Sitzungsberichte
der
mathematisch-physikalischen Classe
der
k. b. Akademie der Wissenschaften
zu München.

Band VII. Jahrgang 1877.

München.
Akademische Buchdruckerei von F. Straub.
1877.

In Commision bei G. Franz.
Herr L. Seidel sprach:

„Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen“.

1.

(Worterklärung.) Wenn zu einer Größereihe a, b, c, d, von unbestimmter Ausdehnung die Differenzen gebildet werden

\[\Delta b = b - a \]
\[\Delta c = c - b \]
\[\Delta d = d - c \]

etc.

darauf aus diesen die zweiten Differenzen

\[\Delta^2 c = \Delta c - \Delta b \]
\[\Delta^2 d = \Delta d - \Delta c \]

etc.

ferner die dritten

\[\Delta^3 d = \Delta^2 d - \Delta^2 c \]

etc.

und so fort, sodass das nur nach links und nach oben begrenzte Differenzen-Tableau entsteht:
so soll im Folgenden die Grössen-Folge a, b, c, d, \ldots die Stammreihe und die Grössenfolge ab, a^2c, a^3d, \ldots welche die andere Begrenzung des Tableaus bildet, die Terminal-Reihe der Kürze halber genannt werden 1).

Als dann findet folgender Satz statt, in welchem sich wahrscheinlich die einfachste Genesis der Bernoullischen Zahlen ausspricht:

Beginnt man die Tabelle mit der Zahl $a = V_0 = 1$ und setzt sie durch weitere Grössen $b = V_1$, $c = V_2$ etc. nach der Vorschrift fort, dass vom 3ten Gliede an Stammreihe und Terminalreihe durchaus übereinstimmen, so wird

\[
\begin{align*}
V_1 &= \frac{1}{2} & V_2 &= B_1 = \frac{1}{5} \\
V_3 &= 0 & V_4 &= -B_3 = -\frac{1}{51} \\
V_5 &= 0 & V_6 &= +B_5 = \frac{1}{42} \\
V_7 &= 0 & V_8 &= -B_7 = -\frac{1}{50} \\
& \text{etc.} & & \text{etc.}
\end{align*}
\]

1) Nach einer an sich gleich berechtigten und wohl etwas häufiger gebrauchten Schreibweise würden die Glieder unserer Terminal-Reihe mit $a, \, da, \, a^2a, \text{ etc. zu benennen sein. Für das Folgende ist aber die hier angewandte Bezeichnung entschieden bequemer, weil es hier wichtiger}
wobei die Grössen B die Bernoulli'schen Zahlen sind, und wo allgemein V, der Coefficient ist des Gliedes erster Ordnung in der ganzen Function $(r + 1)^{ten}$ Grades von m, welche (für ganze Zahlen m) gleich ist der Summe $0^r + 1^r + 2^r + \ldots + m^r$.

Abgekürzt kann man den Satz so fassen:

Die Reihe der Bernoulli'schen Zahlen ist zum Anfangsgliede 1 diejenige Fortsetzung, welche vom dritten Gliede an sich selbst zur Terminalreihe hat.

Schon b muss den besonderen Werth $V, = \frac{1}{2}$ haben, damit (bei $a = 1$) $c = A^2c$ werden kann; ebenso muss dann c selbst den bestimmten Werth $\frac{1}{2}$ erhalten, damit $d = A^3d$ wird, u. s. w., sodass, wenn man Einmal $a = 1$ an die Spitze gestellt hat, alles weitere mit Notwendigkeit bestimmt ist. (In einer Reihe auch schon $b = Jb$ zu machen neben $c = A^2c$, $d = A^3d$ etc. ist unmöglich, wenn sie nicht aus lauter Nullen bestehent soll.)

Wenn man die in unserm obigen Tableau schief aufsteigende Zahlenreihe, welche mit correspondirenden Gliedern der Stamm- und Terminalreihe, wie b und Ab, c und A^2c, d und A^3d . . . endigt, der Kürze halber eine Zeile der Differenzentafel nennt, so ist die Differenz zwischen beliebigen zwei Gliedern einer Zeile immer gleich der Summe der zwischenstehenden Glieder in der vorangehenden, d. h. wenn g, h aufeinanderfolgende Glieder der Stammreihe sind und $s > r$ so hat man

$$A^rg + A^{r+1}g + \ldots + A^{s-1}g = A^rh - A^sh$$

wie sich durch Summation der Definitionsgleichungen

ist, das veränderliche letzte als das meist constante erste Glied sogleich erkennen zu lassen, welches bei der Bildung irgend einer Differenz contribuiert hat.

so soll im Folgenden die Grössen-Folge a, b, c, d, ..., die Stammreihe und die Grössenfolge a, Ab, A²c, A³d, ..., welche die andere Begrenzung des Tableau's bildet, die Terminal-Reihe der Kürze halber genannt werden 1).

Aldann findet folgender Satz statt, in welchem sich wahrscheinlich die einfachste Genesis der Bernoulli'schen Zahlen ausspricht:

Beginn man die Tabelle mit der Zahl a = V₀ = 1 und setzt sie durch weitere Grössen b = V₁, c = V₂ etc. nach der Vorschrift fort, dass vom 3ten Gliede an Stammreihe und Terminalreihe durchaus übereinstimmen, so wird

<table>
<thead>
<tr>
<th></th>
<th>V₁ = 1/2</th>
<th>V₂ = B₁ = 1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Aₙ⁻¹</td>
<td>A²c</td>
</tr>
<tr>
<td>c</td>
<td>A²d</td>
<td>A³e</td>
</tr>
<tr>
<td>d</td>
<td>d⁴e</td>
<td>A⁵f</td>
</tr>
<tr>
<td>e</td>
<td>d⁵f</td>
<td>...</td>
</tr>
<tr>
<td>f</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

1) Nach einer an sich gleich berechtigten und wohl etwas häufiger gebrauchten Schreibweise würden die Glieder unserer Terminal-Reihe mit a, Ab, A²c, etc. zu benennen sein. Für das Folgende ist aber die hier angewandte Bezeichnung entschieden bequemer, weil es hier wichtiger
wobei die Grössen B die Bernoullischen Zahlen sind, und wo allgemein Vr der Coefficient ist des Gliedes erster Ordnung in der ganzen Function \((r + 1)^{\text{ten}}\) Grades von \(m\), welche (für ganze Zahlen \(m\)) gleich ist der Summe
\[0^r + 1^r + 2^r + \ldots + m^r.\]

Abgekürzt kann man den Satz so fassen: Die Reihe der Bernoullischen Zahlen ist zum Anfangsgliede 1 diejenige Fortsetzung, welche vom dritten Gliede an sich selbst zur Terminalreihe hat.

Schon
\[b\] muss den besonderen Werth \(V_1 = \frac{1}{2}\) haben, damit (bei \(a = 1\)) \(c = \Delta^2c\) werden kann; ebenso muss dann \(c\) selbst den bestimmten Werth \(\frac{1}{3}\) erhalten, damit \(d = \Delta^3d\) wird, u. s. w., sodass, wenn man Einzel a = 1 an die Spitze gestellt hat, alles weitere mit Nothwendigkeit bestimmt ist. (In einer Reihe auch schon \(b = \Delta b\) zu machen neben \(c = \Delta^2c\), \(d = \Delta^3d\) etc. ist unmöglich, wenn sie nicht aus lauter Nullen bestehen soll.)

Wenn man die in unserm obigen Tableau sich steigende Zahlenreihe, welche mit entsprechenden Gliedern der Stamm- und Terminalreihe, wie \(b\) und \(\Delta b\), \(c\) und \(\Delta^2c\), \(d\) und \(\Delta^3d\) ... endigt, der Kürze halber eine Zeile der Differenzentafel nennt, so ist die Differenz zwischen beliebigen zwei Gliedern einer Zeile immer gleich der Summe der zwischenstehenden Glieder in der vorangehenden, d. h. wenn \(g\), \(h\) aufeinanderfolgende Glieder der Stammreihe sind und \(s > r\) so hat man
\[\Delta^r g + \Delta^{r+1} g + \ldots + \Delta^{s-1} g = \Delta^r h - \Delta^s h\]
wie sich durch Summation der Definitionsgleichungen ist, das veränderliche letzte als das meist constante erste Glied sogleich erkennen zu lassen, welches bei der Bildung irgend einer Differenz contrihiert hat.
sofort ergibt. Daraus folgt, dass, wenn die beiden extremen Glieder einer Zeile unserm Postulate gemäß einander gleich sein sollen, die Summe der Glieder der vorangehenden Zeile, in unserm Falle sonach jeder einzelnen Zeile von der zweiten an, gleich Null sein muss. Hieraus kann man sich eine Regel entnehmen, um die Tafel mit den Bernoulli'schen Zahlen successive zu erweitern. Gesetzt sie liegt mit allen Differenzen bereits ausgefüllt vor bis zu den Grössen

\[V = \left(\frac{-1}{2p+1}\right)^{p+1} B \] und \[V \bigg|_{p+1} = 0 \]
einschliesslich, und \(V \) wird gesucht, so beginne man provisorisch eine neue Zeile nach Belieben auf der Seite der Stammreihe oder der Terminalreihe mit 0, und fülle demgemäß diese Zeile aus; die Anzahl ihrer Glieder ist \(2p + 3 \), die Summe derselben finde sich = \(\omega \). Alsdann muss man an die Stelle des provisorischen Werthes Null am Ende der Zeile setzen

\[V \bigg|_{2p+2} = \left(\frac{-1}{2p+1}\right)^{p+2} B = -\frac{\omega}{2p+3} \]
wodurch offenbar jedes Glied der Zeile um eben diese Grösse verändert und also die Summe richtig auf Null gebracht wird.

(Eine Abkürzung dieser Vorschrift s. in § 2).

Der Beweis, dass die nach unserer Regel gefundenen Grössen \(V \) in der That die bekannten, ergibt sich aus Folgendem:
Wenn aus einer Anzahl $q + 1$ von Größen a, b, c, \ldots, v, w, x alle Differenzen unseres Tableau's gebildet werden, so drückt sich bekanntlich die letzte derselben durch die Glieder der Stammreihe aus wie folgt:

$$
\Delta^q x = x - \frac{q}{1} w + \frac{q(q-1)}{1 \cdot 2} v - \ldots \pm \frac{q(q-1)\ldots 2}{1 \cdot 2 \ldots (q-1)} b
$$

Wenn also für a, b, c, \ldots, x solche Zahlen V_0, V_1, \ldots, V_q genommen werden, welche (abgesehen von den zwei ersten Gliedern in der Reihe) allgemein machen $\Delta^q x = x$, so genügen diese Größen der recurrienden Gleichung

II) $0 = \frac{q}{1} V_{q-1} - \frac{q(q-1)}{1 \cdot 2} V_{q-2} + \frac{q(q-1)(q-2)}{1 \cdot 2 \cdot 3} V_{q-3} - \ldots \pm \frac{q(q-1)\ldots 2}{1 \cdot 2 \ldots (q-1)} V_1 \mp \frac{q(q-1)\ldots 1}{1 \cdot 2 \ldots q} V_0$

aus welcher sie, nachdem $V_0 = 1$ gesetzt ist, in bekannter Weise gemäß den Gleichungen I. bestimmt sind.

Will man indess nicht schon als bekannt voraussetzen, dass die Bernoulli'schen Zahlen nebst zwischengesetzten Nullen es sind, die dieser recurrienden Gleichung genügen (— etwa weil man zur Bestimmung jener Zahlen von der Gleichung nicht gleichzeitig für gerade und für ungerade q Gebrauch zu machen nöthig hat —), so wird die Bedeutung unserer V am Bequemsten durch folgenden allgemeinen Satz ermittelt:

Wenn man hat

III) $a + \frac{b}{1} y + \frac{c}{1 \cdot 2} y^2 + \frac{d}{1 \cdot 2 \cdot 3} y^3 + \ldots$ in inf. = $f(y)$

so ist zugleich

III') $a + \frac{\Delta b}{1} y + \frac{\Delta^2 c}{1 \cdot 2} y^2 + \frac{\Delta^3 d}{1 \cdot 2 \cdot 3} y^3 + \ldots$ in inf. = $f(y)e^{-y}$

(Der Beweis ergibt sich aus der Multiplication der Reihen \(fy \) und \(e^{-y} \) und aus dem obigen Ausdrucke der Differenzen durch die Glieder der Stammreihe von selbst.)

Da nun in unserem Falle die letztere Reihe von der ersteren nur um \(-y \) verschieden ist, so bestimmt sich \(f \) durch die Gleichung

\[f(y)e^{-y} = f(y) - y \]

und indem man setzt \(y = a_i \) und für die \(a, b \ldots \) unsere \(V \) nimmt, so findet sich

\[
IV) \quad \frac{1}{2} \log \frac{1}{2} S = V_0 - \frac{V_1}{1 \cdot 2} g^1 + \frac{V_1}{1 \cdot 2 \cdot 3 \cdot 4} g^4 - \ldots
\]

\[
= 1 - \frac{B_1}{1 \cdot 2} g^2 - \frac{B_2}{1 \cdot 2 \cdot 3 \cdot 4} g^4 - \ldots
\]

übereinstimmend mit der bekannten Bedeutung der Bernoulli'schen Zahlen für die Entwicklung dieser Functionen.

2.

Wenn man den Anfang der in Zahlen ausgefüllten Differenzen-Tafel vor sich hat. (s. die Beilage 1), so erkennt man, ausser dem schon hervorgehobenen Gesetze, dass in jeder Zeile die Summe aller Glieder gleich Null ist, noch eine durchgehend symmetrische Stellung der Zahlen in jeder Zeile nach beiden Seiten ihrer Mitte, – in der Art, dass in den Zeilen von ungerader Gliederzahl (welche mit Bernoulli'schen Zahlen endigen) beiderseits des Mittelgliedes auch die Vorzeichen dieselben sind, während in den mit Nullen endigenden Zeilen von gerader Gliederzahl die Zeichen beiderseits entgegengesetzt sind und dadurch das Verschwinden der Summe bedingen.

Dass diese Symmetrie ein durch die ganze Tafel bestehendes Gesetz ist, erkennt man leicht durch vollständige Induction, welche von Einer Zeile, in der es erfüllt ist, zunächst auf
die folgende schliesst. Indem man sich die erste Hälfte der neuen Zeile aus ihrem Anfangsglied (in der Stammreihe) und aus den Gliedern der vorigen Zeile durch Subtraction abgeleitet denkt, die zweite Hälfte der neuen Zeile aber durch Addition aus ihrem mit dem Anfangsglied übereinstimmenden Terminalglied und den Gliedern der zweiten Hälfte der vorigen Zeile, so hat man vorwärts und rückwärts durchaus dieselben Zahlenpaare, nur nach Umständen mit entgegengesetzten Zeichen, zu vereinigen.

Offenbar muss hiernach in den Zeilen von ungerader Gliederzahl das Mittelglied entgegengesetzt gleich sein dem doppelten der Summe der ihm vorangehenden oder auch der ihm nachfolgenden Glieder, — wonach sich nunmehr, wenn die Differenztabelle bis einschliesslich zu den Zeilen mit \(V_{2p} \) und mit \(V_{2p+1} = 0 \) ausgefüllt vorliegt, ein abgekürztes Verfahren zur Berechnung von \(V_{2p+2} \) ergibt.

Man setzt (wie zuvor) an die Stelle dieser noch unbekannten Größe in der Stamm- oder in der Terminalreihe provisorisch eine Null, füllt aber von da aus die neue Zeile nur bis einschliesslich zu ihrem Mittelgliede aus: findet man dieses = \(r \) und die Summe der auf seiner Einen Seite stehenden Glieder = \(a \), so ist der richtige Werth

\[
V_{2p+2} = -\frac{2a + r}{2p + 3}
\]

Diese auf der Symmetrie in den einzelnen Zeilen beruhende Abkürzung lässt sich aber ebensogut in den Formeln wie in der Zahlenrechnung verwerthen.

Nach dem schon in § 1 benutzten Satze über die Summe einer Reihe auf einander folgender Glieder einer Zeile ist der Complex derjenigen, welche vor dem Mittelgliede der mit der Bernoulli’schen Zahl \(V_{2p} \) beginnenden Zeile stehen:
\[V_{2p} + \sum_{i=0}^{p-1} A^i V_{2p-i} = V_{2p+1} - A^{p+1} V_{2p+1} = -A^p V_{2p+1} \]

(wenn \(p \neq 0 \)).

Dagegen ist das Mittelglied jener Zeile \(A^p V_{2p} \); man muss also haben
\[A^p V_{2p} = 2 A^{p+1} V_{2p+1} \]
wie auch aus der Zahlentafel ersichtlich ist. Drückt man nun diese beiden Differenzen durch die Glieder der Stammreihe aus, so erhält man:
\[V_{2p} - \frac{p}{1} V_{2p-1} + \frac{p(p-1)}{1 \cdot 2} V_{2p-2} - \ldots = 2 \left(V_{2p+1} - \frac{p}{1} V_{2p} + \frac{p(p-1)}{1 \cdot 2} V_{2p-1} - \ldots \right) \]
wo die Summen beiderseits durch das Verschwinden der Binomial-Coeffizienten von selbst an gehöriger Stelle abbrechen; nämlich links hinter dem Gliede mit \(V_p \) und rechts hinter demjenigen mit \(V_{p+1} \). Setzt man voraus, dass \(p \leq 2 \) ist, so sind die \(V \) von ungeradem Index, welche in der Gleichung vorkommen, alle Null. Die Gleichung geht in diesem Falle in folgende Form über:
\[VI) \quad \frac{p+1}{1} V_{2p} (2p+1) + \frac{(p+1) p (p-1)}{1 \cdot 2 \cdot 3} V_{2p-2} (2p-1) + \frac{(p+1) p (p-1) (p-2) (p-3)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} V_{2p-4} (2p-3) + \ldots = 0 \]
oder noch etwas eleganter, indem man setzt
\[VII) \quad Y_{2p} (2p+1) V_{2p} = (-1)^{p+1} (2p+1) B \]
in die folgende:
L. Seidel: Entstehungsweise der Bernoulli'schen Zahlen etc. 165

VIII) \[\frac{p + 1}{1} \cdot \frac{1}{2p} + \frac{(p+1) p (p-1)}{1 \cdot 2 \cdot 3} \cdot \frac{1}{2p - 2} \]

\[+ \frac{(p+1) p (p-1) (p-2) (p-3)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \cdot \frac{1}{2p - 4} \] \[+ \ldots = 0 \]

Dies ist die vereinfachte recurrentere Gleichung für die Bernoulli'schen Zahlen, nach welcher jede neue Größe dieser Art nicht durch die sämtlichen ihr vorangehenden ausgedrückt erscheint (wie in der gewöhnlichen Formel), sondern auf wesentlich halb so viel Glieder reducir ist. Denn je nachdem p gerad oder ungerad ist, endigt die Reihe mit \(Y_p \) oder schon mit \(Y_{p+1} \).

Der Fall ist vielleicht der erste von der Art, dass die Zurückführung einer neuen Größe erfolgt auf eine Anzahl von vorausgehenden, die nicht fix ist, aber doch nicht bis an den Anfang zurückgeht.

Im Übrigen ist unsere Gleichung auch noch deshalb bequemer als die gewöhnliche, weil die in ihr auftretenden Binomial-Coefficienten zu einer viel niedrigeren Potenz gehören, daher auf kleinere Zahlen führen 2).

Sind z. B. bekannt die Werthe

\[V_2 = \frac{1}{6}, V_4 = -\frac{1}{30}, V_6 = +\frac{1}{42}, V_8 = -\frac{1}{30}, V_{10} = +\frac{5}{66} \]

2) von Staudt gibt in § 9 seiner Dissertation de numeris Bernoullianis (Erlangen 1845), welche auch den Beweis seines schönen Satzes über die Nenner derselben enthält, Formeln von wesentlich ebensoviel Gliedern wie oben für jedes neue B. In jeder derselben kommen aber dennoch alle vorausgehenden B, paarweise zu Produkten verbunden, vor. Dem eben erwähnten Beweise selbst ist dort eine Darstellung von \(B_r \) durch die Terminalglieder zur Stammreihe 0, 1, 2, \ldots (2r) zu Grunde gelegt. Auch die Verbindung, welche G. Bauer in Crelle — Borchardt's Journal, Bd. 58, mit Staudt ganz ähnlichen Ausgang nehmend, zwischen der harmonischen Reihe und der der Bernoulli'schen Zahlen nachgewiesen hat, ist aufs Engste verwandt mit der Beziehung zwischen Stamm- und Terminalreihe.
oder
\[Y = \frac{1}{2}, \quad Y = -\frac{1}{6}, \quad Y = +\frac{1}{6}, \quad Y = -\frac{3}{10}, \quad Y = +\frac{5}{6} \]
so erhält man für die sechste Bernoulli'sche Zahl:
\[7Y_{12} + 35Y_{10} + 21Y_8 + Y_6 = 0 \]
oder
\[-7Y_{12} = \frac{875 - 189 + 5}{30} = \frac{691}{30} \]
daher
\[Y_{12} = -\frac{691}{210} = 13 \quad \text{v} \quad Y_{12} ; B = \frac{691}{2730} \]
Ebenso nunmehr für die siebente:
\[8Y_{14} + 56Y_{12} + 56Y_{10} + 8Y_8 = 0 \]
\[Y_{14} = -7(Y_{12} + Y_{10}) - Y_8 = \frac{691 - 175 + 9}{30} = \frac{35}{2} = 15 \quad \text{v} \quad Y_{14} ; B + \frac{7}{6} \]

3.

Man gelangt ebenfalls zu den Bernoulli'schen Zahlen, zwar nicht völlig so direct, aber auf eine für die numerische Rechnung noch bequemere Weise, wenn man (abgesehen vom Anfang) die Glieder der Terminalreihe denjenigen der Stammreihe entgegengesetzt anordnet. Nur im Vorbeigehen mag der Fall erwähnt werden, wo man zu \(a = 1 \) schon \(b = -\text{A}b, c = -\text{A}c, d = -\text{A}d \) etc. postulirt; hier wird die Stammreihe
\[1, R = \frac{1}{2}, 0, -R_3, 0, +R_5, 0, -R_7, \ldots \]
L. Seidel: Entstehungsweise der Bernoulli'schen Zahlen etc. 167

wobei die Grössen R die Bedeutung haben

IX) $R_{2m-1} = \frac{1}{m} (2^m - 1) B_m$

X) $\tan \frac{1}{2} \theta = \frac{1}{1} \theta + \frac{R}{1 \cdot 2 \cdot 3} \theta^3 + \frac{R}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \theta^5 + \ldots$

Ihre Berechnung durch successive Ausfüllung des Differenzen-Tableaux würde sich zunächst auf das Prinzip gründen lassen, nach welchem die Differenz zwischen Stammglied und Terminalglied einer Zeile, hier also die Größe $\pm 2R_{2m+1}$ immer gleich ist der Summe aller Glieder der vorangehenden Zeile; man würde aber alsbald auf eine sehr wirksame Vereinfachung des Algorithmus geführt werden durch die Wahrnehmung einer dem vorigen Falle durchaus analogen Symmetrie in der Stellung der Zahlen der einzelnen Zeilen, und durch den mit Hilfe dieser Symmetrie leicht zu erweisenden Umstand, dass auch hier das Mittelglied einer Zeile von ungerader Gliederzahl gleich ist dem doppelten des in der Differenzen-Tabelle gerade unter ihm stehenden Gliedes. Man erhält dabei, wie leicht einzusehen, bei den Zahlen der Tafel keine andern Nenner, als Potenzen von 2. Noch wesentlich bequemer, weil man nur mit ganzen Zahlen zu rechnen hat, gestaltet sich aber die Sache, wenn man den Beginn der Reihe ein wenig ändert.

Macht man nämlich

$$\varepsilon = 0, b = 1$$

und setzt nun die Stammreihe so fort, dass

$$c = -A\varepsilon, d = -Ad, \ldots$$

wird, so gestaltet sie sich wie folgt:

$$0, 1, +D, 0, -D, 0, +D, \ldots$$

wobei man hat
XI) \[D_{2m-1} = 2(2^{2m} - 1)B_m \]

und

\[\tan \frac{1}{2} \theta = \frac{D}{1 \cdot 2} + \frac{D}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{D}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \ldots \]

Bekanntlich sind die Größen \(2(2^{2m} - 1)B_m \) ungerade ganze Zahlen. Wenn man sich erlaubt dieselben (die übrigens noch mit \(2^{2m} - 1 \) gemeinschaftliche Factoren enthalten können, die sich dann bei der Bildung von \(B_m \) aufheben) der Kürze halber die „Bernoulli’schen Zähler“ zu nennen, so kann man sonach unsern Satz, in einer zwar abgekürzten aber der Erläuterung nicht bedürfenden Form, so aussprechen:

Die Bernoulli’schen Zähler sind zu den Anfangsgliedern \(0, 1 \) diejenige Fortsetzung, bei welcher alle ferneren Glieder der Stammreihe den entsprechenden der Terminalreihe entgegengesetzt werden.

Denn nach dem allgemeinen Satze (s. oben Gl. III. und III*), wonach

\[f xe^{-x} = (a + bx + cx^2 + \ldots) e^{-x} = a + \frac{Ab}{1} x + \frac{Ac}{1 \cdot 2} x^2 + \ldots \]

erhält man mit den oben angeführten unserem Falle entsprechenden Werthen \(a, b, c, \ldots \) und den dazu gehörigen \(Ab, Ac, \ldots : \)

\[f xe^{-x} = 2x - fx \]

also

\[fx = \frac{2x}{1 + e^{-x}} \]

woraus sich Gl. XII. ergibt wenn man \(x = 9i \) setzt.
Denkt man sich nun, um von der 3ten Zeile an in Stamm- und Terminalreihe entgegengesetzte Glieder zu erhalten, den Anfang des Differenzen-Tableau's

\[
\begin{array}{c}
0 \\
1 \\
1
\end{array}
\]

zunächst (wie in dem letztbesprochenen Falle) auf die Weise fortgesetzt, dass man jede weitere Zeile in der Stammreihe mit der Hälfte der Gliedersumme der ihr vorangehenden Zeile beginnt, so tritt sofort in der so angelegten Tafel (s. Beilage 2) wieder die Symmetrie in den Zahlen einer Zeile hervor, — diesmal in der Weise, dass in den mit Null beginnenden und ebenso endigenden Zeilen von gerader Gliederzahl in gleichen Entfernungen von der Zeilenmitte beiderseits gleiche Zahlen stehen, während die mit \(\pm D \) beginnenden und mit \(\mp D \) endigenden Zeilen ungerader Nummer in der Mitte eine Null, und beiderseits derselben entgegengesetzte Zahlen enthalten. Die allgemeine Giltigkeit dieser Regel wird (ganz wie in § 2) durch vollständige Induction sofort evident gemacht, indem man immer die erste Hälfte einer neuen Zeile aus der ersten Hälfte der vorangehenden und dem Stammgliede der neuen, die zweite Hälfte der letztern aber aus ihrem dem Stammgliede entgegengesetzten Terminalgliede und der zweiten Hälfte der vorangehenden sich berechnet denkt. Hiernach kennt man also in den Zeilen ungerader Nummer, welche mit \(\pm D \) beginnen, mit \(\mp D \) endigen müssen, ohne Weiteres das Mittelglied 0, von welchem aus man nunmehr diese Zeilen ganz leicht ausfüllt, während die Zeilen gerader Nummer, da sie mit 0 anfangen und schliessen, von dem Einen dieser Enden an ausgefüllt werden. Damit ist auch evident, dass die Tafel nur ganze Zahlen enthalten kann; und es wird unnöthig, bei der Rechnung, von den einzelnen Zeilen des Tableau's mehr als die Hälfte (einschliesslich des Mittelgliedes 0, wo ein solches vorhanden
ist) anzuschreiben. Man bemerkt weiter in den Zeilen-
Hälften, auf welche hiernach die Betrachtung reducir-
werden kann, dass altersirend ein Paar derselben nur posi-
tive, das nächste Paar nur negative Zahlen enthält, u. s. f.;
und beweist leicht wieder durch vollständige Induction (mit
Hilfe des Umstandes, dass die Zeilenhälften abwechselnd mit
0 beginnen und endigen) die Allgemeinheit auch dieses Ge-
setzes, zufolge dessen alle D positiv ausfallen. Folge eben
dieses Umstandes ist es weiter, dass, indem man die Aus-
füllung der Halbzeilen stets auf der Seite beginnt, wo in
ihnen die 0 steht, und also abwechselnd von links nach
rechts und von rechts nach links rechnet (βουστροφηδόν)
die absoluten Werthe der Zahlen beständig wachsen, indem
niemals zwei mit ungleichem Vorzeichen zusammenzulegen
sind. Für die numerische Rechnung kann man hiernach
die Zahlentafel der Form einer Differenzen-Tabelle ent-
kleiden, durchaus einfach die absoluten Werthe ansetzen,
die zuvor von links nach rechts aufsteigende Zeile hori-
zontal anordnen, und durch eine leichte Verschiebung der-
selben bewirken, dass überall die Zahlen gerade unter ein-
ander zu stehen kommen, welche man in der Rechnung zu-
sammen zu addiren hat. Auf diese Art erhält man an
Stelle der Hälfte unseres Differenzen-Tableau’s zur leichten
und ganz mechanischen Berechnung der Bernoulli’schen
Zähler das treppenförmige Schema in Beilage 3),
in welchem, abgesehen von den Nullen, mit
welchen, abwechselnd links und rechts, die Zeilen beginnen,
jede Zahl die Summe ist aus der neben ihr ste-
henden kleineren (oder gleichen) und der gerade über
dieser letztern befindlichen Zahl. Fügt man die

3) In derjenigen Anordnung, welche für die Beilage gewählt wurde,
sind, wenn man die Zeilen mit den vorderen Zeilenhälften in Beilage 2
verglichen, links und rechts gegen einander umgetauscht.
Vorschrift hinzu, dass jede neue Zeile mit einer Null gerade unter der zuletzt angeschriebenen Zahl der vorausgehenden begonnen wird, und endlich, dass (in der von uns gewählten Anordnung) jede links mit 0 beginnende Zeile rechts mit einer Zahl über die vorangehende heraustritt (indem auch noch die Null der letzteren zu der unter sie geschriebenen addirt, d. h. letztere Zahl repetirt wird), während die von rechts gegen links ausgefüllten Zeilen ihr Ende erreicht haben, sobald der Platz unter der 0 der vorangehenden Zeile ausgefüllt ist, — so hat man den Inbegriff der einfachen Vorschriften, nach welchen sich aus dem Anfänge

```
 1 0 1
```

das weitere Zahlengefüge von selbst ergiebt, — zu dessen ferner Fortsetzung man jederzeit nur die letzte vollständige Zeile nöthig hat. Darin sind die rechts herausstehenden ungeraden Zahlen 1, 1, 3, 17, 155 etc. die Bernoullischen Zähler D, welche der Reihe nach mit 2 \((2^2 - 1)\), 2 \((2^3 - 1)\), 2 \((2^4 - 1)\), 2 \((2^5 - 1)\) etc. dividiert werden müssen, um die Bernoullischen Zahlen B \(\frac{1}{6}, \frac{1}{30}, \frac{1}{42}, \frac{1}{60}\) etc. zu geben 4).

Die Nenner der Form 2 \((2^n - 1)\) können noch mit den zugehörigen Zählern D gemeinschaftliche Factoren enthalten, welche man a priori angeben kann, da nach Staudt der Nenner von B, in seiner einfachsten Gestalt bekannt ist, nämlich gleich dem doppelten Produkt aller ungeraden Primzahlen \(2d + 1\), für welche \(\frac{r}{d}\) eine ganze Zahl wird. Dennt man

[1877. II. Math.-phys. Cl.]

dieses Product $II(2d + 1)$ so wird hienach

$$\frac{2r}{II(2d + 1)} - 1$$

der gemeinschaftliche Factor sein im Zähler und Nenner des Ausdruckes

$$D \frac{2r-1}{2r} = B$$

Die Eigenschaft der Grössen D, in der Terminalreihe auf die entgegengesetzten Werthe zu führen, liefert eine recurrirnde Gleichung, welche irgend ein D durch sächliche vorangehenden ausdrückt. An die Stelle derselben kann man aber die gekürzte Formel von wesentlich nur halb so vielen Gliedern und kleineren Zahlencoeficienten setzen, welche unserer Gl. VIII. für die B analog ist, und welche im gegenwärtigen Falle (noch etwas einfacher als dort) die Bedingung ausspricht, dass das mittelste oder $(r + 1)$te Glied der mit D_{2r-1} beginnenden Zeile im Differenzen-Tableau gleich Null ist. Unter Voraussetzung, dass r mindestens gleich zwei ist, erhält diese abgekürzte Formel die Gestalt:

$XIII) D - \frac{r(r-1)}{1 \cdot 2} D + \frac{r(r-1)(r-2)(r-3)}{1 \cdot 2 \cdot 3 \cdot 4} D - \ldots = 0$

(links soweit fortzusetzen bis die Binomial-Coefficienten von selbst verschwinden); während D_1, welches nicht aus dieser Gleichung sich ergibt, $= 1$ ist.

Sind z. B. schon bekannt

$D_1 = 1$, $D_2 = 1$, $D_3 = 3$ so erhält man

$D_4 = 6D_3 - D_2 = 17$

$D_5 = 10D_4 - 5D_3 = 155$

$D_6 = 15D_5 - 15D_4 + D_3 = 2073$
L. Seidel: Entstehungsweise der Bernoulli'schen Zahlen etc. 173

\[D_{13} = 21 D_7 - 35 D_5 + 7 D_3 = 38227 \]

u. a. w.

Hiernach ist zum Beispiel die 6te Bernoulli'sche Zahl

\[B = \frac{D_{11}}{2 (2 - 1)} = \frac{2073}{2 \cdot 63 \cdot 65} = \frac{691}{2730} \]

ebenso die 7te

\[B = \frac{D_{12}}{2 (2 - 1)} = \frac{38227}{2 \cdot 127 \cdot 129} = \frac{7}{6} \]

Da z. B. bei dieser letzten der kleinste Nenner 6 nach der Staudt'schen Regel sofort bekannt ist, so weiss man sogleich, dass 43 \cdot 127 als Divisor in \(D_7 \) stecken muss.

Unter den Binomial-Coeffizienten

\[\frac{r (r-1) (r-2) (r-3)}{1 \cdot 2 \cdot 3 \cdot 4} \]

befindet sich nothwendig eine ungerade Anzahl solcher, welche ungerade Zahlen sind, — weil ihre Summe gleich ist

\[\frac{1}{2} \left((1 + 1)^r + (1 - 1)^r \right) - 1 = 2^{r-1} - 1. \]

Daraus folgt, dass \(D_{2r-1} \) eine ungerade ganze Zahl sein muss, wenn sämtliche vorangehenden D es sind; also, da schon \(D_1 \) ungerad ist, dass alle D es sein müssen. Diese bekannte Eigenschaft der Bernoulli'schen Zähler kann man in gleicher Weise durch vollständige Induction auch aus der Anordnung der Zahlen in unserem Treppen-Schema erweisen.

Der Vortheil, in der Rechnung nur mit ganzen Zahlen zu thun zu haben, ist so erheblich, dass für die numerische Berechnung der Gröessen B es durchaus am bequemsten scheint, durch ihre Zähler D zu gehen, — sei es nun, dass man diese letztern aus dem Treppenschema oder aus der gekürzten recurrierenden Gleichung XIII. bildet. Von diesen

4.

Das Differenzen-Tableau für die „Secanten-Coefficienten“ ist nicht minder bemerkenswerth, als dasjenige für die Bernoulli'schen Zahlen.

Schreibt man die Secantenreihe in der Form

\[
\text{XIV) } \text{Sec } \vartheta = U_0 + \frac{2}{1 \cdot 2} \vartheta^2 + \frac{4}{1 \cdot 2 \cdot 3 \cdot 4} \vartheta^4 + \ldots
\]

so erhält man zwischen ihren Coefficienten U die recurrente Gleichung

\[
\text{XV) } U - \frac{2r(2r-1)}{1 \cdot 2} U_{2r-2} + \frac{2r(2r-1)(2r-2)(2r-3)}{1 \cdot 2 \cdot 3 \cdot 4} U_{2r-4} - \ldots \pm U_0 = 0
\]

und hat dazu
\[U_0 = 1 \]

Der verschwindende Ausdruck in ersterer Gleichung ist aber nichts anderes, als das mit \(\pm U_2 \) zu gleicher Zeile gehörige Glied \(\pm U_2 \) in der Terminalreihe zur Stammreihe

\[U_0, 0, -U_1, 0, + U_2, 0, - U_3, \ldots \]

Hat man also den Anfang des Differenzen-Tableau's gebildet

\[
\begin{array}{c}
1 \\
1 \\
0
\end{array}
\]

so setzt sich dasselbe zunächst in der Terminalreihe mit 0 fort: von da wird die dritte Zeile von rechts nach links ausgefüllt, wodurch man zu dem Gliede \(-U_2 = -1\) der Stammreihe kommt: das nächste Glied derselben ist 0 und von ihm aus wird die vierte Zeile ausgefüllt:

\[
\begin{array}{c}
1 \\
-1 \\
0 \\
-1 \\
+2 \\
+1 \\
0
\end{array}
\]

Da nun das 5te Glied der Terminalreihe, aus den Gliedern \(U_2 \ldots U_5 \) der Stammreihe entspringend, nach unserer recurrierenden Gleichung wieder 0 sein muss, so wird von ihm aus abermals eine Zeile ausgefüllt, dann die folgende wieder von der 0 aus, welche in der Stammreihe in sechster Stelle zu stehen kommt, und so immer hin und her. Auch hier wird alles sogleich definitiv ausgefüllt, — man hat nur mit ganzen Zahlen und, wie sich nach dem Anfange sogleich als durchaus geltend ergibt, nur mit Additionen zu thun. (Siehe das Tableau in Beilage 4.) Da die Glie-
der U_0, U_1, U_2, ... der Stammreihe sich als positiv, die Glieder $-U_1$, $-U_2$, ... sich als negativ ergeben, was offenbar in derselben Art fortgeht, so sind die Grössen U selbst alle positiv.

$U_0 = 1$, $U_1 = 1$, $U_2 = 5$, $U_3 = 61$ u. s. w.

Bei der Betrachtung der Tafel drängt sich hier sofort die Frage auf, welches die Bedeutung der Zahlen $+2$, -16, $+272$ etc. sein mag, welche in der Terminalreihe sich zwischen die Nullen einschieben. Zu ihrer Beantwortung dient am bequemsten wieder der schon benützte Satz über den Zusammenhang zwischen der function-generatrix der Stamm- und der Terminalreihe. In unserem Falle ist zu setzen:

\[
a = U_0 = 1 \\
b = 0 \\
c = -U_0 = -1 \\
d = 0 \\
e = +U_0 = +5 \\
f = 0 \\
g = -U_0 = -61 \\
e tc.
\]

und man hat, mit $y = \phi i$

\[
f(y) = f(\phi i) = \sec \phi = \frac{2}{e^y + e^{-y}}
\]

Bezeichnet man also die Glieder der Terminalreihe wie folgt:

\[
\phi b = -1 = -T_1 \\
\phi c = 0 \\
\phi d = +2 = +T_1 \\
\phi e = 0 \\
\phi f = -16 = -T_1 \\
\phi g = 0 \\
\phi h = +272 = +T_1 \\
etc.
\]
so ergibt sich
\[\frac{e^{-y}}{e + c} = 1 - \frac{T}{1} y + \frac{T}{1 \cdot 2 \cdot 3} y^3 - \ldots \]
und wenn man wieder \(\vartheta \) einführt:
\[X VI) \quad \text{tg} \vartheta = \frac{T}{1} \vartheta + \frac{T}{1 \cdot 2 \cdot 3} \vartheta^3 + \frac{T}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \vartheta^5 + \ldots \]
Es sind also die in unserer Terminalreihe auftretenden Zahlen in denselben Summe Tangenten-Coefficienten, in welchen die Grössen \(U \) der Stammreihe Secanten-Coefficienten sind, — und beide zugleich lassen sich arithmetisch so definiren:

Wenn man eine mit 1 beginnende Stammreihe so fortsetzt, dass sie selbst an der 2ten, 4ten, 6ten etc., die zugehörige Terminalreihe aber an der 3ten, 5ten, 7ten etc. Stelle Nullen enthält, so sind die Glieder ungerader Ordnungszahl in der Stammreihe Secanten-Coefficienten, und diejenigen gerader Ordnungszahl in der Terminalreihe Tangenten-Coefficienten.

Diese letzteren führen wieder auf die Bernoulli'schen Zahlen zurück; nach der von uns gebrauchten Schreibweise hat man nämlich

\[X V I I) \quad T_{2r-1} = \frac{1}{r} 2^{2r-2} D_{2r-1} = \frac{1}{r} 2^{2r-1} (2r - 1) B_r \]
woraus man erkennt, dass alle in \(r \) enthaltenen ungeraden Factoren in \(D_{2r-1} \) aufgehen müssen (wie sich auch in anderer Weise leicht darthun lässt), — andererseits aber, da die \(D \) ungerade ganze Zahlen sind, dass \(T_{2r-1} \) eine Potenz von 2 als Factor enthält, deren Exponent um denjenigen der in \(r \) enthaltenen Potenz von 2 kleiner ist als \(2 (r - 1) \).

Die Beziehung, dass, wenn die Coefficienten der Einen Art in der Stammreihe stehen, die der andern in der Ter-
minalreihe erscheinen, ist übrigens eine reciproke; denn aus dem Zusammenhange zwischen beiden Reihen ergibt sich auch folgender allgemeiner Satz 5).

Wenn die Größen \(a, b, c, d, \ldots \) in der Stammreihe führen zu den Größen \(A, Ab, Ac, \ldots \) in der Terminalreihe, so führen umgekehrt die Größen \(a, -Ab, +Ac, -Ad, \ldots \) in der Stammreihe zu den Größen \(a, -b, +c, -d, \ldots \) in der Terminalreihe.

Daher führt in unserem Falle eine mit den Tangenten-Coeffizienten gebildete Stammreihe

\[
1, T_1 = 1, 0, -T_2 = -2, 0, +T_3 = +16, \text{ etc.}
\]

ezur Terminalreihe mit den Secanten-Coeffizienten

\[
U_0 = 1, 0, -U_1 = -1, 0, +U_2 = +5, 0 \text{ etc.}
\]

zurück, welche vorher die Stammreihe war.

Bei der vollkommen analogen Rolle, welche hiernach die Zahlen in den beiden Grenzreihen der Tafel spielen, erscheint es hier doppelt indicirt, analog wie bei den Größen \(D \), dem Rechnungsschema die Form eines Differenzen-Tableau's abzustreifen, die Zeilen, anstatt sie schräg aufsteigen zu lassen, horizontal zu ordnen, die Zahlen, die durchaus nur mit gleichen Zeichen zu verbinden sind, nur ihren absoluten Werthen nach anzuschreiben, und überall diejenigen gerade unter einander zu bringen, welche zusammen zu addiren sind.

Die Tafel nimmt dadurch für die Rechnung die Form des doppelt treppenförmigen Schema's in Beilage 5 an. Da dasselbe in durchaus ähnlicher Weise ausgefüllt und fortgesetzt wird, wie das Schema 3 für die Größen \(D \), vor welchem es sogar eine noch größere Symmetrie nach beiden Seiten voraus hat, so genügt es, zu

5) In demselben spricht sich Eine von 5 Variationen aus, die man zu einem richtig ausgefüllten Differenzen-Tableau allemal durch Umstellung seiner Zahlenreihen ableiten kann.
sagen, dass, abgesehen von den Nullen, mit welchen alternierend links und rechts die Zeilen beginnen, und abgesehen von der 1 an der Spitze, aus welcher sozusagen Alles hervorgeht, auch hier jede Zahl der Tafel die Summe ist aus der neben ihr stehenden kleineren und der gerade über dieser befindlichen. Die über den Nullen hervortretenden Endzahlen der Zeilen sind bei unserer Anordnung links Secanten-, rechts Tangenten-Coeffizienten.

Durch dieses Schema kann man also zugleich Secanten-Coeffizienten und Bernoulli'sche Zahlen berechnen, erhält aber die letztern allerdings nicht allein mit den Factoren \(2(2^n - 1)\), durch welche sie auf ungerade ganze Zahlen gebracht werden, sondern außerdem noch mit Potenzen von 2 belastet.

Auch in dem Schema 5 würde man, ähnlich wie zu 3 erwähnt, sich Kürzungen durch Abstreichen der letzten Ziffern erlauben dürfen, wenn nur die wichtigsten Stellen jedes Coefficienten gefordert werden, — da auch hier der Fall nicht vorkommen kann, dass in den Anfangsziffern ein gegenseitiges Aufheben Statt fände. — Uebrigens könnte man auch hier, zur Abkürzung im Schreiben, am Ende jeder Zeile die Wiederholung der letzten Zahl und am Anfang der nächstfolgenden die Null weglassen, wenn man dafür zur Regel machen würde, jede neue Zeile unter der letzten Zahl der vorangehenden mit der Repetition dieser letzteren zu beginnen.

Die Annahme wird kaum unberechtigt sein, dass die in den vorstehenden §§ aufgestellten Formeln und Rechnungs-Vorschriften für die Bernoulli'schen und die diesen verwandten Zahlen die einfachsten sind, welche man bis jetzt besitzt; namentlich möchte dies von den auf die halbe Zahl der Glieder reducirten recurrienden Gleichungen für die
Bernoulli'schen Zahlen in § 2 VI.—VIII. und für ihre Zähler D in § 3. XIII, andererseits aber von dem Treppenschema zur Berechnung dieser letzteren (§ 3) und von dem doppelten für die Secanten- und Tangenten-Coefficienten (§ 4) gelten. Größeres Interesse jedoch, als der Vortheil welcher hieraus für die Durchführung von Rechnungen oder Entwickelungen unter Umständen sich ergeben könnte, darf vielleicht der Nachweis in Anspruch nehmen, dass jene eigenthümlichen und in so verschiedenartigen Entwicklungen auftretenden Zahlen-Folgen nicht bloß privilegirt sind durch ihre Rolle in der Analysis, sondern auch ausgezeichnet durch ihre arithmetische Natur selbst, vermöge deren sie sich in einfacher und doch charakteristischer Weise sozusagen von selbst aus den Grund-Elementen 1 und 0 aller Zahlenbetrachtung entfalten.
Beilage I.

Differenzen-Tableau der Bernoulli'schen Zahlen.

\[
\begin{array}{cccccccc}
1 \\
1/2 & -1/3 & +1/6 & 0 \\
\frac{1}{6} & & +1/6 & -1/30 & -1/30 & 0 \\
0 & & -1/15 & +2/15 & -1/30 & +1/42 & 0 \\
B_2 = & 1/42 & & -1/21 & +8/105 & -8/105 & 0 & +5/66 \\
-B_4 = & -1/30 & & +1/15 & -116/155 & +16/231 & 0 \\
& & +1/30 & -1/15 & +4/165 & -28/165 & 0 \\
B_4 = & 5/66 & & 0 & +5/66 & -5/33 \\
& & & & & & 0 & +5/66 \\
0 & & & & & & & 0 \\
\end{array}
\]
Beilage 5.

Doppel-Treppenschema

für die Berechnung der Secanten-Coeffizienten U und der Tangenten-Coeffizienten T.

Abgesehen von der 1 an der Spitze, und von den Nullen, mit welchen die Zeilen abwechselnd links und rechts beginnen, ist jede Zahl der Tafel die Summe aus der neben ihr stehenden kleineren, und der gerade über der letzteren befindlichen.

\[
\begin{align*}
\sec \vartheta &= U_0 + \frac{2}{1 \cdot 2} \vartheta + \frac{4}{1 \cdot 2 \cdot 3 \cdot 4} \vartheta + \ldots \\
\tan \vartheta &= \frac{1}{T_1} + \frac{3}{1 \cdot 2 \cdot 3} \vartheta + \frac{5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \vartheta + \ldots
\end{align*}
\]

\[
T_{2r-1} = \frac{1}{2^r} \binom{2r-2}{r-1} B_r
\]

<table>
<thead>
<tr>
<th>U_0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_2</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>0 1 2 2</td>
</tr>
<tr>
<td>U_4</td>
<td>5 5 4 2 0</td>
</tr>
<tr>
<td></td>
<td>0 5 10 14 16</td>
</tr>
<tr>
<td>U_6</td>
<td>61 61 56 46 32 16 0</td>
</tr>
<tr>
<td></td>
<td>0 61 122 178 224 256</td>
</tr>
<tr>
<td>U_8</td>
<td>1385 1385 1324 1202 1024 800 544 272 272</td>
</tr>
<tr>
<td></td>
<td>0 1385 2770 4094 5296 6320 7120 7664 7936 7936</td>
</tr>
<tr>
<td>U_{10}</td>
<td>50521 50521 49136 46366 42272 36976 30656 23536 15872 7936 0</td>
</tr>
<tr>
<td></td>
<td>0 50521 101042 150178 196544 238816 275792 306448</td>
</tr>
<tr>
<td>U_n</td>
<td>329984 345856 353792 358792</td>
</tr>
</tbody>
</table>
r Tangenten-Coefficienten T.

sen die Zeilen abwechselnd links und rechts leinern, und der gerade über der letztern

\[-9 + \frac{T}{1 \cdot 2 \cdot 3} 3^3 + \frac{T}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} 5 + \ldots \]

\[= \frac{1}{r} \frac{2r-2}{2r-1} D = \frac{1}{r} \frac{2r-1}{2} (2 - 1) B \]

\[= T_r \]

\[
\begin{array}{ccc}
16 & = & T_3 \\
0 & & \\
272 & 272 & = T_7 \\
272 & 0 & \\
7664 & 7936 & 7936 = T_9 \\
15872 & 7936 & 0 \\
329984 & 345856 & 353792 \ 353792 = T_{11}
\end{array}
\]
Beilage 2.

Differenzen-Tableau der Bernoulli'schen Zähler

\[D_{2r} = 2 \left(\frac{2^r - 1}{2r-1} \right) B_r \]

\[
\begin{array}{cccccc}
0 & 1 & -1 & & & \\
1 & 0 & -1 & 0 & & \\
D_1 = & 1 & -1 & 0 & +1 & 0 \\
& -1 & 0 & +1 & 0 & -3 & 0 \\
- D_8 = & -1 & +2 & -2 & 0 & +17 & 0 \\
& +1 & +2 & 0 & -6 & +14 & 0 \\
D_8 = & +3 & -6 & 0 & +8 & +34 & -155 \\
& +3 & -6 & 0 & +56 & -104 & -138 \\
- D_r = & -17 & +34 & 0 & -56 & 0 & \\
& +17 & +34 & +56 & & & \\
D_r = & +155 & 0 & & & & \\
\end{array}
\]

\[\tan \frac{1}{2} \varphi = \frac{D}{1 \cdot 2 \cdot 3 \cdot 4} \varphi + \ldots \]
Beilage 3.

Treppen-Schema

für die Berechnung der Bernoulli'schen Zähler

\[D_{2r-1} = 2 \left(2^r - 1 \right) B_r \]

\[\tan \left(\frac{1}{2} \theta \right) = \frac{D_{\frac{1}{2}}}{1 \cdot 2} + \frac{D_{\frac{3}{2}}}{1 \cdot 2 \cdot 3 \cdot 4} \theta^3 + \ldots \]

Abgesehen von der Spitze 1 und von den Nullen, mit welchen alterierend links und rechts die Zeilen beginnen, ist jede Zahl der Tafel die Summe aus der neben ihr stehenden kleineren und der gerade über dieser befindlichen.

1
0 1 = D_1
1 0
0 1 1 = D_3
2 1 0
0 2 3 3 = D_5
8 6 3 0
0 8 14 17 17 = D_7
56 48 34 17 0
0 56 104 138 155 155 = D_9
608 552 448 310 155 0
0 608 1160 1608 1918 2073 2073 = D_{11}
9440 8832 7672 6064 4146 2073 0
0 9440 18272 25944 32008 36154 38227 38227 = D_{13}
Beilage 4.

Differenzen-Tableau

der Secanten-Coefficienten U.

\[S \equiv U + \frac{U^2}{1 \cdot 2} + \frac{U^3}{1 \cdot 2 \cdot 3} + \frac{U^4}{1 \cdot 2 \cdot 3 \cdot 4} + \ldots \]

\[
\begin{array}{cccccccc}
U & 0 & 2 & 16 & 0 & 272 & 0 \\
0 & 1 & 2 & 16 & 32 & 256 & 544 \\
1 & 1 & 14 & 46 & 224 & 800 \\
1 & 5 & 46 & 224 & 1024 \\
1 & 10 & 56 & 224 & 1024 \\
1 & 16 & 122 & 1202 \\
1 & 56 & 178 & 1324 \\
1 & 1022 & 1385 \\
1 & 1385 \\
\end{array}
\]

\[-U_2 = +1385 \]

\[U_4 = +1385 \]

\[U_6 = -1385 \]

\[U_5 = -61 + 1324 + 1202 + 800 \]

\[U_6 = -61 + 1324 + 1202 + 800 \]

\[U_7 = -61 + 1324 + 1202 + 800 \]

\[U_8 = +1385 \]

\[U_9 = +1385 \]
ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: *Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften München*

Jahr/Year: 1877

Band/Volume: **1877**

Autor(en)/Author(s): Seidel Philipp Ludwig Ritter von

Artikel/Article: *Eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen 157-187*