so kann die E(ab) auch p-elementige Cyclen liefern, wenn p einen Theiler von n bedeutet.

Es möge bemerkt werden, dass, wenn eine E(ab)n-elementige Cyclen liefert, auch andere E-Beziehungen existiren, welche dieselben Cyclen mit anderer Anordnung der Elemente liefern.

Es sei $c_1c_2c_3$. . c_n ein Cyclus der E(ab), welche wir also auch als die $E(c_1c_2)$, $E(c_2c_3)$. allgemein $E(c_kc_{k+1})$ bezeichnen können, oder mit Hinblick darauf, dass sie n-elementige Cyclen liefert, mit E_n .

Die E(ba) oder allgemein $E(c_{k+1}c_k)$ wird offenbar denselben Cyclus liefern, nur dass die Elemente in umgekehrter Aufeinanderfolge durchlaufen erscheinen, $c_1c_nc_{n-1}c_{n-2}$. c_3c_2 ; wir können sie mit $(-E_n)$ bezeichnen.

Wenn man den Process E_n zweimal anwendet, so gelangt man zu der E-Beziehung, die wir mit E_n^2 bezeichnen, und welche dem Elemente c_1 das Element c_3 zuordnet, diesem c_5 , diesem c_7

allgemein dem c_k das Element c_{k+2} . Wenn 2 kein Theiler von n ist, so gibt die E_n^2 denselben Cyclus, nur in der Aufeinanderfolge $c_1c_3c_5$ $c_nc_2c_4$. $.c_{n-1}$. Ebenso liefert die $(-E_n^2)$ denselben Cyclus.

Wird der Process E_n p-mal nach einander angewendet, so erscheint dem c_1 das Element c_{1+p} , diesem c_{1+2p} u. s. w. zugeordnet, und die sich so ergebende E_n^p liefert [sowie die $(-E_n^p)$], wenn p kein Theiler ist, denselben Cyclus wie E_n .

»Ist E_n eine cyclische Beziehung mit n-elementigen Cyclen, so liefert die E_n^p , wenn p kein Theiler von n ist, dieselben Cyclen«.

Es ist klar, dass die E_n^{n+1} mit der E_n identisch ist, ebenso die E_n^{n+2} mit der E_n^2 u. s. w., allgemein ist $E_n^{p+n} \equiv E_n^p$ und $E_n^{p+kn} \equiv E_n^p$. Ebenso erkennt man, dass die $(-E_n)$ identisch ist mit E_n^{n-1} , die $(-E_n^2)$ mit der E_n^{n-2} u. s. w., allgemein die $(-E_n^p)$ identisch mit der E_n^{n-p} Wir können also die $(-E_n^p)$ auch als die E_n^{n-p} bezeichnen, oder, wenn wir die Gleichung $E_n^{p+kn} \equiv E_n^p$ auch für negative p gelten lassen, so kann statt $(-E_n^p)$ auch E_n^{-p} geschrieben werden.

Die E_n^n oder $E_n^{\pm kn}$ ist die identische Beziehung, welche jedes Element sich selbst zuweist.

»Die E-Beziehungen, welche dieselben Cyclen liefern, wie die E_n , sind, wenn n keinen Theiler besitzt (also Primzahl ist): $E_n E_n^{-1}$, $E_n^2 E_n^{-2}$, $E_n^3 E_n^{-3}$.

$$E_n^{\frac{n-1}{2}}E_n^{-\frac{n-1}{2}}$$

Denn es ist z. B.:

$$E_n^{\frac{n-1}{2}+1} \equiv E_n^{\frac{n+1}{2}} \equiv E_n^{\frac{n+1}{2}-n} \equiv E_n^{-\left(\frac{n-1}{2}\right)}$$
 u. s. w.

Ihre Anzahl ist n-1, und sie zerfallen in $\frac{n-1}{2}$ Paare derart, dass jede von zwei Gepaarten dieselben verkehrt angeordneten Cyclen wie die andere liefert.

Diese (n-1) Beziehungen, welche dieselben Cyclen liefern, sollen als eine Gruppe äquivalenter E_n -Beziehungen bildend bezeichnet werden.

Untersuchen wir nun die Frage: »Wie viele Gruppen äquivalenter E_n -Beziehungen gibt es, wenn n eine Primzahl ist?«

Das einem beliebig gewählten Elemente a in einer E_n -Beziehung entsprechende Element b muss nach Früherem ein n-faches Element jener J^n sein, welche auch a zum n-fachen Elemente besitzt.

Nun ist a n-faches Element für eine vollkommen bestimmte J^n , welche ausser a noch (n^2-1) weitere n-fache Elemente b besitzt. Weist man eines derselben dem a zu, so ist die E(ab) nach Früherem eine E_n (da n Primzahl ist); hieraus folgt zunächst:

»Für n als Primzahl gibt es (n^2-1) von einander verschiedene E_n -Beziehungen«.

Wenn wir nun dem a eines der (n^2-1) Elemente b zuordnen, so erscheint dadurch aus jenen (n^2-1) cyclischen
Beziehungen eine herausgegriffen und zugleich ist der Cyclus
bestimmt, welcher a als erstes und b als zweites Element enthält, und welcher n von den n^2 n-fachen Elementen der J^n absorbirt. Geht man von irgend einem der übrigen (n^2-n) n-fachen
Elementen, es heisse b', aus, so wird durch die E(ab) der Cyclus

bestimmt, welcher b' als erstes Element enthält. Es bleiben nun noch $(n^2-n-n)=(n^2-2n)$ n-fache Elemente der J^n zurück; wenn b'' eines von ihnen ist, so erscheint durch dasselbe als erstes Element ein dritter Cyclus der E(ab) bestimmt u. s. w.

Man erkennt, dass sich durch die E(ab) die n^2 n-fachen Elemente der J^n zu n Cyclen von je n Elementen gruppiren, und dass alle zu E(ab) äquivalenten E-Beziehungen dieselben Cyclen liefern. Man erhält offenbar immer eine zur E(ab) äquivalente Beziehung, wenn man irgend zwei Elemente eines und desselben unter diesen n Cyclen einander als entsprechend zuweist. Man wird also zu einer anderen Gruppe äquivalenter E-Beziehungen, und zwar in derselben Art gelangen, wenn man dem Elemente a eines jener Elemente zuweist, welches nicht in dem Cyclus ab. enthalten ist, also etwa das Element b'; ebenso liefert die Zuordnung ab'', wenn b'' weder dem Cyclus ab. noch dem Cyclus ab' angehört, eine neue Gruppe äquivalenter E_n .

Man sieht, dass sich die (n^2-1) Elemente b in dieser Art zu $\frac{n^2-1}{n-1} = n+1$ Gruppen von je n-1 ordnen, welche mit a zusammen einen Cyclus liefern, so dass diese n+1 Cyclen zu verschiedenen Gruppen äquivalenter E_n -Beziehungen gehören. Auch sieht man sofort, dass sich in dieser Art alle Gruppen äquivalenter E_n -Beziehungen ergeben.

»Wenn n eine Primzahl ist, so ordnen sich die (n^2-1) cyclischen E_n -Beziehungen in (n+1) Gruppen von je (n-1) äquivalenten Beziehungen.«

Und ebenso:

»Die n^2 n-fachen Elemente einer J^n lassen sich, wenn n eine Primzahl ist, auf (n+1) verschiedene Arten in n Gruppen von je n Elementen ordnen, so dass diese n Gruppen Cyclen einer und derselben E_n -Beziehung darstellen.«

»Die n-fachen Elemente der Involutionen n^{ten} Grades $(n-1)^{\text{ter}}$ Stufe auf einem Träger vom Geschlechte Eins bilden eine einfache Unendlichkeit von n^2 -elementigen Gruppen, von denen jede durch eines ihrer Elemente unzweideutig bestimmt er-

18. Wir stellen uns nun die Frage: »Wie viele äquivalente E_n -Beziehungen gibt es, welche n-elementige Cyclen liefern, wenn n keine Primzahl ist?«

Oder mit anderen Worten: »Wie viele äquivalente E_n enthält eine Gruppe, wenn n keine Primzahl ist?

Ist $c_1c_2\ldots c_n$ ein n-elementiger Cyclus, so kann er zunächst durch die $E(c_1c_2)$ erzeugt gedacht werden, welche mit der $E(c_pc_{p+1})$ identisch ist.

Die $E(c_1c_3)$ wird denselben Cyclus nur erzeugen, wenn 2 kein Theiler von n ist. Überhaupt können die E_n , welche denselben Cyclus liefern, nur unter den $E(c_1c_3)$ $E(c_1c_4)$. $E(c_1c_{n-1})$ gesucht werden.

Betrachten wir allgemein die $E(c_1c_{1+p})$, welche also dem Elemente c_1 das Element c_{1+p} , diesem das Element c_{1+2p} , diesem c_{1+3p} u. s. w. zuweist. Der entstehende Cyclus ist c_1 , c_{1+p} , c_{1+2p} . c_{1+kp} . $c_{1+(n-1)p}$ und er wird nur dann die sämmtlichen Elemente c_1c_2 . . c_n und jedes einmal enthalten, also mit dem ursprünglichen identisch sein, wenn p und n theilerfremd sind.

Denn wenn man $k\equiv n$ setzt, so wird $c_{1+np}\equiv c_1$, so dass dem $c_{1+(n-1)p}$ wieder c_1 als entsprechendes Element zugewiesen erscheint. Wenn jedoch p und n einen Theiler t gemeinsam

haben, so dass also $\frac{p}{t} = p'$, $\frac{n}{t} = n'$ ist, so wird schon für

k=n'< n die Reihe $c_1\,c_{1+p}\,c_{1+2p}$. sich schliessen und wir werden unseren Cyclus c_1c_2 . nicht mehr vollständig erhalten, sondern nur einen n'-elementigen Cyclus. Setzt man nämlich

$$k = n'$$
 wegen $\frac{p}{p'} = \frac{n}{n'}n'p = p'n$ und somit $1 + kp = 1 + n'p = 1 + p'n$ und folglich $c_{1+kp} \equiv c_{1+n'p} \equiv c_{1+p'n} \equiv c_1$.

Um also jene E_n zu erhalten, welche denselben ganzen n-elementigen Cyclus c_1c_2 . $.c_n$ liefern, hat man für p alle jene Werthe zu setzen, welche kleiner als n und mit n theilerfremd sind.

»Die Zahl der in einer Gruppe vorkommenden äquivalenten E_n ist gleich der Anzahl jener ganzen Zahlen, welche kleiner sind, als n und welche zu n theilerfremd sind«.

Jede Zahl n kann in der Form $n=n_1^{\nu_1}, n_2^{\nu_2}, n_3^{\nu_3}$. geschrieben werden, wobei n_1, n_2, n_3 . Primzahlen sind; dann ist die Anzahl jener ganzen Zahlen, welche kleiner als n, und zu n theilerfremd sind, bekanntlich:

$$\varphi(n) = n\left(1 - \frac{1}{n_1}\right)\left(1 - \frac{1}{n_2}\right). \quad \left(1 - \frac{1}{n_r}\right)$$

und dies ist also auch die Anzahl der äquivalenten E_n in einer Gruppe.

»Die Zahl der äquivalenten E_n ist, wenn n_1, n_2 . n_r die Primfactoren von n sind, gleich $\varphi(n)$ «.

Ist n eine Primzahl, also $n=n^1$, so erhalten wir wie früher $(n-1)n^{1-1}=(n-1)n^0=n-1$ als die Anzahl der äquivalenten E_n . Ist $n=n_1$, n_2 , n_3 . wobei n_1 , n_2 , n_3 . Primzahlen sind, so ist (n_1-1) , (n_2-1) , (n_3-1) . die Anzahl der äquivalenten E_n .

19. Wir wenden uns nun zu der Beantwortung der Frage: »Wie viele cyclische E_n gibt es auf einem Träger vom Geschlechte Eins?« d. h. also, wie viele cyclische E-Beziehungen gibt es, welche n-elementige Cyclen liefern?

Wenn n eine Primzahl ist, so haben wir die Zahl (n^2-1) als die Anzahl der E_n gefunden, und haben gesehen, dass sich diese (n^2-1) E_n in (n+1) Gruppen von je (n-1) äquivalenten E_n ordnen.

Um jene Elemente zu erhalten, welche in diesen E-Beziehungen einem beliebig gewählten Elemente a zugeordnet sind, haben wir a als n-faches Element einer J^n zu betrachten, so sind dann die übrigen (n^2-1) n-fachen Elemente b dieser J^n die fraglichen.

Es sei nun $n=n_1n_2$, wobei n_1 , n_2 zwei Primzahlen sein sollen. Unter den (n^2-1) Elementen b, welche n-fach sind für die durch das beliebig gewählte n-fache Element a bestimmte J^n , sind auch die n_1^2-1 Elemente b' enthalten, welche n_1 -fach sind für die J^{n_1} , welche durch a als n_1 -faches Element bestimmt erscheint; da aber eine E(ab) höchstens n_1 -elementige Cyclen liefert, so sind die Elemente b' aus der Gruppe b auszuscheiden. Dasselbe gilt von den (n_2^2-1) Elementen b'', welche n_2 -fach sind für jene J^{n_2} , welche durch a als n_2 -faches Element bestimmt erscheint. Es bleiben also von den (n^2-1) Elementen b nur $n^2-1-[n_1^2-1+n_2^2-1]=n_1^2n_2^2-n_1^2-n_2^2+1$, das ist also $(n_1^2-1)(n_2^2-1)$, von denen jedes mit a verknüpft eine E(ab) mit n-elementigen Cyclen liefert.

Es gibt also, wenn $n=n_1n_2$ und n_1,n_2 Primzahlen bedeuten, im Ganzen $(n_1^2-1)(n_2^2-1)$ von einander verschiedene E statt dieser Zahl kann auch $n^2\left(1-\frac{1}{n_1^2}\right)\left(1-\frac{1}{n_2^2}\right)$ geschrieben werden.

Wenn n das Product dreier Primzahlen ist, also $n=n_1n_2n_3$, so gehören zu einem Elemente a, wenn es als n-faches Element einer J^n betrachtet wird, wieder (n^2-1) andere n-fache Elemente b derselben J^n . Wird a als n_2n_3 -faches Element einer $J^{n_2n_3}$ betrachtet, so hat diese noch weitere $n_2^2n_3^2-1$ n_2n_3 -fache Elemente b', welche zugleich n-fach für jene J^n sind, aber, da sie mit a zu einer E(ab') verknüpft, nur n_1n_2 -elementige oder noch weniger-elementige Cyclen liefern, aus der Gruppe b ausgeschlossen werden müssen. Dasselbe gilt von den $(n_1^2n_3^2-1)$ Elementen b'', welche n_1n_3 -fach sind für jene $J^{n_1n_3}$, die durch a als n_1n_3 -faches Element bestimmt ist; und endlich gilt dasselbe für die $(n_1^2n_2^2-1)$ Elemente b''', welche n_1n_2 -fach sind für die durch a als n_1n_2 -faches Element bestimmte $J^{n_1n_3}$. Wir haben also die Zahl:

$$n^2 - 1 = n_1^2 n_2^2 n_3^2 - 1,$$

um die Zahl:

$$n_2^2 n_3^2 - 1 + n_1^2 n_3^2 - 1 + n_2^2 n_3^2 - 1$$

zu vermindern.

Nun sind aber die n_1^2-1 Elemente β' , welche n_1 -fach sind für jene J^{n_1} , welche durch a als n_1 -faches Element bestimmt ist, sowohl unter den Elementen b'', als auch unter den Elementen b''' enthalten und sind daher statt nur einmal, zweimal von n^2-1 subtrahirt worden; wir müssen also die Zahl n_1^2-1 zu der obigen Differenz hinzufügen. Dasselbe gilt von den n_2^2-1 Elementen β'' , welche n_2 -fach sind für die J^{n_2} , die durch a als n_2 -faches Element bestimmt ist, und ebenso für die n_3^2-1 Elemente n_3 -fach sind für die n_3 -faches Element bestimmt erscheint. Es ist also zu obiger Differenz im Ganzen noch $n_1^2-1+n_2^2-1+n_3^2-1$ hinzuzufügen.

Die Zahl der Punkte b, welche mit a Beziehungen E(ab) liefern, die zu n-elementigen Cyclen Veranlassung geben, ist somit:

$$\begin{split} n_1^2 n_2^2 n_3^2 - 1 - \left[n_2^2 n_3^2 - 1 + n_1^2 n_3^2 - 1 + n_1^2 n_2^2 - 1 \right] + \\ + \left[n_1^2 - 1 + n_2^2 - 1 + n_3^2 - 1 \right] &= (n_1^2 - 1)(n_2^2 - 1)(n_3^2 - 1) = \\ &= n^2 \left(1 - \frac{1}{n_1^2} \right) \left(1 - \frac{1}{n_2^2} \right) \left(1 - \frac{1}{n_3^2} \right). \end{split}$$

Es ist also, wenn n das Product dreier Primzahlen $n_1 n_2 n_3$ ist, $n = n_1 n_2 n_3$, die Zahl der E_n gegeben durch:

$$n_2 \left(1 - \frac{1}{n_1^2}\right) \left(1 - \frac{1}{n_2^2}\right) \left(1 - \frac{1}{n_3^2}\right).$$

In derselben Art kann man fortfahren und gelangt zu dem Satze:

»Sind $n_1n_2 ...n_r$ von einander verschiedene Primzahlen, und ist $n = n_1n_2...n_r$, so ist die Zahl der von einander verschiedenen E_n gleich:

$$n^2 \prod_{i=1}^{i=r} \left(1 - \frac{1}{n_i^2}\right).$$

Nun ist die Zahl der zueinander äquivalenten E_n in diesem Falle, dem letzten Artikel gemäss, gleich $(n_1-1)(n_2-1)(n_3-1)$

$$.(n_r-1)=n\Big(1-\frac{1}{n_1}\Big)\Big(1-\frac{1}{n_2}\Big) \quad .\Big(1-\frac{1}{n_r}\Big). \quad \text{Dividirt man}$$
 die vorletzte Zahl durch diese letzte, so hat man den Satz:

»Sind n_1, n_2 . n_r von einander verschiedene Primzahlen, und ist $n = n_1 n_2 \dots n_r$, so gibt es

$$n \prod_{i=1}^{i=r} \left(1 + \frac{1}{n_i}\right)$$

Gruppen von je

$$n \prod_{i=1}^{i=r} \left(1 - \frac{1}{n_i}\right)$$

äquivalenten E_n «.

20. Es sei nun n von der Form $n=n_1^{\nu_1}$, wobei n_1 eine Primzahl bedeuten soll. Unter den (n^2-1) Elementen b, welche n-fach sind für jene J^n , welche durch das beliebig gewählte Element a als n-faches Element bestimmt erscheint, befinden sich auch die n'-fachen Elemente b', $n'=n_1^{\nu_1-1}$ der $J^{n'}$, welche durch a als n'-faches Element bestimmt erscheint. Da aber die E(ab') nur n'-elementige Cyclen liefern können, so sind die Elemente b', aber nur diese, aus der Gruppe b auszuscheiden. Es bleiben somit $(n^2-1)-(n'^2-1)=(n^2-n'^2)=(n_1^{2\nu_1}-n_1^{2\nu_1-2})$ Elemente b, so dass die E(ab) n-elementige Cyclen liefert. Es gibt also in diesem Falle $(n_1^{2\nu_1}-n_1^{2\nu_1-2})=n^2\left(1-\frac{1}{n_1^2}\right)$ von einander verschiedene E_n .

Da nun für $n=n_1^{\eta_1}$ jede Gruppe äquivalenter E_n $n\left(1-\frac{1}{n_1}\right)$ derselben enthält, so gibt es in diesem Falle $n\left(1+\frac{1}{n_1}\right)$ Gruppen von je $n\left(1-\frac{1}{n_1}\right)$ äquivalenten E_n .

Es sei nun $n = n_1^{\nu_1} \cdot n_2^{\nu_2}$, wobei n_1, n_2 zwei von einander verschiedene Primzahlen sein mögen.

Die J^n , welche a zu einem n-fachen Elemente hat, besitzt noch (n^2-1) n-fache Elemente b. Unter diesen sind jedoch die (n'^2-1) n'-fachen Elemente b' der $J^{n'}$, welche a zum n'-fachen Elemente hat, mitenthalten, wenn $n'=n^{n-1}n^{n}$ gesetzt wird; und ebenso sind unter den b die n'' Elemente b'' enthalten, welche n''-fach sind in jener $J^{n'}$ die durch das Element a als n''-faches Element gegeben ist, wenn $n''=n^{n}_1 n^{n}_2 n^{n}_1$ gesetzt wird.

Es sind also von der Zahl (n^2-1) die beiden Zahlen (n'^2-1) und (n''^2-1) zu subtrahiren; denn die E(ab'), respective E(ab'') können höchstens n'-elementige, respective n''-elementige Cyclen liefern. Nun sind aber sowohl unter den b', als auch unter den b'' die n'''-fachen Elemente β enthalten jener $J^{n'''}$, für welche a ein n'''-faches Element ist, wann $n'''=n_1^{n-1}$. Wir haben also diese Zahl zu jener Differenz hinzuzufügen, um die Anzahl jener b zu erhalten, für welche die E(ab) n-elementige Cyclen liefert; diese Zahl ist also:

$$[n^2-1]-[n'^2-1+n''^2-1]+[n'''^2-1],$$

oder wenn für n, n', n'', n''' die Werthe eingesetzt werden:

$$n_1^{2\mathbf{y_1}}n_2^{2\mathbf{y_2}} - n_1^{2\mathbf{y_1}-2}n_2^{2\mathbf{y_2}} - n_1^{2\mathbf{y_1}}n_2^{2\mathbf{y_2}-2} + n_1^{2\mathbf{y_1}-2}n_2^{2\mathbf{y_2}-2},$$

das ist:

$$(n_1^{2{\bf y_1}}-n_1^{2{\bf y_1}-2})\,.\,(n_2^{2{\bf y_2}}-n_2^{2{\bf y_2}-2})=n^2\Big(1-\frac{1}{n_1^2}\Big)\Big(1-\frac{1}{n_2^2}\Big).$$

Wenn also $n=n_1^{\gamma_1}n_2^{\gamma_2}$ ist $(n_1,n_2 \text{ Primzahlen})$, so gibt es $n\left(1-\frac{1}{n_1^2}\right)\left(1-\frac{1}{n_2^2}\right)$ von einander verschiedene E_n .

Für $n=n_1^{n_1}n_2^{n_2}$ gibt es in jeder Gruppe $n\left(1-\frac{1}{n_1}\right)\left(1-\frac{1}{n_2}\right)$ äquivalente E_n , so dass also, wenn die Anzahl der E_n durch die Zahl der in einer Gruppe vorkommenden äquivalenten E_n dividirt wird, sich die Zahl $n\left(1+\frac{1}{n_1}\right)\left(1+\frac{1}{n_2}\right)$ ergibt, als Zahl der Gruppen von je $n\left(1-\frac{1}{n_1}\right)\left(1-\frac{1}{n_2}\right)$ äquivalenten E_n -Beziehungen.

Genau so wie im Vorhergehenden hat man vorzugehen, wenn $n = n_1^{\nu_1} n_2^{\nu_2} n_3^{\nu_3}$ ist; hier setzen wir:

$$n' = n_1^{y_1-1} n_2^{y_2} n_3^{y_3}, \ n'' = n_1^{y_1} n_2^{y_2-1} n_3^{y_3}, \ n''' = n_1^{y_1} n_2^{y_2} n_3^{y_3-1},$$

ferner:

$$m' = n_1^{\nu_1} n_2^{\nu_2 - 1} n_3^{\nu_3 - 1}, \ m'' = n_1^{\nu_1 - 1} n_2^{\nu_2} n_3^{\nu_3 - 1}, \ m''' = n_1^{\nu_1 - 1} n_2^{\nu_2 - 1} n_3^{\nu_3}$$
 und endlich:

$$p = n_1^{\nu_1-1} n_2^{\nu_2-1} n_3^{\nu_3-1},$$

und haben die Involutionen J^n , $J^{n'}$, $J^{n''}$, $J^{n'''}$, $J^{m''}$, $J^{m''}$, J^{p} zu betrachten, für welche ein beliebiges Element a ein n-faches, n'-faches u. s. w. . p-faches ist; es seien dann b die übrigen (n^2-1) n-fachen Elemente der J'', b' die weiteren $(n'-1)^2$ n'-fachen Elemente von $J^{n'}$ u. s. w. b'', b''' diese Elemente für $J^{n''}$, $J^{n'''}$; β' , β'' , β''' solche Elemente für die $J^{m'}$, $J^{m''}$, $J^{m'''}$ und endlich β die (p^2-1) ausser a auftretenden p-fachen Elemente der J^p . Die E(ab'), E(ab''), E(ab''') können höchstens n'-elementige, respective n''-, oder n'''-elementige Cyclen liefern. Wir haben also von der Zahl (n2-1) die Summe der Zahlen $(n'^2-1)+(n''^2-1)+(n'''^2-1)$ zu subtrahiren. Nun kommen die Elemente β' sowohl unter den b'', als auch unter den b''' vor, so dass sie zweimal subtrahirt erscheinen, wir müssen also ihre Anzahl, d. i. (m'^2-1) zu obiger Differenz addiren; dasselbe gilt von den Elementen β'' , welche sowohl unter den b', als auch b''vorkommen, und endlich auch von den β''' , die sowohl unter den b', als auch unter den b'' vorkommen. Wir haben also zu der obigen Differenz die Summe $(m'^2-1)+(m''^2-1)+(m'''^2-1)$ zu addiren. Aber die (p^2-1) Elemente β sind in jeder der Gruppen b', b'', b''', β' , β'' , β''' enthalten und da ihre Zahl dreimal subtrahirt und wieder dreimal addirt worden ist, so haben wir, um sie aus der Gruppe b auszuscheiden, ihre Zahl (p^2-1) nochmals zu subtrahiren.

Das gibt also die Zahl:

$$[n^{2}-1]-[n'^{2}-1+n''^{2}-1+n'''^{2}-1]+ + [m'^{2}-1+m''^{2}-1+m'''^{2}-1]-[p^{2}-1],$$

oder wenn man für n, n', n'' u. s. w. die Werthe einsetzt, die Zahl:

$$\begin{array}{l} (n_1^{2\gamma_1}-n_1^{2\gamma_1-2})(n_2^{2\gamma_2}-n_2^{2\gamma_2-2})(n_3^{2\gamma}-n_3^{2\gamma_3-2}) = \\ = n^2\Big(1-\frac{1}{n_1^2}\Big)\Big(1-\frac{1}{n_2^2}\Big)\Big(1-\frac{1}{n_3^2}\Big) \Big(1-\frac{1}{n_3^2}\Big) \\ \end{array}$$

als die Anzahl der b, für welche E(ab) n-elementige Cyclen liefert. Da für $n=n_1^{r_1}n_2^{r_2}n_3^{r_3}$ in jeder Gruppe

$$n\left(1-\frac{1}{n_1}\right)\left(1-\frac{1}{n_2}\right)\left(1-\frac{1}{n_3}\right)$$

äquivalente E_n enthalten sind, so gibt es

$$n\left(1+\frac{1}{n_1}\right)\left(1+\frac{1}{n_2}\right)\left(1+\frac{1}{n_3}\right)$$

Gruppen von je

$$n\left(1-\frac{1}{n_1}\right)\left(1-\frac{1}{n_2}\right)\left(1-\frac{1}{n_3}\right)$$

äquivalenten E_n .

Man sieht, wie in dieser Art fortgefahren werden kann, und wir können den folgenden Satz als bewiesen betrachten:

»Um die Zahl der von einander verschiedenen cyclischen E-Beziehungen auf einem Träger vom Geschlechte Eins zu finden, welche n-elementige Cyclen liefern, bestimme man die Primfactoren von n; sind dieselben $n_1, n_2, n_3, \dots, n_r$, so ist die fragliche Zahl gegeben durch

$$z(n) = n^2 \prod_{i=1}^{i=r} \left(1 - \frac{1}{n_i^2}\right).$$

Unter diesen E-Beziehungen bilden je

$$\varphi(n) = n \prod_{i=1}^{i=r} \left(1 - \frac{1}{n_r}\right)$$

eine Gruppe von äquivalenten E-Beziehungen, d. h. von solchen, dass jeder Cyclus, welcher durch eine von ihnen entsteht, auch durch jede andere derselben hervorgebracht wird.

Die Zahl der Gruppen g(n), von denen jede nur äquivalente Beziehungen enthält, ist somit der Quotient aus den beiden obigen Zahlen und hat den Werth:

$$g(n) = \frac{z(n)}{\varphi(n)} = n \prod_{i=1}^{i=r} \left(1 + \frac{1}{n_i}\right)$$

21. Wir geben im Folgenden einige zusammengehörige Werthe von n, $\varphi(n)$, g(n) und z(n).

	$\varphi\left(n\right)$	g(n)	$z(n) = g(n) \cdot \varphi(n)$
2	1	3	3
3	2	4	8
4	2	6	12
5	4	6	24
6	2	12	24
7	6	8	48
8	4	12	48
9	6	12	72
10	4	12	48

u. s. w.

Für n=2 hat man drei E_2 ; es sind, wie wir wissen, die drei fundamentalen E-Beziehungen, in denen Vertauschungsfähigkeit herrscht. Auf einer C_3 sind einem Punkte a in diesen drei E_2 jene Punkte b zugeordnet, welche mit a gemeinsamen Tangentialpunkt besitzen (die drei Systeme correspondirender Punkte der C_3); auf einer R_4 sind jedem Punkte a jene Punkte b zugeordnet, deren Tangenten mit jener von a hyperboloidische Lage haben.

Für n=3 hat man acht E_3 ; man erhält sie, wenn man einem der neun dreifachen Elemente einer beliebigen J^3 der Reihe nach die acht anderen als entsprechende zuweist. Nimmt man auf C_3 die J^3 der geraden Tripel, so sind die neun Inflexionspunkte der J_3 die neun dreifachen Elemente, so dass man also auf der C_3 die acht cyclischen E_3 erhält, wenn man irgend einem der Inflexionspunkte der Reihe nach die übrigen zuordnet. Sind i_λ ($\lambda=1,2...9$) die neun Inflexionspunkte, so

¹ Dieselbe Zahl g(n) findet Herr J. Valy i in analytischer Weise bei der Bestimmung der einer C_3 eingeschriebenen n-fach perspectiven n-Ecke, wobei die elliptische Parameterdarstellung der Curve zu Grunde gelegt wird. Siehe IX. und X. Band der math. und naturwissenschaftl. Berichte aus Ungarn, S. 148 respective S. 171.

ist $E(i_1i_2)$ eine der acht E_3 , ist nun i_3 der das Paar i_1i_2 zu einem Cyclus ergänzende Punkt, so muss $i_1i_2i_3$ auch ein Tripel der J^3 sein, d. h. i_3 ist der dritte Schnittpunkt von C_3 mit der Geraden i_1i_2 . Der den Punkt i_4 enthaltende Cyclus sei $i_4i_5i_6$ und der den Punkt i_7 enthaltende sei $i_7i_8i_9$, so sind die drei Geraden $\overline{i_1i_2i_3}$, $\overline{i_4i_5i_6}$, $\overline{i_7i_8i_9}$ die drei Seiten eines Wendepunktsdreiseits.

Wir haben hier $\varphi(2)=2$; die mit der $E(i_1i_2)$ eine Gruppe bildende E ist die $E(i_2i_1)$. Wir haben hier $g^{(2)}=4$, d. h. vier Gruppen von je zwei äquivalenten E_3 . Diese vier Gruppen entsprechen den vier Wendepunktsdreiseiten.

Wenn von den vier Punkten i_2 , i_4 , i_6 , i_8 keine zwei mit i_1 in gerader Linie liegen, so gehört von den vier Beziehungen $E(i_1i_2)$, $E(i_1i_4)$, $E(i_1i_6)$, $E(i_1i_8)$ jede einer anderen von jenen vier Gruppen an (keine zwei sind äquivalent).

Geht man von einem beliebigen Punkte a der C_3 aus und construirt die vier Tripel ab_1c_1 , ab_2c_2 , ab_3c_3 , ab_4c_4 , welche sich aus a durch solche vier nichtäquivalente E ergeben, so sind die neun Punkte a, b_1 , c_1 , b_2 , c_2 , b_3 , c_3 , b_4 , c_4 die dreifachen Punkte einer und derselben J^3 .

Die E_3 auf einer R_4 erhält man durch Zuordnung zweier solchen Punkte a, b, deren Schmiegungsebene die Curve R_4 in demselben Punkte schneiden.

Für n=4 hat man zwölf E_4 , welche in sechs Paare äquivalenter E_4 zerfallen. Um dieselben auf einer C_3 zu construiren, ziehen wir von irgend einem Punkte der C_3 zu ihr die vier Tangenten, deren Berührungspunkte a, b, c, d sein mögen; aus jedem derselben legen wir an C_3 wieder das Tangentenquadrupel und es seien a_i, b_i, c_i, d_i (i=1,2,3,4) die vier Berührungspunktequadrupel. Dann sind $E(a_1b_i), E(a_1c_i), E(a_1d_i), (i=1,2,3,4)$ die zwölf E_4 .

Betrachten wir eine von ihnen, z. B. die $E(a_1b_1)$, so wird dem b_1 nach dieser $E(a_1b_1)$ ein Punkt entsprechen, welcher (weil 4 durch 2 theilbar ist) conjugirter Punkt zu a_1 sein muss, d. h. also dem Quadrupel a_i angehören muss; es sei etwa a_2 ; dem a_2 muss aber wieder ein zu b_1 conjugirter Punkt, also ein Punkt des Quadrupels b_i , es sei b_2 , entsprechen, und zwar müssen a_1a_2 , b_1b_2 zwei conjugirte Punktepaare desselben Systems sein. Nun haben wir den Cyclus $a_1b_1a_2b_2$ und die $E(a_1b_2)$

ist offenbar die zur $E(a_1b_1)$ äquivalente, da sie denselben Cyclus (nur in umgekehrter Aufeinanderfolge: $a_1b_2a_2b_1$) liefert.

Weil a_1b_1 und b_1a_2 zwei Paare einer E sind, so müssen die Geraden a_1a_2 und b_1b_1 durch einen Punkt von C_3 gehen. Nun ist b_1b_1 die Tangente von b_1 , welche C_3 in b schneidet; es muss also a_1a_2 durch b gehen. Ebenso erkennt man, dass b_1b_2 durch a gehen muss.

Geht man also von a_1 als erstem Punkte eines Cyclus aus und ordnet ihm b_1 als zweiten Punkt zu, so ist der dritte Punkt a_2 der dritte Schnittpunkt von C_3 mit der Geraden ba_1 , und der vierte Punkt b_2 ist der dritte Schnittpunkt der Geraden ab_1 mit der Curve. Wenn b_1b_2 durch a geht, so geht auch b_3b_4 durch a und es ist somit $a_1b_3a_2b_4$ ebenfalls ein Cyclus, der selbstverständlich einer anderen E_4 , nämlich der $E_4(a_1b_3)$ entspricht.

Sind nun a_3 , a_4 die Projectionen von a_1 aus c und d auf die Curve, und gehen die Geraden c_1c_2 , c_3c_4 , d_1d_2 , d_3d_4 durch a hindurch, so sind:

$$\begin{array}{c|c}
a_{1}b_{1}a_{2}b_{2} \\
a_{1}b_{3}a_{2}b_{4}
\end{array} \qquad I$$

$$\begin{array}{c|c}
a_{1}c_{1}a_{3}c_{2} \\
a_{1}c_{3}a_{3}c_{4}
\end{array} \qquad II$$

$$\begin{array}{c|c}
a_{1}d_{1}a_{4}d_{2} \\
a_{1}d_{3}a_{4}d_{4}
\end{array} \qquad III$$

die sechs Cyclen, welche den sechs Gruppen von je zwei äquivalenten $E_{\mathbf{u}}$ entsprechen.

Je nachdem man einen Cyclus in dem einen oder in dem entgegengesetzten Sinne durchläuft, verwendet man eine E_4 oder die ihr äquivalente E_4^{-1} .

Die sechs Cyclen, und in Folge dessen auch die sechs Paare äquivalenter E_4 zerfallen in drei Paare I, II, III, und zwar entsprechend den drei Systemen conjugirter Punkte der C_3 . Die Cyclen des ersten Paares bestehen aus einfachen Vierecken, deren Gegenecken conjugirte Punktepaare des ersten Systems (a_1a_2) sind; in den Cyclen des zweiten, respective dritten Paares treten conjugirte Punktepaare des zweiten (a_1a_3) , respective des dritten Systems (a_1a_4) als Gegenecken auf.

Dies gilt offenbar ganz allgemein, wenn n eine gerade Zahl ist, etwa n=2n'; so zerfallen die sämmtlichen E_{2n} in drei Systeme, je nachdem die Gegenecken der Cyclen correspondirende Punkte des ersten, oder des zweiten, oder des dritten Systems correspondirender Punkte von C_3 sind.

Ein ähnliches Ordnen der E_n in Systeme entspricht jedem Theiler von n. Es sei n=pn'; so besteht jeder Cyclus einer E_n aus n' Cyclen einer E_p . Nun gibt es g(p) Gruppen von äquivalenten E_p und jene Cyclen gehören einer dieser Gruppen an:

»Die g_n Gruppen äquivalenter E_n ordnen sich, wenn p ein Theiler von n ist, in g(p) Systeme; in jedem Systeme kommen solche E_n vor, deren Cyclen aus je $\frac{n}{p}$ Cyclen einer E_p bestehen. Die E_p , welche in zwei E_n verschiedener Systeme auftreten, sind nicht äquivalent«.

Für
$$n = 5$$
 ist $\varphi(n) = 4$, $g(n) = 6$, $z(n) = 24$.

Um die $24~E_5$ auf C_3 zu erhalten, haben wir durch irgend einen Punkt von C_3 die 25~ fünfpunktigen Kegeischmitte zu C_3 zu legen und dann dem Berührungspunkte a eines derselben der Reihe nach die Berührungspunkte b der 24~übrigen als entsprechend zuzuweisen.

Nach Früherem werden sich die 25 fünffachen Elemente einer J^5 auf sechs verschiedene Arten in fünf Cyclen von je fünf Elementen ordnen lassen. Wir bemerken, dass die 25 Kegelschnitte, welche diese Cyclen enthalten, die C_3 alle in demselben sechsten Punkte treffen, durch welchen auch der Kegelschnitt hindurchgeht, welcher irgend eine Gruppe der J^5 enthält.

Für
$$n = 6$$
 haben wir $\varphi(n) = 2$, $g(n) = 12$, $z(n) = 24$.

Will man einen Cyclus einer E_6 auf C_3 erhalten, so kann man entweder von einem Cyclus a,b,c einer E_3 ausgehen und zu den Punkten desselben die correspondirenden Punkte a'b'c' eines der drei Systeme aufsuchen; dies gibt einen zweiten Cyclus derselben E_3 , welcher mit dem ersten einen Cyclus einer E_6 bildet, und zwar in der Folge ac'ba'cb', so dass die E_6 die E(ac'), oder E(c'b) u. s. w. ist.

Den vier $E_{\rm 3}$ und den drei $E_{\rm 2}$ entsprechend erhält man $3.2 = 6 \; E_{\rm 6}.$

Oder man geht von einem Paar correspondirender Punkte a, a' aus und construirt in einer der E_3 die Punkte bc, respective b'c', welche mit a, respective a' einen Cyclus dieser E_3 bilden; so gelangt man wieder zu dem Cyclus ab'ca'bc'

Für
$$n = 7$$
 ist $\varphi(n) = 6$, $g(n) = 8$, $z(n) = 48$.

In einem Punkte a von C_3 construiren wir eine die C_3 siebenpunktig schneidende Curve dritter Ordnung, welche mit C_3 noch zwei Punkte o, o' gemeinsam haben wird. Durch o, o' lassen sich dann noch $7^2-1=48$ Curven dritter Ordnung legen, welche C_3 in Punkten b siebenpunktig schneiden; die 48 E(a,b) sind die 48 E_7 .

Die 49 siebenfachen Punkte einer J^7 (d. i. der Punkt a mit den 48 Punkten b) ordnen sich auf acht verschiedene Arten zu je 7 in 7 Cyclen, welche jenen acht Gruppen äquivalenter E_7 entsprechen.

Die sieben Cyclen, welche einer Gruppe äquivalenter E_{τ} entsprechen, sind auch sieben Gruppen der J^{τ}

Für
$$n = 8$$
 haben wir $\varphi(n) = 4$, $g(n) = 12$, $z(n) = 48$.

Es sei a ein Punkt von C_3 , α_1 , α_2 , α_3 sein erster, zweiter und dritter Tangentialpunkt; durch α_3 legen wir zu C_3 die drei ausser $\alpha_3 \alpha_2$ gehenden Tangenten und durch deren Berührungspunkte b, c, d die Tangentenquadrupel, deren Berührungspunkte b_i , c_i , d_i sein mögen (i=1,2,3,4). Durch b_i , c_i , d_i legen wir wieder die drei Tangentenquadrupel zu C_3 ; ihre Berührungspunkte seien b_{ik} , c_{ik} , d_{ik} (k=1,2,3,4), so sind die 48 E-Beziehungen: $E(ab_{ik})$, $E(ac_{ik})$, $E(ac_{ik})$, $E(ad_{ik})$ (i,k=1,2,3,4) die 48 E_8 .

22. Aus den Formeln:

$$\begin{split} \varphi(n) &= n \left(1 - \frac{1}{n_1}\right) \left(1 - \frac{1}{n_2}\right) & \left(1 - \frac{1}{n_r}\right) \\ g(n) &= n \left(1 + \frac{1}{n_1}\right) \left(1 + \frac{1}{n_2}\right) & \left(1 + \frac{1}{n_r}\right) \\ z(n) &= \varphi(n) \varphi(n) \end{split}$$

folgt sofort, dass für zwei theilerfremde Zahlen m, p die Gleichungen gelten:

$$\varphi(mp) = \varphi(m) \varphi(p)$$

$$g(mp) = g(m) g(p)$$

$$z(mp) = z(m) z(p).$$

Ist $n = m \cdot p$ und haben m, p keinen gemeinsamen Theiler, so gelangt man zu einem Cyclus einer E_n , wenn man von einem Elemente a ausgehend, den dieses Element enthaltenden Cyclus einer E_m construirt, ferner jene Cyclen, welche die Elemente dieses Cyclus enthalten und einer E_p angehören; man erhält so im Ganzen $m \cdot p$, d. i. n Elemente, welche einen Cyclus einer E_n bilden. Den z(m) E_m und z(p) (E_p) entsprechend erhält man die z(mp) = z(m)z(p) Beziehungen E_{mp} . Eine der E-Beziehungen, welche diesen mp-elementigen Cyclus liefern, erhält man als die E(ab), wenn b eines der Elemente irgend eines der p-elementigen, nicht aus a hervorgegangenen Cyclen ist, welches mit a nicht demselben m-elementigen Cyclus angehört.

Ist n = m.p.q, so construire man wie früher einen Cyclus einer E_{mp} und dann jene q-elementigen Cyclen, welche einer E_q angehören und die einzelnen Elemente jenes mp-elementigen Cyclus enthalten. So ergeben sich mpq Elemente, welche einen Cyclus einer E_{mpq} bilden.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der Akademie der</u> Wissenschaften mathematisch-naturwissenschaftliche Klasse

Jahr/Year: 1892

Band/Volume: 101_2a

Autor(en)/Author(s): Weyr Emil

Artikel/Article: Über Vervollständigung von Involutionen auf Trägern vom Geschlechte Eins und über Steiner'sche Polygone. 1695-1741