Sitzungsberichte

der

mathematisch-physikalischen Classe

der

k, b. Akademie der Wissenschaften

zu München.

Band III. Jahrgang 1873.

München. Akademische Buchdruckerei von F. Straub. 1873.

In Commission bei G. Franz,

Transport Licogle

Herr L. A. Buchner spricht

"Ueber die Löslichkeit der arsenigen Säure in Wasser,"

Die arsenige Säure erscheint bekanntlich in zweierlei Zuständen, in einem glasartigen, durchsichtigen und in einem porzellanartigen undurchsichtigen oder, um mit Fuchs zu reden, im amorphen und krystallinischen Zustande, abgesehen davon, dass sie im letzteren Zustande dimorph ist und wie die antimonige Säure (Antimonoxyd) bald in Octaëdern und Tetraëdern des tesseralen Systemes, bald in geraden rhombischen Prismen zu krystallisiren vermag.

Haben diese verschiedenen Modificationen der arsenigen Säure eine ganz gleiche Wirkung auf den menschlichen Organismus oder zeigen sich auch hierin Verschiedenheiten? Es wird zwar kaum angenommen werden können, dass die amorphe und krystallinische arsenige Säure, wenn im Wasser oder in einer Lösung des kohlensauren Kalis gelöst, noch eine Verschiedenheit in den Eigenschaften überhaupt und in der Wirkung insbesondere besitzen, und folglich wird es ganz einerlei sein, ob man zur Bereitung der Fowler'schen Tropfen die glasige oder porzellanartige arsenige Säure nimmt. Allein da jene von Wasser und wässerigen Flüssigkeiten leichter gelöst wird als diese, so liegt der Gedanke nahe, dass wenn die arsenige Säure im festen Zustande in

den Körper gelangt, die amorphe Modification stärker resp. giftiger wirken müsse als die krystallinische.

Eine genaue Kenntniss der Löslichkeit der arsenigen Säure, worüber so viele sich widersprechende Angaben bestehen, hat gleiches Interesse, sowohl für die Chemie als auch für die Therapie und Toxikologie, und so viele Beobachtungen hierüber auch schon gemacht worden sind, so bedarf doch der eine und der andere Punkt dieses Gegenstandes einer näheren Aufklärung.

Von den bisherigen zahlreichen Versuchen über die Löslichkeit der arsenigen Säure in Wasser haben keine so viel Klarheit in die scheinbar verwickelte Sache gebracht als diejenigen, welche Bussy im Jahre 1847 hierüber veröffentlicht hat.1) Dieser Beobachter fand, indem er seine Versuche auf die beiden Varietäten der arsenigen Säure erstreckte, dass die glasige Säure sich nicht nur viel schneller, sondern auch, der früheren Annahme entgegen, in viel grösserer Menge als die porzellanartige Säure löst, und zwar bei einer Wärme von 130 ungefähr um das dreifache. während nämlich 1000 Theile Wasser von ersterer 40 Th. aufnehmen, lösen sich von letzterer nur 12 bis 13 Th. auf. Allein keine von beiden Säuren besitzt eine constante Löslichkeit, was daher kommt, dass während der Auflösung ein Uebergang von der einen in die andere Modification stattfindet, dass die undurchsichtige und krystallinische Säure sich durch längeres Kochen mit Wasser in die durchsichtige oder amorphe Säure verwandelt, wodurch also jene ebenso löslich als diese wird, so dass davon bei 100° 110 Grm. in 1 Liter Flüssigkeit gelöst sind, während umgekehrt die glasige Säure unter dem Einflusse des Wassers und einer niedrigen Temperatur nach und nach undurchsichtig und

¹⁾ Journ. de Pharm. et de Chim. 3. série, XII, 321. In vollständiger Uebersetzung in Buchners Repertorium XCVIII, 301.

zur krystallinischen Modification wird, wodurch eine Auflösung der glasigen Säure binnen einer gewissen Zeit zum Sättigungsnunkt der undurchsichtigen Säure herabsinkt. können demnach in einer Auflösung beide Modificationen der Säure, wenigstens vorübergehend, vorhanden sein, was die Anomalien erklärt, welche man in der Löslichkeit der arsenigen Säure beobachtet hat. Ferner hat Bussy gefunden, dass die Vertheilung, welche die Auflösung der undurchsichtigen Säure erleichtert, ohne ihre Löslichkeit zu vermehren, die der glasigen Säure beträchtlich vermindert, so dass die letztere Säure in sehr fein zerriebenem Zustande in der Kälte nicht merklich löslicher ist als die undurchsichtige, offenbar in Folge einer Veränderung entweder durch das Zerreiben oder durch die Berührung mit Wasser. durch langsame Umwandlung der glasigen Säure, sowie die durch Ammoniak undurchsichtig gewordene und die aus wässeriger Lösung krystallisirte Säure verhalten sich nach Bussy gegen Wasser ganz gleich und scheinen demnach einer und derselben Varietät anzugehören. Auch in verdünnter Salzsäure löst sich die undurchsichtige Säure langsamer auf als die durchsichtige.

Um den Unterschied in der Löslichkeit der beiden Modificationen der arsenigen Säure unter gleichen Verhältnissen durch eigene Erfahrung an selbst dargestellten reinen Präparaten kennen zu lernen, liess ich von Hrn. Studiosus W. Stelzer aus Sachsen einige Versuche anstellen, für deren Genauigkeit ich bürge. Die Menge der aufgelösten arsenigen Säure wurde nicht, wie es Bussy gethan, mit einer titrirten Lösung von übermangansaurem Kali, sondern auf die bekannte Weise mit 1/10 Normal-Jodlösung und dann zur Controle auch noch direkt durch Eindampfen der Lösung und Wägung des bei mässiger Wärme wohlgetrockneten Verdampfungsrückstandes bestimmt.

Um die arsenige Säure nicht blos krystallinisch, sondern

in ausgebildeten octaëdrischen Krystallen zu erhalten, wurde sie in heisser verdünnter Salzsäure aufgelöst und die filtrirte gesättigte Lösung zum laugsamen Abkühlen hingestellt. Die gesammelten Krystalle wurden durch Abwaschen mit kaltem Wasser ganz von anhängender Salzsäure befreit, dann getrocknet und zerrieben.

Von dieser Säure übergoss man einen Theil in einem Kolben mit so viel reinem Wasser, dass etwas von der Säure ungelöst bleiben musste, dann überliess man die Mischung 24 Stunden lang unter bisweiligem Umschütteln einer Temperatur von + 15° C., worauf die entstandene Lösung filtrit wurde.

Von dieser Lösung wurden je 10 CC. mit der gehörigen Menge reinen kohlensauren Natrons und etwas Stärkelösung vermischt; dann liess man von der ½0 Normaljodlösnng, wovon 1 CC. 0,00495 Grm. arseniger Säure entspricht, unter beständiger Bewegung der Flüssigkeit so lange aus einer Bürette hinzutröpfeln, bis eine bleibende blaue Färbung der Flüssigkeit eingetreten war. In drei Versuchen waren hiezu jedesmal gerade 5,7 CC. Jodlösung erforderlich, welche mithin 0,028215 Grm. arseniger Säure entsprechen.

Folglich sind in 100 CC. dieser Lösung 0,28215 Grm. und 1 Liter 2,8215 Grm, krystallisirter arseniger Säure gelöst.

Zur direkten Bestimmung wurden 50 CC. derselben Lösung in einem Schälchen bei gelinder Wärme zum Verdampfen gebracht, worauf der Verdampfungsrückstand bei 75° C. vollkommen ausgetrocknet und gewogen wurde. Seine Menge betrug 0,136 Grm., mithin für 100 CC. 0,272 und für 1 Liter 2,720 Grm. was mit dem durch Titrirung erhaltenen Resultat ziemlich genau übereinstimmt.

Bussy fand nach 24 Stunden und bei + 13° von dem feinen Pulver der undurchsichtigen Modification, welcher offenbar noch amorphe Säure beigemengt war, 6,65 und von dem der krystallisirten Säure 2,92 Grm. in 1 Liter aufgelöst.

Ein anderer Theil der zerriebenen krystallisirten Säure wurde dann mit destillirtem Wasser auf 100° erhitzt und die Flüssigkeit 20 Minuten lang im Kochen erhalten, wobei ein Theil der Säure ungelöst blieb. Dann wurde die Mischung bis auf 15° abgekühlt und 24 Stunden lang dieser Temperatur ausgesetzt, bevor man sie filtrirte.

Diessmal forderten je 50 CC. der Lösung: 1) 22,0, 2) 22,2, 3) 22,1, mithin im Mittel 22,1 CC. der ½10 Normaljodlösung, entsprechend 0,109395 Grm. arseniger Säure.

Unter den angegebenen Verhältnissen, nämlich durch vorheriges Kochen und dann Abkühlenlassen auf 15° konnten also von der krystallisirten arsenigen Säure 2,1873 in 100 CC. oder 21,879 Grm. in 1 Liter Lösung verwandelt werden — eine Menge, welche beinahe die achtfache (genauer 7³/4fache) von derjenigen ist, welche aus der nicht vorher zum Kochen erhitzten Mischung in Lösung überzugehen vermochte. Ein so grosser Unterschied in der Löslichkeit derselben Säure kann nur durch eine während des Kochens stattfindende molekulare Veränderung, welche offenbar in dem Uebergang des krystallinischen Zustandes in den amorphen besteht, erklärt werden.

Bussy fand in der in der Kochhitze mit undurchsichtiger Säure gesättigten und dann abgekühlten Lösung nach zweitägigem Stehen 32,225 Grm. und erst nach drei Tagen 20,840 Grm. Säure pr. Liter, allein die undurchsichtige oder porzellanartige arsenige Säure enthält, wie schon oben erwähnt, sicherlich noch mehr oder weniger von der amorphen, anfangs löslicheren Modification beigemengt. In 1 Liter der heiss bereiteten und dann auf 13° abgekühlten Lösung der krystallisirten Säure fand Bussy nach zweitägigem Stehen 18,00 Grm. derselben.

[1873, 2. Math.-phys. Cl.]

Um die krystallisirte Säure so gut als möglich in die amorphe Modification zu verwandeln, wurde ein Theil der sehr fein zerriebenen Krystalle in einem dünnwandigen Kölbchen so lauge erhitzt, bis das weisse Pulver in eine gleichartige zähe Masse verwandelt war, wobei ein Theil der Säure sublimirte. Dann wurde das Kölbchen, um die erweichte Säure so rasch als möglich zum Erstarren zu bringen, sogleich in Eis gesetzt, wo sie zu einer glasigen etwas bräuulich gefärbten Masse erstarrte, die, vom Sublimat getrennt, zerrieben wurde.

Von dieser amorphen Säure wurde nun ebenfalls ein Theil auf die bei der krystallinischen Modification beschriebene Weise 24 Stunden lang mit reinem Wasser von + 15° behandelt. 5 CC. der von der überschüssigen Säure abfiltrirten Lösung erforderte von der ½0 Normaljodlösung im Mittel von drei fast ganz übereinstimmenden Versuchen 9,4 CC., entsprechend 0,04653 Grm. arseniger Säure.

Die so bereitete Lösung enthält demnach in 100 CC. 0,9306 und in 1 Liter 9,306 Grm, arseniger Säure.

Die direkte Bestimmung durch Abdampfen gab auch diessmal wieder etwas weniger arsenige Säure, nämlich 0,906 für 100 CC. und 9,06 Grm. für 1 Liter.

Diese Versuche bestätigen also die zuerst von Bussy gemachte Beobachtung, dass Wasser von mittlerer Temperatur eine viel grössere Menge amorpher als krystallisirter arseniger Säure und zwar von jener beiläufig 3 1/4 mal mehr als von dieser auflöst.

Bussy fand nach eintägiger Berührung von Säure und Wasser bei gewöhnlicher Temperatur von der glasigen arsenigen Säure als feines Pulver 8,00 Grm., von der als gröbliches Pulver mehr als das doppelte, nämlich 18,235 und von der in ganzen Stücken nur 2,76 Grm. in 1 Liter gelöst.

Endlich liess man die amorphe Säure mehrere Minuten

Buchner: Löslichkeit der arsenigen Säure in Wasser.

165

lang mit Wasser kochen, worauf die Mischung bis auf 15° abgekühlt und 24 Stunden lang bei dieser Temperatur erhalten wurde, bevor man die Flüssigkeit vom ungelösten Theil abfiltrirte und deren Gehalt bestimmte. Im Mittel von drei sehr gut übereinstimmenden Versuchen brauchten diessmal 5 CC. der Lösung 34,4 CC. ½0 Normaljodlösung, welche 0,17028 Grm. arseniger Säure entsprechen.

Mithin enthält diese Lösung in 100 CC. 3,4056 und in 1 Liter 34,056 Grm. arseniger Säure.

Bussy ermittelte in 1 Liter der in der Kochhitze mit glasiger arseniger Säure gesättigten Lösung nach zweitägigem Stehen bei gewöhnlicher Temperatur 38,7 Grm. Säure.

Nach obigem Versuche beträgt die Menge der in 1 Liter Lösung unter den beschriebenen Verhältnissen übergegangenen amorphen Säure nicht viel über das 1½ fache von der bei gleicher Behandlung zur Lösung gekommenen krystallisirten Säure. Jedenfalls ist, wenn man die Säure mit Wasser kochen und die Flüssigkeit nach dem Abkühlen bei gewöhnlicher Tempeeatur stehen lässt, der Unterschied in der Löslichkeit der beiden Modificationen der arsenigen Säure bei weitem nicht so gross, als bei der Behandlung der zwei Varietäten mit Wasser von gewöhnlicher Temperatur, was wieder für Bussy's Annahme spricht, dass die krystallinische Säure durch längeres Kochen mit Wasser in die amorphe Modification verwandelt wird.

Ich will nun hier die Resultate dieser neuen Versuche über die Löslichkeit der beiden Modificationen der arsenigen Säure in Wasser zusammenstellen.

Es sind in 1 Liter gefunden worden:

Von der krystallisirten Säure in der bei 15° bereiteten Lösung : 2,821 Grm Von der amorphen Säure in der bei 15° erhaltenen Lösung 9,306 Grm.

Von der krystallisirten Säure in der kochend heiss bereiteten und dann abgekühlten Lösung nach eintägigem Stehen bei 15°

. . 21,879

Von der amorphen Säure in der kochend bereiteten, hierauf abgekühlten Lösung nach eintägigem Stehen bei 15° 34,056

Wenn man von dem specifischen Gewichte der Auflösungen der arsenigen Säure, welches, beiläufig gesagt, in der kochend bereiteten Auflösung der amorphen Säure nach eintägigem Stehen bei 15° = 1,0273 gefunden wurde, abstrahirt, so kann man den beschriebenen Versuchen zufolge die zur Auflösung eines Theiles arseniger Säure erforderliche Wassermenge mit folgenden Ziffern bezeichnen:

- 1 Theil krystallisirter Säure löst sich in ungefähr 355 Theilen Wasser von 15° bei eintägiger Berührung.
- 1 Theil amorpher Säure braucht bei gleicher Behandlung nahezu 108 Theile Wasser zur Lösung.
- 1 Theil krystallisirter Säure ist gelöst in ungefähr 46 Theilen Wasser, wenn die Lösung in der Siedhitze bereitet und dann 24 Stunden lang einer Temperatur von 15° überlassen wurde.
- 1 Theil der amorphen Säure bleibt, auf dieselbe Weise behandelt, in nahezu 30 Theilen Wasser gelöst.

Durch die mitgetheilten Versuchen ist es zur Gewissheit erhoben, dass auch die arsenige Säure hinsichtlich ihrer Löslichkeit demselben Gesetze unterworfen ist, wie andere Körper, welche im amorphen and krystallinischen Zustande aufzutreten vermögen, dass nämlich die Körper im amorphen

Zustande leichter löslich in den betreffenden Lösungsmitteln sind als im krystallinischen Zustande. Ich zweifle nicht daran, dass sich eine ähnliche Gesetzmässigkeit auch bei der arsenigen Säure in Beziehung auf das specifische Gewicht herausstellen wird, wenn die früheren von verschiedenen Beobachtern hierüber angestellten und sich widersprechenden Versuche mit grosser Genauigkeit wiederholt werden. Sicherlich wird man finden, dass die amorphe arsenige Säure ein etwas geringeres specifisches. Gewicht habe als die krystallinische Modification.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der mathematisch-</u> physikalischen Klasse der Bayerischen Akademie der Wissenschaften München

Jahr/Year: 1873

Band/Volume: 1873

Autor(en)/Author(s): Buchner Ludwig Andreas

Artikel/Article: <u>Ueber die Löslichkeit der arsenigen Säure in Wasser</u>

<u>159-167</u>