Sitzungsberichte

Mathematisch-naturwissenschaftliche Klasse Abt. Il
Mathematische, Physikalische und Technische Wissenschaften

Sitzungsber. Abt. II (1998) 207: 71-82

© Osterreichische Akademie der Wissenschaften 1999
Printed in Austria

On Gauss-Polya’s Inequality
By

J. Pecarig, J. Sunde, and S.Varosanec

(Vorgelegt in der Sitzung der math.-nath. Klasse am 18. Juni 1998
durch das w. M. Peter Gruber)

Abstract

Let g,/ [a,6] — R be nonnegative nondecreasing functions such that
gand 4 have a continuous first derivative and g(a) = 4(a),g(b) = h(b).
Let p = (p1,2) be a pair of positive real numbers py, p, such that
ptp=1

a)Iff [a,6] — R be a nonnegative nondecreasing function, then for
ros <1

My (J 050 a’z"J B/ ) ﬂ") : J (M (5(4),4(4))) 1 2) o

holds, and for r, s > 1 the inequality is reversed. M
b) If f [4,b] — R is a nonnegative nonincreasing function then for

r <1 < s (1) holds and for » > 1 > s the inequality is reversed.

Similar results are derived for quasiarithmetic and logarithmic means.

Key words and phrases: Logarithmic mean, quasiarithmetic mean, Polya’s
inequality, weighted mean.
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1. Introduction

Gauss mentioned the following result in [2]:
If f is a nonnegative and decreasing function then
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Pélya and Szeg6 classical book “Problems and Theorems in Analysis, I”
[7] gives the following generalization and extension of Gauss’ inequality

2).

Theorem A. (Pilya’s inequality) Let a and b be nonnegative real numbers.
a) If f:10,00) — R isa nonnggative and decreasing function, then

(7 smsa) < (1= (55) ) | s

| ) )

whenever the integrals exist.
B If f:]0,1) — R isa nonnegative and increasing function, then

e N

X Jl s f(x) dx. (4)

0

Obviously, putting 4 = 0 and 4 = 2 in (3) we obtain Gauss’ inequality.
Recently Pecari¢ and VaroSanec [6] obtained a generalization.

Theotem B. Let f [a,b] — R be nonnegative and increasing, and let
x; |a,b] = R(i =1,...,n) be nonnegative increasing functions with a continuons
[first derzmtzye If piy(i=1,...,n) are positive real numbers such that
Yo l=1, then

Y
r(ﬁ(xf(f))lm> dt>ﬁ<J '(7) £(2) )Wi (5)

a \i=1

If xi(a) = O forall i =1,. .,nand of f is a decreasing function then the reverse
ineqrality holds.

The previous result is an extension of the Polya’s inequality. If we sub-
stitute in (5): #=2,p1 = py =2,a=0,b=1,g(x) = x**1 h(x) =

x?*! where u, > 0, we have (4).

In this paper we provide generalizations of Theorem B in a number of
directions. In Section 2 we first provide the inequality for weighted
means. We note that, as is suggested by notation for means, our result
extends to the case when the ordered pair (p1,p,) is replaced by an
n-tuple. We derive also a version of our theorem for higher derivatives.
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Section 4 treats some corresponding results when M is replaced by
quasiarithmetic mean. This can be done when the function involved
enjoys appropriate convexity properties. A second theorem in Section 4
allows one weight p; to be positive and the others negative.

Section 5 addresses the logarithmic mean.

2. Results Connected with Weighted Means

M }f] (4) denotes the weighted mean of order r and weights p =
1,.-.,pn) of a positive sequence 2 = (a1, . .., a,). The n-tuple p is of
PATRRRRY- p q ! plep
positive numbers p; with ) *1_; p; = 1. The mean is defined by

i=1

In the special cases » = —1,0, 1 we obtain respectively the familiar hat-
monic, geometric and arithmetic mean.

The following theotem, which is a simple consequence of Jensen’s
inequality for convex functions, is one of the most important inequalities
between means.

Theorem C. Ifa and p are positive n-tuplesand s < t,s5,¢ € R, then
M][f](a) < M}f] (a) for s5<t, (6)

wath equality if and only if a1 = = a,.

A well-known consequence of the above statement is the inequality
between arithmetic and geometric means. Previous results and refine-
ments can be found in [3].

The following theorem is the generalization of Theotrem B.

Theotem 1. Letg, b [a,b] — R be nonnegative nondecreasing functions such
that g and b have a continnons first derivative and g(a) = h(a), g(b) = h(b). Let
D = (p1, p2) beapair of positive real numbers p1, po such that py + =1

a) Iff |a,b] — R be anonnegative nondecreasing function, then for r,s < 1

b /
a

! ( j oo j 510 dt) < | (M, 500) sy
”)

holds, and for r,s > 1 the inequality is reversed.
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B Iff |a,b] — Risanonnegative nonincreasing functionthenforr < 1 < s (7)

holds and for r > 1 > s the inequality is reversed.

Proof : Let us suppose that r, s < 1 and fis nondecreasing, Using inequal-

ity (6) we obtain

([ oo sasoa)

< M) ( j £ /() d, j ¥(2) £(2) df)

b
- | g+ mep 0@
= ()M (5(b),5(b)) — f(a)

b

- M (1), h()) dF (7)

a

M3 (g(a), h(a))

< FOM (g(0),5(8)) — f (@) M} (g(a), h(a))

i Mg, /(1)

7MY (g(8),5(6)) — f(a >MJ3

+f (Mé”(go), W) F(0
_ Jb (M), 50)) £ (1) .

a

}(g(a), b(a))

)M} (g(a), b(a))

A similar proof applies in each of the other cases. []

Remark 1. In Theorem 1 we deal with two functions g and 4. Obviously

a similar result holds for # functions x1, .
conditions as g and A.

, %, which satisfy the same
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Remark 2. It is obvious that on substituting 7 = s = 0 into (7) we have
inequality (5) for # = 2. The result for r = s = 0 is given in [1].

In the following theorem we consider an inequality involving higher
derivatives.

Theotem 2. Let f [a,b] — R,x; [a,b] = R(Z=1,...,m) be nonnega-
tive functions with continsuous n-th derivatives such that x(”) , (= 1 ..y 712) are nonne-
gaz‘z'l/efzm:tz'om and p;, (i =1,...,m) be positive real numbem such that

Yim

=1.
a) If ( 1)~ ! F) s a nonnegative function, then for r, s < 1

M) (j ) f(2) j xU(8) £ (2) df)

(8)

b

<A+ [ (MG 5) )

a

holds, where
A= Syt ey
( i) = (M 9. ,xw(r)))“’> b
i
8 (a) = 5P (@) and xB (0) = O (0) forij € {1,...,m}  (9)

andk =0,...,n— 1, then

M (J X(2)f()db,. .., J x(0)f(2) df)

: " (10)
SL(M]E‘](M(t) x,,,(t))) £(2) .

Ifr, s > 1, then the inequalities (8) and (10) are reversed.
17) IF(=1)" £ isanonnegative function, thenfor r < 1 < s the inequalities (8 ) and
(10) hold andfor r > 1 > s they are reversed.
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Proof: a) Let r and s be less than 1. Integrating by part #-times and using (6),
we obtain

My (j (0 £() at, j =00 £ dr)

a

b b
< ml! (} 00 @)y, [ 050 dz)

a

= <”Z_)<—1>”‘“f<"*—“(f> imﬁ”(r))

£=0

b

a

- r MU Ger(2), -, () (1) £ (5) ar

( (1 )"—“ﬂ"—k—“(r)fp,-xf’ﬁ)m)
=0 i=1

J M}[f] Xl 1xm(t))(—1)(”—1)f(”)(t> dt
B (n)
A+ (M (1 (4), ,x,,,(z‘))) 1) dr.
We shall prove that A = 0if x;,7 =1,. ,m, satisfy (9).
Let us use notation A, = x( )(a) for £=0,1,...,n—1. Then
Z:” 1 bix; )( ) = Ag. Consider the k-th order derivative of function

? where y is an arbitrary function with £-th order derivative. First, there
exists function ¢ such that

(" =0l (5 s ).
ThlS follows by induction on 4. For &£ = 1 we have ( #) = py?~1y' =

¢£” (1,'). Suppose that proposition is valid for all ; < £+ 1. Then
using Leibniz’s rule we get

() = (et )@

£
_ AV NG PN
P/§=0<j)(y ) (")

b

—

IN

a

- (1)
= Z( )qﬁ[” (s )7
= ¢ (5 sy y*).
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Suppose that 5 # 0 and use the abbreviated notation M(#) for the
mean Ml[,](m (#)y ...y x,(#)). Then M*(£) = Y7, P;xi(#). The state-
ment “M® (a) = A ,@” will be proved by induction on 4. It is easy to
check for£=0and £ = 1.

Suppose it holds for all j < &£+ 1.Then

w (£+1)
(Z pixi( ))
=

m

ZP/ [I/l+1)< :‘(f)a""x/(kﬂ)(t))

f=a
¢[2+1)(A0’A1,. ‘)Ak+l)
(K gl
=S (e e A
J=0

+ o A0, A1, ADAk.
On the other hand, using (11) we get

(a7 (1)) ) =‘i</€>¢[’_”(i\4(a) M'(a), ., MV (a))
t=a ] ] ) ) *

/=0

x MUT(0) + g (M), M (a), ..., MP () M4

£
kN - —
= IZ( )¢/[ 40,44, Aj) A1 + gy
=0 \J
(AO)AM ’Ak)M(k—H)(ﬂ)'
Comparing these two results we obtain that M #+1)(4) = Ay, which is
enough to conclude that A = 0.

In the other cases the proof is similar, except in the case s = 0 which is
left to the reader. [

3. Applications

Now we will restrict our attention to the case when » = 0 and the x; are
power functions.

The case when 7z = 1.
Set: r = 0,n=1,a=0,b =1, x;(¢) = 7! in (8), where 7; > —% for
i=1,...,mp; >0and Z:”:U% = 1.We obtain that A = 0and

1 Hw (a-p»—i—l)l/})" ” 1 1/pi
T £ () df > Lo J 9P 1 (8) dt
J, e s> TREELTT (] ensoa)
(12)
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if f isa nondecreasing function. It is an improvement of Polya’s inequality
(4). Some other results related to this inequality can be found in [5] and
(8]
For example, combining (12) and the inequality
doat2> ] +2)"
=1 i=1
which follows from the inequality between arithmetic and geometric
means, we obtain
w 1 i
r T2, ((aps + 1) (@i + )

ptta £(f) dt >
0 sy = (1+224)(2+ 2% 4)

=

m 1 1/pi
X 7 £(2) dz‘) (13)
1I(]
The case when » = 2.

Set: 7 =0,n=2,a=0,b=1,x;(¢) = t?"*% in (8), where 4; > —]% for
i=1,...,mp;>0and L7, L = 1. After some simple calculation, we
obtain that A = 0 and inequaﬁ‘ty (13) holds if f is a concave function.
So inequality (13) applies not only for f nondecreasing, but also for f
concave.

4. Results for Quasiarithmetic Means

Definition 2. Let f be a monotone real function with inverse f™', p =

(pry--espu) =(pi)ya= (a1,...,a,) = (a;), be real n-tuples. The qua-
siarithmetic mean of #-tuple z is defined by

1 n

Mf(d,P) :f_l (P— Pif(@))a
=
where P, = >/

=

For p; > O,P,,lz 1, f(x) =x"(r #0) and f(x) =lnx(r =0) the
quasiarithmetic mean M(; p) is the weighted mean M (2) of order .
Theotem 3. Let p be a positive n-tuple, x; [a,b] = R(i=1,. ,n) be non-
negative functions with continuons first derivative such that x;(a) = x;(a), x;(b) =
xi(b),5,7=1,...,n

@) If p is a nonnggative nondecreasing function on a, b] and if f and g are convex
increasing or concave decreasing functions, then

w ([ woa)ip) = [ Mgestnimea o4

a ; a
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If f and g are concave increasing or convex decreasing functions, the inequality is reversed.
b) If  is a nonnegative nonincreasing function on |a, b, f convexc increasing or concave
decreasing function and g is concave increasing or convex decreasing, then (14 holds.
If f is concave increasing or convex decreasing function and g is convex: increasing or
concave decreasing, then (14) is reversed.

Proof: Suppose that ¢ is nondecreasing and f and g are convex func-
tions. We shall use integration by parts and the well-known Jensen
inequality for convex functions. The latter states that if (p;) is a positive
n-tuple and @; € I, then for every convex function f I — R we have

f(pi ZP) <5 p () (13)

We have

My ( (JI i ()p(2) df)l_;p) =/ (pi ; bif (J/ i (£)(2) dt))

" b b -
> Piz; i J X()p(r) dt = JPL <Z P/Xf(l‘)> ple) dr

i=1

" b "
=53 ple0l - [ 5 (Z p,»x,-u)) dol?)

Py Ja =1
1 n ) o b _ 1 n
> P_Z e — | &7 (P— (Z p,-g(x;(z‘))) dp(t)
) Ja " =1
1 n ) b
=5 28O0 — | My(xi(9))5.0) dep(2)
n =1 Ja
1 n []

=53 pis(De(?) b — M((x:(1)); )0 (1)

+ j M) p)pl) it = j M (o) e de. T

a

Theotem 4. Let x;,i =1, n, satisfy assumptions of Theorem 4 and let p be a
real n-tuple such that

>0, p <0 (=2, ,m, P,>0. (16)
a) If  is a nonnegative nonincreasing function on [a, b| and if f and g are concave

increasing or convex decreasing functions, then (14) holds, while if [ and g are convex
increasing or concave decreasing (14 is reversed.
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b) If  is a nonnegative nondecreasing function on a, b), f is convex: increasing or con-
cave decreasing and g concave increasing or convex: decreasing, then (14) holds.

If f is concave increasing or convex: decreasing and g is convex increasing or concave
decreasing, then (14) is reversed.

The proof is similat to that of Theorem 4. Instead of Jensen’s inequal-
ity, a reverse Jensen’s inequality [3, p. 6] is used: that is, if p; is real #-tuple
such that (16) holds, ¢, € I,i = 1,...,nand (1/P,) Y ", pia; € I, then
for every convex function f I — R (15) is reversed.

Remark 3. In Theorem 4 and 5 we deal with first derivatives. We can
state an analogous result for higher-order derivatives as in Section 2.

Remark 4. The assumption that p is a positive #-tuple in Theorem 4
can be weakened to p being a real #-tuple such that

k
0<> p<P, (1<k<n), P,>0
=1

and ([ x}(¢)p(#) dt), and (x;(2)),, # € |a, ] being monotone #-tuples.

In that case, we use Jensen-Steffenen’s inequality [3, p. 6]. instead of
Jensen’s in-equality in the proof.

InTheorem 5, the assumption on #-tuple p can be replaced by p being a
real z-tuple such that for some & € {1,...,m}

n

£
Y p<0(k<m) and > p <Ok > m)

i=1 i=k

and ([ xi(£)@(#) dt);, (xi(#));, ¢ € [a, 4] being monotone #-tuples.
We use the reverse Jensen-Steffensen’s inequality (see [3, p. 6] and [4]) in
the proof.

5. Results for Logarithmic Means

We define the logarithmic mean L, (x, y) of distinct positive numbers x, y

by
rl N 17
L.} x r—1,0
y—x r+1
N
Lixp)={ ! (L) =0
e \x¥
Iny—1
Iny —In x ,— 1
N y—x

and take L,(x, x) = x. The function r+—L,(x, ) is nondecreasing.
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It is easy to see that L1 (x, y) = *+2 and using method similar to that of
the previous theorems we obtain the following result.

Theotem 5. Let g, b [a, b) — R be nonnegative nondecreasing functions with
continnous first derivatives and g(a) = h(a), g(b) = h(b).
a) If f is a nonnegative increasing function on [a,b], andif rys <1, then

L([ d0soa |

a

b

b’(f)f(f)a’f) < | e 050 (10

a

b

a

If r, s > 1 then the reverse inequality holds.
) If f is a nonnegative nonincreasing function then for r < 1 < s (16) holds, and for
r > 1> s the reverse inequality holds.

Progf: Let fbe a nonincreasing functionand » < 1 < 5. Using F = —f,
integration by parts and inequalities between logarithmic means we get

I, (] s | 1050 )

a a

I
-

([ 00| sors0a) =3[ o+ naysora
() + BV + | 580 + 000 dF ()

NI—= NI- N -

b

(g() +2(2) f(A)]; + J L.(g(#), b(#)) dF(2)

a

(VAN

l

(&() +5(2) £(A)l, — Li(&(2), (1)) S (9,

|

b

+ | L0 = | Lo H)s

a a
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