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1. Introduction. The Main Results

Let C[[xy, - .,x,]] (briefly C[[x]], where x="(,. .,x,) is the vector
of indeterminates) be the ring of formal power series in # indeter-
minates xy,. .,x, with complex coefficients. We consider in this paper
formal power series transformations IF by which we understand auto-
morphisms F of C[[x]] which are continuous with respect to the order
topology (i.e., order presetving) and leave every element of the ground
field C fixed. It is well known that these automorphisms F are in 1—1
cortrespondence to the images F(x) = Ax + P(x) of x. Here A runs
through the matrices of GL (#, C), and P(x) is an »-tuple of formal
power series with ord(P) > 2. Moreover, these automorphisms form a
group I' under composition o which is, in the above mentioned picture,
represented by substitution of one #-tupel Ax + P(x) € C[[x]] into
another.

F is called #terable (embeddable), if there exists a family (FF,),ec in I' such
that

(T) F,oF,=Fp,,1,5€C,
(E) FqZF.
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(T') is nothing but the famous translation equation, (E ) is the embedding
condition. (F),ec is then cleatly a group with operation o, called #eration
(group) of F In general, such an iteration does not exist for a given F.

The problem of finding an embedding (iteration) of a selfmapping of a
given set can be studied in much more general situations and is one of the
main problems of iteration theoty (see e.g. [19], [20]). The above men-
tioned iteration problem in I' was studied in detail by several authors.
We refer the reader to the survey articles [9], [10], [11], [16], as well as to
(1), (2], [41-(7], [18].

In a series of papers ([12], [14], [15]) we investigated how iterable (and
also noniterable) power series tranformations are distributed locally in a
neighbourhood of a given F € T, where neighbourhood is understood in
the sense of the wesk topology (coefficientwise topology on C[[x]], resp.
I'). Now we ate interested in the same type of problems, but the neighbor-
hoods of the given F € T" are those in the socalled order topology (strong
topology).

The order topology on C[[x, . . ., x,]] is described by introducing the
sets

Un(®) := {¥ € C[[x]]jord(® — ¥) > N}

as the members of a basis of open neighborhoods of ® € C[[x]], where
N runs through N. This leads then to the product topology on the
space (C[[x]])", and by identifying F €' with F(x) = Ax + P(x) €
(Cl[x]])") and by restricting everything to I" we get the order topology
(strong topology) on I" This topology can be introduced by a metric, and
has therefore almost all good properties. The following basic results are
easy to prove.

Lemma 1. (7) The mapping from ' X I to T, defined by (F, G )+ F o G, is contin-
uons. (i2) The mapping from I to T, defined by F— F ' is continmons.

Proof: (3) If (v, ,v,) €N, let |v|:=v4+- -+v, and x":=
X7 .x". We consider FET as F(x) = Ax + P(x) € (C[[x]])" Let
a1, beys ) be the coefficients of x” in the &th components Fy, G
(FoG)e (1 <k<n) of F, G, Fog, respectively. Then ¢, is a (universal)
polynomial

Cky — ¢)k,u(ﬂ/,,ua[7/,pll S / S 7, 1 S |/J’| S |V|)

in the coefficients 4, , b, of Fand G, where1 </<n, |u| < |v|. Hence, if
for a certain N > 1,ord(F — F) > N, ord(G — G) > N, then we

have for the corresponding coefficients @, ,,, by, of F, G

Al = Al bl,p = bl,;m /=1, y 77 I/-‘L| <N,
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and therefore
Cky = ¢/é,u(d/,,u;[7/,u|1 </<n1< |,U'| < |V|) =
= d)k,u(‘;/,pv[;/,u“ </<nl1< |:u| < |VI) = E/e,u

for £#=1,...,n, provided that |[V|<N. From this we deduce
ord(Fo G — F 0 G) > N, establishing Lemma 1().

(ii)F*1 is represented by an #-tuple of the form Fl=A7"%+ Q(x), if
F(x) = Ax + P(x).The coefficientdy , of x” in Qp(x) is represented by
a (universal) function

dey = wk.V(Aaﬂ/,ull </< n2 < I:ul < |V|)?

which is a rational function in the elements of 4 € GL (#, C) and a poly-
nomial in 4 ,. Hence, if ord(F — F > N (N > 1), then, denoting
by ag,, d &, the coefficients of F and F- respectively, we find

dk,u = 'Q[}k,u(Aaﬂ/,ull </< 2 < |:ul < |V|) =
= e A, aull <1< n2 <|u| < |v|) =diy,

for£=1,...,nand |v| < N. Hence F+ F'is continuous in the order
topology. ]

Lemma 2. (7) (I', o) is a topological groz¢ n z‘/Je strong topology. (ii) For each
TET the conjugation er: T — T, ef(F) := T " oF o T is an isomorphism of the
topological group I

Progf: Immediate consequence of Lemma 1.

As can be seen from the sutvey articles [9], [10], [11], [16], a basic tool in
solving the iteration problem in I' are the socalled semicanonical forms
(briefly normal forms) of the elements of I' under conjugation. It is almost
obvious that iteration problems and their possible solutions are invariant
under conjugation. So we always may replace, for our purposes, a given F
by one of its semicanonical forms (or a set of formal power seties trans-
formations by their simultaneous conjugates under the same ¢7). We refer
the reader to the papers quoted above for details about normal forms and
their applications in solving the iteration problem.

We ate now ready to sketch the type of problems we will deal with. Let
F eI’ Under what conditions on F does there exist a neighbourhood
Un(F) of F (in the strong topology) consisting entitely of iterable (ot
entirely of noniterable) power series transformations? Under what condi-
tions on a given F is there in each neighbourhood of Fan iterable G# F,
or a noniterable G # F, or ate there in each neighbourhood both iterable
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and noniterable power series transformations? Is the limit of a convergent
series of iterable automorphisms always iterable?

In Section 2 we will discuss series in one indeterminate, and give a
rather complete answer. We can do this, since the semicanonical forms
in this case are well known. There are even strict trinomial normal forms
due to Scheinber ({7]) which we will also use in one place.

The main difference between the weak and the strong topology — as far
as our investigations are concerned-, seems to lie in the fact that there are
power series F(3) = pz +¢,3°+ - (they are indeed the nonembeddable
ones) with the property that they have strong neighborhoods which
consist of noniterable series. In the weak topology one can prove (in-
dependently of the number of indeterminates) that in each (weak)
neighbourhood of any given F € I there are iterable automorphisms G,
different from F

In Section 2 we will also show that in the 1-dimensional case the limit
of each convergent sequence of iterable series is iterable. The problem
remains open in higher dimensions. In the weak topology a convergent
sequence of iterable seties need not have an iterable limit, not even in
dimension 1. These results concerning the distribution with respect to
the weak topology are proved in the papers [12], [14] and [15] quoted
above.

Our techniques yield some insight to a more detailed structure of con-
vergent sequences (in the 1-dimensional case). Roughly speaking, if the
limit F of a convergent sequence (F)),cny of formal power series is of the
form Fg)=pz+e3°+  wherea) pisnotaroot of 1, orb) F() is not
iterable, or ¢) FR)=z+eg" +- -, but Fz)#z, then almost all Fs
(> ly) are conjugate to F. Also, if almost all F/s are iterable and p in the
limit Fg) = pz+ez°+  is different from 1, the same is true.

In the higher-dimensional case of the automorphism group I'
of C[[xl, . x,,]] (#>1) our results are far from complete. Let
FeT, F(x) =Ax+ P(x), where A € GL(»,C), ord(P) > 2, and
where p1, , p, are the eigenvalues of A. Denote by R the set of rela-
tions pp = p'  pir, 1 < k< nwithv,€ Novy+-  +1,>2. If Ris
finite (possibly empty) then we can show that for an iterable [a noniterable]
F there exists a strong neighbourhood Un(F ) which contains only itera-
ble [noniterable] automorhphisms. If R is finite, then a convergent
sequence (F(;))cn of iterable [noniterable] F;)’s has an iterable [noniter-
able] limit.

If no assumptions on the eigenvalues are imposed then we can only
prove that if FE€I is iterable [noniterable], then there is a sequence
(Fy)en of iterable [noniterable] power series transformations conver-
ging to Fand such that F# F for all /. If F € I has a neighbourhood
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U(F) such that each G€ U(F)\{F} is iterable [noniterable], then F is
jterable [noniterable]. In this result we atre able to replace the exceptional
set {F} by a somewhat larger set, but unfortunately up to now not
by a ‘big’ set. Eventually, we will prove a result on semicanonical forms
Ny of the members F;y of a convergent sequence (F(;))en in I', but
weaker than similar results in Section 2 for the case #=1. Namely,
there is /o € N such that for /> /4, each F can be represented as F()y =

( oN(/) o V(y, where N is a semicanonical form of Fy), N

=limy, Ny and V=lim;_,,Vy exist and lim/_, o F,=
17 "' o N o I/ with the semicanonical form N.

2. Power Series Transformations in One Indeterminate
2.1. Problems of Distribution

We recall (see [12]) some basic results on semicanonical forms of power
series in one indeterminate and on the connection of iterability and not-
mal forms. By E we denote the group of complex roots of 1.

Lemma 3. (/) If F(z)=pg —}—fzz +- p eC \ E, then F is conjugate to
its linear part pz. (@) If F (x)=pz+ez"+ - ,p€E\{1}, and i

=exp(2mic|B) with o, B € Z, 3> 1, ged(a, B) =1, then F is conjugate to a
Je;;zz'czmom'm/ form

N) =pz+ Yo"

v>1

which is, in general, not uniquely deterniined. If pz is a semicanonical form of T, then pg
is the only one. If on the other hand, F has a semicanonical form N(g)=
Pzt vy, P L where vy > 1, Puyp1 70, then for each Jemzmﬂoﬂzm/form
M(z) of F the series ]\/I(z) — pz has order vy B + 1L @)IfF )=z +dg" +-

u//Je/e £>2, dp#0, then eac/J conjugate T ""oF o T of F has the same form
(T~ oFoT)({) e+ withe, #0. [ |

Lemmad. () Assumethat pF#1and F(z)=p g + 0274+ - Then Fis iterable
if and only if it is conjugate to its linear part p3. Hence, if p € C'\E, then F is always
iterable. If p € E\{1}, then F is iterable iffeach semzm/wmm/ / forme is linear (iffat least
one semicanonical form is linear). @) If F(g) = 3 +de 3 f+. withk>2 d,#0,

then F is iterable. ]

From these lemmas we deduce a survey on the local distribution of
formal series with respect to embeddability in the strong topology.
Theorems 1 and 2 are already contained in [12], but for reasons of
completeness we reproduce them here. For Theorem 2 we will give a
new, farther reaching, proof too.
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Theorem 1. (/) If F(3) = p3 + Xu526,8", where p € C\E, then each sufficiently
small neghbonrhood of F (in the order topology) contains only iterable series. (i) If
F)=xg+- , then each sufficiently small neighbourhood of F consists entirely of itera-
bleseries. Gii) IFFR) = pz + -, with p € E\{1}, isiterable, then in each neighbor-
hood of F there are iterable power series, different from F, as well as noniterable series. (iv)
IFR)=pz+- ,withp € E\{1}, isnoniterable, then cach sufficiently small neigh-
bourhood of F consists entirely of noniterable series.

Progf: (i) Take the neighbourhood Uj(F). Then each G € Uy(F') starts with
pg, where p € C'\ E. Hence, according to Lemma 4(i), G is iterable.

(i) Here each G in Uj(F) has the form g+ -, so is either the identity
(hence iterable) or is iterable by Lemma 4 (i1).

(iii) Suppose now that F(z) = pz +¢,3°  where p€ E\{1}, is iterable.
p can be represented as p = exp(Zma/ﬂ) witha, BE€Z,>1, gcd(a B)
=1 According to Lemma 4(i) there is a T € F TR)=3+h +-
such that (T ~'oFo T)(z) = pz. As we know (see Section 1), we may as-
sume for our purposes that F(z) = pz. Consider first the sequence (F,)en
with F,(z) = pz + 2" for n € N. According to Lemmas 3 and 4, these
F, are in semicanonical form and are not linear and also not linearizable.
Then, by Lemma 4, they ate not iterable. Moreover, we have
lim,_, oo F,(3) = F(z) = pg. This shows that each neighbourhood of F
contains a seties which is not iterable.

Consider now a sequence S wen in T, where S,(z) = g + g, and
®ren is strictly increasing and, furthermore g™ is not an add1t10nal
monomial with respect to the relation p =p, i.e. £,%1 (mod ), for
cach 7. If we calculate the series G, := S, ' o F 0 5, for the normal form
F(z) = pg, we find

Gi(z) = PR+ (p/e,, - P)zk’” +

where p* — p # 0. Hence G,# F for each 7, lim,_,o.G,(z) = F(z), and
G, = S”—l o F oS, is iterable since it is conjugate to F Therefore we have
constructed an iterable power series G, different from F, in each neigh-
bourhood of F.

(iv) The last case refers to a series F(g)=pz -+ 4. ., where
p € E\{1}, and F is not iterable. Again, we may assume that F is already
a semicanonical form. So, if p=expmia/F), o, BEZ, B>1,
ged(a, B) =1, then by Lemmas 3 and 4

F(R) = px+duprig + ) dypaaz™

v>y



Distribution of Formal Power Series 103

where Vg > 1and dy,g+1 # 0. Then each series G € U, g41 (F) is of the
form

G(R) = px +duprd + D gux”
u>v8+1

If we want to construct a semicanonical form of G, then, as is well
known from the theory of normal forms, we can achieve this through
conjugation by a transformation

V) =+ Y. g
u>vofB+1

since the (1o 8 +1)-jet of G is already in semicanonical form with respect
to p (‘Formales Ausfegen) cf. [3], ch. 3). This means that

(V7' 0GoV)(R) = px+ dupra™ 4 D dupraz™,

V>

and since dy,p4+1 # 0, IV 'oGol/and G are not iterable, according to
Lemma 4. |

Similar techniques allow us to show that in the case of one indetermi-
nate each convergent sequence of iterable power series has an iterable
limit (Theorem 1 shows that a sequence of noniterable series may have
an iterable limit).

Theorem 2.  Let (F) ey be a convergent sequence of iterable power series transforna-
tions in one indeterminate, and let F = lim,,_, o F). Then Fis iterable.

Proof: We assume that the limit F of (F)en is FQ)=pg +ez° + - If
p€ C'\ E or p=1, then F is iterable by Lemma 4. So it suffices to con-
sider the case p€ E\ {1}. Assume p=exp(2mia/f), o, BEZ, [>1,
ged(a, B) =1. Then there is an index / such that for />4 F/(3) =
0

pz+ 52/ 2+ -, and each F,is iterable by assumption. We assume now
that F is not iterable. Take any normal form of F:

(T o FoT)(R) = px + Y _ dypsig"™"

v2>1

From Lemma 4 we know that there is an index vy > 1 such that

(T-l oFo T) (z) = pz + dm,ﬂ-}-leﬁ_H + Z duﬂ+1zlfﬁ+1,

2420

where dy,p41 # 0. Instead of F and (F)),en we may consider T 'oFoT
and the sequence (T’ “'oF0 T)en of itetable transformations. Now, there
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is an /; >/ such that for each /> /

(T o FjoT)(R) = px+ dupiz™ ™ + D dugh,
‘u,>l/()[7)+1

with dy g1 7# 0.We have already shown in the proof of Theorem 1 that F,
is not iterable which is a contradiction to the assumption. Hence F must
be iterable. n

There is a different proof of Theorem 2 which, moreover, gives more
information on convergent sequences of iterable power series. We will
present it here. We again consider the case p € E\{1}, p = exp(2mict/3),
and use the same notation.

Theorem 2, alternative proof. Since each F; is iterable, it is of the form
Fi(z) = T YpT)(3)) for/ >k, where T)(3) = 5 + r§ )z +  Theser-
ies (T/),eN is, in general, not uniquely determined by F,. However, there is
for each Fa unique normalized T}, namely normalized by the condition

T(z) =x+ », 4"

>l
nE1(mod 3)
Le,by?,=0if 4 =1 (mod f) (see [13]). The coefficients th/ ) are universal
functions

= d)l-t(p; [g/)a s 7[£{))7

rational in p and polynomial in the coefficients c() of F. We see that

L’g/), ,f(/) are the same as ¢,. .,¢, for /> L), hence gbu(p,

(/ ,éD) = ¢u(p;c2,  ,eu) for p<mand /> L¢n). This means that
llm/_,Do 'jﬁ T exists, and T(x) =g+ Xy>24% Hence (see Section 1,
Lemma 1)

FR) = lim T/ (6T(0) = T (oT(&),
and F is iterable. [ |

This proof shows in addition that, in the case under consideration,
Fy=T;YpT)(g)) for />4, where lim,_o T;= Texists and F(g) =
limy o T7(pT,(2)) = T~ (5T()).

Similar results hold in other cases. As a first result we present.

Theorem 3. Let (F)) e bea convergent sequence of iterable series Fy, let F = limy,_,
and assume that F(z)=pz+ , where p # 1. Then, for sufficiently large (! > L),
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there excists a sequence (1), , T/(3) =3+, suoh that

a) limyo T;= T(T(z)—z+~ ) exists,
by Fiz) = T (pT,()),
) FR)=T" (PT(%))

Proof: We already gave the proof for the case where p€ E\ {1}. As-
sume now that p € C'\E. It is obvious that for / >/ F,(3) = pz+
)zz + According to Lemma 3 there are transformations
I/ ViR) =2+ Yso v{)z#, such that F)(z) = V77 (p1//(3)). The
V/ s are umque in fact, the1r coefficients v/ are universal functions
= Y. (p; fg), , E{)), rational in p, polynomial in cg/),. ,fg). To

each m > 1 thereisan L(m) such that cg) = ¢y, for2 < p <mand /> L{n).
Hence l)l = u(p; cg ), 'O )y = Yu(pye2y - yen) forp=2,. . m,if
/> L{m). This means again that lim;,,, ;=17 exists and F =
lim,_, F; = V_l(pV(fz)) |

2.2. Convergent Sequences

Theorem 3 leads to the question whether in the case of power series trans-
formations in one indeterminate more details can be derived about the
structure of sequences (F)en in I' which converge in the order topology.
Let F be the limit of (F))en. If, e.g., F(g) = pg, where p € E\ {1} (more
generally, if F is iterable and has a multiplier p € E\{1}), then we have
already seen that F is the limit of a sequence of iterable seties G,, G;#F,
and also the limit of a sequence of noniterable ones. Hence in this case we
cannot expect to find more details about the structure of sequences con-
verging to F. The same happens if F(y) =g. But if p€ E\{1}, Fg)=
pz+- ,and Fisnoniterable, or in the case where F(z) = g + iz + -
with d # 0 for some £> 2, we will show a result about the sequences
(F))sen, converging to F, which is very similar to Theorem 3. For this
purpose we need the trinomial normal forms of Scheinberg ([17]).

Theorem 4. Let (F)),cn be a convergent sequence, lim,_, o, F;= F, and F(z) =
g+d'+ , where n>2, (/,,7&0 Let Ni)=3+ +[7z2" ' be the
trinomial normal form of F, N =8~" oF oS, with some SG)=z+- €L (which
implies a=d,#0). Then there exists an index ly €N and a sequence
(T/)/>, e, T)(x)=x+ - and a solution T, TR)=g+- ,of F=
T 'oNo TJ‘Z/L‘/J that Olimy—oe T)=T, and G) F; = T,_] o No Ty, foral
/ Z /0
In particilar, for! > by, all Fy’s are conugate to F.

Proof: There is an /y such that, for /> /y, F/(3) =g + d,3"+ dz 122
Z/_L>2[} dﬁ % 1fF(Z) =X + dn z "+ [{2;1 122” l+ Z/J>2/l N{ For Fand
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each F), />/, there exist transformations T, T(g)=g+- and
T, Tfg) =g+ -, such that
(TT'oFoT)(z) =(T;'oF0T) =g +ag" + 67,

witha =d,. A reformulation of the proof of Proposmon 61in [17] tells us,
how spec1ﬁc solutions of these Schrdder type equations T~ o Fo T =
N, T;" oF;0T; = N canbe constructed. In fact, thisT has the follow-
ing structure.

T(z) =z + 12{2 + + f/fﬁ”—l + Ztll+vzn+y

v>1
where #,, is a certain polynomial

t,u = Pu(dm du—l—l, . 7du+u—1)

for2<p<n—1, while, for v >1, #,, , is a certain polynomial

by = Pn+l/(dm dn—i—la ce ad2n—1 ) d2m . ,d2/l+1/—1)'

(2, may be chosen as 0, which we do) Similatly,

n— / I
TR)=g+nut+  +hag '+ A
v>1
where

fft/) =1 =P,u(d/n ditty - - ,d//+u—1)
for2<p<n—1,/ =0,and for v >1

/ /
/(1-21/ PIH—V(dIH d,,+1, v >d2n—1 ) dz(,/, ). >d2(/2|—z/*1)'

Since lim, _, oo F;= F, we deduce lim,_, o, T;= T. Moreovet, for /> ,
F,and F have the same trinomial normal form. u

An analogue of Theorem 4 holds true in the case of convergent
sequences (F);en whose limit is not iterable. Hence F is of the form
>4 _szz 4+ where pe E\{1}, say p =exp2mic)), o, BEZ, B>1,
ged(a, ) =1, and F is not linearizable.

Theorem 5. Let (F)),e n C I be a convergent sequence with noniterable lineit F. Then
there is an by and a sequence (1)) />4, Such that

(@) limy_ o V/ 1V excists, V/(z)—z—l— J)=z+ ,and
(iiy F=1"1"oNol/,F, = TYoNoV, forl> by,

where N is the Scheinberg trinomial ﬂomm/ /form of F.

Progf: Thete is an /; such that for all /> /y F, is not iterable. Otherwise we
would have a subsequence of iterable seties of (F)),e n, converging to F,
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and Theorem 2 would imply that Fis also iterable. If , is sufficiently large,
then for/ >/,

F(z) =pz+eoz*+  and

/
Fi(z) = px + 2% +

where p = exp(2mic/B), o, f € Z, > 1, ged(a, B) = 1. We consider now
the sequence (Fé )/en- From Section 1it follows that lim/ . F;” = F#
Furthermore FP=g+--., FA(z) =z4+  for />l If J is large
enough, then we also have

‘F‘B(Z) :z_,_d”zu_'_ +d2/1—1z2”—1 4 dezﬂy
©w>2n

Fl()=z+d3"+ +durz” '+ 402",

w>2n

where 7> 2, n—1is 2 multiple of 3, and d, 7 0. Theorem 4 gives us the
existence of transformations T and T, />/y, such that FP =
T~ o Nyo T,F = T, o Ny o Tj,/> ly,and lim; o, T = T, where
Ny may be taken as the Scheinberg trinomial normal form of F ﬂ,

Noz) =z +a" +6x", a 0.
Here we apply Theorem 9 in [17] which states that also
F=T"'"oNyoT, FF=T,'0N;oT,

for />4, N, being an appropriate iterative root of order B of Nj,
with multiplier p. If N is the trinomial normal form of N
(cf. [17], Prop. 10), then S™'o N oS = N; and consequently F =
($oT)'oNo(SoT),and F; = (S0 T)) " o No(SoT,) for/>l.
Putting 1":=80T, V;:=S0T, we also have lim,_, ;=1
and F=1""oNol] F, = V,_1 oNol/ for />4, which proves
Theorem 5. |

Corollary. Let (F;),c be a convergent sequence, lim; .o F; = F, F(z) =
Pz + ez’ + Let us matke one of the following assumptions:

a)y p¢ E, or

by Fz) =x+ag’+ ,mFR)#z 0
¢) p€ E\ {1}, all F,are iterable for large 1, or
d) Fisnot iterable.
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Then there excists an b € N and a sequence (), of power series transformations
Si®)=zx+ suchthat limy_ ., S existsand F; = 571 oFolS,foralll > I,
|

3. The Local Distribution of Iterable Power Series
Transformations in Higher Dimensions

The distribution problem (explained in Section 1) for automorphisms of
Cllxt, - .., x,)] withn > 20 farhas only partial answers. The main reason
for this is that the semi-canonical forms ate not so well understood as for
n=1. Nevertheless some of our results may be worth mentioning, For the
details about semi-canonical forms and about the iteration problem we
again quote the survey papers [9], [10], [11], [16], where the reader may find
references to the original articles.

Theorem 6. Let FeT, F(x)= Ax+ P(x), where AE€GL(n,C),
ord (P) > 2. Denote by py, . ., p, the eigenvalues of A. Let R be the set of all
relations of the form

Pe=p{ .0

Jork=1,....n, v € Ny, v,>0, |v| > 2. W assume that R is finite (possibly
enmpt)). Then, if Fis iterable, there is a neighbourhood U of Fin the order topology such that
each G € Uls iterable. If F is noniterable, then there is a neighbourhood U of F such that
each G € U is noniterable.

Proof: According to Section 1 we may assume that Fisin its semicanonical
form. The finiteness of ‘R means that

F(x) = Jc+ P(),

where [ is in Jordan normal form and P(x) is a polynomial. More pre-
cisely, 2 monomial x”, |v| > 2, in the £th component Pg(x) of P may
have a nonzero coefficient ¢, only if

Y

pe=pi'" Py

holds. These monomials are called additional (resonance) monomials for py, with
respectfo pr, . ., p,. If N € N is sufficiently large, then each power series
transformation F € Un/(F) has the form

F (x) = Jx + P(x) + R (x),

where ord (R ) > N(> deg(P)). It is well known in the theory of nor-
mal forms that we can obtain a semicanonical form of F by the following
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procedure (‘Formales Ausfegen, cf. [3]): There is a transformation § € I,
S(x) = x + S(x), with ord(S) > N(> deg(P)), such that N :=
§71 o F o S is the semicanonical form of F This S operates on the N-
jet Jx + P(x) of F as identity. Hence N (x) = F (x), since there are no
additional monomials of degree > N. Hence each F € Un(F) is conju-
gate to F; and therefore iterable iff F is. This proves Theorem 6. [ |

The assumption that the set R of relations p, = p' . p%, v; >0,
|v| > 2, be finite is fulfilled in the important special case of the socalled
contractions, where 0 < |p,| < 1lfork=1,...,n, see [8].

If we do not make any assumption on the set R of multiplicative rela-
tions for the eigenvalues, then we only can prove a result on sequences
converging to .

Theorem 7. If F € I is iteruble [noniterable), then there is a sequence (F () yepy in T
convergent to F such that each F 4y is iterable [noniterable} and F ) # F forall .

Proof: We start with a lemma which will also be useful later.

Lemma5. IfF €T, F(x) = Ax + P(x), and ifnotall eigenvalues of A are equal
10, thenforeach N € N thereexistsk € [1, n] andv € N suchthat |v| > N andx"
is not an additional monomial for pg with respect to the eigenvalues py, . ., p, of A.

Proof: If the assertion of Lemma 5 is false, then there is a number Ny € N
such that for each £ € [1, 7] and each v € N{ with |v| > Nj the relation

Y

pe=pi --p,
holds. In particular, if M is large enough, then we have

pe = pY!
for each £, or pi =1 for each £ and each sufficiently large L. Write
op = 7™ withr>0and 0< @ < 1. Then a = afb, whetea, be Z,b>1,
ged@, ) =1, r="1and Lajb € Z for all sufficiently large L. We choose L so
that ged(L, b)) =1, hence gcd(La, 4 =1 which means b=1, if a#0, or
a=0, since La/b € Z. But sincea € Z,0< afb <1, only a=0 is possible,
and p,=1for £=1,. ., contradicting the assumption on the eigen-
values of 4. This proves Lemma 5. [ |

We turn now to the proof of Theorem 7. Assume first that all eigenva-
lues of A are equal to 1. Then each G € Uy (I) has lineat part 4 and
hence is iterable. Now assume that not all eigenvalues of A4 are equal to
1. Without loss of generality we take F as semicanonical form

F(x) = Jx + N(x).
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Let NeN, N>1. Accotding to Lemma 5 there exists & € [1,#] and
v € Nf such that |v| > N and x" is st an additional monomial for p,,
We fix these £ and v; moreover we may select them so that v is minimal
in the lexicographical ordering of monomials, and £ is minimal with
respect to the chosen |v|. Then write F(x) as

F(x) = Joe + N7 () + N7 (),

where NV *(x) consists of all additional monomials x* with || <|v|
(coefficients 0 admitted), while N **(x) consists of the additional mono-
mials x* with || > |v|, all in their appropriate place. Let S be the trans-
formation

be1
Sx) =x+ | p |

6/%;1

and form G:=S'oFoS. Then § operates on the (V| —1)-jet
Jx 4+ N7(x) of F§&) as identity. A detailed calculation shows that the
coefficient of x” in the £th component G, &) of Gis p;' . p)" — pe;
hence #0, since x” is not an additional monomial for pe. We omit the
details here, but indicate only that the minimality of &£ and v is crucial in
the arguments, as well as the fact that substitution of additional mono-
mials into additional monomials yields only additional monomials
(see [8]).

Summarizing, we obtain G € Un(F), G# F, and G is conjugate to E
Hence G is iterable iff F is iterable. Since N was atbitrary, Theorem 7 is
proved. |

If the semicanonical form F € T'is not linearizable, then F has a mininal
additional monomial (with a nonzero coefficient) which is an invariant of
the conjugacy class of F. This minimal additional monomial x* is
defined as follows:

1) |v| =: mp is minimal for all additional monomials x* which appear in
F with nonzero coefficient.

2) Then take the minimal index £ for which x” with || = is an addi-
tional monomial for p, , with nonzero coefficient in F.

3) Among those x” satisfying 1) and 2) take the monomial x* which
is minimal in the lexicographical order having a nonzero coefficient

in E
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This minimal additional monomial is the same for all semicanonical
forms of F. Furthermore (see [4], [5]), we know that FF € I’ has an analytic
iteration iff it is iterable at all. From the theory of analytic iterations (see
[9], [10], {16]) we know that each analytic iteration of F is associated with a
certain choice A=(ln py, ..., 1n p,) of the logarithms of the eigenvalues
p1,- +»Puof A in F(x) = Ax + P(x), and F has an analytic iteration
with respect to a given A iff it has a socalled smooth normal form with
respect to A. Using these notions we can prove

Theorem 8. Lez F € 1" be not linearizable and assume that the minimal additional
monomial of F is not smooth with respect to any choice A= (In py,. .,ln p,) of the
logarithms of the eigenvalues py, ., p, of F. Then there is a neighbonrhood of F which
contains only noniterable automorpbisms.

Proof: We may assume that F is already a semicanonical form, and that
N > 2is the degree of its minimal additional monomial. Let G € Un(F).
Then G has the same N-jet as I, and hence the structure of a semicano-
nical form mod ord N. We know already that there is a transformation
S € I' acting on the N-jet of G as identity and transforming Ginto a semi-
canonical form H. Assume that G is analytically iterable. Then it has a
smooth normal form H with respect to a certain choice A° of the loga-
rithms. But H and H have the same minimal additional monomial, and
obviously Hand F have the same mlmmal additional monomial, too. So
this would be smooth with respect to A°, a contradiction. [ |

Theorem 1(iv) is a special case of Theorem 8, as can easily be checked.

One may ask, whether a power series transformation F eI sur-
rounded by a large enough set of iterable [noniterable] transformations
is iterable [noniterable] itself. A (rather weak) answer to this equation is

Theorem 9. Let F €T, and UF ) be a strong neighbourhood of F such that each
G € U(F) \ {F} is iterable [noniterable). Then F is iterable [noniterable) itself.

Proof. If the linear part of F has only 1 as eigenvalue, then F is iterable. So
assume that F(x) = Ax + P(x), where A has an eigenvalue different
from 1. Then, according to Lemma 5, for each N € N there is £ € [1, #]
and v € Njj with |v| > N such that x” is not an additional monomial
for pg (01, -5 Pu bemg the eigenvalues of A). Then the argument in the
proof of Theorem 7 gives us § € I such that ™' o Fo § € Un/(F) and
S0 FoS # (F). Hence G:= 57" o FoJS is iterable iff F is iterable.
This finishes the proof. n

Here are some possibilities to weaken the assumptions of Theorem 9.
E.g, in order to deduce the iterability of F it is sufficient to assume
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the existence of a countable set C in Upn(F) such that all
G € Un(F)\({F} UC) ate iterable. Another possibility is to assume
the iterability of all G in Un(F)\({F} U D), where D is defined as the
set of all H € Un(F) such that for each semicanonical form N of F the
conjugate H™' o N o H also is a semicanonical form. The set D can be
uncountable, though still ‘thin’and of a very special nature. We omit the
proofs of these remarks.

The information about the structure of convergent sequences in the
higher-dimensional case is also not very satisfactory. Our technique of
semicanonical forms yields

Theorem 10. Le# (F o ) Jen bea convergent sequence in 1’ with F = lim; .0 Fy).
Then there is ly€ N such that for 1> 1y there is a transformation Ty €T,
Toye)=x+- -, such that

(l) hm/_, 00 T(/) = Té’XZ.IfI,
b) T(_/)1 o Fy o T\ isa semicanonical form for | > Ly, and

) T~ Yo Fo T isasemicanonical  forms.

Proof: Finding a semicanonical form N of F means solving the functional
equation FFo T=To N forTand N, where we have the conditions

) Te)=x+- -,and

2) N(x) = Jx + N(x), where Jis a Jordan normal form and in the &th
component N (x) of N (x) a monomial x” can have a nonzero co-
efficient dg , only if the relation p, = p;"  p¥ holds, where p;  p,
are the eigenvalues of [, v=(vy,...,v,), [V| > 2.

This Schroder type equation always has a solution, but in general the
solution is not unique. We can enforce uniqueness, if we require (see [8])
that the coefficient £, of x” in the A4th component of T (x)=x+- be0
if pp = p7 ..pv holds (i.e. if x” is an additional monomial for pg).
Doing so, we find that each coefficient # , is a polynomial in the coeffi-
cientsa; ) of Fwith/=1,. ., n,|A| <|v|, being rationalin py,. ., p, The
coefficients of the semicanonical form N are then also uniquely deter-
mined, in fact, the coefficient g4 ,, of an additional monomial x” in the
component N (x) is a polynomial in the coefficients @\ of F with
/=1,. .,nand || <|v|. Applying this construction to F and F() for
/2y (for which F(y € U, (F)), we find transformations T, />y, of
F( to a semicanonical form N, such that lim/~oo Ty =T and
lim; .o Ny = N exist, N is a semicanonical form of F; and the Theo-
rem is proved. n
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