Flechten im Ostalpenraum – sensible Zeiger von Umweltbedingungen

Peter O. Bilovitz* & Martin Grube*

Abstract: Lichens in the Eastern Alps - sensible indicators of environmental conditions. — Lichens are fascinating gems of viable nature. Fungi form symbiotic associations with diverse microalgae to build macroscopically distinct life forms, which occur tightly specialized to ecological conditions. Lichens are a literally outstanding life style of fungi. The light-exposed lichen thallus represent the most complex structures in the fungal kingdom, which can display considerable robustness under sometimes hostile conditions. In the first part of our contribution we provide a short and general introduction to the life of lichens. In the second part we want to focus more on the ecology of lichens. For this purpose we present selected habitats with their characteristic lichens in the Eastern Alps, with illustrations of easily recognizable species at their natural locations.


Key words: lichens, lichenized ascomycetes, Eastern Alps, ecology, lichen photography.

*Correspondence to: pe.bilovitz@uni-graz.at, martin.grube@uni-graz.at

Address: Institut für Pflanzenwissenschaften, Karl-Franzens-Universität Graz, Holteigasse 6, 8010 Graz, Austria.

EINLEITUNG

Abb. 1: 

Acarospora sinopica

hat ein rostrot Lager und zeigt eisenhaltiges Silikatgestein an.

Abb. 2: 

Alectoria ochroleuca

ist eine sparrig verzweigte Strauchflechte windgepeitschter Heiden über Silikatböden.

Abb. 3: 

Anaptychia ciliaris,

die „Wimpelflechte“, findet sich meist an alten, frei stehenden Laubbäumen.

Abb. 4: 

Caloplaca sinapisperma

bildet rostbraune Apothecien aus und wächst auf Pflanzenresten über Kalkböden der Hochlagen.

Abb. 5: 

Cetraria islandica, das „Islandische Moos“, ist in einigen schleimlösenden Hustenmitteln zu finden.

Abb. 6: 

Chaenotheca chrysocephala ist ein Vertreter aus der Gruppe der „Stecknadelflechten“ mit gestielten Apothecien.
WAS SIND FLECHTEN?

Der Name Flechte trifft das Zusammenleben durchaus, denn die Stoffwechsel der beteiligten Organismen sind in der Tat eng miteinander verflochten. Flechten (wissenschaftlich Lichenes genannt) bestehen aus dem engen Verbund eines gestaltbildenden Pilzpartners und einem oder mehreren Photosynthese betreibenden Partnern (Algen, Cyanobakterien), die zu einer gestaltlichen (morphologischen) und funktionellen (physiologischen) Einheit geworden sind. Man könnte auch sagen, dass die Pilze eine Art Miniaturgewächshaus für die enthaltenen Algen aufbauen, die darin mit der Kraft der Sonnenstrahlung die Aufbaustoffe für diese Symbiose bilden. Die Pilzstrukturen der Flechten sind daher im Gegensatz zu jenen anderer Pilze nicht tief als Mycelium in ein Substrat versenkt und kaum sichtbar, sondern bilden dem Licht zugewandte und sehr kompakte Strukturen, die man als Lager oder Thalli (Einzahl Thallus) bezeichnet. Wegen der gestaltbildenden Funktion der Pilze und weil man Flechten als eine Lebensform von Pilzen versteht, wird mit dem Namen einer Flechte immer Bezug auf den Pilzpartner genommen.

Die beteiligten Algenpartner (Photobionten) sind einzellige oder fädi ge Vertreter der Grünalgen (Chlorophyta) oder Vertreter von Cyanobakterien (oft auch Blaulgen genannt). Als Pilze (Mycobionten) beteiligen sich an der Flechtenbildung in den meisten Fällen Schlauchpilze (Ascomycota), nur selten Ständerpilze (Basidiomycota). Wenn gleich das Zusammenleben zwischen Pilz und Alge zum beiderseitigen Vorteil erscheint (Mutualismus), kann man Flechten doch eher als ein Beispiel eines kontrollierten Parasitismus ansehen. Die im Thallus eingeschlossenen Algen verlieren unter der Kontrolle des Pilzes die Fähigkeit zur sexuellen Fortpflanzung.

Gerade in den letzten Jahren hat sich jedoch gezeigt, dass die traditionelle Vorstellung von der „Doppelnatur“ der Flechten eigentlich eine Vereinfachung ist. So hat man mit neuen Untersuchungsmethoden erkannt, dass eine große Menge von Bakterien spezifisch mit Flechten vergesellschaftet ist (Grube
et al. 2009). Auch können weitere Pilze (z.B. 
Mug gia & Grube 2010) mit Flechten 
assoziiert sein. Flechten stellen nach 
neuer Sichtweise eigentlich ein mikro-
skopisch kleines Ökosystem dar, mit 
Pilzen und Algen als Schlüsselorganismen.

In der Evolution sind die Flechten-
symbiosen mehrfach entstanden und 
an verschiedenen Wegen im Pilzreich 
anzutreffen. Mehr als 20.000 Arten sind 
bislang bekannt, die diese Lebensweise 
pflegen. Diese Schätzung dürfte aber 

stark nach oben revidiert werden, denn 
genauere Untersuchungen zeigen im-
mer wieder, dass unter einem Namen 
tatsächlich oft mehrere Arten verbor-
gen sind. Mit dem Zusammenleben ha-
ben sich neue gestaltliche und chemi-
sche Merkmale entwickelt, die Flechte 
ist also im wahrsten Sinne des Wortes 
mehr als die Summe ihrer Teile. Das hat 

auch Konsequenzen für die Evolution 
und Anpassungsfähigkeit. Nicht die Fit-
ness des Algen- oder Pilzpartners allein 

ist für den Kampf ums Dasein entschei-
dend, sondern das Zusammenspiel 
der Partnerschaft. Flechtenhalli sind 
überraschend widerstandsfähig, im 
Vergleich zu den isolierten Partnern. Sie 

überdauern extreme Schwankungen 
von Temperaturen, können noch bei 
Minusgraden photosynthetisch aktiv 
sein. Als so genannte wechselfeuchte 
Lebensformen können sie ihren gemein-
samen Stoffwechsel unter ungünstigen 
Bedingungen in eine Art „Stand-by“ 
Zustand versetzen und im Zustand la-
tenten Lebens komplette Austrocknung 
vertragen. Sogar Weltraumbedingun-
gen können ihnen in diesem Zustand 
ichts anhaben, wie ein Experiment auf 
der International Space Station zeigte 
(Sancho et al. 2007).

Abb. 7: Chrysothrix candelaris 
dekoriert regengeschützte Stammteile 
mit schwefelgelben Überzügen.

Abb. 8: Cladonia arbuscula (links) 
und Cladonia rangiferina (rechts) 
gehören zu den Rentierflechten.
Die Flechtenpilze können nur mit ihren Symbiosepartnern die arttypischen Thallusstrukturen aufbauen. Die Bildung eines Thallus ist auch notwendig, damit die Pilze ihren Lebenszyklus mit sexueller Fortpflanzung vollenden oder ausgeklügelte Strukturen zur gemeinsamen Ausbreitung aller Symbiospartner produzieren können.

**MORPHOLOGIE**


- Krustenflechten: Thallus ist mit der Unterlage fest verbunden und durchsetzt sie meist bis zu einem gewissen Grad mit den Hyphen des Mycobionten (z.B. Graphis scripta, Abb. 13).
• Blatt- oder Laubflechten: gelappter Thallus ist mit dem Substrat durch Hyphe (Rhizinen) verbunden (z.B. Xanthoria parietina, Abb. 42).
• Strauchflechten: Thallus sitzt mit sehr schmaler Basis der Unterlage auf und verzweigt sich strauchähnlich (z.B. Pseudevernia furfuracea, Abb. 31); hängende Formen von Strauchflechten werden als Bartflechten bezeichnet.


PHYSIOLOGIE

Der Pilzpartner (Mycobiont) ist in seinem Kohlenhydratstoffwechsel völlig auf den photosynthetischen Partner (Photobionten) angewiesen, wird also von diesem ernährt. Die in etwa 10% der Flechten enthaltenen Cyanobakterien sind überdies in der Lage, den freien Luftstickstoff zu binden und tragen somit auch zur Stickstoffversorgung des Pilzes bei. Die im Pilzgefl echt eingeschlossenen Photobionten sind hingegen in ihrer Wasser- und Mineralstoffversorgung vom Mycobionten abhängig, der den empfindlichen Algen zusätzlich Schutz vor zu hohen Lichtintensitäten bietet. In Flechten finden wir eine Vielfalt von Endprodukten des Sekundärstoffwechsels, die so genannten Flechtenstoffe, die ganz unterschiedlichen Stoffklassen angehören, z.B. aliphatische Säuren, Depside, Depsidone usw. Sie werden vorwiegend an den Außenseiten der Hyphen als kleine, schwer wasserlösliche Kristalle ausgeschieden. Einige der Stoffe verleihen Flechten ihre charakteristische Farbe und sie erfüllen mannigfaltige Funktionen. Es gibt antibiotisch wirksame und andere giftige Substanzen, die einen Fraßschutz darstellen, sowie Stoffe, die den Photobionten vor UV-Strahlung schützen. Andere Flechtenstoffe an der Oberfläche der Pilzhyphen haben eine wasserabweisende Wirkung und fördern den für
**Abb. 14:** Hymenelia coerulea bildet ihren auffällig blauen Thallus unter der Oberfläche von Kalkgestein aus.

**Abb. 11:** Diploschistes scruposus ist eine Krustenflechte, die oft großflächig auf offenen Silikaten vorkommt.

**Abb. 15:** Hypogymnia physodes ist eine der häufigsten Flechten in Nadelwäldern höherer Lagen.

**Abb. 12:** Flavocetraria nivalis hat eine runzelig-grubige Oberfläche und wächst in windexponierten Heiden.

**Abb. 16:** Lecanora argentata findet sich vorwiegend auf glatter und flachrissiger Rinde von Laubbäumen.

**Abb. 13:** Graphis scripta, die „Schriftflechte“, hat Apothecien, die an Runen erinnern.
Photosynthese und Atmung nötigen Gas Austausch, wenn die Flechten verhältnisweise feucht sind.

**FORTPFLANZUNG UND VERMehrung**

Sowohl Soredien als auch Isidien werden nach ihrem Abbrechen von feinen Luftbewegungen fortgetragen und können nach ihrer Landung an geeigneten Standorten wieder zu einem neuen Thallus heranwachsen.

VORKOMMEN UND LEBENSWEISE


Flechten sind wie Moose wechselfeuchte (poikilohydre) Organismen. Das heißt, ihr Wasserhaushalt wird vom Feuchtezustand ihrer unmittelbaren...
Abb. 21: Lobaria pulmonaria, die „Lungenflechte“, kann in der reinen Luft von Bergwäldern sehr große Thalli ausbilden.

Abb. 22: Megaspora verrucosa lebt im Gebirge auf Pflanzenresten und Moosen über basisreichem Untergrund.

Abb. 23: Ochrolechia upsaliensis bildet weiß bereifte Apothecien aus und überzieht Pflanzenreste und bodenbewohnende Moose über Karbonatböden in höheren Lagen.
\begin{itemize}
\item \textbf{Abb. 24}: \textit{Ophioparma ventosa}, die „Bluttröpfchenflechte“, ist mit ihren tiefroten Apothecien eine unverkennbare Art auf Silikatfelsen.

\item \textbf{Abb. 25}: \textit{Pannaria conoplea} braucht die frische Luft ozeanischer Lagen.

\item \textbf{Abb. 26}: \textit{Parmelia saxatilis} bildet Isidien zur vegetativen Vermehrung aus und ist auf Rinde und Silikatgestein weit verbreitet.
\end{itemize}
Abb. 27: *Peltigera praetextata*, eine häufige *Peltigera*-Art („Schildflechte“), findet sich oft an bemoosten Stammbasen.

Abb. 28: *Petractis clausa* hat halb ins Gestein eingesenkte Apothecien mit sternförmigen Öffnungen, die beim Ausfallen Gruben hinterlassen.

Abb. 29: *Protoparmelia badia* bildet kastanienbraune Krusten, die Silikatgestein überziehen.

**GEFährDUNG**


**SUBSTRATE UND AUSGEWÄHLE LEBENSRAUME IN DEN OSTALPEN**


**Gesteine**

fenlage sind das vor allem Oberflächenbeschaffenheit (glatt/rau, hell/dunkel, Ritzen etc.), Bodennähe (bodenah/bodenfern), Exposition (N/S, geschützt/exponiert, beschattet/besonn), Neigung (Horizontal-/Vertikal-/Überhangfläche), Düngung (z.B. stark gedüngte Vogelsitzplätze an Felskuppen) und Konkurrenz durch Moose und Gefäßpflanzen, die in Felsritzen siedeln, vor allem aber durch andere Flechten. Angesichts dieser Mannigfaltigkeit an Faktoren überrascht es nicht, dass sich bestimmte Gesteinsflechtenarten (saxicole Flechten) an ganz bestimmte Standortfaktoren angepasst haben.

In den hochalpinen Lagen müssen Flechten mit Extrembedingungen zurechtkommen: Temperaturextreme, erhöhte UV-Einstrahlung, Windschiff, Schneebedeckung sowie eine damit verbundene kurze Vegetationsperiode. Letzteres gilt besonders für die Erdboden, Moos und Detritus besiedelnden Flechten. Um diesen ökologischen Herausforderungen begegnen zu können, haben sich verschiedene morphologisch-anatomische sowie physiologische Anpassungen herausgebildet. Vermehrte Einlagerung bestimmter Pigmente als UV-Schutz, vergleichbar der Melanineinlagerung in die menschliche Haut, und Bildung einer Epinektralischicht (abgestorbene Pilzhypen, die sich wie eine Hornhaut an der Lageroberfläche konzentrieren) als Schutz gegen Windschiff sind hierfür Beispiele.

Silikatfelsflechten der Hochlagen sind oft von weitem als buntes Mosaik erkennbar. Neben auffälligen Vertretern aus der Verwandtschaft der gelben Landkartenflechten (haufigste Art ist Rhizocarpon geographicum, Abb. 33) finden wir weitere häufige, leicht
ansprechbare Krustenflechten, wie Diploschistes scapus (Abb. 11), Lecanora intricata, L. polycarpa (Abb. 18), Ophioparma ventosa (Abb. 24), Pertusaria corallina, P. lactea, Protoparmelia badia (Abb. 29) und Tephromela atra. Besonders ins Auge springt Ophioparma ventosa, die „Bluttröpfchenflechte“, mit ihren blutroten Apothecien. Beispiel für eine häufige Silikatgestein bewohnende Blattflechte ist Parmelia saxatilis (Abb. 26). Diese rosental wachsende, grau bis blaugrau (manchmal bräunlich) gefärbte Art findet sich aber auch an Borke und Holz sowie auf Moosen und Detritus von der kollinen bis in die rivale Stufe.


Auf schwermetalreichen Silikatgesteinen findet man eine relativ artenarme Flechtenvegetation. Durch akkumuliertere Eisenoxide sind diese Arten oft rostrot gefärbt, z.B. Acarospora sinopica (Abb. 1), Lecidea silacea und Rhizocarpon oederi. Zusammen mit der gelb gefärbten Lecanora subarea und anderen bilden sie eine hochspezialisierte Flechtengemeinschaft.

In den Hochlagen kommen über windgeschützten Silikatgestein häufig so genannte Nabelflechten derGattung Umbilicaria, z.B. U. cylindrica (Abb. 39) vor. Nabelflechten sind graue bis dun-
kelbraune Blattflechten, die mit einem zentralen „Nabel“ am Gestein befestigt sind und auf Hochlagensilikaten aspektbestimmend sein können.


Es gibt aber auch gesteinsbewohnende Arten, z.B. bestimmte Vertreter der Gattung *Verrucaria*, deren Fruchtkörper wie Warzen auf Gestein erscheinen und die auf Standorte spezialisiert sind, die häufig oder ständig von Wasser überrieselt werden, wie etwa Steine in sauberen, rasch fließenden Böchen oder Felsen im Bereich von Wasserfällen.


Eine häufig anzutreffende epilithische Krustenflechte auf verwittertem Kalkgestein ist *Squamarina gypsacea* (Abb. 36), die einen großen schuppigen
Abb. 37: Thamnolia vermicularis, die „Totengebeinflchte“, wuchert zwischen alpinen Bodendeckern.

Abb. 34: Romjularia lurida kolonisiert von Kalkfelsspalten aus das nackte Gestein.

Abb. 38: Thelotrema lepadinum hat in Lagerwarzen eingesenkte Apothecien.

Abb. 35: Solorina crocea, die „Safranflchte“, ist eine unverkennbare Art auf sauren Böden über der Waldgrenze.

Abb. 39: Umbilicaria cylindrica ist nur mit einem Nabel am Silikatgestein angewachsen.

Abb. 36: Squamarina gypsacea besiedelt verwittertes Kalkgestein.

Erdboden


Die „Safranfliecht“ (Solorina crocea, Abb. 35), englisch auch treffend als „orange chocolate chip lichen“ bezeichnet, ist mit ihrer leuchtend orangefarbenen Unterseite in den Silikatöden eine charakteristische Flechte der Schneetäler, in denen sich durch lange Schneebedeckung die Vegetationszeiten stark verkürzen.

In den Tieflagen spielen Bodenflechten aufgrund ihrer geringen Konkurrenzfähigkeit und Langsamwüchsigkeit gegenüber den Gefäßpflanzen meist eine untergeordnete Rolle.

Detritus


Rinde, Borke und Holz

Abb. 40: *Vulpicida pinastrii* zeigt als „Schneepegelflechte“ die Höhe der winterlichen Schneebedeckung an.

Abb. 41: *Xanthoria elegans* ist eine der widerstandsfähigsten Arten und besonders häufig auf Kalkfelsen.

candelaris (Abb. 7), die an regenge- schützten Baumflanken und Borkenrisen an luftpfeuchten Standorten wächst (im Gegensatz zu ihrer Schwesternart C. chlorina, welche an überhängenden Silikatfelsen siedelt).


Wichtige Substrate für epiphytische Flechten sind alle, frei stehende Bäume (Solitärbusche), z.B. in Almwiesen, Park- und Alleenanlagen sowie Streuobstwiesen. Hier finden sich teilweise selten gewordene Arten, wie die Strauchflechten Anaplychia ciliaris (Abb. 3) und Ramalina fraxinea.

Vulpicida pinastri (Abb. 40) ist eine „Schneeepegelflechte“. Sie wächst oft im unteren Stammbereich und an Stümpfen von Nadelbäumen etwa bis zur Höhe der winterlichen Schneedeckung.


**Anthropogene Substrate**

Eine Reihe von Flechtenarten ist in der Lage, vom Menschen verbaute

**Fotografieren von Flechten**


Für das Fotografieren empfiehlt sich der Einsatz einer Spiegellreflexkamera mit Makroobjektiv. Es bedarf jedoch keiner teuren und aufwendigen Ausrüstung. Um eine entsprechende Schärfentiefe zu erreichen, was besonders bei Strauchflechten notwendig ist, sollte man abblenden, d.h. eine kleinere Blendenöffnung (höhere Blendenzahl) wählen. Durch die Verwendung kleinerer Blenden nehmen die Belichtungszeiten entsprechend zu, was leicht zu unscharfen Bildern durch Verwackeln führt. Wenngleich einige der aktuellen Makroobjektive mit Bildstabilisatoren ausgerüstet sind, die dem Verwackeln bis zu einem gewissen Grad entgegenwirken, wird man gerade im Nahbereich nicht um ein stabiles Drei- beinstativ oder ein Blitzgerät herumkommen. Die Erhöhung der Lichtempfindlichkeit (ISO-Wert) des Bildensors einer digitalen Spiegellreflexkamera ist mit Vorsicht zu genießen, da man sich die daraus resultierenden kürzeren Verschlusszeiten oft mit einem erhöhten Bildrauschen erkauft, die Bilder werden grobkörnig. Damit ästhetisch ansprechende Flechtenfotos gelingen, sind neben fotografischem Grundlagenwissen vor allem drei Faktoren ausschlaggebend: offene Augen, Geduld und Übung.

Sämtliche Fotos dieses Beitrags wurden vom Erstautor überwiegend an natürlichen Standorten in den Ostalpen aufgenommen.


**DANKSAGUNG**

Wir danken Dr. Josef Hafellner, Dr. Christian Scheuer und Mag. Ulrike Grube für die kritische Durchsicht des Manuskripts.

**LITERATUR**


Zoologisch-Botanische Datenbank/Zoological-Botanical Database
Digitale Literatur/Digital Literature
Zeitschrift/Journal: Stapfia
Jahr/Year: 2012
Band/Volume: 0096
Autor(en)/Author(s): Bilovitz Peter Othmar, Grube Martin
Artikel/Article: Flechten im Ostalpenraum sensible Zeiger von Umweltbedingungen 141-161