Sitzungsberichte

der

königl. bayer. Akademie der Wissenschaften

zu München.

Jahrgang 1863. Band I.

München.

Druck von F. Straub (Wittelsbacherplatz 3). 1863.

In Commission bei G. Franz.

169- - 21

Mathematisch-physikalische Classe. Sitzung vom 14. März 1863.

1) Herr Bischoff hält den in der vorigen Sitzung angekündigten Vortrag

"über die Bildung des Säugethier-Eies und seine Stellung in der Zellenlehre."

(Mit einer Tafel.)

Es ist jetzt schon mehr als zwanzig Jahre her, dass ich mich in der Ueberzeugung, dass die Frage, welche Stellung das Ei in der damals eben aufgetretenen Zellenlehre einnehme, eine für diese ganze Lehre sehr wichtige sei, anhaltend mit der Entstehung und Bildung der Säugethier-Eier beschäftigt und meine damaligen Beobachtungen veröffentlicht habe. 1 Ich hatte bei dieser Untersuchung, namentlich was den histologischen Theil derselben betrifft, nur einen Vorgänger, den nun verstorbenen Engländer Barry²; denn Valentin³ hatte sich wesentlich nur mit dem morphologischen Theile der Frage beschäftigt, sich aber über die histologische Bildungsweise des Follikels und des Eies nicht ausgesprochen. Barry und ich stimmten darin überein, dass das überhaupt in dem zelligen Stroma des embryonalen Eierstockes zuerst unterscheidbare Gebilde der spätere Graafische Follikel sei, und aus einem Häufchen zusammengedrängter Zellen bestehe; ebenso auch darin, dass von den eigentlichen Eitheilen das Keimbläschen in jenem Zellenhäufchen zuerst erscheine und

⁽¹⁾ Entw.-Gesch. d. Säugethiere u. d. Menschen. 1842. p. 365; Entw.-Gesch. d. Kaninchen-Eies. 1842. p. 18.

⁽²⁾ First Series of Researches in Embryology. 1839. §. 14.

⁽³⁾ Entw.-Gesch. p. 389. Müllers Archiv. 1838. p. 526.

sich erst später um dasselbe herum der Dotter und dann die Dotterhaut bilde. Wir wichen nur darin von einander ab, dass Barry dieses Keimbläschen auch noch vor dem Follikelzellenhaufen, ich dasselbe erst später in demselben entstehen liessen; eine Verschiedenheit, die bei keinem von uns Beiden auf directer Beobachtung beruhte. Denn wenn Barry sagte, das Keimbläschen sei zuerst vorhanden und um dasselbe herum lagern sich dann die Follikelzellen, so hatte er das nicht gesehen, sondern nur daraus geschlossen, weil man in der That später das Keimbläschen innerhalb des Follikelhaufens erkennt. Und wenn ich das Keimbläschen erst innerhalb des Follikelzellhaufens entstehen liess, weil ich es nicht früher sehen könne, so konnte es doch sehr wohl sein, dass das Keimbläschen vor dem Follikelhaufen schon vorhanden gewesen, sieh aber von allen andern Zellen nicht hatte unterscheiden lassen, bis es später nach Aufhellung des Follikels und durch sein stärkeres Wachsthum sichtbar wurde.

Einige Jahre später wollte Steinlin allerdings diesen Zweifel durch Beobachtung gehoben haben. Er wollte nämlich in den Eierstöcken von Säugethier-Embryonen zweierlei Zellen gesehen haben; einmal kleinere und deren grössere, mehrkernige, feinkörnige Mutterzellen, aus welchen das Stroma des Eierstocks und namentlich auch die genannten Follikelhäufchen bestehen sollten, und dann grössere, immer nur einen Kern enthaltende, helle Zellen, die er für die Keimbläschen erklärte, um welche sich jene kleineren zu den Follikelhäufchen gruppiren sollten. Allein man sieht leicht ein, dass eine solche Unterscheidung der beiden Arten grösserer Zellen wohl zu den Unmöglichkeiten gehört, da die hellere einkörnige Zelle ja sehr leicht und wahrscheinlich später feinkörnig und mehr kernig werden kann.

⁽⁴⁾ Mittheil. d. züricher naturforsch. Gesellsch. 1847. No. 10 u. 11.

Da indessen auch Steinlin das Keimbläschen als den ersten eigentlichen Eitheil erkannte, um den sich erst später der Dotter und die Dotterhaut herumbildet, und da hiermit auch die Beobachtungen bei andern Wirbel- und wirbellosen Thieren übereinstimmten, so schienen die Materialien hinreichend, um sich über die Stellung des Eies in der Zellenlehre auszusprechen. Dabei war es bemerkenswerth, dass alle wirklichen Beobachter der Bildung des Eies: Wagner, Valentin, Ich, Steinlin, sowie auch Henle sich gegen die Natur des Eies als einer primären einfachen Zelle aussprachen, und dasselbe als ein secundäres Zellengebilde, durch Umlagerung um eine primäre Zelle, nämlich um das Keimbläschen, entstanden, betrachteten. Allein schon Schwann, der über diesen Punkt keine eigenen Beobachtungen gemacht hatte, entschied sich seiner Lehre zu Gefallen für die Ansicht, dass das Ei eine primäre Zelle sei, und der Gedanke, dass der erste Anfang eines ganzen Organismus auch dem ersten Anfang jeder organischen Gestaltung gleich sein müsse, war so verlockend und mächtig, dass sich im Laufe der Zeit fast alle Stimmen in dieser Ansicht vereinigten. Man benutzte zur Stütze derselben die unterdessen aufgestellte Lehre von den bläschenartigen Kernen, und erklärte das Keimbläschen für einen solchen, um den sich dann die Eizelle nach dem Schwannschen Schema herumbilden solle; neue Untersuchungen traten aber lange Zeit keine hervor.

Dennoch mochten bei Manchen noch Zweifel übrig geblieben sein, und zuerst störte die erlangte scheinbare Einigkeit Prof. Meissner 5 durch Beobachtungen bei einigen Würmern, wie Mermis und Ascaris, bei welchen derselbe die Eier sich aus einer Keimzelle durch eine Art Sprossenbildung wollte entwickeln gesehen haben, wobei er indessen ebenfalls das Ei für eine primäre Zelle erklärte und dabei zugleich

⁽⁵⁾ Zeitschr. f. wissensch. Zoologie Bd. V p. 207 u. Bd. VI Hft. 2.

eine neue Art von Zellenbildung beobachtet zu haben glaubte. Indessen traten meinem Widerspruch, wenigstens was Ascaris betrifft, alle folgenden Beobachter bei diesen Thieren, wie Claparède, Munk und selbst Thompson bei, nach welchen Allen die Eier auch hier in der gewöhnlichen Weise, zunächst das Keimbläschen entweder frei oder von einer Mutterzelle erzeugt, und um dasselbe herum den Dotter und dann die Dotterhaut, sich bilden.

Allein seit einigen Jahren haben sich Beobachtungen, namentlich bei Säugethieren, zahlreich gehäuft, welche von den früheren Angaben mannigfach abweichen.

Zuerst veröffentlichte Prof. Spiegelberg 6 vor fast drei Jahren die Resultate seiner Untersuchungen vorzüglich bei neugeborenen Kaninchen und Katzen und deren Embryonen, durch welche er im Allgemeinen die Lehre Meissners wenigstens in der Weise unterstützen zu können glaubte, dass sich die Eier als Tochterzellen in Mutterzellen entwickeln sollten. Nach diesem Autor bestehen die Eierstöcke von Embryonen zu der Zeit, wo sich in der männlichen Keimdrüse die Samenzellen zu entwickeln anfangen, aus grossen, hellen, durch schmale Bindegewebzüge in unregelmässige Haufen getheilte Zellen, mit einem grossen bläschenförmigen Kerne und zuweilen einem hellglänzenden Kernkörperchen, die er Keimzellen nennt. Mit der Zeit werden sie grösser; man sieht viele mit einem Kerne und zwei Kernkörperchen, dann solche mit zwei und noch mehr Kernen, und indem sie sich allmählich mit solchen immer mehr füllen, werden sie zu Mutterzellen, die jetzt schwerer von dem Stroma zu isoliren sind, da ihre Wand jetzt mit dem Eierstockgewebe fester zusammenhängt, als dieses früher der Fall war. Diese bis zu einem Durchmesser von 0,025-0,1 Mm. wachsenden Mutterzellen sind die primordialen Follikel, ganz mit Tochter-

⁽⁶⁾ Nachr. d. Univ. u. Gesellsch. d. Wiss. z. Göttingen. 1860. No. 20.

kernen angefüllt, die sich durch Theilung aus dem grossen bläschenförmigen Kerne der Keimzelle entwickelt haben. Einer dieser Kerne, gewöhnlich central gelagert, nimmt nun im Fortgang an Grösse zu und entwickelt sich zu dem Ei in einer Weise, die ich mit Spiegelbergs eigenen Worten geben muss. "Man sieht, sagt er, ausser einem relativ hellen Kerne in ihm (dem oben genannten Kerne) eine freie Hülle sich von ihm abheben, und zwischen dieser und dem jetzt einen wirklichen Kern darstellenden Keime einen granulirten Inhalt. Letzterer nimmt relativ schnell zu, die Hülle dehnt sich aus, und auf dieser Stufe der Entwicklung ist es nicht zu verkennen, dass der so entwickelte Keim das Ei ist." Die anderen Kerne der Mutterzelle (des Follikels) werden auch zu Zellen und bilden später die Membrana Granulosa.

Dieser Lehre, wenigstens in Betreff der Bildung des Follikels, ist in dem so eben erschienenen neuesten Heft von v. Siebolds und Köllickers Zeitschrift Bd. XII p. 483 auch Dr. Quincke beigetreten. Bei Rindsembryonen von 6—30" Länge will er sich von dem fortschreitenden endogenen Zellen- und Kernbildungs-Process überzeugt haben, durch welchen die primären Eierstockszellen in die Follikel umgewandelt würden. Ueber die Bildung des Eies selbst sagt Dr. Quincke nichts, als dass er später in den Follikelzellen das Keimbläschen schon von Dotterkörnchen umgeben gesehen habe.

Ich werde diese Angaben von Spiegelberg weiter unten genauer beleuchten, fahre aber jetzt, um Wiederholungen zu vermeiden, mit dem Referate über weitere unser Thema behandelnde Arbeiten fort.

Der Nächste nämlich, welcher mit Beobachtungen über die Bildung von Säugethiereiern hervortrat, ist Prof. Pflüger.⁷

⁽⁷⁾ Med. Central-Zeitung 1861. No. 42. 1862. No. 3 und 88.

Seine Mittheilungen sind zwar erst vorläufige, und er verweiset auf ein künftiges grösseres, mit Abbildungen auszustattendes Werk. Indessen sind diese Mittheilungen doch schon ausführlich genug, um über den wesentlichen Punkt derselben sich aussprechen zu können. Pflüger hat nämlich die frühere Angabe von Valentin wieder aufgefrischt, dass der Eierstock bei den Säugethierembryonen ganz nach dem Typus des Hodens gebaut sei und zu den tubulösen Drüsen gehöre. Die Canäle oder Schläuche, aus denen der Eierstock nach ihm zusammengesetzt ist, sind sehr bestimmt gebildet, oft von colossaler Grösse und mit blossem Auge bemerkbar, ja lassen sich vollständig isoliren. Sie sind mit einem grosszelligen und kernigen Epithel an ihrer inneren Fläche überzogen, und in ihnen entwickeln sich die Graafschen Bläschen und in diesen die Eier. Auch wie dieses erfolgt, hat Pflüger bereits genau angegeben, allein ich glaube mich auf die Angabe jener Canäle und Schläuche beschränken zu können. Ich hatte der gleichen Aussage von Valentin schon bei meinen früheren Untersuchungen die genaueste Aufmerksamkeit gewidmet, aber mich bei den Eierstöcken keiner Embryonen und keiner Thiere von der Gegenwart solcher Canäle überzeugen können, und alle meine Nachfolger waren mir darin beigetreten. Da inzwischen die Methode der Anfertigung feiner Durchschnitte zu mikroskopischen Präparaten und die Imbibition derselben mit gefärbten Flüssigkeiten sich sehr vervollkommnet hat, so hielt ich es für nöthig, den Gegenstand nochmals genau zu prüfen. Aber weder bei den Eierstöcken von Embryonen noch bei denen erwachsener Thiere, auch nicht bei Katzen, die Pflüger besonders empfiehlt, konnte ich mich jemals von der Gegenwart solcher Canäle überzeugen. Da es auch Spiegelberg, Quincke und dem gleich zu erwähnenden Dr. Schrön ebenso ergieng, so glaube ich mich auf eine weitere Kritik der Pflügerschen Angaben nicht einlassen zu können, bis etwa das ausführlichere Werk nähere Anhaltspunkte dazu giebt.

Ganz vor Kurzem ist aber wieder eine neue Abhandlung über unsern Gegenstand von Dr. Schrön ⁸ erschienen, welcher ich mit grösster Aufmerksamkeit gefolgt bin. Die Untersuchungen Schröns sind grösstentheils bei Katzen, aber auch bei anderen Säugethieren und beim Menschen angestellt. Der Verf. hat die Methode der Durchschnitte an erhärteten, injicirten und imbibirten Eierstöcken mit grosser Vollkommenheit und Eleganz ausgeführt, und da er die Güte hatte, mich mit seinen Präparaten bekannt zu machen und mir solche zu schenken, so habe ich mich von der Richtigkeit vieler neuer Resultate seiner Arbeit überzeugen können. Dennoch sehe ich mich genöthigt von ihm in dem Hauptpunkte, nämlich in der Ansicht über die Entwicklung und Bildung des Eies und Follikels vollkommen abzuweichen.

Dr. Schrön zeigt in seiner Abhandlung und durch seine Präparate, dass sich in den Eierstöcken erwachsener Säugethiere eine gefässlose Rindenschichte befindet, in welcher eine sehr grosse Anzahl von Bläschen vorkommen, welche an diesen in Weingeist erhärteten und imbibirten Präparaten bei schwacher Vergrösserung wie Zellen mit einem fast durchsichtigen Inhalte, einem Kerne und einem Kernkörperchen aussehen. Bei etwas stärkeren Vergrösserungen erkennt man freilich ganz bestimmt, dass dieser Kern auch ein Bläschen mit geronnenem und gefärbtem Inhalt, und das Kernkörperchen der Kern dieses Bläschens ist, auch wird man bei aufmerksamer Betrachtung nicht übersehen, dass der Inhalt der ganzen genannten Randbläschen nicht vollkommen durchsichtig, sondern oft körnig erscheint. Indessen könnte man dennoch, nach der einmal angenommenen Lehre von den bläschenförmigen Kernen, die ganzen Eierstockbläschen für Zellen

⁽⁸⁾ Zeitschrift f. wissenschaftl. Zoologie XII. p. 409.

mit einem solchen bläschenförmigen Kerne und einem Kernkörperchen erklären. Dr. Schrön thut dieses denn auch wirklich und glaubt nicht anstehen zu können, diese Zellen geradezu als die Eizellen zu betrachten. Im weiteren Fortgang der Entwicklung rücken dieselben weiter ins Innere des Eierstocks, und indem sie in das Gebiet des Gefässnetzes gelangen, fangen sie an zu wachsen und umgeben sich zugleich mit dem bis dahin ihnen fehlenden Follikel. Herr Dr. Schrön schliesst sich in dieser seiner Interpretation seiner Präparate einer mir durch frühere persönliche Mittheilung und durch einen Vortrag auf der Naturforscher-Versammlung in Speyer bekannt gewordenen Ansicht des Hrn. Prof. Grohe an, welcher ähnliche, wie diese in der Rindenschichte des Eierstocks erwachsener Thiere, in dem Eierstock neugeborner Mädchen, vorkommende Bläschen, gleichfalls für die bereits gebildeten Eier hält, um die sich erst später der Follikel herumbilde.

Diese Ansicht unterscheidet sich daher von allen früheren über die Bildung und Entstehung des Säugethiereies aufgestellten dadurch, dass nach ihr das fertige Ei das zuerst auftretende Gebilde ist, der Graafsche Follikel dagegen erst später hinzukommt. Zugleich unterstützt sie die Lehre, dass das Ei eine primäre Zelle sei, freilich mit einem sogenannt bläschenförmigen Kerne, und ohne über die Entstehung und Bildungsweise dieser Eizelle etwas Näheres angeben zu können.

Ich habe mich nun, angeregt durch diese in der neuesten Zeit sich häufenden Arbeiten über die in Rede stehende Frage, aufs Neue seit längerer Zeit angelegentlich mit ihr beschäftigt, und Eierstöcke sowohl erwachsener Thiere als auch zahlreicher Embryonen sowohl im frischen Zustande als auch injicirt, erhärtet und imbibirt in feinen Durchschnitten sorgfältig untersucht, und theile das Resultat dieser wiederholten Beobachtungen im Folgenden mit.

Ich wiederhole hiebei zunächst meine schon oben ge-

machte Aussage, dass ich zu keiner Zeit und bei keiner Untersuchungs- und Präparationsmethode jemals einen Röhrenbau an dem Eierstock eines Säugethieres habe erkennen können. Sobald sich in dem Embryo-Eierstock nur irgend etwas Anderes als Zellen- und Zellenkerne erkennen lässt, spricht die ganze Anordnung des Gefässnetzes, der sich bildenden Bindegewebszüge und sodann der auftretenden Follikel so entschieden gegen einen solchen Röhrenbau in dem Eierstocke, dass es mir in der That ein Räthsel ist, welche Umstände zu dieser wiederholten Angabe haben Veranlassung geben können. Nur bei neugeborenen Katzen und Hunden ist die Anordnung der sich bildenden Follikel zwischen den sie noch nicht ganz von einander getrennt habenden Bindegewebszügen eine solche, dass man allenfalls zu einer solchen Annahme verleitet werden könnte. Denn es ziehen alsdann diese Bindegewebszüge in einer gewissen Regelmässigkeit von dem Hilus des Eierstocks gegen die Peripherie hin, und zwischen ihnen liegen in der letzteren die wie gesagt noch nicht gesonderten Haufen der sich bildenden Follikel.

In den Eierstöcken jüngerer Embryonen findet man nur Kerne, Zellen und Faserzellen von einem Netz von Blutgefässen durchzogen, welche keine weitere specifische Anordnung zeigen. Ich nenne hier einen Kern einen solchen soliden sphärischen Körper, um welchen herum sich mit unsern besten optischen Hülfsmitteln und bei verschiedentlicher Behandlung keine durch einen mehr oder weniger grossen Zwischenraum von ihm getrennte häutige Hülle unterscheiden lässt, obwohl es sein kann, dass derselbe bereits aus zwei Schichten, einem solideren Centrum und einer darum gelagerten feinkörnigen Plasmaschichte besteht. Für eine Zelle verlange ich die Gegenwart einer deutlich erkenn- und nachweisbaren häutigen, von dem Kerne durch einen mehr oder weniger grossen Zwischenraum getrennten Hülle.

In diesem Sinne nun machen fein granulirte Kerne, theils

ohne, theils bereits mit einer Plasmaschichte versehen, den bei weitem grössten Theil der Masse des jüngeren embryonalen Eierstockes aus. Sie haften eben durch die Plasmaschichte, die viele umgiebt, zusammen, lassen sich aber doch auch isoliren und schwimmen dann einzeln oder in kleinen Haufen in der zugesetzten Flüssigkeit (Liquor Amnii oder Allantoidis) im Sehfelde herum. Sie sind 0,005—0,01 Mm. gross, haben ganz frisch ein durchscheinendes kaum feinkörniges Ansehen, zeigen oft ein Kernkörperchen und werden bei Zusatz von etwas sehr verdünnter Essigsäure kleiner, dunkler, stärker granulirt, und die Plasmaschichte kommt dabei oft deutlicher zu unterscheiden.

Das zweite zu beobachtende Element sind: Zellen in obigem Sinn, grössere und kleinere, von 0,015-0,03 Mm. Durchmesser, meist rund, oft aber auch etwas oval. Die Mehrzal enthält nur einen Kern, die Hülle ist von demselben durch einen deutlichen hellen Zwischenraum getrennt, und die schwache Essigsäure macht, ehe sie die Zellmembran zerstört, diese Zusammensetzung noch deutlicher. In einzelnen dieser Zellen sieht man aber auch zwei, ja drei, zuweilen, obgleich selten, vier Kerne, mehr habe ich nie gesehen. Im Allgemeinen kann man zwar wohl sagen, dass die mehr kernigen Zellen die grösseren sind, allein dieses ist durchaus nicht immer der Fall; es kommt oft vor, dass eine einkernige Zelle größer ist als eine zwei- und mehrkernige. Dass die Kerne sich durch Theilung oder unter vorherigem Auftreten zweier Kernkörperchen vermehrten, oder dass sich die Zellen durch Theilung vermehrten, darüber habe ich trotz aller Aufmerksamkeit keine Beobachtung machen können, und glaube alle solche Angaben mehr oder weniger als das Resultat der postulirenden Reflexion betrachten zu müssen. Einen specifischen Unterschied in diesen Zellen, wie ihn Steinlin annimmt und angiebt, konnte ich auch nicht erkennen; ebenso wenig irgend eine bestimmtere Anordnung

zwischen obigen Kernen und diesen ein- oder mehrkernigen Zellen. Sie lagen, wie mir schien, regellos durcheinander, und der ganze Eindruck, den beide Elemente auf mich hervorbrachten, war der, dass die Zellen die Mutterorgane für jene Kerne abgeben und diese sich wieder allmählich zu solchen Zellen ausbildeten, und auf diese Weise das Material des Eierstocks vergrössert und vermehrt wird.

Bei etwas älteren Embryonen besteht der Eierstock noch immer aus einem kernigen und zelligen oder auch schon schwach faserigen von Blutgefässen durchzogenen Stroma, allein zugleich sieht man in demselben auch zahlreiche Gruppen dichter an einander gedrängter Kerne, welche ich wie früher für die ersten Anfänge der Graafschen Follikel zu halten genöthigt bin. Es werfen sich bei ihnen die zwei Fragen auf, besitzen sie, wie Spiegelberg behauptet, jetzt schon eine sie umschliessende Hülle, und sind sie also mit Kernen angefüllte Mutterzellen, oder ist das nicht der Fall; und zweitens: umschliesst dieses Kernhäufchen schon jetzt eine bestimmte charakteristische Zelle, das Keimbläschen, oder entsteht dasselbe erst später innerhalb dieses Kernhaufens? Beide Fragen sind, weil es auf diesem Stadium fast auf keine Weise gelingt, diese Häufchen aus ihrem Stroma zu isoliren, sehr schwer zu beantworten, und ich habe mir sehr viele Mühe damit gegeben. Dennoch glaube ich mich in Beziehung auf die erste Frage dahin entscheiden zu müssen, dass diese Kernhaufen auf diesem Stadium keine Hülle besitzen und daher keine mit Kernen angefüllte Mutterzellen sind, wie Spiegelberg will. Der Hauptgrund, den ich dafür habe, ist, dass es mir eben nie gelang, zu dieser Zeit eine solche Zellhülle zu beobachten, auch gerade dann nicht, wenn es einmal gelang, ein solches Häufchen hinreichend zu isoliren. Dann aber haben mir auch immer jene Uebergänge von den auf dem vorigen Stadium beobachteten ein-, zwei-, drei- und selbst vierkernigen Zellen

gefehlt, welche zu diesen aus viel mehr Kernen zusammengesetzten Kernhaufen hätten führen müssen. Ich habe schon gesagt: drei- und vierkernige Zellen sind schon sehr selten, nie aber sah ich solche mit noch mehr Kernen, und überhaupt ist das ganze Ansehen durchaus anders und meist sind auch die Grössenverhältnisse nicht entsprechend. Ich habe nämlich erwähnt, jene Zellen, oft selbst nur ein- und zweikernig, erreichen allerdings zuweilen eine Grösse bis zu 0,03 Mm., die kleineren aber nur von 0,01-0,02 Mm. Die kleinsten jener Kernhaufen sind freilich auch oft nicht grösser als 0,03 Mm.; die meisten indessen 0,06-0,08 Mm., und die Mittelstufen, auf welche man doch auch häufiger stossen müsste, fehlen. Niemand, dem ich solche Kernhaufen zeigte, konnte sich entschliessen, sie für mit Kernen gefüllte Mutterzellen zu halten, indem in der That ihr Ansehen sehr weit von solchen, z. B. von mit Kernen gefüllten Saamenzellen, entfernt ist. Die Kerne haften in solchen Häufchen viel fester an einander, als es in solchen kernhaltigen Mutterzellen der Fall zu sein pflegt, und so kann ich mich denn nicht für Spiegelbergs Ansicht aussprechen, so viel dieselbe auch sonst, eben der Analogie wegen, für sich haben möchte.

Auch was das Keimbläschen betrifft, sehe ich mich genöthigt, wenigstens insofern auf meinem früheren Standpunkt stehen zu bleiben, als dasselbe jetzt auf keine Weise in dem Kernhaufen zur Ansicht gebracht werden kann. Dennoch gebe ich nicht nur zu, dass es schon jetzt, wahrscheinlich in noch unvollendeter Gestalt und desshalb nicht erkennbar, vorhanden sein kann, sondern glaube dieses selbst, der Analogie mit der Eibildung bei andern Thieren wegen, wo die Präexistenz des Keimbläschens vor allen anderen Ei- und Follikelbildungen erwiesen zu sein scheint. Ich bin danach geneigt, den Vorgang so aufzufassen, dass das Keimbläschen als ein besonderes Product des Eierstockstromas, vielleicht noch in sehr unvollendeter Gestalt, den Anziehungs-Mittelpunkt

abgiebt, um den sich ein Haufen von Kernen des Stromas dichter herumgruppirt, und so jene Kernhäufchen entstehen, welche die Anfänge der Follikel sind.

Auf dem nächsten Stadium, welches sich gegen Ende des Embryonallebens bei den meisten neugebornen Thieren und dem Menschen, aber auch noch später in der Rindenschichte erwachsener Thiere findet, beobachtet man nun ein scheinbar dem so eben geschilderten sehrähnliches, aber doch mannigfach verschiedenes Verhalten, welches abermals zu mehrfachen Irrthümern Veranlassung gegeben hat. Man erblickt nämlich jetzt in dem meist schon deutlicher faserig gewordenen Stroma des Eierstocks und in seiner Rindenschichte eine ungeheure Anzahl kleiner runder oder etwas ovaler Bläschen, welche offenbar die früher gesehenen Kernhaufen sind, allein sie haben jetzt weit mehr Selbstständigkeit gewonnen, lassen sich ziemlich leicht aus dem Stroma isoliren und besitzen nun offenbar eine selbstständig sie einhüllende Membran. Allein diese macht durchaus nicht den Eindruck einer primären Zellmembran, sondern vollkommen den einer sogenannten Tunica propria eines Drüsenfollikels. Sie ist stärker, derber, fester und schärfer ausgeprägt als eine gewöhnliche thierische Zellmembran, widersteht unverändert dem Wasser, der Essigsäure, Chromsäure und selbst dem Weingeist, was eine primäre Zellmembran nie thut. Sie ist an in Weingeist und Chromsäure erhärteten Präparaten noch vollkommen unverändert nachweisbar, während von jenen früheren ein- und mehrkernigen Zellen jüngerer Eierstöcke nach solcher Behandlung keine Spur mehr zu finden ist.

Dieses jetzige Eierstockbläschen erscheint nun auch keineswegs mehr so deutlich aus Kernen zusammengesetzt, als dieses früher bei den Kernhäufchen der Fall war. Zwar ist es frisch untersucht, keineswegs durchsichtig, sondern zeigt auf den ersten Blick einen feinkernigen grumösen Inhalt.

Beachtet man denselben aber genauer mit scharfen Instrumenten, bei günstiger Lage des Bläschens, nach Zusatz von etwas verdünnter Essigsäure, oft auch an Chromsäure und Weingeist-Präparaten, oder besonders wenn man das frische Bläschen in geeigneter Weise zum Platzen bringt und den Inhalt austreten macht, so überzeugt man sich dennoch, dass derselbe aus allerdings wenig scharf begränzten und durch die grumöse feinkörnige Zwischensubstanz mit einander vereinigten zahlreichen Kernen besteht.

Mit dieser Veränderung des früheren Kernhäufchens in ein solches, einen mehr grumös kernigen Inhalt besitzenden Bläschen, ist aber vorzüglich eine Aufhellung desselben in soweit erfolgt, dass es jetzt in den meisten leicht gelingt, eine kleine wasserhelle, einen deutlichen scharfbegränzten Kern besitzende Zelle zu entdecken, welche sich evident als das Keimbläschen manifestirt und verhältnissmässig zu dem ganzen Eierstockbläschen ziemlich gross ist.

Dieses ist nun das Stadium der primordialen Follikelbildung, welches schon früher oft und neuerdings von Prof. Grohe und Dr. Schrön beschrieben, aber von den beiden letzteren irrthümlich für die Eizelle ausgegeben worden ist, indem sie die Follikelmembran für die zukünftige Dotterhaut (Zona pellucida) und das Keimblächen für den bläschenförmigen Kern mit Kernkörperchen dieser Zelle halten. Der Grund dieses Irrthums liegt darin, dass diese beiden Beobachter die früheren Stadien der Entstehung dieser Bläschen nicht beachtet und ausserdem ihre Untersuchungen grösstentheils nur an in Chromsäure und Weingeist erhärteten Präparaten angestellt haben. Wer die früher geschilderten Stadien gesehen hat, kann in keiner Weise diese Eierstockbläschen für in irgend einer Art entstandene Zellen betrachten. Allein der Grund, weshalb Alle, welche die Schrönschen Präparate sahen, diese Eierstock-Randbläschen dennoch möglicher Weise für Zellen zu halten geneigt sind, liegt in dem

zweiten Umstand, in der Behandlungsweise des Objectes. Die Chromsäure und noch mehr der Weingeist verändern namentlich bei der Katze den Inhalt dieser Bläschen so, dass er gar nicht mehr zu erkennen ist. Er hat sich fast ganz verloren oder ist bei seiner sehr zarten gallertartigen Beschaffenheit so zusammengeschrumpft, dass die Bläschen fast ganz durchsichtig geworden und so gewöhnlichen kernhaltigen Zellen viel ähnlicher geworden sind. Allein Jeder, der einen Eierstock auf diese Bläschen frisch untersuchen wird, wird sich überzeugen, welche grosse Veränderung sie durch die genannten Reagentien erfahren haben. Ich habe zu dieser Vergleichung namentlich auch eine brünstige junge Katze benutzt, die Dr. Schrön wegen starker Entwickelung dieser Bläschen zu dieser Zeit, wie er meint, besonders empfiehlt. Allein auch der Eierstock anderer Thiere und besonders der des leicht zugänglichen Kalbes kann hiezu benutzt werden, obgleich hier Chromsäure und Weingeist den Inhalt der Bläschen nicht so stark verändern und aufhellen als bei der Katze. Doch besitze ich auch von der Katze ein imbibirtes Präparat von Hrn. Dr. Schmetzer in Erlangen, an welchem der kernige Inhalt dieser Randbläschen ganz deutlich ist.

Auf welche Weise sich die Membran dieses jetzt beschriebenen Follikelbläschens um den früheren Kernhaufen herum entwickelt, dem, wie ich glaube, eine solche noch fehlt, darüber bin ich nur Ansichten aufzustellen im Stande, da die Beobachtung über solche Vorgänge keinen directen Aufschluss giebt. Ich habe früher die Bildung dieser Membran von einer Verschmelzung der Kerne (oder Zellen, wie ich sie früher nannte) abgeleitet und erachte das auch jetzt noch für das Wahrscheinlichste, sowie ich die Bildung aller sogenannter Membranae propriae der Drüsenfollikel für eine ähnliche halte. Möglich wäre es indessen auch, dass sie sich als eine Ausscheidung jenes Kernhäufchens an dessen Aussenseite entwickelt, nur halte ich sie, wie gesagt,

jedenfalls nicht für eine, selbst veränderte, primäre Zellmembran.

Für ganz entscheidend gegen die Ansicht sprechend, dass diese Eierstockbläschen die Eizellen seien, halte ich auch noch einen interessanten, eben bei jener Katze von mir beobachteten Fall eines Zwillingsgebildes dieser Art. Ein etwas grösseres und ovales, in der Mitte auch leicht eingekerbtes Bläschen dieser Art (nicht zu verwechseln mit zwei dicht aneinander gedrängten Follikeln) enthielt nämlich ganz deutlich zwei Keimbläschen und den grumös kernigen Inhalt um jedes derselben herumgruppirt. Hier bliebe nur die Ausrede, dass diese Eizelle zwei bläschenförmige Kerne, zwei Keimbläschen enthalten habe, ein Fall, der, wie ich glaube, nicht vorkommt und nie beobachtet worden ist. Dass sich aber in einem Follikel zwei Eier bilden, ist ganz bekannt und kommt oft vor.

Es bleibt nun aber noch übrig, die weitere Entwicklung des Eies in dem Follikel zu verfolgen. Man übersieht sie in denselben Eierstöcken, in welchen auch noch jene kleinen Randfollikel vorhanden sind, denn es finden sich meist schon bei neugeborenen Thieren und Menschen, sowie natürlich später noch alle Stadien dazu in denselben Organen.

Meine erneuten Beobachtungen haben mir aber auch hier nur das frühere Resultat ergeben. Die Follikelbläschen rücken allmählich etwas weiter in das Innere des Eierstocks, während sie an Grösse zunehmen, und gelangen dadurch, wie Dr. Schrön gezeigt, in den Bereich des Blutgefäss-Capillarnetzes. In vielen Fällen sieht man dann, dass zunächst um das Keimbläschen herum sich kleine den Dotterkörnchen ganz ähnliche Moleküle ansammeln. Dann aber erscheint, oft auch ohne vorheriges Auftreten von Dottermolekülen, an der Innenseite des Follikels eine neue im Anfang sehr zarte und dünne, bald aber dicker werdende und auf dem Durchschnitt doppelte Contouren zeigende Membran, die Dotter-

haut oder Zona pellucida. Zwischen ihr und dem Keimbläschen sammeln sich immer mehr Dotterkörner an, womit dann das Ei vollendet ist. Der Bildung der Dotterhaut aber geht eine stärkere Entwicklung und Ausbildung der Kerne des Inhalts des Follikelbläschens voraus. werden grösser, körniger, isoliren sich mehr und umgeben sich mit einer gesonderten Plasmaschichte, so dass sie zellenähnlicher werden und sich zugleich wie ein Epithelium an die Innenfläche der Follikelmembran anlegen. Ich zweifle jetzt nicht mehr daran, dass die Dotterhaut ein Ausscheidungsproduct dieser Kernschichte ist, welche später die Membrana granulosa darstellt, und auch das Ei mit der Dotterhaut als sogen. Discus proligerus umgiebt. Die Dotterhaut liegt dieser Kernschichte anfangs dicht an, so dass sie sich erst auf einem gewissen Stadium, zuweilen auch erst nach Einwirkung verschiedener Reagentien erkennen lässt, während andererseits die Bildung des Dotters meist noch nicht so weit fortgeschritten und derselbe noch nicht so weit ausgebildet ist, dass man die Dotterhaut als eine verdichtete Randschichte des Dotters auffassen könnte, wie ich dieses früher gethan. Auch würde sich die Vorstellung ihrer Ausscheidung durch die Kernschichte des Follikels wohl eher analogen Vorgängen anschliessen. Gegenstand der directen Beobachtung ist aber leider auch dieser Vorgang nicht. Die Dotterhaut ist auf einmal da, während sie auf dem kurz vorhergehenden Stadium sich noch nicht unterscheiden lässt.

Einen Vorgang der Eibildung, wie ihn Spiegelberg beschreibt, habe ich nicht nur nie beobachten können, zweisle auch, ob er überhaupt beobachtet werden kann, und ausserdem würde er, wie mir scheint, ganz isolirt in der Zellenlehre stehen. Ein Kern der Follikelmutterzelle soll sich in seinem Innern aufhellen, und sich in diesem seinem Innern ein neuer Kern, und zwar hier ein eminent bläschenförmiger Kern, wieder mit einem Kerne, das Keimbläschen mit dem

Keimfleck entwickeln; während dessen soll sich zugleich eine feine Membran von jenem Kerne abheben, welche, nachdem sich zwischen ihr und dem Kern ein granulirter Inhalt angesammelt hat, zu der Dotterhaut und dieser Inhalt zum Dotter wird. Ein solcher Vorgang ist ganz ohne Analogie.

Auch die Vorgänge, unter welchen Dr. Schrön seine Eizellen sich zu den Eiern in den Follikeln entwickeln lässt, sind Deutungen seiner Präparate, welche der Wirklichkeit nicht entsprechen. Seine Eizellen sollen sich zunächst mit einer Kernschichte und diese alsdann mit einer Faserschichte, welche den Follikel bildet, umgeben, und indem in der Eizelle sich die Dotterkörnchen, und zwischen ihr und dem neugebildeten Follikel Flüssigkeit ansammelt, entwickelt sich das bekannte Verhalten des ganzen Eies.

Es ist nicht zu läugnen, dass eine nicht durch die Kenntniss der vorausgehenden Verhältnisse geleitete Ansicht der Schrönschen Präparate zu einer solchen Auffassung verleiten kann. Man sieht ganz dicht nebeneinander eines der oben geschilderten Eierstockbläschen und daneben erscheint ein anderes, welches von einer Kern und Faserschichte umgeben ist. Man kann glauben, letztere sei zu ersterem neu hinzugekommen. Allerdings sucht man vergebens nach Stadien, die diesen Bildungsvorgang erläutern könnten; immer ist Kern und Faserschichte schon fertig. Hrn. Dr. Schrön ist es nicht entgangen, dass dadurch seine Interpretation des Objectes zweiselhaft wird; er lehrt desshalb, dass zuerst die Kernschichte und dann die Faserzellen sich um seine Eibläschen herumbildeten; aber er giebt selbst zu, dass es ihm unter 400 Präparaten, wie er glaubt, nur zweimal geglückt sei, das Stadium zu sehen, wo nur die Kernschichte und noch nicht die Faserzellen das Eibläschen umgeben hätten, und meint, dass die Seltenheit und Schwierigkeit dieser Beobachtung durch den raschen Entwickelungsgang dieser Verhältnisse zu erklären sei. Wenn ich mir erlaube

die Sicherheit auch jener zwei Beobachtungen in Abrede zu stellen, so geschieht dieses nicht nur, weil ich an den eigenen Schrönschen Präparaten die ausserordentliche Schwierigkeit, ja ich möchte sagen, die Unmöglichkeit der sichern Beobachtung der hier in Rede stehenden Frage kennen gelernt habe, sondern weil ich aus der Untersuchung des frischen Objectes weiss, dass die genannte Kernschichte ja schon lange vorher, und zwar im Innern jener Eierstockrandbläschen besteht, diese auch immer schon von einer Faserschichte umgeben sind. Wenn die Entwicklung dieser Bläschen, nämlich der Follikel, vorschreitet, so ist das erste, wie ich schon erwähnte, dass ihr grumös kerniger Inhalt sich weiter ausbildet, die Kerne grösser, dichter und isolirter werden und sich zur Membrana granulosa gestalten. In diesem Zustande nun widerstehen sie dem Einfluss der Chromsäure, des Weingeistes und der Imbibitionsflüssigkeit, welche diesen Inhalt früher auflösten; die Kerne erhalten und färben sich und sind jetzt in den Präparaten in den so weit fortgerückten Bläschen sichtbar, während dieses in den unreiferen nicht der Fall ist. Man kann dieses Verhältniss an den Schrönschen Präparaten Schritt vor Schritt verfolgen, und die immer schärfer sich entwickelnden und stärker imbibirten Kerne mit der Grösse der Follikel fortschreiten sehen. Die erfolgte Veränderung besteht nicht in der Umbildung einer Kernund Faserschichte um das Eibläschen herum, sondern allein in dem Auftreten der Dotterhaut, welche bis dahin noch nicht vorhanden oder nicht sichtbar war, während sie auf dem nächsten Stadium zugleich mit ihren Ausscheidungsorganen, nämlich mit den Kernen der Membrana granulosa deutlich hervortritt. An frischen Präparaten kann, wie gesagt, über Alles dieses gar kein Zweisel herrschen; allein ich hielt es für nöthig, die richtige Interpretation der an und für sich so schönen und eleganten Präparate des Hrn. Dr. Schrön zu geben, weil sie unzweifelhaft von Jedem, der

nur sie kennt, falsch gedeutet werden müssen. Sie sind für mich wieder ein Beispiel, wie vortrefflich und ganz unentbehrlich solche erhärtete Durchschnittspräparate zur Ermittelung der feineren morphologischen Anordnung eines Organes und Gebildes, wie äusserst bedenklich und gefährlich sie aber zur Aufklärung histologischer Vorgänge sind. Die Bildungs- und Entwicklungsvorgänge von Kernen und Zellen sind an solchen Präparaten nicht mehr zu studiren, und wer es thut, wird zu falschen Schlüssen verleitet.

Ich komme nun zum Schlusse wieder auf die Frage der Stellung des Eies zu der Zellenlehre zurück. Wäre die Lehre von Prof. Grohe und Dr. Schrön richtig, dass die Eizelle das erste von allen Eitheilen sichtbare Gebilde sei, so würde ich trotzdem, dass die Entstehung dieser Zelle nicht beobachtet wurde, trotz der bedeutenden Veränderungen, die diese Zellen in ihrem Entwickelungsgange erfahren würden, trotz endlich der Unnatur, eine so evidente Zelle, wie sie das Keimbläschen darstellt, einen Kern zu nennen, dennoch mich gegen die Zellennatur des Eies auszusprechen nicht wagen. Allein da die Lehre der genannten Beobachter sicherlich auf einem Irrthum beruht, und der Entwickelungsgang des Eies und aller einzelnen Eitheile ein ganz anderer und ein von jeder bekannten Bildungsweise einer Zelle verschiedener ist, so kann ich nicht umhin, meine alte Ansicht festzuhalten, dass das Ei keine einfache Zelle, sondern ein ziemlich zusammengesetztes Zellenderivat und mit allen zu ihm gehörigen Theilen, möchte ich sagen, ein kleiner Organismus ist.

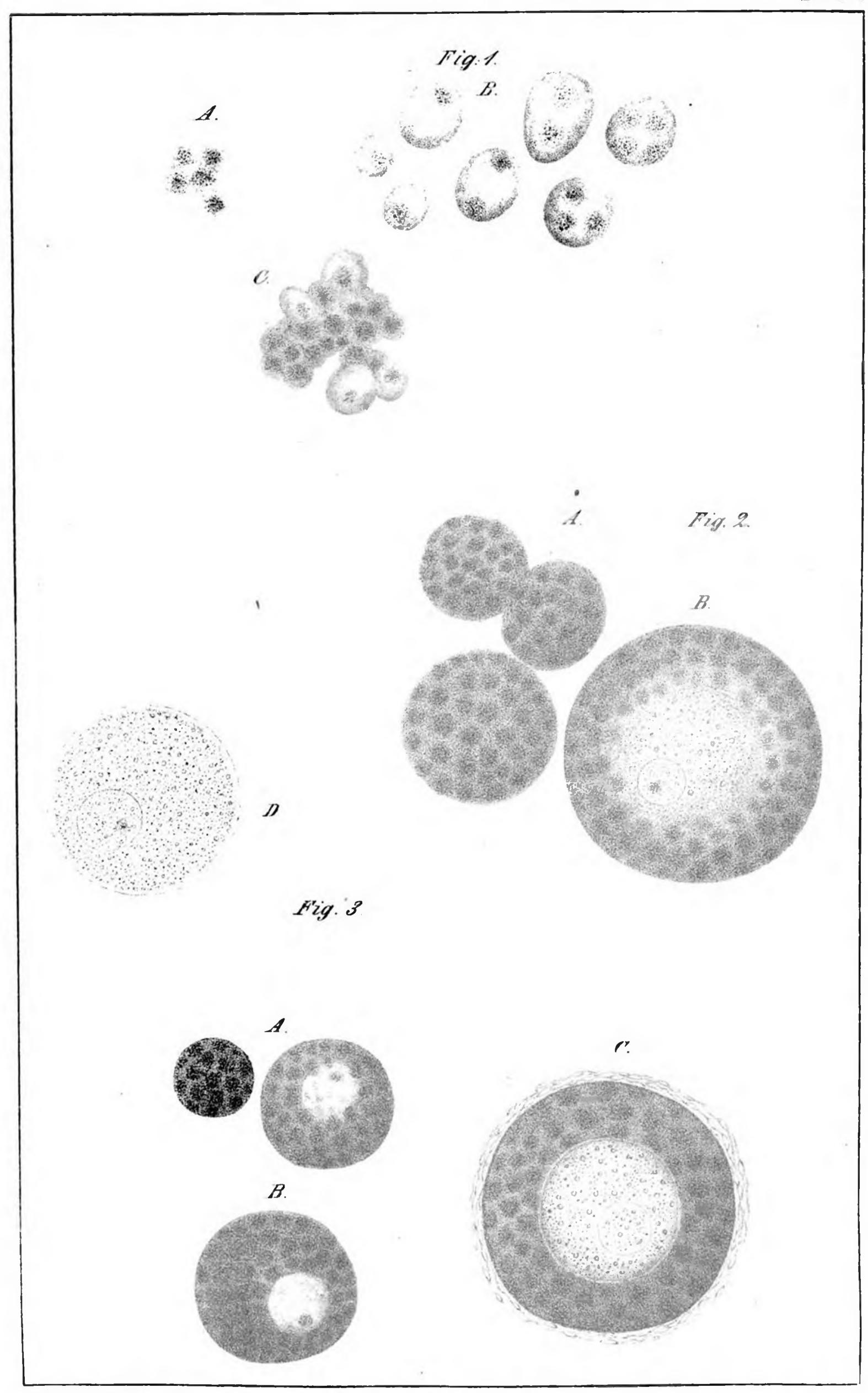
Schon der Follikel, wo sich ein solcher findet, ist aus keiner einfachen Zelle hervorgegangen. Er ist jedenfalls das Product eines Aggregates von Zellen oder Kernen und entwickelt sich entweder selbstständig, oder unter dem Einflusse des von Anfang an als erster individualisirter Eitheil vorhandenen Keimbläschens. Dieses Keimbläschen ist in der

That die einzige und zwar evident vollkommene Zelle, welche in der ganzen Bildungsgeschichte des Eies auftritt. Dasselbe besitzt alle Charaktere, welche man nur jemals von einer vollkommenen Zelle aufgestellt hat, und es ist unmöglich einen vollkommeneren Repräsentanten einer solchen zu finden. Dieses Gebilde einen Kern zu nennen, erfordert nicht nur den Begriff und Sinn des Wortes Zelle morphologisch und physiologisch abzuändern, wie dieses vielfältig geschehen ist, sondern man muss dieselben geradezu umstossen. Man muss sagen: ein entschiedenes Bläschen, welches eine zarte homogene Hülle, einen wasserhellen flüssigen Inhalt und einen soliden Kern, selbst mit Kernkörpern in letzterem, besitzt, ist keine Zelle. Hiezu ist aber um so weniger Grund vorhanden, weil der Körper, dem zu Gefallen man diese evidente Zelle einen Kern genannt hat, nämlich das Ei mit seiner Dotterhaut, entschieden keine Zelle ist. Denn diese Dotterhaut und mit ihr das ganze Ei bildet sich entschieden nicht wie irgend eine andere im Pflanzen- und Thierreiche bekannte Zelle. Sie ist ein Ausscheidungsproduct einer Kernoder Zellenschichte und nimmt daher auch Verhältnisse und Dimensionen an, welche bei primären Zellmembranen unerhört sind; wie ihre verhältnissmässige Dicke bei den kleinen Säugethiereiern und ihre ungeheure Ausdehnung bei den Eiern der Vögel und grossen Amphibien. Da hiernach auch der Dotter kein einfacher Zelleninhalt ist, so ist es auch nicht zu verwundern, dass er sehr verschiedener und zusammengesetzter Art sein und selbst wieder aus Zellen oder wenigstens aus Bläschen bestehen kann, wie dieses gleichfalls so häufig vorkommt.

Ich betrachte demnach das Keimbläschen als das centrale Zellengebilde, um welches herum sich alle übrigen Eitheile entwickeln, seien diese nun entweder nur Dotter- und Dotterhaut oder auch noch Follikelgebilde, welche diesen vorhergehen. Dieser Einfluss auf den Bildungsvorgang des

Eies ist die Rolle, welche ich dem Keimbläschen überhaupt zuschreibe. Ist sie ausgespielt, bei dem vollkommen reifen Ei, so verschwindet das Keimbläschen. Dasselbe übt keinen weiteren Einfluss auf den ferneren Entwickelungsgang des Eies aus und nimmt keinen Antheil an demselben; dafür spricht keine einzige Beobachtung und Thatsache. Wahrscheinlich aber verhält sich darin das Keimbläschen wie alle anderen vollkommen ausgebildeten Zellen. Sie haben keine weitere Zukunft mehr; es giebt keine Zellen-Metamorphosen. An ihre Stelle müssen wir die Kerne oder die jetzt sogenanten Protoplasten setzen, als deren eine Entwicklungsphase auch die Zellen zu betrachten sind.

Nachtrag.


Aus der seit vorstehender Mittheilung mir bekannt gewordenen, nun vollständig publicirten Arbeit des Hrn. Prof. Grohe (Virchow's Archiv, Bd. XXVI, pag. 271), geht zu meiner Befriedigung hervor, dass ich seine früheren mündlichen Erörterungen dahin missverstanden habe, als wenn er die, in den Eierstöcken Neugeborener bemerkbaren Gebilde nicht für die Follikel halte. Er ertheilt ihnen nur keine sie begränzende Membran, keine Tunica propria, und betrachtet sie daher nur als primäre Follikel, die später erst eine Hülle erhalten. Ich glaube, dass, wenn Hr. Prof. Grohe den frischen Kalbseierstock in vorsichtig zerzupften Partikelchen, oder auch an feinen Schnittchen untersuchen will, er sich an den vollkommen is olirten Follikeln leicht von der Gegenwart einer solchen Tunica propria überzeugen wird. In früherer Zeit des Embryolebens ist sie dagegen nicht vorhanden. Hr. Prof. Grohe hat indessen keine Embryoeierstöcke untersucht.

Auch die grössere Schrift von Hrn. Prof. Pflüger ist soeben erschienen und am 28. März ausgegeben worden. Ich kann von ihr hier nur sagen, dass sie mir keine weiteren Aufschlüsse über die in ihr enthaltenen, mir durchaus unbegreiflichen Angaben gebracht hat. Nur sehe ich mich veranlasst zu bemerken, dass auch Herr Prof. Pflüger keine Embryonen untersucht hat, sondern nur Neugeborene und ältere Thiere. Dennoch unterliegt es keinem Zweifel, dass der ganze Eibildungs-Vorgang schon lange vor der Geburt eingeleitet wird und in vielen Fällen auch schon vor der Geburt ganz abläuft.

Erklärung der Abbildungen.

Sämmtliche Figuren sind bei 370facher Vergrösserung eines Oberhäuserschen Instrumentes, mit System ⁴/7 bei 10 P. Z. Seheweite mit der Camera lucida gezeichnet.

- Fig. 1. Aus dem Eierstock eines 9,5 und eines 23,5 Ctm. grossen Schaaffötus. Es waren noch keine Follikel in denselben zu erkennen. A. Kerne, zum Theil mit einer schwachen Plasmaschichte umgeben. B. Zellen mit 1—4 Kernen. C. Ein Häufchen Kerne und Zellen.
- Fig. 2. Follikel aus dem Eierstock eines 30 Ctm. grossen und einem fast ausgetragenen Schaaffötus. A. Drei Follikel die nur aus einem Haufen von einem feinkörnigen Plasma eingeschlossener Kerne, ohne eine sie begränzende Membran bestanden. B. Ein grosser Follikel, der eine begränzende Membran, einen feinkörnigen und kernigen Inhalt und auch schon ein Keimbläschen umschloss. Es zeigten sich auch schon Dotterkörnchen aber noch keine Dotterhaut.
- Fig. 3. Aus dem Eierstock eines Kalbes. Die Follikel besitzen sämmtlich eine deutliche begränzende Membran und einen feinkörnigen kernigen Inhalt. In dem kleinsten A. ist kein Keimbläschen zu erkennen, obwohl wahrscheinlich zugegen. In dem grösseren B. ist das Keimbläschen deutlich zu erkennen. C. Der kleinste 0,09 Mm. grosse Follikel, in welchem schon das fertige Ei mit doppelt-contourirter Dotterhaut und Keimbläschen zu sehen. Derselbe ist auch schon mit einer Kernfaserschichte umgeben. D. Ein ganz ausgebildetes 0,073 Mm. grosses Ei.
- Fig. 4. Aus den Eierstöcken von Katzen. A. Körnchen, Kerne mit Plasmaschichte und Zellen aus dem Eierstock eines 8—10 Wochen alten, 25 Ctm. grossen Kätzchens, welcher indessen auch schon ganz fertige Follikel mit Eiern enthielt. B. Follikel aus dem Eierstock einer einjährigen brünstigen Katze; einer nur mit einem Keimbläschen, ein zweiter mit zwei Keimbläschen; ein dritter, welcher schon ein fertiges Ei aber nur mit einfach contourirter Dotterhaut enthält. Es waren aber auch schon ganz ausgebildete 5—7 Mm. grosse Follikel mit ganz reifen Eiern mit strahligem Discus zugegen.
- Fig. 5. Ein feiner Durchschnitt aus einem in Chromsäure erhärteten Eierstock eines 8—10 Wochen alten Kätzchens. Die Follikel liegen in der Rindenschichte des Eierstockes reihenweise in einem bindegewebigen faserigen Stroma, durch welches sie noch nicht einzeln von einander gesondert sind.

Sitzungsberichte der k. b. Academie d. W. 1863. I., 3, S. 264

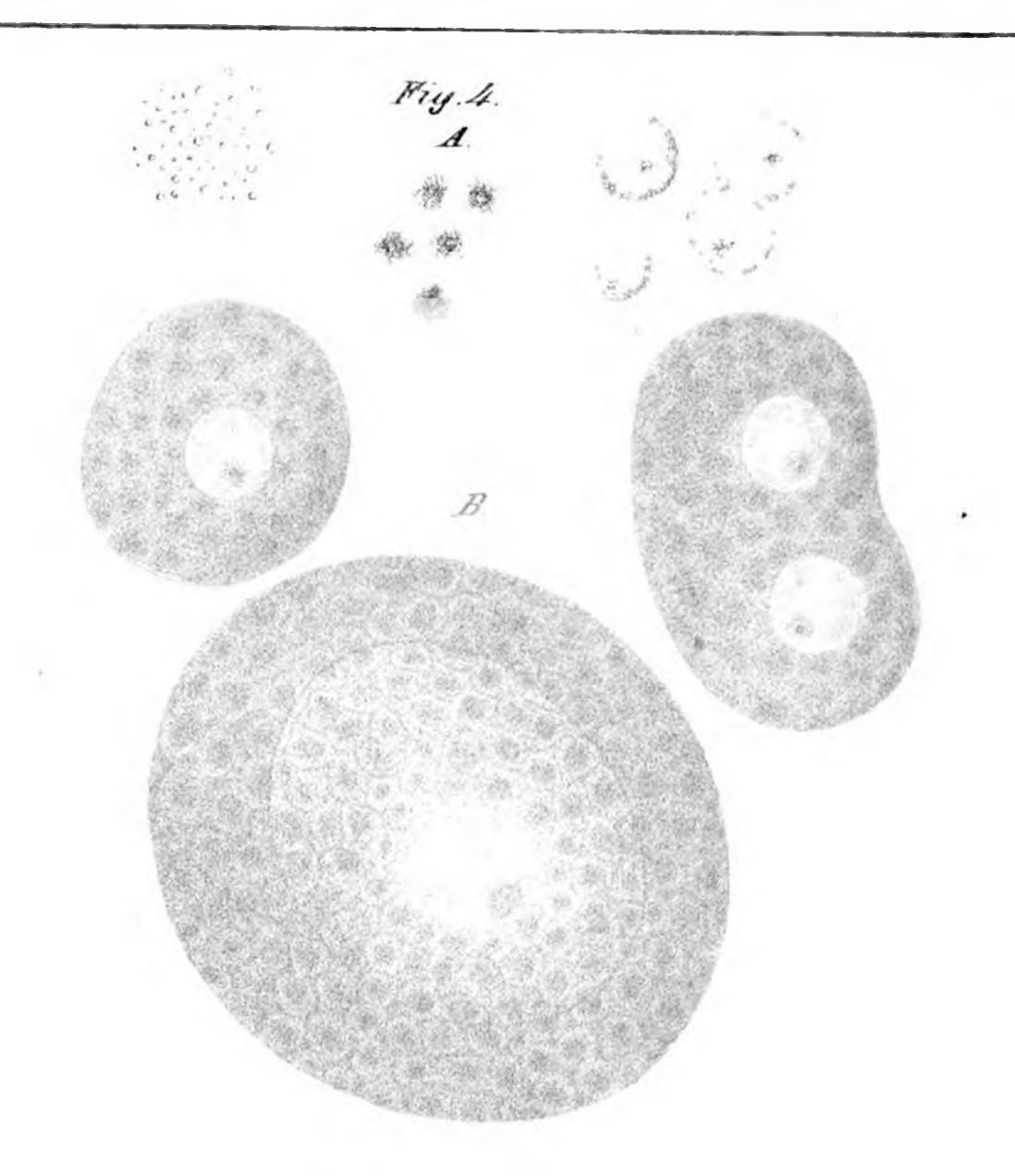
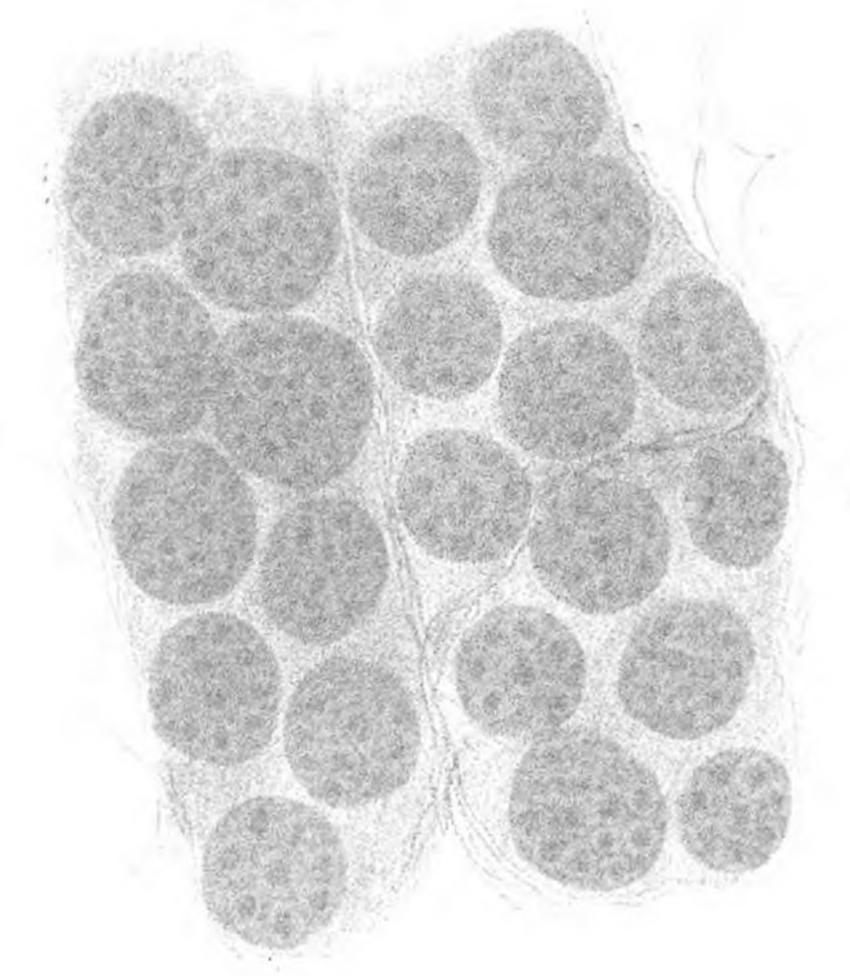



Fig. 5

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften München

Jahr/Year: 1863

Band/Volume: <u>1863-1</u>

Autor(en)/Author(s): Bischoff Theodor Ludwig Wilhelm von

Artikel/Article: Über die Bildung des Säugethier-Eies und seine Stellung in der Zellenlehre 242-264