Zur Kenntnis der Brom- und der Bromnitroresorzine VIII. Mitteilung über Bromphenole ¹

Von

Moritz Kohn und Georg Löff.

(Aus dem chemischen Laboratorium der Wiener Handelsakademie) Vorgelegt in der Sitzung am 13. November 1924.

Durch Einwirkung von Brom auf eine Eisessiglösung des Resorzindimethyläthers hat Hönig² vor etwa 46 Jahren den Dibromresorzindimethyläther vom Schmelzpunkte 137 bis 138° 3 dargestellt. Über die Struktur dieses Äthers ist bisher nichts bekannt geworden.

Die Bromierung des Resorzins selbst unter Anwendung von 3 Molen Brom liefert in wässeriger Lösung, wie schon Hlasiwetz und Barth⁴, oder in eisessigsaurer Lösung, wie viel später Benedikt⁵ gezeigt hat, das Tribromresorzin (I).

Als Zwischenprodukte auf dem Wege zum Tribromresorzin können die beiden isomeren Dibromresorzine (II und III) auftreten.

Durch anhaltendes Kochen von Dibrom-β-resorzylsäure mit Wasser ist Zehenter⁶ zu einem Dibromresorzin vom Schmelzpunkte 91·5 bis 92·5° gelangt. Richard Meyer und Conzetti⁷ haben die Versuche Zehenter's wiederholt und aus den Substitutionsgesetzen den Schluß gezogen, daß der Dibrom-β-resorzylsäure die Formel IV, also dem durch Entcarboxylierung der Säure entstehenden Dibromresorzin die Formel II zukommen müsse. Richard Meyer und

¹ VII. Mitteilung: »Zur Kenntnis der Bromsubstitutionsprodukte des Hydrochinons« von M. Kohn und L. Guttmann. — Vorgelegt der Akademie der Wissenschaften in der Sitzung am 3. Juli 1924.

² Berliner Berichte, 11, 1041 (1878).

 $^{^3}$ Tiemann und Parrisius (Berl. Ber., 13, 2365) geben 141° als Schmelzpunkt an.

⁴ Annalen, 130, 357 (1864).

⁵ Monatshefte für Chemie, 4, 227 (1883).

⁶ Monatshefte für Chemie, 2, 468 (1881). Berliner Berichte, 32, 2106 (1899).

Conzetti zeigten ferner, daß dieses Dibromresorzin (II) beim Zusammenschmelzen mit Phtalsäureanhydrid und Chlorzink Eosin gibt, was ihnen als weitere Stütze der Formel (II) dient. Nun hat Zehenter¹ auch Resorzin selbst in einer Suspension in Schwefelkohlenstoff vorsichtig bromiert und dabei ein anderes Dibromresorzin vom Schmelzpunkte 110 bis 112° erhalten. Über die Struktur dieses Dibromresorzins finden sich in der Literatur keine Angaben. Auch Rosenmund,2 dem erst kürzlich seine Darstellung durch die Bromierung des Resorzins unter Anwendung von Chinolin als Bromüberträger geglückt ist, spricht sich nicht über die Struktur aus. Da aber, wie gesagt, das 2, 4-Dibromresorzin schon bekannt ist. müssen wir den Schluß ziehen, daß dem durch direkte Bromierung des Resorzins entstehenden Dibromresorzin vom Schmelzpunkte 110 bis 112° die Konstitution des 4, 6-Dibrom-1, 3-dioxybenzols (III) zukommt. Wir haben uns überzeugt, daß das nach Zehenter's Vorschrift dargestellte 4, 6-Dibromresorzin beim Schütteln mit Kali und Dimethylsulfat Hönig's Äther liefert. Dieser ist demnach das 4, 6-Dibrom-1, 3-dimethoxybenzol (V).

Der Äther von Hönig wird beim Übergießen mit Brom nur allmählich angegriffen. Es erfolgt eine langsame Bromwasserstoffentwicklung. Die Analyse dieses Bromierungsproduktes, das sich auch durch vielfaches Umkrystallisieren aus Eisessig, selbst unter Beifügung von Tierkohle, nicht ganz weiß erhalten ließ, ergab einen Bromgehalt, der annähernd auf den eines Tribromresorzindimethyläthers stimmte. Das Bromatom kann nur in die Stellung 2 eingetreten sein. Torrey und Hunter³ hatten schon den Tribromresorzindimethyläther von der Stellung 2, 4, 6 gewonnen, indem sie das Silbersalz des Tribromresorzinmonomethyläthers mit Jodmethyl behandelten. Sie gaben einen Schmelzpunkt von 68 bis 69° an, während unser Tribromresorzindimethyläther bei 60 bis 61° schmolz. Unser durch direkte Bromierung des Hönig'schen Äthers gewonnenes Präparat läßt sich aber durch Erhitzen mit Bromwasserstoff in Eisessiglösung zum 2, 4, 6-Tribromresorzin (I) von Hlasiwetz und Barth entmethylieren. Hingegen kann das Tribromresorzin nicht in der üblichen Weise mit Kali und Dimethylsulfat methyliert werden, weil beim Übergießen mit Kalilauge an der Luft sofort schwarze Lösungen entstehen. Durch Zufügen von Natriumhydrosulfit kann diese starke Verfärbung vermieden werden und man erhält dann bei der Einwirkung von Kali und Dimethylsulfat einen weißen Methyläther vom Schmelzpunkt 62° Der Mischschmelzpunkt mit unserem Bromierungsprodukt des Hönig'schen Äthers war 61° Die Ausbeute bei der Methylierung des Tribromresorzins in Gegenwart von Hydrosulfit ist jedoch außerordentlich schlecht. Hingegen haben wir schließlich einen präparativ sehr brauchbaren Weg zur

Monatshefte für Chemie, 8, 296 (1887).* Berliner Berichte, 56, 1276 (1923).

³ Journal of the American Chemical Society, 33, 203 (Zentralblatt 1911, I, 810).

Darstellung des Tribromresorzindimethyläthers gefunden, indem wir vom Resorzinmonomethyläther ausgingen. Dieser ist bereits von Tiemann und Parrisius¹ durch Bromieren in ätherischer Lösung sowie etwa gleichzeitig von Benedikt² durch Bromieren in Eisessig in das Tribromderivat (VI) übergeführt worden. Aus dem Tribromresorzinmonomethyläther (VI) erhält man durch Schütteln

mit Kali und Dimethylsulfat den Tribromresorzindimethyläther (VII) ohneweiteres in guter Ausbeute. Das Präparat schmilzt scharf bei 69°; Torrey und Hunter³ geben, wie bereits erwähnt, 68 bis 69° an.

Thiele und Eichwede 4 haben beobachtet, daß bei der Einwirkung von Alkylnitriten in Eisessiglösung auf Bromphenole Austausch eines zum Hydroxyl orthoständigen Bromatoms gegen eine Nitrogruppe erfolgt. Unabhängig von den beiden genannten Chemikern ist Zincke⁵ etwa zur gleichen Zeit zu demselben Ergebnis gelangt. Er konnte zeigen, daß bei der Behandlung von Brom- und Chlorphenolen mit Kaliumnitrit in Eisessiglösung ein zum Hydroxyl orthoständiges Halogenatom gegen die Nitrogruppe ausgetauscht wird. Zincke's Schüler Dahmer⁶ hat dieser Reaktion auch das Tribromresorzin unterworfen. Er hat festgestellt, daß hier ebenfalls Austausch eines Bromatoms gegen die Nitrogruppe erfolgt. indem ein Dibromnitroresorzin entsteht. Es läßt sich die Entstehung der beiden isomeren Dibromnitroresorzine, des 4, 6-Dibrom-2-nitro-1, 3-dioxybenzols (VIII) und des 2, 6-Dibrom-4-nitro-1, 3-dioxybenzols (IX) bei dieser Reaktion voraussehen. Das erstere (VIII) ist bereits im Jahre 1880 von Weselsky und Benedikt? beschrieben worden. Dahmer's Nitrierungsprodukt ist davon wesentlich verschieden und muß demnach die Formel IX besitzen. Es zeigt sich also, daß das zwischen den beiden Hydroxylen befindliche Bromatom nicht gegen die Nitrogruppe ausgetauscht wird.

¹ Berliner Berichte, 13, 2364 (1880).

² Monatshefte für Chemie, 1, 368 (1880).

³ A. a. O.

⁴ Annalen, 311, 363 (1900).

⁵ Journal für praktische Chemie, [2], 61, 561 (1900).

⁶ Annalen, 333, 360 (1904).

⁷ Monatshefte für Chemie, 1, 886 (1880).

Sechs Jahre später haben Raiford und Heyl¹ ebenfalls das Tribromresorzin der Einwirkung von Natriumnitrit in Gegenwart von Eisessig unterworfen und dabei auch das 2, 6-Dibrom-4-nitroresorzin (IX) erhalten.

Auch der Tribromresorzinmonomethyläther (VI) wird in Eisessiglösung von Alkalinitrit sehr leicht angegriffen. Es erfolgt wieder Austausch eines Halogenatoms gegen die Nitrogruppe. Die Substanz, welche sich auf diese Weise in guter Ausbeute gewinnen läßt, zeigt die charakteristische gelbe Farbe der ortho-Nitrophenole. Sie wird, in Eisessiglösung mit Bromwasserstoff erhitzt, zu dem von Dahmer sowie später von Raiford und Heyl aufgefundenen

2, 6-Dibrom-4-nitroresorzin (IX) entmethyliert und muß deshalb das 3-Oxy-1-methoxy-2, 6-dibrom-4-nitrobenzol (X) sein. Hier erfährt also das zur Methoxylgruppe paraständige Bromatom den Austausch gegen die Nitrogruppe, während wieder das Bromatom zwischen der Hydroxyl- und Methoxylgruppe unangegriffen bleibt.

Darstellung des 4, 6-Dibromresorzins (III).

Zehenter² stellt das 4,6-Dibromresorzin dar, indem er in Schwefelkohlenstoff suspendiertes Resorzin mit etwas weniger als 2 Molen Brom unter Kühlung versetzt und rasch vom unveränderten Resorzin abfiltriert. Aus dem Filtrat läßt er das Dibromresorzin auskrystallisieren. Wir haben uns zuerst genau an diese Vorschrift gehalten, sind aber in der Lage, das folgende, wohl etwas einfachere Verfahren zu empfehlen:

Resorzin wird in Tetrachlorkohlenstoff suspendiert und allmählich mit etwas weniger als 2 Molen Brom unter Kühlung versetzt. Das Dibromresorzin scheidet sich rasch aus. Man fügt zu dem die Flasche erfüllenden Krystallbrei einige Kubikzentimeter Wasser, damit die Hauptmenge des Bromwasserstoffs absorbiert wird. Dann saugt man das Gemisch ab und krystallisiert den weißen Filterrückstand aus kochendem Wasser um. Die Substanz zeigt den von Zehenter angegebenen Schmelzpunkt 110 bis 112°.

American Chemical Journal, 44, 210 bis 215 (Zentralblatt 1910, II, 1217).
A. O.

4, 6-Dibromresorzindimethyläther (V) aus 4, 6-Dibromresorzin (III).

Das 4, 6-Dibromresorzin von Zehenter läßt sich durch Schütteln mit Kali und Dimethylsulfat leicht methylieren. Es scheidet sich eine weiße Substanz ab, die nach dem Umkrystallisieren aus Alkohol den Schmelzpunkt 138° zeigt. Der Mischschmelzpunkt mit dem Dibromresorzindimethyläther, der durch Bromierung des Resorzindimethyläthers in Eisessig nach Hönig's Vorschrift¹ dargestellt wurde, ist 136°

2,4,6-Tribromresorzindimethyläther (VII) aus 4,6-Dibromresorzindimethyläther (V).

Der Dibromresorzindimethyläther wird mit einem Überschuß von Brom übergossen. Es entwickelt sich langsam, aber reichlich Bromwasserstoff. Man verrührt energisch, wobei sich der Äther zunächst im Brom löst, bald aber die Masse ganz fest wird. Wenn die Bromwasserstoffentwicklung vorbei ist, übergießt man das Gemenge mit Eisessig und läßt eine halbe Stunde stehen. Dabei löst sich das höherbromierte Produkt, während das unveränderte Ausgangsmaterial ungelöst bleibt. Man filtriert und fällt aus dem Filtrat den Tribromresorzindimethyläther durch Wasser aus. Trotz mehrfachen Umkrystallisierens aus Eisessig, selbst unter Beifügung von Tierkohle, wird kein reines Produkt erhalten, vielmehr werden die Krystalle rosa statt weiß und zeigen statt des von Torrey und Hunter angegebenen Schmelzpunktes von 68 bis 69° einen von 60 bis 61° Die Brombestimmung lieferte auch nur einen annähernden Wert:

0·1843 g Substanz lieferten bei der Carius-Bestimmung 0·2722 g Ag Br.

Gefunden: Br $62.850/_{0}$;

Berechnet für $C_8H_7O_2Br_3$: Br $63\cdot 96^{\circ 0}$.

Daß es sich dennoch um das richtige Produkt handelt, ist einerseits daraus zu ersehen, daß es, mit dem später zu beschreibenden durch Methylierung gewonnenen reinen Tribromresorzindimethyläther gemischt, keine Schmelzpunktsdepression zeigt, anderseits daraus, daß es sich durch Bromwasserstoff zum Tribromresorzin verseifen läßt.

Der 2, 4, 6-Tribromresorzindimethyläther wird mit einem Gemisch von rauchender Bromwasserstoffsäure und Eisessig unter Rückflußkühlung $1^1/_2$ Stunden lang erhitzt. Dann wird die Lösung in Wasser gegossen und über Nacht stehen gelassen. Unterdessen scheiden sich geringe Mengen fester Substanz aus, die teils aus einer roten Masse, teils aus darüber angelagerten, langen, durchsichtigen Nadeln besteht. Man filtriert und vernachlässigt den Rückstand. Das Filtrat wird mit Äther ausgeschüttelt und dieses Lösungsmittel abgedampft. Der ölige Rückstand wird über Ätzkali im

¹ A. a. O.

Vakuumexsikkator fest. Man krystallisiert aus Wasser um. Der Schmelzpunkt ist 111°; der Mischschmelzpunkt mit Tribromresorzin, das nach Benedikt's Vorschrift dargestellt wurde, zeigt keine Depression.

2, 4, 6-Tribromresorzindimethyläther (VII) aus Tribromresorzin.

Da sich das Tribromresorzin beim Übergießen mit Kalilauge schwärzt, muß bei der Methylierung, bevor man die Lauge zusetzt, etwas Natriumhydrosulfit hinzugefügt werden. Dann gibt man, wie gewöhnlich, zur Lösung 20 prozentige Kalilauge und schüttelt mit portionenweise zugegossenem Dimethylsulfat. Die Reaktion entwickelt einen ekelerregenden Geruch. Bald scheidet sich, freilich in sehr geringer Ausbeute, eine feste Substanz ab. Nach dem Filtrieren und Trocknen krystallisiert man aus ganz wenig Alkohol um. Man erhält weiße, grobe Krystallnadeln. Auch hier zeigt sich ein Schmelzpunkt von nur 62°, ein Mischschmelzpunkt mit dem Bromierungsprodukt des Hönig'schen Äthers (p. 5) von 61°

Darstellung des 2, 4, 6-Tribromresorzindimethyläthers (VII), ausgehend vom Resorzinmonomethyläther.

Der 2, 4, 6-Tribromresorzinmonomethyläther (VI) wird nach Benedikt¹ dargestellt, indem man Resorzinmonomethyläther in Eisessiglösung bromiert und das Bromierungsprodukt aus Alkohol umkrystallisiert. Den Tribromäther löst man in 20 prozentiger Kalilauge, versetzt ihn mit etwas mehr als der berechneten Menge Dimethylsulfat und schüttelt stark. Der Dimethyläther scheidet sich als bald erstarrende Masse in reichlicher Ausbeute ab. Aus Alkohol gewinnt man glitzernde, weiße Nadeln vom Schmelzpunkt 69°, in Übereinstimmung mit den Angaben von Torrey und Hunter.

I. $0.2469 \ g$ Substanz lieferten $0.3132 \ g$ AgJ nach Zeisel. II. $0.2015 \ g$ $0.2476 \ g$ AgJ Gefunden: I. CH₃O 16.76° , II. CH₃O 16.24° , Berechnet für C₈H₇O₃Br₃: CH₃O 16.56° .

3-Oxy-1-methoxy-2, 6-dibrom-4-nitrobenzol (2, 6-Dibrom-4-nitro-resorzinmonomethyläther) (X).

7 g Tribromresorzinmonomethyläther werden in Eisessig gelöst und mit 7 g festem Kaliumnitrit versetzt. Das Gemisch färbt sich sofort rötlich, wird aber später gelb. Man läßt über Nacht stehen und gießt dann in Wasser, wobei sich gelbe Flocken abscheiden. Nach dem Umkrystallisieren aus Alkohol schmilzt die Substanz — intensiv gelbe, prismatische Nadeln — bei 122° Das Kali- und

¹ Monatshefte für Chemie, 1, 368 (1880).

das Natronsalz sind gelb und schwer löslich, das ebenfalls in Wasser schwer lösliche Silbersalz besitzt rote Farbe. Die Analysen der vakuumtrockenen Substanz ergaben:

```
    I. 0·1429 g Substanz lieferten 0·1374 g CO<sub>2</sub> und 0·0218 g H<sub>2</sub>O.
    III. 5·510 mg 0·242 cm³ N bei 735 mm/Hg und 18° über 50 prozentiger Lauge.
    IIII. 5·107 mg 0·225 cm³ N bei 736 mm/Hg und 18° über 50 prozentiger Lauge.
    IV 0·2008 g bei der Carius-Bestimmung 0·2270 g Ag Br.
    V 0·2924 g 0·2186 g Ag J nach Zeisel.
    VI. 0·2773 g 0·2040 g Ag J
    Gefunden: I. C 26·230/0, H 1·710/0; II. N 4·980/0; III. N 5·000/0;
```

Berechnet für $C_7H_5O_4NBr_2$: $C_7 = 25 \cdot 70^{0} \cdot 0_0$, $C_7 = 1 \cdot 10^{10} \cdot 0_0$, $C_7 = 10^{10} \cdot 0_0$, C_7

2, 6-Dibrom-4-nitroresorzin (IX).

 $4^{1}\!/_{2}$ g Dibromnitroresorzinmonomethyläther (X) werden mit $20~cm^{3}$ Bromwasserstoff von der Dichte $1\cdot78$ in $40~cm^{3}$ Eisessig 5 Viertelstunden lang unter Rückflußkühlung zum lebhaften Sieden erhitzt und dann das Gemisch in Wasser eingetragen, wobei sich eine rote Masse abscheidet. Man filtriert ab und krystallisiert die getrocknete Substanz mehrmals aus Tetrachlorkohlenstoff um. So gewinnt man braune Nadeln vom Schmelzpunkt 146° und den Eigenschaften, die Raiford und Heyl¹ angeben.

¹ A. O. Den Schmelzpunkt haben Raiford und Heyl zu 148° gefunden.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der Akademie der Wissenschaften</u> mathematisch-naturwissenschaftliche Klasse

Jahr/Year: 1924

Band/Volume: 133 2b

Autor(en)/Author(s): Kohn Moritz, Löff Georg

Artikel/Article: Zur Kenntnis der Brom- und der Bromnitroresorzine. VIII.

Mitteilung über Bromphenole. 589-595