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Abstract
The simple concept of solid packing and solid covering was introduced by L. Fejes 
Töth [5], In this paper we consider the following example. We place 2n congruent 
non-overlapping circles with their centres at the vertices of the Archimedean tiling 
(3, 3, 3, n) such that each circle touches 4 others. The system is supplemented by two 
additional circles, each touching n circles of the system. It will be proved that this 
packing is solid, for all n > 4.
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1. Introduction

A set of open (closed) discs is said to form a packing (covering) in the 
Euclidean or hyperbolic plane or on the unit sphere if each point of 
the plane or the sphere belongs to at most (at least) one disc of the set. 
The literature on the subject of packing and covering in two and 
higher dimensions is very extensive; see e.g., [2], [3], [4], [6 ] and the 
references given there.

The most frequently employed method of measuring the efficiency 
of a packing or covering is to determine their density. As usual, the 
density of a system of sets on the unit sphere S2 is defined as the ratio 
of the total area of the sets to the surface area of the sphere. To give
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an example, we consider an equilateral triangle of side 2 r(r < tt/3) 
and the system of three circles of radius r whose centres lie on the 
vertices of the triangle. The density of any packing of at least three 
circles with radius r is not greater than the area of the part of the 
triangle covered by the three circles, divided by the area of the whole 
triangle.

A new aspect of packing and covering offered itself when L. Fejes 
Toth introduced the notion of solidity (see [5]). In the Euclidean or 
hyperbolic plane or on the unit sphere, a packing (covering) of discs 
is said to be solid if no finite number of its members can be 
rearranged so as to form, together with the rest of the members, a 
packing (covering) not congruent to the original one. A solid packing 
of n equal circles on the sphere is always a densest packing of n equal 
circles, and similarly for coverings. Note, however, that the converse 
is not true. Solid sets of circles were investigated by several authors 
(see, e.g. [1], [5], [7], [9], [10], [11]).

In this paper we prove the solidity of an infinite set of packings of 
circles associated with the Archimedean tilings (3,3,3,/?), for any 
n > 4. A. Heppes suggested to the author to consider these packings. 
The proof makes use of some recent results of the author ([8 ]).

2. Definitions and Notation

Let r\ < r2 < < rn be given positive numbers such that

n + r H< |  (l)

A circle on S2 whose radius belongs to the set

^ = { > 'b ' '2 , ,r„}

will be said to be admissible. The packings we will consider, are 
saturated, which means that the packing leaves no free room for an 
additional circle of admissible size without overlapping. A saturated 
packing of admissible circles consists of more than three circles and 
generates a Delaunay triangulation of the sphere. The construction of 
this triangulation is described in detail in a paper by Molnär [12]. The 
result is an edge-to-edge tiling of S2 with the following properties:

(i) The faces of the tiling are triangles whose vertices are the 
centres of the circles,

(ii) each triangle is contained in an open hemisphere, and
(iii) no circle intersects or touches the opposite side of the triangle.
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We assign a positive weight w(rj) to the circle C, of radius r,-
n  w(r() >  0  (2 )

and call the product
a(Cj)w(ri) = K(n) = AT, (3)

the weighted area of C,, where a(C,-) =  27r(l — cos r() is the ordinary
area of C( .

In an open hemisphere, let t be a triangle spanned by the centres 
0 \ , 0 2, O3 of three non-overlapping circles C \ , C2, C3 with radii r i , r2 
and r3 , respectively. Let us assume that none o f the circles intersects 
(but possibly touches) the opposite side o f  t. We call such a triple of 
circles a normal triple and the associated triangle t a normal triangle. 
For a normal triple of circles with radii r \ ,r2, r3 we define the 
function

3

Kla lE
s = ^ k * r  w

where a,- is the angle of t at Kj is the weighted area of C,, and A 
denotes the area of t. We call 6 the weighted density of the three 
circles in t, or in short, the density in t.

Let (ft =  { r i,. , r,,} be a set of radii less than 7r /2 , and let a
positive weight be assigned to each element of 01. We denote the set 
of these assigned weights by W  For a given set 01 and an assigned 
set W ,  we consider all normal triples consisting of circles with radii 
from and the associated normal triangles. The triangles of 
maximal density 6 will be called extremal triangles defined by the 
sets ^  and i f f  Observe that there can be several types of extremal 
triangles, as the solution of this problem is possibly not unique.

A normal triangle t is said to be tight if the three circles touch each 
other. A normal triangle is said to be stretched if one of the circles 
touches the two others and the opposite side of the triangle t. If the 
three circles with radii r \ : r2 :r?, touch each other, then the weighted 
density in t will be denoted by

D{ru r2 ,r3).
In the next section we shall use the concept of weighted density to 

prove the solidity of a specified set of packings of circles.

3. A Solid Packing of Circles Associated with (3 ,3 ,3 ,n)

The Archimedean tiling (3 ,3 ,3 ,« ) consists of 2n congruent equi­
lateral triangles and 2  congruent regular n-gons, three triangles and
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an n-gon meeting at each vertex. The corresponding polyhedron is 
a regular n-sided antiprism with all edges of the same length (see 
Fig. 1).

Let 2r denote the edge-length of the tiling. We consider the 
packing 0 '  of circles with radius r centred at the vertices, so that each 
circle of 0 '  touches four others. For n = 3 and 4, this arrangement is 
solid, since it forms the unique densest packing of 6  and 8 equal 
circles, respectively (see [6 ], pp. 114, 164). For n > 5, however, the 
packing 0 '  is definitely non-solid: Two circles with radius r can be 
placed in the n-gons of the tiling without overlapping a circle of 0 '  
This suggests to add to 0 '  two circles of radius R, say, concentric 
with the n-gons of the tiling, each touching n circles of 0 '  We denote 
this supplemented packing by 0 .

Theorem  1. The packing 0  is solid, for all n > 4.

Proof: We decompose both n-gons of (3 ,3 ,3 , rc) into n congruent 
isosceles triangles with the angle ^  at the apex. This way, we get the 
Delaunay tiling generated by 0  consisting of 2n congruent isosceles 
triangles Tt and 2n congruent equilateral triangles Te, with two 
adjacent triangles T, and three of type Te around each vertex of 
(3,3,3,/?). Let a  be the interior angle of Te and ß /2  the angles at the 
base of Tj. Then we have

.  ol 1

cos — =  cos r sin —, (5)
n 2

3a  +  ß  = 27T

and, as a consequence,
7T

2  cos a  +  1 =  2  cos -  . (6 )
n
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From

/ x  ß  7T 3a  7T
cos(7? +  r) =  cot — co t— =  —cot —  c o t-  (7)

v '  2 72 2  n w
in conjunction with (6 ) we obtain

/(I — 2  cos a ) (1 +  cos a )  , x
cos(/? +  r) =  8

y (3 +  2  cos a )  (1 — cos a)

Because a  > 7r / 3 , we see from (7) that

R + r < \ .  (9)

Observe that

tan(/? +  r) =  J —---- ------------------------r
Y (1 — 2  cos a) (1 +  cos a)

is a strictly decreasing function of a. If n is given, then a, 
be calculated from (6 ), (5) and (7) (or (10)).

Lemma. The parameters a  and r are strictly decreasing functions, 
and R +  r and R are strictly increasing functions o f n. Furthermore

7r 7T
lim a  =  - ,  lim r =  0 , lim7? =  -  ( 1 1 )

as n —> oo.

The proof is obvious.
For n =  4, the packing 0 '  is solid. Two additional circles of radius 

R must have their centres at the midpoints of the quadrangles of 
(3, 3 ,3 ,4). Thus 0  is solid as well.

For n — 5, we find from (6 ), (5) and (7) that a  = ~  and r = R — 
= arccos( 1/(2 sin |) )  which is the inradius of the regular tiling {5,3}. 
Because the incircles of {5,3} form the only densest packing of 12 
congruent circles, the packing 0  is solid for n — 5.

In order to prove the solidity of 0> for n > 6 , we make use of two 
theorems established in [8 ].

Theorem 2 (Theorem 1 in [8 ]). Let r\ <  r2 < < rn be positive
numbers less than 7r / 2 . A positive weight vv,(r() is assigned to circles 
o f radius rj, for  i — 1, ,n  I f  r, < rj we assume that the weighted 
areas satisfy

K (n )<K {r j)  (n < r j ). (12)

(10) 

r and R can
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Consider a normal triple o f circles with radii from  {r j ,. , rn}, and
let t be the corresponding normal triangle. Then the weighted density 
in t satisfies

In the case o f  equality, the triangle t is either tight or stretched.

Theorem  3 (Theorem 3 in [8 ]). Consider a saturated packing of  
circles with radii from  {rj, ., rn}, where r\ +  rn < 7r / 2 . Let us 
assume that a positive weight can be assigned to each radius such 
that the following three conditions are satisfied:

(i) I f  rj <  rj, the weighted areas satisfy

(ii) the Delaunay decomposition o f  the packing consists o f  extremal 
triangles',

(iii) there is (up to congruence) only one edge-to-edge tiling com­
posed o f  extremal tight triangles such that the associated sectors 
fit together to form complete circles.

Then the packing is solid.

Theorem 2 states that S(r \ ,. , r„) represents the density in an
extremal triangle.

The packing g? consists of circles with two radii r < R, where 
R +  r <  7r/ 2  (see (9)). The tiling generated by &  is composed of two 
types of tight triangles, Te and 7}, associated with the triple (r, r, r) 
and (r, r,R), respectively. We assign to circles of radius r the weight 
w(r) =  1 , and to circles of radius R such a weight w(R) =  w that

K(n) < *(/>); (14)

D(r, r , r) = D(r, r,R). (15)

For the weighted densities we find

and

rV nN (2tt — 3or)(l - c o s r ) + ^ ( l  - c o s R ) w
D (r ’ r ’ R) = -----------------27T----^ ^ -----------------^  — (3 a; — 7rj 

It is easy to show that condition (15) is equivalent to
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We proceed to prove that for n >  6

(18)

(19)

(20)

where the first factor is negative, as a  >  7t/3, and the second factor is 
positive, as a  < I n / 5. Thus (20) and (18) are proved. From (18) one 
sees that the weight w calculated by means of (17) satisfies the 
requirement (14) on the weighted areas.

The density in an extremal triangle is given by

Condition (ii) of Theorem 3 will be satisfied if we can show that for 
n > 6

The values of D(r, r, r) and D (r,R ,R)  in Table 1 are calculated from 
(16) and formulae (23) and (24) below (values indicated are truncated 
to six decimal places).

Using (5), D(r, r, r), as given by (16), can be expressed in terms of 
a. It can be shown that D is a strictly decreasing function of a  for 
7t/3 < a  <  7T. Thus D(r, r, r) is a strictly decreasing function of r for
0 < r < 7t / 3 . Table 1 shows that w(R) < 1  for 6  <  n < 10 (and at 
least for n < 19). Taken together, these two facts imply that for

As R > 7t/ 3  when n > 10, the configuration (R,R,R)  does not exist 
in this case.

D(r, r, r) > max{D (r:R ,R ),D (R ,R ,R )} . (21)

n < 10

D(r, r, r) > D(R,R,R). (22)
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Table 1

n r R w(R) ß('V M -) D(r, R, R)

6 0.477658 0.688898 0.998549 0.899279 0.895250
7 0.418723 0.795515 0.988075 0.901243 0.891481
8 0.372012 0.880738 0.977712 0.902537 0.888267
9 0.334264 0.949982 0.968924 0.903435 0.886059

10 0.303220 1.007132 0.961707 0.904083 0.884702
11 0.277296 1.054982 0.955792 0.904565 0.883969
12 0.255353 1.095560 0.950909 0.904934 0.883672
13 0.236559 1.130365 0.946836 0.905222 0.883673
14 0.220294 1.160520 0.943402 0.905451 0.883873
15 0.206088 1.186880 0.940476 0.905636 0.884205
16 0.193579 1.210110 0.937961 0.905788 0.884622
17 0.182483 1.230726 0.935778 0.905914 0.885090
18 0.172577 1.249141 0.933868 0.906020 0.885589
19 0.163681 1.265685 0.932185 0.906110 0.886102

We now consider three mutually touching circles with radii r, R , R 
and the triangle determined by their centres. Let 7  denote the angles 
at the base and <5 the angle at the apex. Then we have

cos 7  =  cot(R +  r)tani?, (23)

x • 6sin R = sm(R +  r )s in -

and

D(r, R,R)  =  2 7 ( 1  -  cos« )*  +  * ( ! _ - cosr) _
2 7  +  0  —  7V

One takes from Table 1 that for 6  <  n <  19

D (r ,r , r )> D (r ,R ,R ) .  (25)

Making use of (23) and (24) it is easy to show that

lim D (r, R,R)  =  =  lim D(r, r, r),
v  12

as n —> 0 0 .  In the following we shall prove that (25) remains true for 
all n > 2 0 .

By (17), the term (1 — cos^)w  in (24) can be expressed by
1 — cos r. Referring to (16) and making some elementary transforma­
tions one finds that (25) is equivalent to the inequality

(3a — 6) — — 6 7  ( a  — < 0 .  (26)
n V 3/
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In view of (11) and (23) we have

lim 6 = 7T

as n —> oo. Therefore, both terms on the left side of (26) tend to zero, 
as n —» oo. This fact suggests to examine, instead of (26), the 
equivalent inequality

-  6 7  ^ r 1  <  0. (27)sin - s in -  sin -/i n n
Let «o >  6  be a given integer, and let ao <  7r/ 2  be such that

2  cos « 0  +  1 = 2  cos — . (28)
n0

From (6 ) and (28) it follows that for n > no

^ < a < a 0, (29)

which we shall use repeatedly. Our object is to find to the left side of 
(27) an upper bound depending only on no and ao.

Considering the second term in (27) and writing (R +  r) — r for R 
we obtain

1 — tan r cot(R +  r) , x
cot (/? +  r) tan R =  ---------------- -------- . 30

v '  1 +  tan r tan (/? +  r) v ’

From (5) it follows that

tan r =  V l  — 2 cos a. (31)

The combination of (10), (23), (30) and (31) yields

1 -  (1 — 2 cosa ) \ / ( l  +  co sot)/2
cos 7  = ---------------- . ---------------- . (32)

1 +  -y/2 / ( 1  +  cos a)

Because the numerator is strictly decreasing and the denominator is
strictly increasing in a, and a  > 7t / 3 , one concludes that

7  >  arccos------------------------- — 7= =  arccos(2v/3 — 3). (33)
1 + 2 /V 3

From (6 ) we get

2 tt (3  \ / l  \
sin -  =  1 -  cos -  =  I -  +  cos a  J I -  — cos a  I , (34)
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whence

Hence

7r  ol ~ ~  ol —  ~
sin2— =  (3 +  2 cos a )s in ----- - s i n—— (35)

n v ! 2  2  v '

a  -  ? 2  1
—  ----------Z i > ------- (36)
sin fj (3 +  2cos ce)sin^21 2 s in ^ -i

Combining (29), (33) and (36) we finally get

arccos(2\/3 -  3) =  A, (37)
s n r j  s in ^ f i

for all n >  n 0.
Turning to the first term in (27), it will be convenient to write

3 o ^  =  3 o - .  +  . - |  
sin -  sin -  sin -11 n n

From (29) and (35) in conjunction with the fact that is strictly
increasing on (0 , 7t / 2 ) we obtain

^  ( « 0  -  § ) / 2  (39)

s ln » yj(3, +  2 c o s « o )V 3  -  f ) / 2)
for all n > no.

Starting from (23) we have

7T — 6 7T sin / sin2 7?
— — arcsin ——-------- r =  arcsim / 1  —/■% ---- ^  U i V J l U  . . . ---- 1 ~ .

2  2  sin(7? +  r) V sin (/? +  r)

/cot2 /? — cot2(R +  r) 
arcsinW-

1 +  cot2 R 

where

r, x x cot(/? +  r)co tr +  1
cot/? =  cot((/? +  r) -  r) = ----  --------------- }—r --r .

co tr — cot(Ä +  r)

After some calculation we find

7T — 6

=  arcsin" c ö t T 7 + T ’ (4 0 )
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where

F  =  — cot2 (7? +  r) +  2 cot (R +  r)cot r +  1.

Using (10) and (31), F can be expressed by

2  cos2ck +  cos a  +  1 /—----------- — . .
F = ------------ ------------- +  V 2 (c o sc * + l) , (41)

which is a strictly decreasing function of a. Since

1 1 — 2  cos a  , x
(42)

cot2 r +  1 2  — 2  cos a

and a  > 7r / 3 , from (40), (41) and (42) we obtain

7T — Ö
< arcsinA/(l +  \ /3 ) (1 — 2 cos a). (43)

z, v

In view of

7T 7r
1 — 2  cos ce <  1 — 2  cos ao = 2 — 2 cos — < 2  — 2  cos —

V 3 -  1

no 6 y/3 -)- 1

the term under the square root is less than 1. To find a more
convenient bound to (it — 6) / 2  we observe that

, x arcsin x , .
m = (4 4 )

is strictly increasing on (0, 1). As a < «o, from (43) we infer that

< f ( \ j (1 +  V ^)(l -  2cosq!o)^ \ j { \  +  \ /3 ) (1 -  2  cos a).

(45)

The combination of (45) and (34) yields

7T — 8 4 \ / r + \ 7 3
<

y/3 +  2  cos ao
f ( j ( \  + V 3)(l - 2 c o s a 0) j  =  C (46)

for all n >  /i0.
From (38) we conclude that

3 a - 6
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where ß , C and /  are defined by (39), (46) and (44). Combining (37) 
and (47) we finally obtain for n > no that

-  6 7 ^ ^  < (B +  C) -7^  -  A. (48) 
sin -  sin -  sin -  sin -f-'i /) Jil1 n >h)

Taking no =  20, we obtain by (28)

cto =  1.06135 < 1.064.

Using (37), (39) and (46) one finds
7T

(B +  C) -  A < -0 .07604 . <  0. (49)
s i n | j

In view of (48) this shows that (27) and (26) are true for n > 20. 
Hence (25) holds for n > 20 als well. Summarizing we can state that 
condition (ii) of Theorem 3 is satisfied for all n > 6 .

Let us now turn to condition (iii) of Theorem 3. We have proved 
that Te (equilateral) and Tj (isosceles) are the only types of extremal 
tight triangles. We have

271- 27r

T < “ < T  (50)
for the angle a  of Te. Thus an edge-to-edge tiling consisting of copies 
of Te and 7} must contain triangles of type Tj, n of them fitting
together to form a regular n-gon. The angle at the base of Tj is
7T — 3 a /2 . Referring to (50), it is easy to show that the equation

ka  +  /(2n — 3 a) =  2ir

has no other solution in non-negative integers k, I than k =  3, I =  1. 
Hence 2 adjacent copies of Tj and 3 copies of Te meet at each base 
vertex of Tj. This implies that the only tiling satisfying condition (iii) 
is congruent to the Delaunay triangulation generated by the original 
packing This completes the proof of Theorem 1. □
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