## Chemische Analyse der Jodquelle zu Roy, nächst Freistadt in Schlesien.

Von Dr. Pharmaciae Josef Barber. 1)

(Ausgeführt im ehem. Laboratorium des Hrn. Prof. Dr. Jos. Redtenbacher.)
(Vorgelegt in der Sitzung am 8. Juli 1869.)

Vor einigen Jahren wurde auf den Besitzungen des Herrn Baron von Böss, in der Nähe von Roy, nächst Freistadt in Schlesien, als man auf Kohlen schürste, in einer Tiese von etwa 80 Klaster eine Salzsoole entdeckt; das h. k. k. Finanzministerium übertrug dem Herrn Pros. Dr. J. Redtenbacher die vorläusige Untersuchung derselben, und gestattete, auf dessen Gutachten hin, die Benützung der Soole zu Heilzwecken.

Das Bohrloch, welches etwa 120—130 Klafter tief ist, wurde auf eine Tiefe von 80 Klafter mit eisernen Röhren ausgesetzt, und das zu Tage tretende Wasser wird in einem mit hydraulischem Mörtel ausgefütterten Bassin angesammelt. Das Bassin selbst ist bedacht, um das Wasser vor Einwirkung äußerer Einflüsse zu schützen.

Die Ergiebigkeit der Quelle ist constant nahezu 200 Eimer per Tag.

Über die geologischen Verhältnisse verdanke ich der Güte des Herrn Dr. Fuchs, Custos am k. k. Hof-Mineraliencabinet, folgende Mittheilungen.

Der Boden der Umgebung von Freistadt wird der Hauptsache nach von jenem blauen tertiären Thone gebildet, welcher in so mächtiger Entwicklung die ganze Niederung Schlesiens ausfüllt, und sich gegen Osten bis weit nach Galizien hinein, gegen Westen und Süden aber durch Mähren bis nach Niederösterreich fortsetzt, und welche in neuerer Zeit von Professor Suess unter dem Namen "Schlier" von den übrigen Gliedern der neogenen Tertiärformation abgetrennt wurde.

Herr Dr. Bayer hat sich mit der Analyse derselben Mineralquelle beschäftiget, die gewonnenen Resultate aber der k. Akademie noch nicht vorgelegt.

In der Umgebung von Ostrau und Orlau liegt dieser Thon (Schlier) allenthalben auf der Steinkohlenformation, und muß in den meisten Bohrlöchern durchsunken werden. Nach Hohenegger ("Geognostische Verhältnisse der Nord-Karpathen") wurden in einem Schachte bei Orlau, am sogenannten "Lichtschok", in einer Teufe von 33 Klaftern Conchylien gefunden, welche näherungsweise der Fauna des Badner Tegels entsprechen. In Galizien liegen in diesem Thon die Steinsalzlager von Bochnia und Wieliczka, sowie zahlreiche Gypslager. In der Nähe von Troppau werden neuerer Zeit Gypsbrüche eröffnet, in welchen genau dieselben Conchylien gefunden wurden, welche das Steinsalzlager von Wieliczka charakterisiren.

Prof. Suess machte bereits darauf aufmerksam, daß die zahlreichen Bitterquellen Nieder-Österreichs und Mährens sämmtlich im Gebiete dieses Schliers auftreten, und es ist gewiß von Interesse, in der Nähe von Orlau und Salza ebenfalls im Gebiete dieser Thonablagerung Salzquellen auftreten zu sehen, und man kann Hohenegger nur beistimmen, wenn er l. c. sagt: "daß diese Salzquellen aus dem neogenen Tegel zu kommen scheinen, und als schwache Repräsentanten der colossalen Salzablagerungen von Wieliczka gedeutet werden müssen".

Das zur Analyse verwendete Wasser dieser Soole wurde an der Quelle in Flaschen gefüllt, diese luftdicht verschlossen, so daß directe Bestimmungen an der Quelle selbst, zumal bei dem geringen Gehalte an Kohlensäure, überflüssig erschienen.

Frisch geschöpft ist das Wasser klar, von schwach sauerer Reaction und intensiv salzigem Geschmacke; bei längerem Stehen an der Luft trübt es sich, und allmählig scheiden sich bräunliche Flocken von Eisenoxydhydrat aus.

Der durch Abdampfen erhaltene Rückstand ist nahezu farblos, beim Glühen wird er vorübergehend geschwärzt, in Folge seines Gehaltes an organischer Substanz.

Das specifische Gewicht wurde mittelst des Piknometers ermittelt, und im Mittel von drei Versuchen = 1.01824 gefunden.

Die qualitative Untersuchung des Wassers ergab als gelöste Bestandtheile: Kieselerde, Kohlensäure, Chlor, Brom, Jod, Eisen, Kalk, Magnesia, Kali, Natron.

Zur quantitativen Bestimmung der Kieselsäure, Kohlensäure, des Eisens, Kalkes, der Magnesia, des Kali und Natrons wurden die all-

gemein gebräuchlichen analytischen Methoden angewendet. Die Trennung der Magnesia von den Alkalien wurde einmal mit Quecksilberoxyd, das andere Mal mit Barythydrat ausgeführt. Chlor, Brom, Jod wurden zuerst gemeinschaftlich aus dem mit Salpetersäure schwach angesäuertem Wasser durch Silberlösung gefällt, der Niederschlag nach dem Trocknen und Schmelzen gewogen; nachdem durch separate Operationen Jod und Brom bestimmt waren, wurden die entsprechenden Mengen ihrer Silberverbindung gerechnet, und dadurch indirecte das Chlor gefunden.

Zur Ermittlung von Brom und Jod wurde folgender Weg eingeschlagen: Eine größere Wassermenge wurde mit reinem kohlensauren Natron bis zur alkalischen Reaction versetzt, im Wasserbade nahezu zur Trockene eingedampft, der Rückstand mit Wasser zu einem feinen gleichförmigen Brei abgerieben, dieser auf ein Filter gebracht, und durch Auswaschen unter Anwendung der von Bunsen angegebenen Filtrirpumpe 1) Brom und Jod vollständig ausgezogen. Aus der so erhaltenen Lösung wurde nach Ansäuern mit Chlorwasserstoffsäure durch reines Palladiumchlorür das Jod als Jodpalladium gefällt, der Niederschlag ausgewaschen, bis zum constanten Gewichte wiederholt geglüht und gewogen, aus der Menge des erhaltenen Palladiums die entsprechende Quantität Jod berechnet.

Die vom Jodpalladium abfiltrirte Flüssigkeit wurde mit Schwefelwasserstoff unter Erwärmen gesättigt, um das überschüssig zugesetzte Chlorpalladium zu entsernen. Die nach dem Absiltriren des Schwefelpalladiums resultirende farblose Flüssigkeit, aus der durch fortgesetztes Erwärmen aller Schwefelwasserstoff entfernt war, wurde mit kohlensaurem Natron genau neutralisirt und durch Abdampfen concentrirt. In dieser Flüssigkeit wurde das Brom bestimmt unter Anwendung von verdünntem Chlorwasser, dessen Titre vor und nach jeder Bestimmung mit großer Sorgfalt festgestellt wurde. Dieser Titrebestimmung wurde ein aus reinem über trockenen Ätzbaryt sublimirten Jod bereitete Jodlösung zu Grunde gelegt, indem man durch sie den Gehalt einer Lösung von unterschwefligsaurem Natrium ermittelte, und mit dieser Lösung jene Jodquantität bestimmte, welche eine abgemessene Menge des zur Analyse zu verwendenden Chlorwassers aus reinem Jodkalium abschied.

<sup>1)</sup> Annalen der Chemie und Pharmacie. Band CXLVIII, pag. 269.

Nachdem der Titre des Chlorwassers bestimmt war, wurde zu der in einer Porzellanschale zum Sieden erhitzten farblosen Lösung der Bromsalze in kleinen Portionen Chlorwasser aus der Burette zufließen gelassen, vor jedem neuen Zusatze durch anhaltendes Kochen das freigewordene Brom entfernt und die Flüssigkeit farblos hergestellt. Damit wurde so lange fortgefahren, bis ein neuerdings zugesetzter Tropfen des Chlorwassers keine Farbenveränderung mehr hervorbrachte. Nach Beendigung dieser Operation, welche so schleunig als möglich ausgeführt wurde, ging man abermals an die Titrestellung des Chlorwassers.

Unter Zugrundelegung der Atomgewichte des Chlor und Broms wurde dann aus der Quantität des verbrauchten Chlorwassers die diesem entsprechenden Brommenge berechnet.

Die im Wasser gelöste organische Substanz wurde derart bestimmt, daß eine gewogene Menge Wasser mit reinem kohlensauren Natron eingedampft, in wenig Wasser gelöst, im Platintiegel vorsichtig zur Trockene gebracht, bei 140° C. getrocknet, gewogen, hierauf geglüht und wieder gewogen wurde; die Differenz ergab die Menge der organischen Substanz.

Zur Controle der Analysen wurden gewogene Wassermengen eingedampft, der zuvor eine genau gewogene Menge reines kohlensaures Natron hinzugefügt war; nach dem Wägen wurde die Menge des fixen Rückstandes ermittelt, der Rückstand hierauf durch Zusatz von Schwefelsäure in schwefelsaure Verbindungen verwandelt; durch Vergleichung der direct gefundenen Mengen des Abdampfrückstandes als solchen, und nach der Verwandlung in schwefelsaure Verbindungen mit der aus den einzelnen Bestimmungen berechneten Summe der festen Bestandtheile, und der bei Überführung in schwefelsaure Salze erforderlichen Schwefelsäure ist für die Richtigkeit der Analysen die beste Controle gegeben.

Die in dem Wasser gelösten Gase wurden durch Kochen ausgetrieben und nach den gasometrischen Methoden von Bunsen untersucht, dabei wurden als Bestandtheile dieser Gase gefunden: Kohlensäure, Grubengas und Stickstoff. Die quantitativen Daten sind am Schlusse dieser Abhandlung zusammengestellt.

In nächststehenden Tabellen sind die Resultate der einzelnen Bestimmungen angeführt:

## Kohlensäure.

| Wassermenge                 | Durch Salzsäure ent- | Für                | Mittel |
|-----------------------------|----------------------|--------------------|--------|
| in Grammen                  | wickelte Kohlens.    | 10,000 Theile      |        |
| $330 \cdot 6$ $312 \cdot 8$ | 0·055<br>0·057       | 1 · 669<br>1 · 820 | 1.745  |

## Kieselsäure.

| Wassermenge    | Enthält          | Für            | Mittel  |
|----------------|------------------|----------------|---------|
| in Grammen     | Kieselsäure      | 10,000 Theile  |         |
| 315·6<br>631·3 | $0.018 \\ 0.034$ | 0·570<br>0·539 | } 0.554 |

## Chlor, Brom und Jod.

| Wassermenge<br>in Grammen | $\begin{array}{c} \text{Gehen} \\ \text{AgCl} + \text{AgBr} + \text{AgJ} \end{array}$ | Für<br>10,000 Theile      | Mittel |
|---------------------------|---------------------------------------------------------------------------------------|---------------------------|--------|
| 100<br>100                | 6 · 244<br>6 · 246                                                                    | $624\cdot 4$ $624\cdot 6$ | 624.5  |

## Jod.

| Wassermenge<br>in Grammen  | Palladium               | Entspricht<br>Jod           | Für<br>10,000 Theile       | Mittel |
|----------------------------|-------------------------|-----------------------------|----------------------------|--------|
| 3054·7<br>3054·7<br>6109·4 | 0.0376 $0.038$ $0.0726$ | 0.08969 $0.09064$ $0.17325$ | 0·2936<br>0·2967<br>0·2836 | 0.2913 |

## Brom.

| Wassermenge<br>in Grammen     | Verbrauchtes<br>Chlorwasser<br>in CC. | 1 CC. Chlor-<br>wasser ent-<br>spricht Brom | Gefundene<br>Menge Brom | Für<br>10,000 Theile | Mittel |
|-------------------------------|---------------------------------------|---------------------------------------------|-------------------------|----------------------|--------|
| $3054 \cdot 7$ $1832 \cdot 4$ | 128·3<br>131·2                        | 0·0021407<br>0·001211                       | 0·2746<br>0·1589        | 0·8990<br>0·8672     | 0.8831 |

## Chlor.

| AgCl+AgBr+AgJ     | AgBr + AgJ        | somit AgCl in  | Entsprechend Cl. in 10,000 Theilen |
|-------------------|-------------------|----------------|------------------------------------|
| in 10,000 Theilen | in 10,000 Theilen | 10,000 Theilen |                                    |
| 624 · 5           | 2.6139            | 621 · 886      | 153 · 755                          |

## Eisen.

| Wassermenge | Enthält | In             | Mittel  |
|-------------|---------|----------------|---------|
| in Grammen  | Eisen   | 10,000 Theilen |         |
| 315·6       | 0·0077  | 0 · 2439       | } 0.244 |
| 157·8       | 0·0042  | 0 · 244        |         |

## Calcium.

| Wassermenge | Enthält | Entspricht | In             | Mittel  |
|-------------|---------|------------|----------------|---------|
| in Grammen  | Kalk    | Calcium    | 10,000 Theilen |         |
| 157·8       | 0·170   | 0·1214     | 7·696          | 7 · 706 |
| 315·6       | 0·341   | 0·2435     | 7·716          |         |

## Magnium.

| Wassermenge<br>in Grammen | Pyrophos-<br>phorsaures<br>Magnesia | Entspricht<br>Magnesia | Entspricht<br>Magnium | In<br>10,000 Theil.         | Mittel  |
|---------------------------|-------------------------------------|------------------------|-----------------------|-----------------------------|---------|
| 315·6<br>631·3            | $0.386 \\ 0.769$                    | $0.139 \\ 0.277$       | $0.0834 \\ 0.1662$    | $2 \cdot 643$ $2 \cdot 635$ | 2 · 639 |

## Kalium.

| Wassermenge<br>in Grammen | KCI + NaCl          | Kaliumplatin-<br>chlorid | Entspricht<br>Kalium | In<br>10,000 Theil. | Mittel  |
|---------------------------|---------------------|--------------------------|----------------------|---------------------|---------|
| 141·5<br>58·3             | 3 · 1256<br>1 · 295 | $0.0951 \\ 0.0394$       | $0.0151 \\ 0.0076$   | 1·073<br>1·086      | 1 · 079 |

#### Natrium.

| Wassermenge<br>in Grammen | Chlornatrium     | Entspricht<br>Natrium       | In<br>10,000 Theilen | Mittel |
|---------------------------|------------------|-----------------------------|----------------------|--------|
| 141·5<br>58·3             | 3·0966<br>1·1283 | $1 \cdot 218$ $0 \cdot 440$ | 86·077<br>86·667     | 86.372 |

## Organische Substanz.

| Wassermenge<br>in Grammen | Verlust des getrockneten<br>Rückstandes heim Glühen | In 10,000 Theilen |
|---------------------------|-----------------------------------------------------|-------------------|
| 509·1                     | 0.022                                               | $0\cdot 432$      |

#### Summe der fixen Bestandtheile.

| Wassermenge<br>in Grammen | Rückstand hei<br>140°C. | In<br>10,000 Theilen | Mittel  |  |
|---------------------------|-------------------------|----------------------|---------|--|
| 25.0                      | 0.628                   | 251 · 2              | ) 281.6 |  |
| $50 \cdot 0$              | 1 · 259                 | 252.0                | 251.6   |  |

## Summe der fixen Bestandtheile als Sulfate

| Wassermenge | Summe der | ln             | Mittel  |
|-------------|-----------|----------------|---------|
| in Grammen  | Sulfate   | 10,000 Theilen |         |
| 25·0        | 0·7603    | 304·2          | 304 · 1 |
| 50·0        | 1·520     | 304·0          |         |

## Specifisches Gewicht.

| Cewicht des | Pikrometer + | Pikrometer +  | Specifisches | Mittel  |
|-------------|--------------|---------------|--------------|---------|
| Pikrometers | dest. Wasser | Mineralwasser | Gewicht      |         |
| 6 · 7385    | 31 · 2075    | 31 · 6475     | 1·0179       | 1.01824 |
| 6 · 7385    | 31 · 2100    | 31 · 6650     | 1·0185       |         |
| 6 · 7384    | 31 · 2100    | 31 · 6540     | 1·0181       |         |

Es ergaben demnach die Mittelwerthe der einzelnen Bestimmungen folgende Zusammensetzung für 10.000 Theile des Wassers:

| Kieselsäure                                          | 0.554           |
|------------------------------------------------------|-----------------|
| Chlor                                                | 153.755         |
| Brom                                                 | 0.8831          |
| Jod                                                  | 0.2913          |
| Kohlensäure.                                         | 1.745           |
| Eisen                                                | 0.244           |
| Calcium                                              | 7.706           |
| Magnium                                              | 2.639           |
| Kalium.                                              | 1.079           |
| Natrium                                              | $86 \cdot 372$  |
| Organische Substanz                                  | 0.432           |
| Summe der fixen Bestandtheile berechnet              | 253.712         |
| Summe der fixen Bestandtheile gefunden               | 251.600         |
| Summe der fixen Bestandtheile als Sulfate, berechnet | $304 \cdot 940$ |
| Summe der fixen Bestandtheile als Sulfate, gefunden  | 304.100         |

Werden die einzelnen Bestandtheile nach ihren näheren Beziehungen zu Salzen gruppirt, so erhält man folgendes Schema:

| Bestandtheile.                | In 10,000<br>Theilen. | In einem W. Pfd.<br>(=7680 Gran). |
|-------------------------------|-----------------------|-----------------------------------|
| Chlornatrium                  | 219.680               | 168.714                           |
| Chlorkalium                   | 2.062                 | 1.583                             |
| Chlorcalcium                  | 21.384                | 16.423                            |
| Chlormagnesium                | 7.740                 | 5.944                             |
| Brommagnesium                 | 1.016                 | 0.780                             |
| Jodmagnesium                  | 0.319                 | 0.245                             |
| Kohlensaures Magnesium        | 1.832                 | 1.407                             |
| Kohlensaures Eisen            | 0.808                 | 0.388                             |
| Freie Kohlensäure             | 0.594                 | 0.456                             |
| Kieselsäure                   | 0.554                 | 0.425                             |
| Organische Substanz           | 0.432                 | 0.331                             |
| Summe der fixen Bestandtheile | 251.6                 | $193 \cdot 229$                   |

## Analyse der im Wasser gelösten Gase.

| Abbot prions Runijse                      |              |
|-------------------------------------------|--------------|
| Ursprüngliches Gas                        | 28.00 CC. 1) |
| Nach Absorption mit Kali .                | 16.41 "      |
| Nach Absorption mit pyrogallussaurem Kali | unverändert. |
|                                           |              |

#### Verbrennungs-Analyse.

| Gas, von Kohlensäure befreit     | 18·47 CC.    |
|----------------------------------|--------------|
| Nach Zugabe von Sauerstoff       | <b>57.95</b> |
| Nach der Verpuffung mit Knallgas | <b>28.89</b> |
| Nach Absorption der Kohlensäure  | 14.13        |

Aus diesen Daten ergibt sich die Zusammensetzung des in diesem Wasser gelösten Gasgemenges folgendermaßen:

| Kohlensäure | 41.39  |
|-------------|--------|
| Grubengas   | 45.34  |
| Stickstoff  | 13.27  |
|             | 100.00 |

Um den Werth des vorliegenden Wassers beurtheilen zu können, folgt hier die Zusammenstellung der Bestandtheile der Jodquelle in Hall und jener der Royer Jodquelle, woraus ersichtlich, daß die Royer Quelle der zu Hall in Oberösterreich ähnlich ist.

#### In 10,000 Theilen enthält die

Absorptions-Applyse

| Jodquelle zu Roy    |         | Jodquelle in Hall  |                |  |
|---------------------|---------|--------------------|----------------|--|
| Chlornatrium        | 219.680 | Chlornatrium       | 121.700        |  |
| Chlorkalium         | 2.062   | Chlorkalium        | 0.397          |  |
| Chlorcalcium        | 21.384  | Chlorcalcium       | 4.009          |  |
| Chlormagnesium      | 7.740   | Chlormagnesium     | 2.426          |  |
| Brommagnesium       | 1.016   | Chlorammonium      | 0.733          |  |
| Jodmagnesium        | 0.319   | Brommagnesium      | 0.584          |  |
| Kohlens. Magnesium  | 1.832   | Jodmagnesium       | 0.426          |  |
| Kohlensaures Eisen  | 0.505   | •                  |                |  |
| Freie Kohlensäure   | 0.594   | Kohlensaures Eisen | 0.044          |  |
| Kieselsäure         | 0.554   | Thonerde           | 0.147          |  |
| Organische Substanz | 0.432   | Kieselerde         | 0.249          |  |
| Summe der fixen Be- |         | Freie Kohlensäure  | 4.366          |  |
| standtheile         | 251.6   | Fixe Bestandtheile | <b>130·715</b> |  |

<sup>1)</sup> Alle angeführten Volumina sind auf 0° und 1 Meter Quecksilberdruck berechnet.

## Vergleichung mit den übrigen wichtigeren Jodquellen.

|                 | Jod    | Brom   |             |
|-----------------|--------|--------|-------------|
| Roy             | 0.2913 | 0.8831 | Barber      |
| Hall            | 0.390  | 0.508  | Kauer       |
| Iwonicz         | 0.186  | 0.293  | Tonosiewitz |
| Adelheitsquelle | 0.242  | 0.372  | Pettenkofer |
| Luhatschowitz   | 0.202  | 0.091  | Ferstl      |
| Luisenquelle    |        |        |             |

# **ZOBODAT - www.zobodat.at**

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der Akademie der Wissenschaften</u> <u>mathematisch-naturwissenschaftliche Klasse</u>

Jahr/Year: 1869

Band/Volume: 60\_2

Autor(en)/Author(s): Barber Josef

Artikel/Article: Chemische Analyse der Jodquelle zu Roy, nächst

Freistadt in Schlesien. 419-428