371

base esperimentale. Un dubbio solo potrebbe sorgere ed è se i gas erano chimicamente puri. — Esso può venire rimosso solo facendo un' analisi elementare dei gas adoperati, ed io non avrei mancato di questa precauzione se fossi attualmente fornito dei mezzi a tale scopo, però tutte le avvertenze avute nella preparazione dei gas e di cui feci parola m' assicurano sufficientemente della loro purezza.

Die Krystallformen einiger chemischer Verbindungen.

Von Dr. Adolf Weiss.

Ausgeführt im k. k. physikalischen und k. k. polytechnischen Institute in Wien.

(Vorgelegt in der Sitzung am 21. Juli 1859.)

(Mit I Tafel.)

Die nachfolgenden Messungen wurden zum grössten Theile in dem k. k. physikalischen Institute, einige aber auch im Laboratorium des k. k. polytechnischen Institutes durchgeführt, und zwar an letzterem mittelst eines Reflexionsgoniometers, welcher das Ablesen einer Minute gestattet.

Im k. k. physikalischen Institute geschah die Messung an einem Örtling'schen Instrumente, welches an zwei Nonien noch 10 Secunden genau ablesen lässt, indess wurden auch hier die Winkel nur auf ganze Minuten angegeben, theils um eine Gleichförmigkeit mit den Daten des anderen Goniometers herzustellen, theils auch, weil bei Messungen derartiger Substanzen eine Genauigkeit und Sicherheit der Winkel, welche 10 Secunden erreicht, wohl nicht leicht verbürgt werden kann.

Den Herren Professoren Schrötter, Redtenbacher, Gottlieb, Bauer und Hornig, welche die in vorliegender Arbeit gemessenen Substanzen mir zur Untersuchung zu überlassen die Güte hatten, spreche ich hier dafür meinen Dank aus.

Zum Schlusse sage ich auch meinem verehrten Freunde und Collegen Herrn Dr. V. v. Lang den besten Dank für die mir bei dieser Arbeit so oft in Rath und That geleistete Unterstützung.

372 Weiss.

1. Unterschwefelsaures Kali. KO, S2O5.

Krystalle aus dem Laboratorium des Herrn Prof. Schrötter.

Diese Krystalle wurden schon früher von Heeren 1) als rhombisch beschrieben, und zwar als Combinationen eines rhombischen Prisma's $(p=a:b:\infty c)$ mit Abstumpfung der stumpfen und scharfen Seitenkanten durch $(a=a:\infty b:\infty c)$ und $(b=b:\infty a:\infty c)$, einer Zuschärfung der letzteren durch die Flächen $\binom{p}{3}=a:\frac{1}{3}b:\infty c)$, der Endfläche $(c=c:\infty a:\infty b)$ und einer sechsflächigen Zuspitzung durch die Flächen des Rhombenoktaëders (o=a:b:c) und eines zweiten Paares $(q^2=b:2c:\infty a)$. Hierbei verhält sich a:b:c=0.5785:1:0.3723.

Rammelsberg²) bemerkt hierzu, dass, da die Flächen o und q^2 genau gleiche Neigung gegen die Axe (c) haben, die Krystalle ein sechsgliedriges Ansehen erhalten.

In der That fand Dr. V. v. Lang bei seinen Untersuchungen über die Orientirung der optischen Elasticitäts-Axen in Krystallen des rhombischen Systems, dass die Krystalle der genannten Substanz sich wie optisch einaxige verhalten und daher wirklich hexagonal sind, was auch durch meine nachfolgenden neueren Messungen bestätigt wird.

Hexagonal: Halbaxe der sechsseitigen Pyramide zur Seite der Basis = 0.6467:1.

Die Krystalle sind Combinationen des Dirrhomboëders (100) und (122), des dazu gehörigen Prisma's (21T), des zweiten Prisma's (10T) und der Endflächen (111). (Fig. 1.)

Die beobachteten Flächen sind also:

$$(100)$$
, $(\overline{1}22)$, $(21\overline{1})$, $(10\overline{1})$, (111) ,

und die Kantenwinkel:

	beobachtet von		
gerechnet	Weiss	Heeren	
$(2\overline{1}\overline{1}) \ (11\overline{2}) = 60^{\circ} \ 0^{\circ}$	59° 58'	60° 6'	
$(2\overline{11}) (10\overline{1}) = 30 0$	30 2	$ \begin{cases} 30 & 3 \\ 30 & 3 \\ 29 & 54 \end{cases} $	

¹⁾ Poggendorff's Annalen VII, 75.

²⁾ Krystallographische Chemie, S. 70.

	beoba	ichtet von
gereehnet	Weiss	Heeren
(100) (111) =	36° 45'	36° 40' 36 20
$(100) (2\overline{11}) = 53^{\circ} 15'$		$\begin{array}{ccc} (53 & 22 \\ 53 & 22 \end{array}$
$(100) (2\overline{1}2) = 34 48$	34 44	34 - 36
$(100) (1\overline{1}0) = 58 \ 57$		
$(100) (1\overline{2}1) = 72 \ 36$	72 40	

Die doppelten Winkelangaben von Heeren beziehen sich auf die von ihm verschieden angenommenen Winkel.

Die von Heeren untersuchten Krystalle waren in der Richtung der Symmetrieaxe verlängert, bei den von mir untersuchten aber traten die Prismenflächen sehr untergeordnet auf. Optischer Charakter: positiv.

2. Chromsaures Ammoniak.

Krystalle aus dem Laboratorium des Herrn Prof. Hornig in Wien.

Monoklinoëdrisch.

$$a:b:c = 1.0221:1:1.7654$$

 $ac = 93^{\circ} 13'.$

Beobachtete Flächen:

Die Krystalle sind durch das Vorherrschen der schiefen Endfläche (001) tafelförmig ausgebildet (Fig. 2); die beobachteten und gerechneten Kantenwinkel sind:

gereehnet	beobaehtet	
(101) (001) =	57°	31'
$(101) (00\overline{1}) = 122^{\circ} 29'$	122	30
(011) (001) =	60	26
(011) (010) = 29 34	29	46
$(011) (01\overline{1}) = 59 32$		
(011)(101) = 74 38		
(111) (001) =	66	0
$(111) (00\overline{1}) = 114 0$	113	54
(111) (010) = 49 14	49	8
(111) (101) = 40 46		
(111) (011) = 39 46		

gereehnet	beobachtet
$(111) \ (01\overline{1}) = 68^{\circ} \ 27'$	
$(11\overline{1}) (001) = 110 7$	110° 8'
$(11\overline{1}) (00\overline{1}) = 69 53$	69 51
$(11\overline{1}) (010) = 47 50$	47 49
$(11\overline{1}) (101) = 68 20$	
$(11\overline{1}) (011) = 65 32$	65 - 29
$(11\overline{1}) (01\overline{1}) = 41 7$	
$(11\bar{1}) (111) = 44 9$	
$(11\overline{1}) (1\overline{1}\overline{1}) = 84 20$	

Die Krystalle sind durchscheinende, oft fast durchsichtige, hell ziegelroth gefärbte Blättchen, welche beinahe immer auf mannigfache Weise in einander verwachsen sind. Die Flächen sind sehr schön ausgebildet, nur die (001) Eudflächen oft stark gebogen.

3. Doppelt chromsaures Ammoniak. AmO, 2CrO₃.

Krystalle aus dem Laboratorium des Herrn Prof. Horning in Wien.

Monoklinoëdrisch.

$$a:b:c = 0.9181:1:0.4974$$

 $ac = 91° 1'$

Beobachtete Flächen:

gerech	net		beoba	chte	t
		Weis	s		Brooke
(110) (100) =	4	2° 3	33'		
$(110) (1\overline{1}0) = 85^{\circ}$	6				
(110) $(\bar{1}10) = 94$ 5	4				
(101) (100) = 60 4	6				
(101) (110) = 68 - 5	5 6	9	2		
$(\bar{1}01) (\bar{1}00) = 62 2$	1				
$(\bar{1}01)(\bar{1}10) =$	7	0	1	69°	50' (340 : c)
(101) (101) =	5	7	3	57	$29 \ (a : c)$
(121) (100) = 68 2	2				
(121)(101) = 41	0 4	1 2	0.		
$(121) (\overline{1}01) = 65 4$	6 6	5 4	9	66	$0 \ (p : c)$
(121)(110) = 44 - 1	4 4	4 2	0	44	$13 \ (^340^{'}:p)$
$(121) (\bar{1}10) = 80$	0				
$(121) (1\overline{2}1) = 82$	0			81	$52 \ (p:p)$

Da die Winkel (101), (100) und (T01) (T00) sich nur um 1° 30′ von einander unterscheiden und die Messungen derselben wegen der schlechten Beschaffenheit der Flächen nicht mit grosser Sicherheit auszuführen waren, so könnte man, obige Differenz vernachlässigend, die Krystalle allenfalls als rhombisch betrachten, wenn nicht der Combinationshabitus ganz auf das monoklinoëdrische System hinweisen würde; indem die Fläche (121) nämlich blos als Hemipyramide vorkommt und die Fläche (T01) stets mehr entwickelt als (101) auftritt.

Die Winkelangaben Brooke's beziehen sich ebenfalls auf Krystalle von zweifach chromsaurem Ammoniak, deren Zusammensetzung (AmO, 2CrO₃?) aber zweifelhaft ist. Da die angeführten Winkel gut übereinstimmen, so dürften meine Krystalle wohl mit den von Brooke gemessenen identisch sein.

Für die letzteren Krystalle ist aber in Rammelsberg's kryst. Chemie p. 189 eine andere Flächenbezeichnung angenommen, und man findet aus der Übereinstimmung der gemessenen Winkel

a = 101 p = 121 c = 101 $^{3}/_{4}o' = 110$

Nur für die Winkelangabe Brooke's

$$c^2 r' = 1010 58'$$

findet sich kein entsprechender unter meinen Winkeln.

Die Krystalle sind meist sehr verzogen.

Farbe: blutroth.

4. Mellithsäure.

Krystalle, dargestellt von Herrn Prof. Bauer im Laboratorium des Herrn Prof. Schrötter.

Kleine, durchsichtige, farblose Nadeln in vierseitig prismatischen Säulen krystallisirend, deren Enden durch eine auf die stumpfen Seitenkanten aufgesetzte Endfläche zugeschärft erscheinen. Die Bestimmung der Neigung der letzteren Fläche zu den Prismenflächen war aber wegen ihrer schlechten Beschaffenheit nicht möglich.

376 Weiss.

Die spitzen Seitenkanten des Prisma's sind bisweilen durch eine Pinakoidfläche weggenommen.

Die beobachtete Prismenzone ergab:

	gerechnet	beobachtet		
(110)	$(100) = 56^{\circ}10^{\circ}$	56° 0'		
(110)	$(1\overline{1}0)$	112 19		
(110)	$(\bar{1}10) = 67 41$	67 35		

5. Jod-Nicotin.

Krystalle aus dem Laboratorium des Herrn Prof. Redtenbacher.

Die Krystalle sind kleine, meist vierseitige dunkel carmoisinrothfarbige Nadeln, welche stark metallisch glänzen und fast immer in Büscheln zusammengewachsen sind.

Es konnte blos die der Längenaxe parallele Zone gemessen werden, deren Flächen sehr gut spiegelten. Die stumpfen Seitenkanten dieser Zone sind bisweilen durch eine schmale Fläche abgestumpft. Auch scheinen die Enden durch zwei auf die stumpfen Seitenkanten aufgesetzte Flächen zugeschärft zu werden.

Die beobachtete Zone gibt:

$$\underbrace{\begin{array}{ccc}
\text{gerechnet} & \text{beobachtet} \\
(110) \ (\bar{1}10) = & & 51^{\circ} \ 5' \\
(110) \ (1\bar{1}0) = 128^{\circ} \ 55' & 128 \ 49
\end{array}}$$

6. Rohrzucker-Chlornatrium.

Krystalle aus Herrn Prof. Schrötter's Laboratorium.

Triklinoëdrisch. (Fig. 4.) Beobachtete Flächen:

$$(100)$$
, (010) , (110) , $(\overline{1}10)$, (101) , $(\overline{1}01)$.

Obwohl in der Zone [(101), (T01)] die Winkel (101), (100) und (101), (T00) einander gleich gefunden wurden, und die Neigung der Zonen [(101) (T01)] zu [(110) (T10)] aus den der Rechnung zu Grunde liegenden Winkeln gleich 89° 26' sich ergab, was für das physikalisch bedeutungslose diklinoëdrische System sprechen würde, wurde doch die nachfolgende Berechnung mit

Benützung der obigen gleichen Winkel unter der Voraussetzung eines triklinoëdrischen Axen-Systems durchgeführt:

,	gerechnet		beobachtet
(100) (010) =	76°	29'	76° 19'
(110)(100) =	43	45	43 43
(110) (010) =	32	44	32 - 25
$(\bar{1}10) (\bar{1}00) =$	1		63 46
$(\bar{1}10) (010) =$			39 45
(101)(100) =			50 56
$(101) (\bar{1}01) =$	78	8	77 34
(101) (010) =	81	58	82 5
(101)(110) =	62	34	62 - 53
$(101) (\bar{1}10) =$	106	35	
$(\bar{1}01) (010) =$			98 2
$(\bar{1}01)(110) =$	117	26	
$(\overline{1}01)(\overline{1}10) =$	73	25	

Die Krystalle sind farblos, die Flächen rauh und nicht besonders spiegelnd.

7. Santonin-Natron. NaO,
$$C_{30}$$
 H_{18} O_6 + HO + 7 aq.

Krystalle aus dem Laboratorium des Herrn Prof. Gottlieb in Gratz.

Rhombisch.

$$a:b:c=1:0.5898:0.3414.$$

Die Krystalle sind Combinationen eines Prisma's (110) mit dem Doma (101) und dem Brachipinakoid (100). (Fig. 5.)

Die beobachteten Flächen sind daher folgende:

		geree	hnet	Ŀ	eoba	chtet
(110)	(100)	== 59°	28'		60°	5 1
(110)	$(\overline{1}10)$	= 61	4			
(101)	(100)	= 71	9		70	58
(101)	(T01)	=			37	43
(101)	(110)	=			80	33

Die Krystalle sind von Heldt¹) als rhombische Prismen beschrieben worden, von ungefähr 141° mit Abstumpfung der

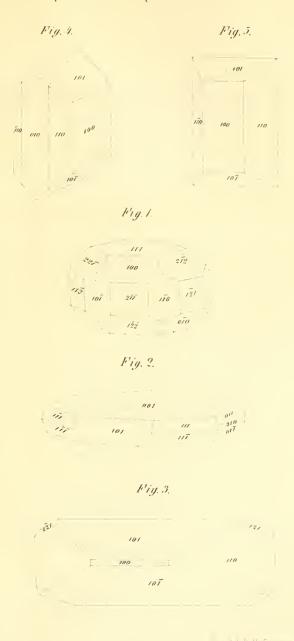
¹⁾ Heldt. Annal. d. Ch. und Pharm. 63, 26.

378 We is s. Die Krystallformen einiger chemischer Verbindungen.

scharfen Seitenkanten und einer auf diese aufgesetzten Zuschärfung von etwa 102°.

Die Flächen der Zone [(110) (100)] sind parallel der Axe *a* gestreift.

Die Ehene der optischen Axen ist parallel der Längenrichtung der Krystalle und es ist die erste Mittellinie senkrecht auf die Fläche (100).


Der optische Charakter innerhalb des spitzen Winkels der optischen Axen ist negativ, daher das Schema der Elasticitätsaxen (a b c).

Dispersion sehr bedeutend.

Der scheinbare Winkel der optischen Axen gemessen in Luft beträgt eirea 53°, wobei der Axenwinkel für Roth kleiner ist als für Violet.

Die Curvensysteme, besonders die Axenpunkte erscheinen im Polarisationsmikroskope, vorzüglich bei etwas dickeren Krystallen eigenthümlich gestört, vielleicht in Folge von Lamellarpolarisation in Folge ausgezeichneter Spaltbarkeit nach (100), senkrecht zur ersten Mittellinie.

A. Weiss. Die Krystallformen einiger ehem. Verb.

Sitzungsb.d.k. Akad d.W. math naturw. CLXXXVII. Bd. Nº 19. 1859.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der Akademie der</u> Wissenschaften mathematisch-naturwissenschaftliche Klasse

Jahr/Year: 1859

Band/Volume: 37

Autor(en)/Author(s): Weiss Gustav Adolf

Artikel/Article: Die Krystallformen einiger chemischer Verbindungen.

(Mit1 Tafel). 371-378