Über die Wurzel der Ononis spinosa.

Von Dr. Heinrich Hlasiwetz,

Professor der Chemie zu Innsbruck.

Die Untersuehungen ganzer Pflanzen und Pflanzentheile werden in dem Maasse wünsehenswerther, als durch die vorliegenden Arbeiten in dieser Richtung, so fragmentarisch sie sein mögen, es doch sehon gelungen ist, gewisse allgemeine Gesichtspunkte aufzustellen, von denen man bei dem Entwurfe eines pflanzen-ehemischen Systems wird ausgehen müssen. Das in den folgenden Zeilen Mitzutheilende über die Bestandtheile der Ononis spinosa mag hierzu ein kleiner Beitrag sein. Die Wurzel enthält ausser den allen Pflanzen gemeinsamen Hauptbestandtheilen zwei einer näheren Beschreibung werthe, krystallisirbare Stoffe, einen dem Glycyrrhizin sehr verwandten Körper und Citronensäure.

Ononin.

Über diesen Körper hat zuerst Reinseh (Buehner's Repertorium B. XXVIII, S. 18) einige Mittheilungen gemacht. Er gibt zu seiner Bereitung eine Vorsehrift, die jedoch nach meinen Erfahrungen ein mit einer anderen Substanz gemischtes Präparat gibt, wesshalb ich sie nicht weiter benützt habe. Er lässt die weingeistige Tinetur der Wurzel abdestilliren, bis sieh Krystallnadeln ausseheiden. (Diese gehören einer wachsartigen Substanz an, die ieh später besehreiben werde.) Ohne diese zu entfernen, dampft er dann bis zur Syrupsdieke ein, wäseht das Extract mit Wasser, und erhält dadurch eine zähe, unlösliche Masse und eine darüber stehende trübe, süsse Flüssigkeit. Die braune Masse digerirt er mit Äther, giesst die ätherische Tinetur ab und zieht endlich den Rückstand von dieser Behandlung mit 60 Procent Alkohol aus. Hierbei bleibt ein hellbraunes Pulver ungelöst, welches er sammelt und trocknet. Durch wiederholtes Digeriren mit kaltem Alkohol, um noch die Reste des braunen Extracts zu entfernen, dann Lösen in siedendem Alkohol und Behandeln mit Thierkohle erhielt er den Körper in farblosen Krystallnadeln als vierseitige Prismen.

Nach wiederholten Versuchen, ein gleichförmiges, unvermischtes und unzersetztes Präparat zu erhalten, bin ieh bei folgender Bereitungsweise stehen geblieben: Die Wurzel wird mit Wasser etwa eine Stunde lang gekoeht; das Decoct, naehdem es durch Absitzen etwas klarer geworden, mit Bleizuckerlösung gefällt und davon ein kleiner Überschuss zugefügt.

Man filtrirt den schmutzig lichtbraunen Niederschlag ab; er enthält ausser einer gerbsäurc-ähnliehen Substanz und einem glyeyrrhinartigen Körper, eine kleine Menge Citronensäure und stickstoffhältige Nebenbestandtheile. Er ist nicht mit Vortheil weiter verwendbar.

Aus der abgelaufenen Flüssigkeit wird nun der Übersehuss des zugesetzten Bleizuekers mit Schwefelwasserstoff entfernt, das Sehwefelblei gesammelt, ausgewasehen und in gelinder Wärme sehnell getroeknet, dann zerrieben und mit starkem Alkohol 3—4 Mal ausgekocht.

Die vereinigten alkoholisehen Flüssigkeiten werden abdestillirt und der Rest zum Krystallisiren hingestellt.

Sie sind mehr oder weniger braun und lassen zuerst etwas Schwefel in kleinen Nadeln herausfallen, den man entfernt. Beim Stehen erhält man dann bald krümlige, warzige, gelbgefärbte Massen, die das rohe Ononin darstellen.

Von der grössten Menge des, sie verunreinigenden braunen, harzigen Körpers können sie durch kalten Alkohol befreit werden, den man in einem Verdrängungstrichter durch sie hindurch siekern lässt.

Man krystallisirt dann 4—5 Mal um und entfärbt mit Thierkohle. Das Ononin hat eine Neigung, aus Alkohol in Warzen und Körnern zu krystallisiren. Diese sind oft mit freiem Auge nieht als Krystalle zu erkennen, erseheinen aber unter dem Mikroskope als Prismen. Es gelingt sehwer, es auf diese Weise ganz deutlich krystallisirt und blendend weiss zu erhalten.

Das Ononin ist selbst in starkem Weingeist nur bei längerem Kochen, in Wasser sehr wenig löslich.

Es kann aber, wie manche andere schwerlösliche organisehe Substanzen, nach längerem Kochen mit Wasser auch von mässig starkem Weingeist aufgenommen werden. Wenn man es in einem Kolben mit Wasser übergiesst, und nach einige Minuten langem Kochen nach und nach starken Alkohol hinzufügt, so erhält man eine

nur sehwach gefärbte Lösung, die beim Erkalten die grösste Menge des Körpers in Floeken, die aus kleinen, ganz farblosen Prismen bestehen, fallen lässt.

Krystallisirt man dann noch einmal um, so kann man denselben als völlig rein betrachten.

Aus dem, mit Bleizueker entstandenen Niedersehlage kann, wenn man ihn in Sehwefelblei verwandelt, und dieses ebenso behandelt wie das vorige, noch eine kleine Menge Ononin gewonnen werden; allein die Ausbeute steht selten im Verhältniss zu dem Aufwand an Zeit und Alkohol.

Überhaupt gibt diese Bereitungsweise vielleicht nicht die ganze in der Wurzel enthaltene Menge dieses krystallisirbaren Körpers, und ieh habe aus alkoholischen Auszügen der Wurzel bei abgeändertem Verfahren mehr davon erhalten, allein in diesem Falle waren die Substanzen bei anseheinend äusserer Reinheit immer sehr wechselnd in ihrer Zusammensetzung, davon ieh den Grund darin sehe, dass ihnen theils etwas von einem zweiten krystallisirbaren Körper beigemengt war, der durch blosses Umkrystallisiren nieht entfernt wird, und dass vielleicht anderntheils durch die längere Behandlung mit Alkohol, wobei meistens die Bildung von etwas Essigsäure statthat, ein kleiner Theil zersetzt wurde; denn, wie ieh zeigen werde, ist dies durch Säuren leicht zu bewirken.

Darum sehien mir die angeführte Bereitungsweise die sehonendste für die Constitution des Körpers, und diejenige, bei welcher die Beimengung der zweiten Substanz, die sieh in dem wässerigen Deeoet wegen ihrer Unlösliehkeit nicht finden kann, ganz vermieden wird.

Übrigens habe ich, nachdem ich die Hauptreaetionen und Zersetzungen des Ononins an meinem Präparat studirt hatte, dieselben mit einer Substanz wiederholt und weiter verfolgt, die ieh aus einem ehemischen Etablissement bezogen hatte, als ieh mieh leieht überzeugen konnte, dass für die Darstellung der wiehtigsten Zersetzungsproduete des Ononins diese kleinen Verunreinigungen ohne Belang sind, und identisch mit denen, die mir das Präparat eigener Bereitung geliefert hatte.

Herr H. Trommsdorff in Erfurt, an den ieh mieh desshalb gewendet hatte, war so gütig, mir seine Darstellungsmethode mitzutheilen: "Die trockene Wurzel wurde mit Weingeist ausgezogen, der Weingeist von der erhaltenen Tinctur abdestillirt und der Rückstand wiederholt mit warmem Wasser behandelt. Der nicht im Wasser gelöste Theil wurde in Weingeist gelöst, mit Bleiglätte gekocht und filtrirt. Das Filtrat bis auf ½ abdestillirt und das nach dem Erkalten ausgeschiedene Ononin durch Abpressen und Umkrystallisiren gereinigt. Ferner wurden die durch Behandeln des alkoholischen Extracts mit Wasser erhaltenen Flüssigkeiten mit Bleizuckerlösung gefällt, der Niederschlag mit Schwefelwasserstoff behandelt, das Schwefelblei getrocknet, mit Weingeist mehrmals ausgekocht, die Tinctur abdestillirt, und der getrocknete, zurückbleibende Stoff durch Krystallisiren gereinigt; er schien dem ersten gleich zu sein."

Das reine Ononin besitzt folgende Eigenschaften:

Es ist ganz farblos, stickstofffrei, und besteht aus prismatischen Nadeln oder Blättehen. Diese lösen sich in kaltem Wasser nicht, in siedendem zum kleinsten Theil. Die siedende Lösung trübt sich beim Erkalten; es scheiden sieh mikroskopische, büschelförnig vereinigte Nadeln ab. Äther löst es fast gar nicht, siedender Alkohol nach und nach vollständig. Es ist geruch- und geschmacklos. Mit conc. Schwefelsäure übergossen, löst es sich mit rothgelber Farbe, die nach einiger Zeit kirschroth wird.

Betropft man auf einem Uhrglase einige Krystalle mit Schwefelsäure und fügt ein wenig Braunstein hinzu, so erscheint sogleich eine prächtig carminrothe Färbung, die für den Körper etwas Charakteristisches hat. Sie ist übrigens nicht beständig. Das käufliche Präparat gibt bei dieser Behandlung nicht selten eine violette Farbe; diese rührt dann von einem Zersetzungsproduct her, von dem ich später sprechen werde.

Auf Platinblech erhitzt, schmilzt das Ononin und verbrennt Weiterhin mit Flamme. Der Geruch des, sich in der Hitze zersetzenden Ononins ist der, stickstofffreier Substanzen überhaupt.

Die Kohle verbrennt leicht, ohne Rückstand.

Die Temperatur eines Ölbades, in welchem sich das Ononin in einem papierdünnen Porzellannäpfehen schwimmend befand, musste bis auf 235°C. gesteigert werden, um es zum Schmelzen zu bringen. Schon vor dem Schmelzen aber bräunt es sich, und verbreitet den Geruch sich zersetzender Substanzen.

Die geschmolzene bräunliche Masse erstarrte nach einiger Zeit krystallinisch. Sie hatte 2·65% an Gewicht verloren, ein Verlust,

der jedoch nicht blos als Wasser angenommen werden kann. Die geschmolzene Masse blieb geschmacklos und zeigte die Löslichkeits-Verhältnisse wie zuvor.

Die Reaction mit Braunstein und Schwefelsäure war noch dieselbe. Salpetersäure löst das Ononin heim Koehen mit dunkelgelber Farbe; dabei bildet sieh Oxalsäure.

Kalte Salzsäure ist ohne siehtbare Wirkung; damit in einer Proberöhre bis zum Sieden erhitzt, löst es sieh auf, sofort aber trübt sieh die Flüssigkeit von kleinen, mikroskopischen, zu Flocken vereinigten Nadeln, die einem neuen Körper angehören. Wird weiter gekoeht, so wird die Flüssigkeit etwas missfarbig und der krystallinische Niederschlag bekommt eine sehwachviolette Färbung. In dem Filtrat kann man nach dem Sättigen mit Natronlauge Zueker nachweisen. Kalilauge, und leichter noch Barytwasser, lösen das Ononin beim Koehen. Selbst von viel heisser Ammoniakflüssigkeit wird es nicht aufgenommen.

Die alkoholische Lösung gibt mit Metallsalzen keine Niedersehläge; nur Bleiessig fällt weisse Floeken.

Mit Eisenehlorid entsteht keine wesentliche Farbenveränderung. Chlorwasser verändert das Ononin nicht.

Die Analysen des Ononins haben mir gezeigt, dass es sehwer ist, den Körper von vollkommener Reinheit zu erhalten. Sie können ohne Weiteres nieht zur Aufstellung einer Formel dienen, und es musste daher nur allein durch die Zersetzungsproduete eine solehe zu erhalten gesucht werden, zumal dasselbe keine brauchbaren salzartigen Verbindungen eingeht.

Ieh bemerke betreffs der folgenden Zahlen, dass zur Verbrennung immer Substanzen versehiedener Bereitung dienten.

Sie waren alle bei 100° getroeknet, bei welcher Temperatur das Ononin nichts an Gewieht verliert.

Zur Verbreunung wurde immer ehromsaures Bleioxyd und vorne eine Sehichte Kupferoxyd verwendet. Alle in dieser Abhandlung aufgeführten Analysen sind so gemaeht; wurde anders verfahren, so ist es angemerkt.

- I. 0.2564 Grm. Substanz gaben 0.548 Grm. CO2 und 0.126 Grm. HO.
- II. 0.274 " " " 0.588 " " " 0.136 " "
- III. 0·312 " " " 0·672 " " " 0·154 " ,
- IV. 0.3365 " " " 0·7315 " " " 0·170 " "

v.	0.2395	Grm.	Substanz	gaben	0.525	Grm.	CO2	und	0.119	Grm.	но.
VI.	0.3662	22	27								
VII.	0.355	"	>>						0.1828		
	0 0100		29						0.1619		
IX.	0.3664	99	22	22	0.8135	,,	22	"	0.1900	"	22

In 100 Theilen:

	I.	II.		IV.			VII.	viii.	IX.
C =	58.28-	58.54 -	58.61-	59.28-	59.78-	61.32-	60.77 -	61.75-	60.55
H ==	5.45-	5.51-	5.48-	5.61-	5.52-	5.66-	5.72-	5.68-	5.76
0=	35.27-	35.95-	35.91-	35.11-	34.70-	33.02-	33.51-	32.75-	33.69
	100.00-	100.00-	100	00.00-	100.00-	100.00-	100:00-1	100.00-1	00.00.

I—V sind eigene Präparate, VI—IX käufliehe, die mehrmals durch Umkrystallisiren gereinigt worden waren.

II ist mit CuO verbrannt; zuletzt wurde Sauerstoff durch die Röhre geleitet.

VI und VIII gaben mit Braunstein und Schwefelsäure eine violette Reaetion, alle anderen eine sehön rothe.

Von den Zersetzungen, die am meisten die Constitution des Ononins aufzuklären geeignet sind, muss besonders die mit Barytwasser hervorgehoben werden.

Unter dem Einflusse dieses Reagens zerfällt dasselbe in eine Säure, die an Baryt gebunden erhalten wird, und in einen neuen Körper, der in der Reihe der gepaarten Kohlehydrate seinen Platz findet. Die Säure ist Ameisensäure, das Glueosegenid ist ein bisher unbekanntes, das ieh als "Onospin" weiter besehreiben will.

Wenn man Ononin mit Barytwasser in einem Kolben längere Zeit koeht, so löst es sieh zuletzt ganz auf.

Die letzten Antheile verschwinden langsam, und erst beim Zugeben neuer Mengen Barytwasser. Die Flüssigkeit ist klar und von reingelber Farbe. Meistens bemerkt man während des Kochens einen sehwaeh aromatiselien Gerueh.

Beim Auskühlen, und besonders wenn man sie ins Eis stellt, trübt sieh die Flüssigkeit; es fällt neben etwas BaO.CO₂ ein kleiner Theil des neugebildeten Körpers heraus.

Sie wurde um diesen seiner übrigen Menge nach zu erhalten, in ein hohes Glasgefäss gebracht und so lange Kohlensäure hindurch geleitet, bis das starke Sehäumen ganz aufgehört hatte. Der Niedersehlag wurde abfiltrirt, mit kaltem Wasser nachgewaschen, hierauf noch feucht vom Filter genommen und wiederholt mit Wasser ausgekocht.

Die filtrirte heisse Flüssigkeit trübte sieh sogleich milehig, und nach dem völligen Erkalten war sie zu einem Brei von kleinen sehuppigen Krystallen erstarrt, die einzeln stark lichtbrechend sind. — Sie wurden nach dem Abtropfen auf einem Filter 3—4 Mal aus Wasser umkrystallisirt. Um sie völlig farblos zu erhalten, wurde zuletzt Thierkohle angewendet.

Sie halten eine grosse Menge Wasser zurück, und ein volles Filter sehwindet nach dem Trocknen zu einer glänzenden Haut zusammen, die leicht vom Papier abgelöst werden kann.

Sie lösen sieh auch leicht in Weingeist und krystallisiren daraus in eoneentrisch gruppirten Nadeln.

Es ist gut, den Barytniedersehlag mit einigen Tropfen ganz verdünnter Sehwefelsäure anzurühren (gerade nur so viel, dass die Flüssigkeit kaum merkbar sauer reagirt), und dann erst mit heissem Wasser auszuziehen.

Dies bezweckt eine Barytverbindung zu zersetzen, die das Onospin, das sieh wie eine sehwache Säure verhält, eingeht, und die von der CO₂ nur langsam zersetzt wird.

Ich habe mehrfach bemerkt, dass, wenn der durch CO₂ erzeugte gemischte Niederschlag ahfiltrirt und die klare Flüssigkeit über Nacht in einer dem Gefrierpunkt nahen Temperatur hingestellt wurde, sieh ein bernsteingelber, harzig aussehender Absatz gebildet hatte, der beim Trocknen ein gesprungenes, gummiähnliches Aussehen annahm.

Er ist, von der Flüssigkeit getrennt, in Weingeist leicht löslich und besteht aus Baryt und Onospin in weehselnden Verhältnissen. Die weingeistige Lösung, freiwillig verdunstet, fängt nach tagelangem Stehen an, Krystallpunkte zu bilden. Sehwefelsäure zersetzt die weingeistige Lösung, die von BaO. SO3 abfiltrirte Flüssigkeit gibt wieder krystallisirtes Onospin. — Wenn es sich überhaupt nicht darum handelt, auch die in der Flüssigkeit vorhandene, an Baryt gebundene Säure zu erhalten, so zersetzt man ebensogut gleich anfangs statt mit CO2 mit SO3. — Nur ist jeder auch geringe Überschuss dieser Säure zu vermeiden, weil sie beim Koehen das Onospin zersetzt.

Wurde die, von dem, durch CO₂ entstandenen gemischten Barytniederschlage abfiltrirte Flüssigkeit zum Sieden erhitzt, so fiel unter CO₂-Entwickelung noch ein Antheil Baryt heraus, der durch die überschüssige CO₂ gelöst war.

Es wurde nun, nachdem auch dieser entfernt war, im Wasserbade wieder eingedampft.

Beim Auskühlen der so concentrirten Flüssigkeit bemerkte man nur noch geringe Ausscheidungen, die entfernt werden mussten.

War endlich die Flüssigkeit bis auf ein ganz kleines Volumen gebracht, so dass sie eine ölige Consistenz hatte, so bildeten sich in ihr nach 1—2 Tagen harte, körnige, zu Gruppen vereingte Krystalle eines Barytsalzes.

Dasselbe hat sich als ameisensaurer Baryt erwiesen.

Es bestand aus kleinen Prismen, löste sich leicht in Wasser und war in Alkohol unlöslich. Von der anhängenden gelben Mutterlauge konnte es, zerrieben, zuerst durch Waschen mit Alkohol, dann mit ganz wenig eiskaltem Wasser befreit werden; es war dann ganz weiss. — Der Geschmack ist bitter, etwas salzig.

Charakteristisch ist der Geruch nach verbranntem Zucker, den es beim Erhitzen ausstösst. Dabei wird es braun, bläht sich auf und die Gase brennen mit Flamme. Der Rückstand brennt sich langsam ganz weiss. — In Wasser gelöst und mit verdünnter Schwefelsäure zersetzt, konnte mit dem Filtrat sogleich beim Kochen die Reduction einer Silberlösung bewirkt werden. — Ich habe, um ganz sicher zu sein, ameisensauren Baryt dargestellt und mich überzeugt, dass die Art seines Krystallisirens in kleinen Mengen, wobei die Flüssigkeit sehr mit eingedampft werden muss, in solchen Krystallanhäufungen ganz dieselbe ist. Das aus Ononin erhaltene Salz erwies sich in jeder Weise damit identisch.

Endlich bestätigt dies die Analyse des bei 100° getrockneten Salzes.

I. 0.6294 Grm. Substanz gaben 0.250 Grm. $\rm CO_2$ und 0.060 Grm. HO. II. 0.5592 , , , 0.570 BaO + $\rm SO_3$.

In 100 Theilen:

				Berechnet	:	Gefunden:
C_2		12	_	10.56	_	10.83
II		1		0.88		1.05
O_{g}	_	24	_	21.12	_	21.15
BaO		76.6		67.44	-	66.97
		113.6		100.00	_	100.00

Die Bildung von Ameisensäure beim Kochen des Ononins mit Barytwasser kann auch leicht wahrgenommen werden, wenn man die Barytflüssigkeit statt mit Kohlensäure mit Schwefelsäure zersetzt, wie vorhin angegeben. Zu dem Ende wurde diese Zersetzung durch Sehwefelsäure mit grösster Vorsieht ausgeführt, indem fortwährend mit Reagentiren der Punkt aufgesucht wurde, wo die Flüssigkeit weder Baryt, noch Sehwefelsäure mehr enthielt. Als dies erreieht war, reagirte die Flüssigkeit noch stark sauer. Um die in ihr noch enthaltenen letzten Antheile Onospin herauskrystallisiren zu lassen, wurde sie über Nacht in Eis gestellt.

Das Filtrat wurde nun destillirt.

Mit dem Destillat, welches einen schwachen Geruch nach Essigsäure hat und sauer reagirt, ist es leicht, die Reductions-Versuche der Ameisensäure zu wiederholen.

Im Rückstand von der Destillation fanden sieh nur noch Spuren von Onospin, die sieh leieht als solehe erkennen liessen; seine Farbe war von kleinen Mengen zersetzter Substanz etwas bräunlieh.

Onospin.

Der auf die vorhin besehriebene Weise erhaltene Körper erseheint nach öfterem Umkrystallisiren aus Wasser vollkommen weiss, trocknet auf dem Filter zu einer glänzenden Haut ein, und besteht aus kleinen, unter dem Mikroskope tafelförmig ausgebreiteten Krystallen. Sie lassen sieh aus ihrer verfilzten Form nur dureh Zerreiben mit den Fingern bringen und werden dabei etwas elektrisch. In siedendem Wasser lösen sie sich in jeder Menge, die Lösung ist wasserklar und erstarrt nach dem Erkalten zu einem Krystallbrei.

Weingeist löst die Krystalle leicht. Sie schiessen daraus in strahlig gruppirten Prismen wieder an.

In Äther sind sie fast unlöslich.

Kaustische Alkalien und Ammoniak lösen sie leicht, Säuren fällen sie wieder. Aus der letzteren Lösung krystallisirten sie nach freiwilligem Verdampfen des Ammoniaks unverändert. Mit eoneentrirter Sehwefelsäure auf einem Uhrglase übergossen, lösen sie sieh mit rothgelber Farbe; einige Körnehen Braunstein dazu gebracht, verändern diese in ein sehönes Dunkelcarminroth.

Die Reaction ähnelt der durch Schwefelsäure aus Salicin erzeugten, nur ist die Farbe intensiver.

Salpetersäure oxydirt den Körper unter Oxalsäure-Bildung. Die wässerige Lösung gibt ausser mit Bleicssig, mit anderen Metallsalzen keine Niederschläge.

Salpetersaures Silberoxyd wird auch beim Koehen davon nicht reducirt. Auf Platin erhitzt, sehmilzt das Onospin und verbrennt, weiter erhitzt, mit Flamme und einem etwas an Zucker erinnernden Geruch ohne Rückstand.

In einer Glasröhre erhitzt, sublimirt ein ganz kleiner Theil. Der Sehmelzpunkt liegt bei 162°. Die Temperatur konnte aber bis 200° gesteigert werden, ohne dass eine Zersetzung bemerkbar war. Es erstarrte gummiähnlich zu einer gesprungenen Masse und verlor nichts an Gewicht.

Die geschmolzene Masse wird beim Zerreiben sehr elektrisch, ist etwas hygroskopisch und wird opak, und während die Krystalle fast geschmacklos sind, bemerkt man nach dem Schmelzen einen bitterlich adstringirenden Geschmack. Siedendes Wasser löst das geschmolzene Onospin wieder auf, und es scheidet sieh wie früher krystallinisch aus.

Eine sehr empfindliche Reaction gibt Eisenchlorid mit der wässerigen und der weingeistigen Lösung.

Es ist eine dunkel kirschrothe Färbung, die der durch Phloridzin erzeugten fast ganz gleich ist.

Verdünnte Schwefelsäure und Salzsäure zersetzen beim Erhitzen das Onospin. Es löst sich zunächst auf, und hierauf fallen sogleich Krystalle heraus, die sich an den Glaswänden hinaufziehen. Die Flüssigkeit davon abfiltrirt und neutralisirt, zeigt sehr entschiedene Zuekerreactionen, sowohl nach Trommer's als nach Pettenkofer's Methode

Das Onospin als solehes redueirt eine alkalisehe Kupferoxydlösung nieht.

Die zur Analyse dienenden Substanzen waren von verschiedener Bereitung und bei 100° getrocknet; dabei war ihr Gewicht nach achtstündigem Trocknen unverändert geblieben.

7	U		COMMICIA	CAR I OR C	ander v &	5020110	IJ OIL				
I.	0.329	Grm.	Substanz	gaben	0.727	Grm.	CO2	und	0.180	Grm.	но.
41.	0.266		>>	"	0.612	>>	22	22	0.150	22	
IV.	0·311 0·3522	22	>>	79	0.6846	77	22	22	0.1686	22	29
V	0.3522	22	27	22	-	29	29	.,	0.190	22	22
VI.	0.303	22	22	22	0.664	23	22		0.1674		22
	0.2402	22	22	>>	0.5291	22	22	22	0.134	22	22

In 100 Theilen:

	I.		H.		111.		IV.		V.		VI.
C =	60.26		60.54	-	60.03			*********	59.72		60.07
$\Pi =$	6.08	_	6.01	_	6.02	-	5.9		6.13		6.19
0 =	33.66	—	33.45		33.95	_			34.15	_	33.74
	100.00		100.00		100.00	_		_	100.00		100.00

I—IV ist aus Wasser krystallisirt; V ist geschmolzene Substanz (seheint dabei ein wenig zersetzt); VI aus Alkohol krystallisirt, zerrieben, und bei 100° getroeknet.

Das Onospin ist ein sogenanntes Glueosegenid, ein gepaartes Kohlehydrat. Ich habesorgfältig vergliehen, und die gefundene Zusammensetzung bestätigt es, dass es nicht identiseh ist mit einem der bereits bekannten ähnlich eonstituirten Körper. Seinem Verhalten nach sehliesst es sieh einerseits an das Saliein, zum andern an Phloridzin. Unter dem Einflusse von Sehwefelsäure oder Salzsäure zerfällt es leicht in seine Paarlinge. Den einen derselben will ich, um der gewählten Nomenelatur zu folgen, Ononetin nennen.

Die Formeln des Onospins sowohl, als die des Ononetins suchte ich auf demselben Wege festzustellen, der die des Phloridzins und Quercitrins eonstatiren half, durch eine quantitative Bestimmung des Zuckers.

Dem Resultate dieser Versuche will ich jedoch die Beschreibung der Darstellung und Eigenschaften des Ononetins, und die Art den Zueker zu gewinnen, vorausschieken.

On onetin.

Als das beste Verfahren, diesen Körper rein zu gewinnen fand ieh, das Onospin in etwa dem zehnfachen Gewicht Wasser vertheilt in einem Kolben auf dem Sandbade zu erhitzen, bis es klar aufgelöst ist, dann mässig verdünnte Schwefelsäure tropfenweise zuzusetzen, bis eine kleine Trübung constant zu bleiben anfängt. Wenn man nun die Flüssigkeit in einer, dem Sieden nahen Temperatur erhält, so bemerkt man bald, wie sich in derselben eine Menge kleiner, klarer Tröpfelten bilden, die sich vermehren, und am Boden zu einer sehwach gelbgefärbten schweren, öligen Masse von geschmolzenem Ononetin sammeln.

Die überstehende Flüssigkeit wird endlieh wieder klarer, und die Zersetzung ist dann vollendet. Nach dem Erkalten erstarrt das Ononetin zu einer krystallinischen Masse von der man die Flüssigkeit abgiesst und die man aus starkem Alkohol, worin es sieh leicht löst, umkrystallisirt.

Die Krystalle sind strahlige, oder bündelförmig vereinigte, oft sehr lange, spröde Prismen, die bei grösseren Mengen auch eine beträchtliche Dicke erreichen, und stark lichtbrechend sind. Häufig treten sie auch federförmig gruppirt auf.

Um mieh ihrer Reinheit ganz zu versiehern, habe ieh sie zerrieben, mit Salzsäure, die mit sehr wenig Wasser verdünnt war, erhitzt, mit Wasser gut abgewasehen, und nochmals aus Alkohol umkrystallisirt. Sie sind nach einigem Umkrystallisiren farblos.

Es hat keine Vortheile concentrirtere Säure zur Zersetzung des Onospins anzuwenden, indem hierbei eine theilweise Zersetzung erfolgt. Erhitzt man kleine Mengen Onospin in einer Proberöhre mit starker Salzsäure, so löst es sieh auf; gleieh nachher erfüllt sieh die Flüssigkeit mit kleinen Krystallen von Ononetin die bräunlich sind, während auch die Flüssigkeit eine röthliche Farbe annimmt. In grösseren Mengen schmilzt bei dieser Zersetzung das Ononetin gleichfalls zu grossen, sehweren Tropfen, die daher auch stark gefärbt sind. Es ist dann sehwer, das Product durch blosses Umkrystallisiren zu reinigen; auch Thierkohle entfärbt es nur sehr wenig. Verfährt man dagegen wie angegeben, so erscheint das geschmolzene Ononetin höchstens weingelb, die darüber stehende Flüssigkeit bleibt ganz wasserhell.

Diese Flüssigkeit enthält Zueker, der leicht zu erhalten ist. Ich habe sie mit frisch gefälltem reinen, kohlensauren Bleioxyde versetzt bis alle saure Reaction versehwunden war, filtrirt, mit Schwefelwasserstoff behandelt, um eine Spur Blei daraus zu entfernen, und im Wasserbade eingedampft. Wenn sie etwas eoneentrirt wird, fallen wohl noch einige Krystalle von Ononetin heraus; denn dieses ist im Wasser nicht ganz unlöslich. Davon nochmals abfiltrirt und in gelinder Wärme verdampft, hinterbleibt ein sehr süsser, gährungs- und krystallisationsfähiger Syrup, über dessen Natur alle Zuekerreactionen, die er aufs Prägnanteste gibt, keinen Zweifel lassen. Von der Analyse dieses Zuekers musste ich abstehen, weil ich die, nach einigen Tagen entstandenen krümmlichen Krystalle nicht trocken erhalten konnte. Sie sehmolzen im Wasserbade zu einem zähen Syrup, der selbst nach tagelangem Trocknen weich blieb.

Das Ononetin zeigt folgendes Verhalten:

Aus Alkohol krystallisirt, ist es in Wasser fast unlöslich. Wenn man es aber unmittelbar gefällt, z. B. aus alkalischer Lösung durch Salzsäure, mit viel Wasser erhitzt, so löst sich ein Theil auf, der nach dem Erkalten als stark glänzende, verfülzte Nadeln die Flüssigkeit erfüllt. Im warmen Äther löst es sich in kleiner Menge. Am leichtesten lösen es Alkalien. Die ammoniakalische Lösung nimmt beim Stehen an der Luft nach und nach eine sehöne, dunkelgrüne Farbe an, die einer Cr₂O₃-Lösung gleicht. Versetzt man eine solche grüne Flüssigkeit mit Salzsäure, so fällt ein dunkelrother, flockig harziger Körper heraus, der sich in Alkohol mit prächtig rother Farbe löst.

Ähnliche rothe, harzartige Zersetzungsproducte sind auch von Saligenin, Phloretin und Olivil bekannt.

Unter den Metallsalzen fällt nur basisch-essigsaures Bleioxyd eine Lösung von Ononetin. Das Ononetin sehmilzt bei 120° ohne Zersetzung und erstarrt strahlig, krystallinisch. Vorher bei 100° getroeknet, wobei es niehts au Gewieht verlor, zeigte es nach dem Sehmelzen einen Verlust von $1.86\,$ °/₀ Wasser.

Auf Platinblech erhitzt, stösst es einen zum Husten reizenden Dampf aus, brenut dann mit Flamme, und hinterlässt eine leicht verbrennliche Kohle. Es ist nicht sublimirbar.

Mit Schwefelsäure und Braunstein zeigt es die, sehon beim Ononin und Onospin erwähnte rothe Reaction, nur ist sie hier wo möglich noch empfindlicher. Ohne Zweifel verdanken die beiden genannten Körper dieselbe Farbenerscheinung dem Ononetin, die es als Paarling enthalten. Ebenso prägnant ist die dunkelrothe Reaction mit Eisenehlorid. Mit Salpetersäure erhitzt, sehmilzt das Ononetin wie ein Harz, und wird dann unter Verbreitung eines heftig zu Thränen reizenden Geruehes oxydirt. In der Flüssigkeit befindet sieh Oxalsäure und wie es scheint Pikrin- oder Oxypikrinsäure.

Die Analysen der, bei 100° getroekneten Substanz ergaben folgende Zahlen:

```
I. 0.3834 Grin. Substanz gaben 0.9734 Grm. CO2 und 0.197 Grm. HO.
11. 0.310
                 22
                             0.788
                                                 0.156
                                          22 22
III. 0.371
                             0.9446
                                                 0.197
                       In 100 Theilen:
                       I.
                                11.
                                          III.
                C = 69.24 -
                               69.32 -
                                         69.43
                                5.59 -
                H = 5.71 -
                 0 = 25.05 - 25.09 -
                                         24.54
                     100.00 - 100.00 - 100.00.
```

Jede Probe war von anderer Bereitung; III war etwas gefärbt.
Als der sieherste Anhaltspunkt zur Feststellung der Formeln für die drei bisher beschriebenen Körper, die sämmtlich im innigsten Zusammenhange stehen, musste offenbar die Ermittelung des Zuekers erscheinen, den die beiden enthalten. Das Onospin, als der am leichtesten rein zu erhaltende, dessen Zersetzung ohne alle Schwierigkeit erfolgt, sehien dazu am geeignetsten.

Ich bediente mich für diesen Zweek nach dem Verfahren von Fehling einer alkalischen Kupferoxydlösung, davon 10 CC. 0.05 Gr. Traubenzueker entsprachen.

Die gewogenen Mengen Onospin wurden in kleinen Kölbehen in siedendem Wasser gelöst, um zu beiläufig 10 CC. der Lösung 20 Tropfen verdünnte Schwefelsäure (180₃: 8HO) gesetzt, hierauf, als die Zersetzung durch Bildung von ölartig geschmolzenem Ononetiu eingeleitet war, dieselbe auf dem Sandbade bei eirea 90° vollenden lassen, wo die Mischung 1½ Tage lang digerirte.

Der grösste Theil des Ononetins war als gesehmolzener Tropfen am Boden, ein kleiner Theil befand sieh krystallinisch in der Flüssigkeit.

Es wurde nun abfiltrirt, und bis zum Aufhören der sauren Reaetion ausgewasehen. Die Flüssigkeit wurde mit Natronlauge alkaliseh gemacht, und bis auf 200 CC. verdünnt. 10 CC. der CuO-Lösung mit 40 CC. Wasser befanden sieh, zum Sieden erhitzt, in einer Sehale, die Zuckerlösung wurde aus der Bürtte so lange eingetragen, bis die Reaetion in einer Blutlaugensalzlösung, die mit HCl angesäuert war, aufhörte.

I.	0.303	Grm.	Onospin	gaben	0.0917	Zucker	$(C_{12} H_{12} O_{12})$	=	30.2	Proe.
11.	0.316	99	"	27	0.0952		23	=	30.1	22
IV.	0·290 0·289	22	"	"	0.0854	22	22		29.4	- "
	0 200	99	9.0	99	0.0862	99		-	29.8	99

Diese Bestimmungen weisen also im Mittel 29·9 % Zucker aus. Ieh glaube nicht zu fehlen, wenn ieh als runde Zahl 30 annehme. Geht man, wie bei allen ähnlich constituirten Verbindungen von der Annahme aus, dass 1 Äquiv. Zucker gebildet worden sei, so entsprechen die, in 30 % Zucker enthaltenen 12 Theile Kohlenstoff 12 Äquiv. Kohlenstoff.

Für das Ononetin bleibt dann im Onospin: $60\cdot27$ — $12 = 48\cdot27$ Theile Kohlenstoff.

Wenn nun 12 Theile Kohlenstoff 12 Äquiv. entspreehen, so entspreehen 48 Theile $4\times12=48$ Äquiv. Kohlenstoff. Daraus folgt, dass das Ononetin in seiner Formel 48 Äquiv. C. enthält. Unter dieser Voraussetzung bereehnet sieh dieselbe zu $C_{48}H_{22}O_{13}$. Diese verlangt

			In 100	Theilen:		
			Berechnet:		Gefunden:	
C48	288	_	$\widetilde{69\cdot 56}$ —	69.24 -	69.43 —	69.32
1122 -	22		5.31 —	5.71 —	5.88 —	5.59
0_{13} —	104	-	25.13 —	25.05 —	24.54 -	25.09
	414		100.00 -	100.00 —	100.00 —	100.00.

Es hatten ferner 0.280 Grm, bei 100° getroekneter Substanz 0.005 Wasser verloren; = 1.86%. Die Formel:

$$C_{48}H_{21}O_{13} + HO$$
 verlangt 2.17% .

Die Bestimmung des Ononetins bei der Zersetzung des Onospins quantitativ auszuführen, gelingt wegen der theilweisen Löslichkeit desselben im Wasser nicht. Die Rechnung ergibt 69.5%; gefunden wurde zwischen 60 und 65%.

Das Onospin seinestheils müsste nun weiter eine Formel mit $48+12=60\,\mathrm{C}$. besitzen. Mit den gefundenen Proeenten übereinstimmend, ergibt sieh:

		Berechnet:		Gefunden:					
C ₆₀ —	360 -	60.60 -	60.26	60.54 —	60.03 -	60.07 — —			
H ₈₄ -	34 -	5.72 —	6.08 —	6.01 —	6.02 —	6.19 - 5.9			
025 -	200 -	33.68 —	33.66 —	33.45 —	33.95 —	33.74 — —			
	594 -	- 1 00·00 —	100.00 —	100.00 —	100.00 —	100.00.			

Hiernach ist das Zerfallen des Onospins durch Säuren in folgender Weise ausdrückbar:

$$\underbrace{C_{60}H_{34}O_{25}}_{\text{Onospin.}} = \underbrace{C_{48}H_{22}O_{13}}_{\text{Ononetin.}} + \underbrace{C_{12}H_{12}O_{12}}_{\text{Zucker.}}$$

Berücksichtigt man endlich, dass die Muttersubstanz des Ononins, neben dem Onospin beim Behandeln mit BaO-Wasser Ameisensäure geliefert hat, so scheint es geboten, in der Formel desselben 62 Äquiv. Kohlenstoff anzunehmen, und nur auf diesem Umwege wird sich aus den mitgetheilten Analysen die riehtige Zusammensetzung herausfinden lassen. Es seheint mir, dass dieselbe sieh nach der Formel: $C_{62}H_{34}O_{27}$ regelt, welche in 100 Theilen verlangt:

Die Zersetzungen durch Alkalien sind bekanntlich meistens von Wasseraufnahme begleitet; auch hier wird angenommen werden müssen, das die Spaltung des Ononins in dieser Weise vor sieh geht:

$$\underbrace{C_{62}H_{34}O_{27}}_{Ononin.} + 2HO = \underbrace{C_{60}H_{34}O_{25}}_{Onospin.} + \underbrace{C_{2}H_{2}O_{4}}_{Ameisensäure.}$$

Nach dieser Anschauung hat das Ononin seinen nächsten Verwandten in dem Populin, für welches Piria die rationelle Zusammensetzung fand 1):

$$\underbrace{\frac{C_{40}H_{22}O_{16}}{Populin.}}_{Populin.} = \underbrace{\frac{C_{14}H_{6}O_{4}}{Benzoes\"{a}ure.}}_{Benzoes\"{a}ure.} + \underbrace{\frac{C_{14}H_{8}O_{4}}{Saligenin.}}_{Saligenin.} + \underbrace{\frac{C_{12}H_{12}O_{12}}{Zucker.}}_{Zucker.} - 4HO.$$

$$\underbrace{\frac{C_{62}H_{34}O_{27}}{Ononin.}}_{Ononetin.} = \underbrace{\frac{C_{2}H_{2}O_{4}}{Ameisens\"{a}ure.}}_{Ononetin.} + \underbrace{\frac{C_{13}H_{12}O_{12}}{Zucker.}}_{Onospin.} - 2HO.$$

Weleher näheren Deutung die Formel des Ononetins unterliegt, die ieh blos als empyrische anführen kann, muss ich mir vorbehalten in der Folge zu ermitteln. Sie ist vorläufig ebenso unbestimmt als die des Phloretins, Quercetins, Arctuvins, Saligenins etc., die wohl alle noch einer Auflösung gewärtig sein müssen.

Es lässt sieh, bis zu einem gewissen Grade das Ononin auch vergleichen mit der Amygdalinsäure, der Verbindung von Ameisensäure, Zueker und Bittermandelöl.

$$\underbrace{ \begin{array}{c} C_{40} H_{26} O_{24} \\ Amygdalfinsäure. \end{array}}_{Ameisensäure.} + HO = \underbrace{ C_{2} H O_{3} }_{Ameisensäure.} + \begin{cases} C_{14} H_{6} \ O_{2} = \text{bitt. Mandel\"ol.} \\ C_{24} H_{20} O_{20} = \text{Zueker.} \end{cases}$$

$$\underbrace{ \begin{array}{c} C_{42} H_{34} O_{27} \\ O_{nonlin.} \end{array}}_{O_{nonlin.}} + HO = \underbrace{ \begin{array}{c} C_{2} H O_{3} \\ O_{2} H O_{3} \end{array}}_{Ameisens\"aure.} + \begin{cases} C_{48} H_{22} O_{13} = \text{Ononetin.} \\ C_{12} H_{12} O_{12} = \text{Zueker.} \end{cases}$$

Das Ononin ist indifferent. Die Amygdalinsäure ist einer der schwäehsten Säuren, ihre Salze sind nicht krystallinisch.

¹⁾ Annalen d. Ph. Bd. 81, S. 246.

Mit Zugrundelegung dieser Thatsachen, denen ieh in den mitgetheilten Formeln keinen Zwang angethan zu haben glaube, wird es nun auch leicht sein, die Zersetzung zu erklären, die das Ononin mit Säuren (HCl oder SO₃) erfährt.

Heisse Salzsäure oder verdünnte Schwefelsäure löst das Ononin völlig auf. Sehr hald aber erfüllt sieh die Flüssigkeit mit floekigen Krystallen eines neuen Körpers, die beim längeren Erwärmen oder Kochen blassviolett gefärbt erscheinen. Man muss hierbei den Inhalt des Kolbens fortwährend in einer kreisenden Bewegung erhalten, weil sonst da, wo die Glaswände heisser werden, besonders bei Anwendung von Schwefelsäure, sich derselbe mit rother Farbe zersetzt.

Die Flüssigkeit sehäumt ein wenig, und nach einigem Sieden hat sieh das, früher deutlich krystallinische Ononin in einen floekigen Brei verwandelt, der nur unter dem Mikroskope als krystallinisch erkannt werden kann. Es wurde alles auf ein Filter gebracht, und mit kaltem Wasser gut ausgewasehen. Die Farbe der Masse zieht ins Röthliche oder Violette, die durchlaufende Flüssigkeit ist meistens gelb gefärbt.

Ieh habe den Körper theils durch wiederholtes Umkrystallisiren aus starkem Alkohol, worin er nieht leiehter löslich ist, als Ononin selbst, theils so gereinigt, dass ich ihn in Ammoniak auflöste, die klar filtrirte Lösung mit Salzsäure nur so viel versetzte, dass die grösste Menge der Substanz herausfiel, während die Flüssigkeit noch alkalisch reagirte.

In dieser alkalischen Flüssigkeit bleibt der färbende Theil, der durch theilweise Zersetzung der Substanz durch die Säure entstanden ist, gelöst, und kann ausgewasehen werden, während der Niederschlag der Substanz rein weiss, aufgequollen und gallertartig erseheint, wie Thonerde.

Nachdem er mit Wasser, worin er unlöslich ist, gehörig ausgewasehen war, wurde er zwischen Papier abgepresst, und aus starkem Alkohol umkrystallisirt. Er fällt sehnell aus der heissen alkoholischen Lösung in kleinen Krystallen heraus.

Die, von dem rohen Körper abfiltrirte Flüssigkeit enthält wieder Zucker. Es genügt anzuführen, dass er ganz auf die, beim Onospin beschriebene Weise erhalten worden war, und vollständig dieselben Eigenschaften zeigte.

Die gebildeten Krystalle jedoch sind nieht, wie man vielleieht vermuthen könnte, Ononetin, aber dasselbe kann doch wieder daraus dargestellt werden. In der That entsprieht die Zusammensetzung derselben der, nach den früheren Erörterungen nahe liegenden Ansieht, dass sie das Ameisensäure gebende Atom mit dem Ononetin verbunden enthalten.

Ihre Analyse hat ergeben:

I. 0.2872 Grm. Substanz gaben 0.7474 Grm. $\rm CO_2$ und 0.125 Grm. H0. II. 0.339 , , , 0.880 , , , 0.150 , ,

In 400 Theilen:

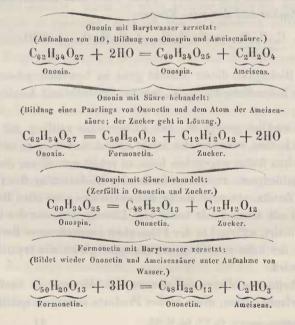
Die Substanz war bei 100° getroeknet; I ist mit Kupferoxyd und Sauerstoff, II mit ehromsaurem Bleioxyd verbraunt. Die Formel: $C_{50}H_{20}O_{13}$, die ieh darauf berechnet habe, erklärt das Zerfallen des Ononins mit Säure ohne Sehwierigkeit. Unter HO-Ausseheidung bildet sieh Zueker und der neue Körper:

$$\underbrace{C_{62}H_{34}O_{27}}_{Ononin.} = C_{50}H_{20}O_{13} + C_{12}H_{12}O_{12} + 2HO.$$

Die Richtigkeit dieser Ansieht ganz zu beweisen, müsste unter Passender Behandlung C₅₀H₂₀O₁₃ wieder Ononetin und Ameisensäure liefern.

Und wirklieh genügt es, den Körper eine zeitlang mit Barytwasser zu koehen, worin er sieh leieht auflöst, und dann zu verfahren, wie ieh sehon früher angegeben habe, so erhält man einen, dureh die CO_2 abgesehiedenen, zusammen baekenden Niedersehlag, der (besonders auf Zusatz von sehr wenig Sehwefelsäure, um allen Baryt zu entfernen) mit Alkohol sehr leieht eine Lösung gibt, aus der Ononetin krystallisirt, während in der Flüssigkeit ameisensaurer Baryt enthalten ist, der beim vorsiehtigen Abdampfen gleiehfalls krystalliniseh erhalten wird.

Ieh hatte von diesen Substanzen nieht Mengen zur Verfügung, die mir erlaubt hätten, diese beiden Produete anders als qualitativ zu bestimmen, allein es ist sehr leicht sieh ihrer Identität durch alle bisher aufgeführten Reactionen zu versichern.


Die Spaltung von $G_{50}H_{20}O_{13}$ könnte in folgender Weise vor sich gehen, wobei wieder IIO gebunden wird:

$$C_{50}H_{20}O_{13} + 3HO = \underbrace{C_{48}H_{22}O_{13}}_{Ononetin.} + \underbrace{C_{2}HO_{3}}_{Ameisensäure}$$

Dieser Körper, den man hiernach Formonetin nennen könnte, ist ausgezeichnet durch eine prächtig violette Reaction, die er (am besten anf einem Uhrglase) mit SO₃ und MnO₂ gibt. Sie erscheint etwas langsamer als die rothe des Ononetins und Onospins, ist aber nichts destoweniger ebenso empfindlich.

Er löst sich kaum in Wasser und Äther, völlig nur in kochendem Alkohol, ist geschmacklos, gibt keine Niederschläge mit Metallsalzen und keine Reaction mit Eisenehlorid; Alkalien lösen ihn leicht, und zersetzen ihn beim Kochen. Ammoniak verändert seine Zusammensetzung nicht.

Ich will, um den Zusammenhang der mitgetheilten Formeln überschaulich zu machen, dieselben sammt der Art ihrer Spaltungen noch einmal hersetzen:

Je nach ihrem Zusammentreten geben also Zueker, Ameisensäure und Ononetin drei neue Verbindungen von indifferentem oder sehwach saurem Charakter.

Wenn man bedenkt, dass die Formeln des Zuekers und des Ononetins selbst wieder einer weiteren Auflösung fähig sein müssen, so gehört das Ononin wohl mit zu den complicirtesten Pflanzensubstanzen, die bis jetzt aufgefunden worden sind.

Endlieh lässt sieh vielleieht für die abgehandeiten Verbindungen noch eine andere Auffassung geltend machen, wenn sie auch noch des thatsächliehen Beweises bedarf. Sie sei inzwisehen nur mit dem Vorbehalt hergesetzt, in der Folge ihre Rechtfertigung zu versuchen.

Erhöht man den Wasserstoffgehalt des Ononins, Onospins, Ononetins und Formonetins um ein Äquivalent, was, ohne die Übereinstimmung der berechneten und gefundenen Resultate zu beeinträehtigen gesehehen kann 1), so lässt sich das Ononin betraehten als Onospin, in welchem Wasserstoff ersetzt ist durch das Radieal der Ameisensäure:

$$C_{60} \left(\frac{H_{34}}{C_2 H O_2} \right) O_{25} = \underbrace{C_{62} H_{35} O_{27}}_{Occario}$$

Ferner könnte das Ononetin bestehend gedacht werden aus:

Berech. Gef. i. Mittel.

1)
$$C_{62} = 372 - 59 \cdot 71 = 59 \cdot 87$$
 $U_{35} = 35 = 5 \cdot 61 = 5 \cdot 60$
 $O_{27} = 216 = 34 \cdot 68 = 34 \cdot 53$
 $O_{100} = 60 \cdot 10 \cdot 00 = 100 \cdot 00$

Berech. Gef. i. Mittel.

 $C_{48} = 288 = 69 \cdot 40 = 69 \cdot 33$
 $U_{23} = 23 = 5 \cdot 54 = 5 \cdot 72$
 $U_{13} = 104 = 25 \cdot 06 = 24 \cdot 95$
 $U_{24} = 28 \cdot 00 \cdot 00 = 100 \cdot 00$

Berech. Gef. i. Mittel.

 $C_{48} = 288 = 69 \cdot 40 = 69 \cdot 33$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 30 \cdot 00 = 100 \cdot 00$

Berech. Gef. i. Mittel.

 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 30 \cdot 00 = 100 \cdot 00$

Berech. Gef. i. Mittel.

 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 = 33 \cdot 81$
 $U_{25} = 200 = 33 \cdot 42 =$

Dann bestünde das Formonetin aus:

$$\begin{array}{c|c} C_{16} \begin{pmatrix} H_8 \\ C_2 H O_2 \end{pmatrix} O_3 \\ C_{16} & H_7 & O_5 \\ C_{16} & H_7 & O_5 \end{pmatrix} - 2HO = \underbrace{C_{50} H_{21} O_{13}}_{\text{Formonetin.}}$$

Das Ononin gehörte somit in die Zimmtreihe der Leguminosen 1).

Die Wurzel der Onon. sp. enthält ausser dem Ononin noch einen zweiten krystallisirbaren Körper, der sehr einfach gewonnen werden kann, und auf dessen Vorhandensein man bei der Darstellung des Ononins Rücksicht nehmen muss, weil er dieses Präparat sonst leicht verunreinigen kann, wie bei zwei der angegebenen Methoden etwa.

Wenn man die Wurzel mit Weingeist auskocht, und die stark braun gefärbte Tinetur abdestillirt bis der Rückstand die Consistenz eines dünnen Syrups hat, so seheiden sich nach einigen Tagen Krystalle aus, die von der Flüssigkeit durch ein Leinenfilter getrennt werden können.

Sie sind noch stark gefärbt; durch Pressen zwisehen Papier, Wasehen mit kaltem Alkohol und Lösen in siedendem lassen sie sich reinigen. Man braucht dazu eine ziemliche Menge, denn sie sind schwer löslich.

Mit Thierkohle entfärbt sich die noch gelbe Lösung beträchtlich, und beim Erkalten und freiwilligen Verdunsten schiessen nadelförmige Krystalle an, die durch wiederholtes Reinigen blendend weiss erhalten werden.

Es sind kleine, zarte Krystallhärchen, versitzt, die Filter überziehend, beim Trocknen sehr sehwindend, sehön atlasglänzend, sehr leicht, und bei gelindem Reiben stark elektrisch werdend, geruchund gesehmacklos.

Sie lösen sieh in Wasser gar nieht, in Äther sehr wenig, aber völlig in siedendem Alkohol. Eine solehe Lösung wird von Wasser reichlich gefällt, und dieses Verhalten kann auch zur Reinigung des Körpers benutzt werden.

¹⁾ Rochleder's Phytochemie. S. 264.

Auf Platinbleeh erhitzt, schmelzen sie farblos, und erstarren krystallinisch. Weiter erhitzt, verbreiten sie einen, entfernt an Weihrauch erinnernden Geruch, brennen mit Flamme, und hinterlassen eine leicht verbrennliche Kohle.

Sie sind stickstofffrei. Die alkoholige Lösung reagirt neutral, und gibt mit Metallsalzen keine Niedersehläge.

Salpetersaures Silberoxyd wird beim Kochen nicht redueirt. In eoneentrirter Schwefelsäure lösen sie sieh mit gelblicher Farbe; Braunstein verändert diese nicht. — Von Salzsäure und Kalilauge werden sie auch beim Kochen nicht verändert. In Ammoniak unlöslich, dagegen leicht löslich in erwärmtem Terpentinöl.

Analysen der bei 1000 getrockneten Substanz.

I.
$$0.2415$$
 Grm. Substanz gaben 0.7075 Grm. CO_2 und 0.246 Grm. HO II. 0.304 , , 0.891 , , 0.3115 , , WIII. 0.3212 , , 0.9387 , , 0.9387 , , 0.326 , , In 100 Theilen:

I. II. III. III. C = 79.89 - 79.93 - 79.70 H = 11.31 - 11.36 - 11.27 O = 8.80 - 8.71 - 9.03 100.00 - 100.00 .

Die einfachste Formel, die diesen Zahlen entspricht, ist C₁₂H₁₀O.

Verhalten gegen Chlor. Wenn man hei gewöhnlicher Temperatur Chlor über die Substanz leitet, so wird sie kaum verändert. Befindet sich dieselbe aber in einem Apparate, den man gleichzeitig im Wasserbade erhitzen kann, so beginnt alsbald die Entwickelung von Salzsäure, die Masse bräunt sieh ein wenig, und nimmt ein krümliges, amorphes, geflossenes Ansehen an. Man muss, um die Einwirkung vollständig zu maehen, die zusammenbackende Substanz mehrmals herausnehmen, zerreiben, und wieder dem Chlor aussetzen.

Als die Entwickelung von Salzsäure geringer zu werden anfing, wurde die Temperatur des Bades durch Kochsalz erhöht, und als keine Salzsäure mehr fortging, unterbroehen.

Die entstandene harzähnliche Masse war weder in Wasser noch Alkohol, sondern nur in Äther, und zwar in diesem sehr leicht löslich. Nach dem Verdunsten desselben hinterblieb sie als ein amorphes Pulver, das nach dreimaligem Auflösen und Wiederverdunsten weiss ersehien.

Es ist in Ammoniak und Kali unlöslieh, schmilzt in warmer Salpetersäure, oxydirt sieh, und Silberlösung weist in der Flüssigkeit Chlor nach; mit concentrirter Schwefelsäure übergossen, wird es bräunlich; Braunstein verändert die Farbe nicht. Es schmilzt auf Platin und verbrennt mit harzigem und Salzsäure-Geruch. Die Substanz wurde bei 1000 getrocknet und mit chroms. Bleioxyd verbrannt.

0.232 Grm. Substanz gaben 0.489 Grm. CO₂ und 0.149 Grm. HO
0.281 " " (mit CaO geglüht) 0.313 " AgCl

In 100 Theilen:

			I	Berechnet:		Gefunden:
C_{12}	Anthropology	72	_	57.8	-	57.4
119	-	9		7.2	agent nor	7.1
Cl	-	35.5	-	28.4		27.5
0		8	parameter	6.6		8.0
-11-10		124.5		100.00		100.00.

Es ist demnach 1 Äquiv. Chlor an die Stelle von 1H getreten. Unterwirft man den reinen Körper mit wasserfreier Phosphorsäure der trockenen Destillation, so erhält man ein Öl von theerartigem Gerueh. Es ist gelblich; ieh konnte es mir nicht in solcher Menge versehaffen, um es reinigen und analysiren zu können.

Wahrseheinlieh ist es ein Kohlenwasserstoff = C₁₂H₉.

Eigensehaften und Verhalten stellen diese Substanz jenen indifferenten wachsähnlichen Körpern an die Seite, wie man sie z.B. bei der Darstellung des Phloridzius aus der Wurzelrinde der Äpfelbäume gewinnt, und wie man sie als Cerin, Ceroxylin, Cerosin, Myricin u. s. w. aus anderen Pflanzen dargestellt und besehrieben hat.

Grosse Ähnlichkeit hat dieselbe ferner mit dem Betulin von Hess; mit mehreren Harzen, einigen Waehsarten, dem Lactueon und dem Wurmsamenöl hat dieselbe eine fast gleiche procentische Zusammensetzung.

Soll sie durch einen eigenen Namen unterschieden werden, so möchte sie vielleicht am besten Onocerin heissen.

Citronensäure.

Sie findet sich an Kalk gebunden, und wurde erhalten, als die Abkoehung der Wurzel, die mit Bleizueker ausgefällt war, mit Schwefelwasserstoff von überschüssigem Blei befreit und langsam bis zur Syrupsdieke eingedampft wurde.

Nach langem Stehen setzen sich kleine, geschmacklose Krystalle ab. Auf Leinwand abgetropft, zwischen Papier von dem Syrup abgepresst, mit kaltem Wasser gewaschen, in siedendem gelöst und so gereinigt, geben sie nach dem Zersetzen mit Schwefelsäure eine Lösung, die vom Gyps abfiltrirt nach wochenlangem Stehen harte, stark saure Krystalle liefert. Sie besassen alle Eigenschaften der Citronensäure.

Glycyrrhizin und Zucker.

Reinsch beschrieb als "Ononid") einen, dem Glycyrrhizin ähnlichen Stoff, der in seinen Eigenschaften diesem sehr nahe kommt, und sich nur durch den, anfangs bitterliehen Geschmack unterscheidet.

Ich habe diesen Körper auch seiner Zusammensetzung nach untersucht und gefunden, dass diese eine ziemlich wechselnde ist; er zeigt Verhältnisse, die es wahrscheinlich machen, dass demselben reines Glycyrrhizin zu Grunde liegt, und dass man es hier nur mit Producten einer angehenden Oxydation zu thun hat. Solche braune, glycyrrhizinähnliche Substanzen wurden erhalten:

a) Durch Ausfällen des wässerigen Decocts der Wurzel mit Schwefelsäure. Es entsteht ein flockiger, schmutzig brauner Niederschlag, den man absitzen lässt, und im Gefässe selbst durch wiederholtes Aufgiessen von Wasser auswäscht, bis die saure Reaction aufhört.

Er wird dann getrocknet, in warmem absolutem Alkohol gelöst und die filtrirte Lösung auf dem Wasserbade verdampft.

Man wiederholt dieses Verfahren so lange der absolute Alkohol noch einen Rückstand heim Auflösen hinterlässt.

b) Wenn man aus dem weingeistigen Wurzelauszug das Onocerin auskrystallisiren lässt und der rückständige dunkelbraune Syrup an der Luft verdunstet, so scheidet er sich binnen zwei bis drei

¹⁾ Buchner's Repertorium XXVI und XXVIII.

Tagen in ein dunkelbraunes, in Wasser unlösliches Harz und eine darüber stehende dickliche, honiggelbe klare, sehr süsse Flüssigkeit.

Diese letztere enthält neben viel Zucker auch eine gewisse Menge solchen Glycyrrhizins. Wenn man sie mit Wasser verdünnt, wobei sie sich meistens trübt, und dann mit Sehwefelsäure versetzt, die Fällung behandelt wie a, so hinterbleibt ein im Äussern von dem ersteren nicht verschiedener Körper.

c) Wenn man ferner den harzigen braunen Absatz mit Wasser gut auswäseht, dann in Alkohol löst, die Lösung mit alkoholischer Bleizuekerlösung versetzt, und den braunen Niederschlag unter Alkohol mit Schwefelwasserstoff zersetzt, die vom Schwefelblei abfiltrirte Flüssigkeit eindampft und wie früher reinigt, so hinterbleiben stets braune, glänzende Extracte, die sieh zu einem lichtbraunen Pulver zerreiben lassen, in kaltem Wasser sellwer löslich sind, dagegen sehr leicht, wenn dieses nur eine Spur Kali enthält, in Äther sieh gar nieht, in heissem Wasser mehr lösen, deren alkoholische Lösung von Blei-, Silber-, Queeksilber- und Kupfersalzen gefällt wird, die in alkalischer Lösung bei langem Koehen etwas Kupferoxyd zu Oxydul reduciren, sieh in Schwefelsäure lösen und mit Wasser fällbar sind, von Salpetersäure oxydirt werden, und auf Wasserzusatz einen weissen Niederschlag erzeugen, die mit einem Worte geradezu alle Eigenschaften des Süssholz-Glycyrrhizins zeigen, nur mit dem Unterschiede, dass ihr Geschmack nicht sogleich jene ekelhafte Süssigkeit hat, sondern anfangs bitterlich ist, und erst hinterher anhaltend kratzend süss wird.

Die Substanz klebt anfangs im Munde zusammen wie ein Harz. Sie reagirt sauer, enthält aber keine Spur Sehwefelsäure.

In wie weit diese Substanzen mit Glycyrrhizin übereinkommen, mögen die folgenden Analysen zeigen, die auf verschiedene Weise, und aus älterer und jüngerer Wurzel dargestellt sind. Sie waren bei 100° getroeknet.

```
I. 0.4535 Grm. Substanz gaben 1.022 Grm. CO<sub>2</sub> und 0.259 Grm. HO.
```

	0 2020	22	22	22	0 000	22	22	22	0 4.40	33	22	
III.	0.4515	22	27	99	0.9795	99	22	27	0.2436	97	22	
IV.	0.352		1000		0.7615				0.2025			

V. 0·3592 " " " 0·762 " " " 0·2072 " "

I nach c bereitet; II nach a; III nach a von anderer Wurzel; IV nach a von anderer Wurzel; V nach b.

In 100 Theilen:

		I.					11.	
		Berechnet:	Gefunden:				Berechnet: (Gefunden:
C36	— 216	- 61.7	- 61.5		C_{36}	- 216	— 59·7 —	- 59.6
H ₂₂	_ 22	- 6.3	- 6.3		H ₂₂	- 22	- 6.0 -	- 6.0
014	- 112	— 32·0	- 32.2		015.5	— 124	— 34·3 —	34.4
	350	— 100·0	— 100·0			362	— 100·0 —	- 100.0
			Gefunde	n:			v.	
			Gefunde III.				V. Berechnet: (
C ₃₆		Berechnet:		īv.				Gefunden:
0.0	216	Berechnet:	III.	1v. 59·0	C_3	₆ — 216	Bereehnet: (Gefunden: - 57·8
H ₂₂	216 22	Berechnet: - 59.0 — - 6.0 —	111. 59·1 —	1v. 59·0 6·4	$\mathrm{C_3}$	$\frac{6}{3} - \frac{216}{23}$	Berechnet: 6 - 57.6 -	Gefunden: - 57.8 - 6.4

Nach Lade's Untersuchung ist Glycyrrhizin $= C_{36}H_{22}O_{12} + 2HO$. Die analysirten Substanzen verhalten sich demnach wie Oxyde wasserfreien Glycyrrhizins mit Ausnahme des aus dem süssen Syrup b V abgeschiedenen, von dem ich jedoch bemerken muss, dass sein Geschmack kaum bitter war, und sich dem des wahren Glycyrrhizins am meisten näherte.

$$\begin{array}{c} C_{36}H_{22}O_{12} = S \ddot{u}ssholz\text{-}Glyeyrrhizin.}\\ II. \quad C_{36}H_{22}O_{14}\\ III. \quad C_{36}H_{22}O_{15\cdot5}\\ III. \ und \ IV. \quad C_{36}H_{22}O_{16}\\ V. \quad C_{36}H_{23}O_{17} \end{array}$$

Es ist möglich, dass in der frischen Wurzel, die mir bis jetzt noch nicht zu Gebote stand, wahres Glycyrrhizin enthalten ist, und dass sich dieses erst beim Trocknen und Liegen nach und nach in dieser Weise verändert hat.

Die süsse Flüssigkeit, deren ich oben unter b erwähnte, enthält ausser dem, unter der Analyse V genannten Glycyrrhizin noch viel Zueker und Kalk, dem das Glycyrrhizin überhaupt seine Lösliehkeit verdanken mag.

Sie wurde von dem Überschusse der SO3 mit kohlensaurem Baryt befreit, und die filtrirte Flüssigkeit wieder eingedampft.

Sie hatte dann die äusseren Eigenschaften des flüssigen Theiles des Bienenhonigs, seinen Geschmack und Geruch, gab natürlich sehr entschiedene Zucker-Reactionen und liess sich mit Hefe leicht in Gährung versetzen. Sie löste sieh in Alkohol, konnte aber weder zum Trocknen noch Krystallisiren gebracht werden. Bei langem Stehen an der Luft bekam dieser Syrup einen bitterliehen Geschmack.

Styphninsäure. Die bei der Behandlung der Wurzel mit Weingeist erhaltenen harzigen Rückstände gaben beim Oxydiren mit Salpetersäure neben Oxalsäure ziemlich viel Oxypikrinsäure.

Die Masse löst sieh mit dunkelrothbrauner Farbe, schäumt sehr stark beim Erwärmen, wird dann orangegelb, während sich ein Harz von derselben Farbe abscheidet.

Nach 1½ stündiger Einwirkung wurde abgegossen und abgedampft. Es schieden sieh beim Stehen schöne prismatische Krystalle aus, die mehrmals aus Alkohol umkrystallisirt wurden. Sie waren von gelblicher Farbe, bitterem Gesehmaeke, in Alkohol und Wasser löslich, in einer Glasröhre schnell erhitzt, verpufften sie und verbreiteten den Geruch nach Bittermandelöl und Blausäure. Aus einer Lösung in Kali schieden sieh bald schöne, orangerothe Prismen eines Kalisalzes ab.

Sie wurden unter der Luftpumpe getroeknet und mit vorgelegten Kupferspänen analysirt.

0.4078 Grm. Substanz gaben 0.4267 CO2 und 0.0687 HO.

				Berech.		Gef.
C_{12}		72		29.4	-	28.5
H_{3}	*******	3		1.2		1.8
N_3		42		17.2		W P
016		128	_	52.2	_	
		245	-	100.0		

Asche. Dieselbe wurde von Herrn Friedrich Bukeisen in meinem Laboratorium analysirt. Er fand sie bestehend aus:

	_		-	 	
Kali					15.76
Natron					3.78
Chlornatrium .					2.09
Kalk					20.87
Bittererde					13.37
Eisenoxyd					2.49
Manganoxydul.					Spuren.
Kieselsäure					4.85
Phosphorsäure					7.93
Sehwefelsäure.					
Kohlensäure .					8.60
Kohle und Sand					12.60
					101.22.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der Akademie der Wissenschaften</u> mathematisch-naturwissenschaftliche Klasse

Jahr/Year: 1855

Band/Volume: 15

Autor(en)/Author(s): Hlasiwetz Heinrich Hermann

Artikel/Article: Über die wurzel der Ononis spinosa. 142-168