Sitzungsberichte

der

mathematisch-physikalischen Classe

der

k. b. Akademie der Wissenschaften

zu München.

Band XXIX. Jahrgang 1899.

München.

Verlag der k. Akademie. 1900.

In Commission des G. Franz'schen Verlags (J. Roth).

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.a

.

.30-117437-June 8

Akademische Buchdruckerei von F. Straub in München.

Uebersicht

des Inhaltes der Sitzungsberichte Bd. XXIX Jahrgang 1899.

Die mit * bezeichneten Abhandlungen sind in den Sitzungsberichten nicht abgedruckt.

Oeffentliche Sitzung der kgl. Akademie der Wissenschaften zur 1 des 140. Stiftungstages am 11. März 1899.	Feie Seit
M. v. Pettenkofer: Ansprache	
C Voit. Nobustan	213
C. v. Voit: Nekrologe	280
Oeffentliche Sitzung zu Ehren Seiner Majestät des Königs und Se Königl. Hoheit des Prinzregenten am 15. November 1899.	iner
K. A. v. Zittel: Eröffnungsrede	360
Wahlen	360
der Internationalen Erdmessung	361
Sitzung vom 7. Januar 1899.	
H. Seeliger: Ueber die Vertheilung der nach einer Ausgleichung	
übrig bleibenden Fehler	3
Herm. Ebert: Zur Mechanik der Glimmlichtphänomene *Ad. v. Baeyer: Ueber eine neue Methode zur Untersuchung von	23
terpenartigen Körpern	1

Sitzung vom 4. Februar 1899.	Seite
*K. R. Koch und C. Cranz: Untersuchungen über Vibration des Gewehrlaufes	38
*J. G. Egger: Ueber Foraminiferen und Ostracoden aus den Kreide-Mergeln der bayerischen Alpen	38
A. Pringsheim: Zur Theorie des Doppel-Integrals, des Green'schen und Cauchy'schen Integralsatzes	39
Sitzung vom 4. März 1899.	
 C. Linde: Ueber Vorgänge bei Verbrennung in flüssiger Luft *J. Ranke: Ueber die überzähligen Knochen der menschlichen 	65
Schädeldecke	63
*E. v. Lommel: Theorie der Dämmerungsfarben F. Lindemann: Ueber einige prähistorische Gewichte aus deutschen	63
und italienischen Museen. I. (Mit Taf. I.)	71
*v. Fedorow: Ueber reguläre Plan- und Raum-Theilung	63
Sitzung vom 6. Mai 1899.	
E. Weinschenk: Zur Classification der Meteoriten	137
Sitzung vom 3. Juni 1899.	
L. Maurer: Ueber die Endlichkeit der Invariantensysteme	
F. Doflein: Amerikauische Dekapoden der k. bayerischen Staatssammlungen	
sammungen	
Sitzung vom 8. Juli 1899.	
E. Weinschenk: Geologisches aus dem bayerischen Walde (mit Tafel 11 u. 1II)	197
Arth. Korn: Grundlagen einer mechanischen Theorie des elasti-	
schen Stosses und der inneren Reibung in kontinuirlichen	228
Medien	
Alfr. Pringsheim: Ueber ein Convergenzkriterium für Ketten-	
brüche mit positiven Gliedern	
*J. Rückert: Ueber Polyspermie	190

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.ai

Sitzungsberichte

der

königl. bayer. Akademie der Wissenschaften.

Mathematisch-physikalische Classe.

Sitzung vom 7. Januar 1899.

- 1. Herr H. Seeliger überreicht eine Abhandlung: "Ueber die Vertheilung der nach einer Ausgleichung übrig bleibenden Fehler".
- 2. Herr E. v. Lommel legt eine Abhandlung des Herrn Dr. Hermann Ebert, Professor an der hiesigen technischen Hochschule: "Zur Mechanik der Glimmlichtphänomene" vor.
- 3. Herr Ad. v. Baeyer hält einen Vortrag: "Ueber eine neue Methode zur Untersuchung von terpenartigen Körpern". Derselbe wird anderweit veröffentlicht werden.

Ueber die Vertheilung der nach einer Ausgleichung übrig bleibenden Fehler.

Von H. Seeliger.

(Eingelaufen 7. Januar.)

Es war schon lange mein Wunsch, meine vor vielen Jahren in den "Astron. Nachrichten" 1) veröffentlichten Untersuchungen über das genannte Thema von Neuem darzustellen. Die früheren Aufsätze leiden an einigen Stellen an allzu grosser Kürze, was ihre Lectüre unnöthig erschweren musste und umgekehrt dürften an andern Stellen Kürzungen zum Vortheile gereichen. Ich benutze ausserdem diese Gelegenheit, um ein Versehen zu corrigiren, das in dem ersten der beiden Aufsätze untergelaufen ist und durch welches zwei Formeln beeinflusst worden sind. Ich bin Herrn Professor Harzer aufrichtig dankbar, dass er mich auf die Nothwendigkeit einer Correctur aufmerksam gemacht hat.

Wenn man eine Reihe von Messungsresultaten durch eine Interpolationsformel oder durch eine ausgearbeitete Theorie darzustellen hat, so wird eine solche Darstellung dann als eine zufriedenstellende angesehen werden können, wenn die übrig bleibenden Fehler im Mittel eine gewisse durch die Genauigkeit der Messungen bedingte Grösse nicht überschreiten und wenn die Fehlerreihe die Kriterien des Zufalls erfüllt. Für eine Fehlerreihe, deren Anordnung durch Zufall entstanden ist, wird es sehr unwahrscheinlich sein, dass sich etwa die positiven Fehler zu wenigen grossen Gruppen zusammenfinden werden,

¹⁾ Nr. 2284 und 2323.

vielmehr wird mit überwiegender Wahrscheinlichkeit eine Vertheilung der Vorzeichen entstellen, die sich von einer gewissen wahrscheinlichsten Vertheilung nicht allzu sehr entfernt. Die Anzahl der Zeichenwechsel wird sich, mit andern Worten gesagt, zu der Anzahl der Zeichenfolgen in ein bestimmtes Verhältniss setzen und zwar mit einer um so grösseren Wahrscheinlichkeit, je grösser die Zahl der Fehler ist, aus welcher sich die vorliegende Reihe zusammensetzt. Auf diese längst bekannte Wahrheit wird bei Ausgleichungsrechnungen nicht selten Rücksicht genommen, die nähere Behandlung der sich so darbietenden Wahrscheinlichkeitsaufgabe dürfte aber von mir zuerst gegeben worden sein. Betrachtet man weiter die erste Differenzenreihe der ursprünglichen Fehlerreihe, so wird in dieser die Zahl der positiven und der negativen Differenzen ebenfalls gewissen Gesetzen des Zufalls zu gehorchen haben. Man kann noch weiter gehen und auch die Zahl der Zeichenwechsel in der ersten Differenzenreihe untersuchen, jedoch beschränke ich mich, was für eventuelle Anwendungen allein in Frage kommen dürfte, im Folgenden nur auf die Betrachtung der Zeichenwechsel in der gegebenen Fehlerreihe (§ 1) und die Anzahl der positiven Vorzeichen in der ersten Differenzeureihe (\$ 2).

1.

Wir denken uns die positiven Fehler etwa durch schwarze und die negativen Fehler durch weisse Kugeln dargestellt. Für eine Fehlerreihe, deren Anordnung durch Zufall entstanden ist, bietet sich dann die folgende Aufgabe dar: Es seien $\mu=m+n$ Kugeln, von denen m schwarz (+) und n weiss (—) sind, absichtslos, also den Gesetzen des Zufalls gemäss, in eine Reihe neben einander gelegt. Es soll die Wahrscheinlichkeit W_y dafür bestimmt werden, dass in dieser Reihe y Uebergänge von Kugeln der einen zu solchen der andern Farbe oder kurz gesagt y Farbenwechsel stattfinden. Wird m>n angenommen, so können offenbar höchstens 2n Farbenwechsel stattfinden. da diese Maximalzahl nur dann erzielt werden kann, wenn jede

H. Secliger: Vertheilung der nach einer Ausgleichung etc.

weisse Kugel zwischen zwei schwarze zu liegen kommt. Es ist also jedenfalls

$$y \leq 2 n$$
.

Für m = n ist, wie sofort ersichtlich, diese Maximalzahl 2n-1. Ferner soll n > 0 vorausgesetzt werden, woraus dann folgt:

$$1 \le y \le 2 n.$$

Die Abzählung aller möglichen Fälle, in denen y Farbenwechsel vorkommen, geschieht am einfachsten, wenn man gerade und ungerade y unterscheidet. Ist y=2 x und bezeichnet man eine Aufeinanderfolge (Gruppe) von lauter schwarzen Kugeln mit G(+) und eine solche von lauter weissen Kugeln mit G(-), so sind die beiden Anordnungen möglich:

$$\begin{array}{c}
G_1(+) G_1(-) G_2(+) G_2(-) \dots G_x(+) G_x(-) G_{x+1}(+) \\
G_1(-) G_1(+) G_2(-) G_2(+) \dots G_x(-) G_x(+) G_{x+1}(-).
\end{array}$$
(1)

Bezeichnet man also mit f(y, n) die Anzahl, wie oft n Elemente in y Gruppen, von denen jede wenigstens ein Element enthält, untergebracht werden können, wobei aber nur jene Vertheilungen als von einander verschieden angesehen werden sollen, die sich durch die Anzahl der in jeder Gruppe enthaltenen Elemente von einander unterscheiden und bildet man auf diese Weise die Anzahl aller möglichen Fälle (1), so findet man:

$$A_{2x} = II(m) II(n) [f(x, n) f(x + 1, m) + f(x + 1, n) f(x, m)].$$

H(n) ist hierin die Gauss'sche Bezeichnung für n! = 1.2...n. Der Factor H(m) H(n) kommt dadurch zu Stande, dass alle Elemente + und ebenso alle Elemente - unter sich vertauscht werden müssen, um alle möglichen Fälle zu erhalten.

In gleicher Weise kommen für y = 2x + 1 die beiden Anordnungen:

$$G_1(+) G_1(-) G_2(+) G_2(-) \dots G_{x+1}(+) G_{x+1}(-)$$

 $G_1(-) G_1(+) G_2(-) G_2(+) \dots G_{x+1}(-) G_{x+1}(+)$

Sitzung der math.-phys. Classe vom 7. Januar 1899.

in Betracht und hieraus ergiebt sich:

$$A_{2x+1} = 2 \Pi(m) \Pi(n) f(x+1,n) f(x+1,m).$$

Die Wahrscheinlichkeiten W_{2x} und W_{2x+1} für das Vorkommen von 2x bezw. 2x+1 Zeichenwechseln ergeben sich durch Division der Anzahlen A durch die Zahl der möglichen Vertanschungen aller Elemente, also:

$$W_{2x} = \frac{A_{2x}}{\Pi(m+n)}, \qquad W_{2x+1} = \frac{A_{2x+1}}{\Pi(m+n)}.$$

Es ist nun noch die Anzahl f(y+1,n) zu finden, welche angiebt, wie oft sich n Elemente in y+1 Gruppen unterbringen lassen. Man erreicht diese Anordnung auch, wenn man zuerst 1 Element absondert und die n-1 übrig bleibenden in y Gruppen vertheilt, oder 2 Elemente in eine Gruppe bringt und die übrigen n-2 in y Gruppen u. s. f., schliesslich n-y Elemente in eine Gruppe und die y übrig bleibenden in y Gruppen. Damit sind alle Möglichkeiten erschöpft, denn jede Gruppe soll mindestens ein Element enthalten. Die eben beschriebene Procedur durch eine Formel dargestellt giebt:

$$f(y+1,n) = f(y, n-1) + f(y, n-2) + \ldots + f(y, y).$$

Fügt man die Bedingungen

$$f(y, y) = 1,$$
 $f(1, n) = 1$

hinzn, so ist die Funktion f vollständig bestimmt, denn man kann nun leicht f(2, n), f(3, n) etc. berechnen. Man findet so:

$$f(y,n) = \frac{n-1 \cdot n - 2 \cdot \dots n - y + 1}{1 \cdot 2 \cdot \dots y - 1} = \binom{n-1}{y-1} = \frac{II(n-1)}{II(y-1) \cdot II(n-y)}.$$

Hiermit ergiebt sich:

$$W_{2x} = \frac{H(m)H(n)}{H(m+n)} \binom{n-1}{x-1} \binom{m-1}{x-1} \cdot \frac{m+n-2x}{x}$$

$$W_{2x+1} = 2 \frac{H(m)H(n)}{H(m+n)} \cdot \binom{n-1}{x-1} \binom{m-1}{x-1}$$
(2)

H. Seeliger: Vertheilung der nach einer Ausgleichung etc.

Als Rechencontrole kann aufgestellt werden:

$$1 = \sum_{x=1}^{x=n} W_{2x} + \sum_{x=0}^{x=n-1} W_{2x+1}$$

$$= \frac{H(m)H(n)}{H(m+n)} \cdot (m+n) \cdot \sum_{x=1}^{x=n} {n-1 \choose x-1} {m-1 \choose x-1} \frac{1}{x}.$$

In der That kann man die letzte Summe auch als hypergeometrische Reihe

$$F(-n+1, -m+1, 2, 1) = \frac{H(m+n-1)}{H(m)H(n)}$$

schreiben.

Es wird sich empfehlen, statt der W die Grösse V_x

$$V_{z} = W_{2z} + W_{2z-1} = \frac{H(m)H(n)}{H(m+n)} {n-1 \choose x-1} {m-1 \choose x-1} \frac{m+n}{x}$$
(3)

zu betrachten und dem x alle Werthe von 1 bis n zu ertheilen, da m > n vorausgesetzt worden ist.

Hat man nun eine Reihe von positiven Gliedern: .

$$g_1 g_2 \dots g_l g_{l+1} \dots g_m g_{m+1} \dots g_r \dots g_{\mu} \tag{4}$$

und nehmen die g von links nach rechts zu bis zu einem Maximalglied g_m . von wo ab sie wieder fortwährend abnehmen sollen, so aber, dass:

$$\frac{g_m}{g_{m-1}} < \frac{g_l}{g_{l-1}}, \quad \frac{g_{m-1}}{g_{m-2}} < \frac{g_{l-1}}{g_{l-2}} \text{ etc.}$$

$$\frac{g_m}{g_{m+1}} < \frac{g_\ell}{g_{\ell+1}}, \quad \frac{g_{m+1}}{g_{m+2}} < \frac{g_{\ell+1}}{g_{\ell+2}} \text{ etc.}$$

oder, was dasselbe bedeutet:

$$\frac{g_m}{g_t} < \frac{g_{m-1}}{g_{t-1}} < \frac{g_{m-2}}{g_{t-2}} \dots$$

$$\frac{g_m}{g_t} < \frac{g_{m+1}}{g_{t+1}} < \frac{g_{m+2}}{g_{t+2}} \dots$$

Dann folgt sofort:

$$\frac{g_m}{g_l} < \frac{g_m + g_{m-1} + g_{m-2} + \dots + g_l}{g_l + g_{l-1} + g_{l-2} + \dots + g_{2l-m}}; \quad \frac{g_m}{g_l} < \frac{g_m + g_{m+1} + \dots + g_l}{g_l + g_{l+1} + \dots + g_{2l-m}}.$$

Bezeichnet man mit (l m) die Summe der Glieder $g_t + g_{t+1} + \ldots + g_m$ und mit (m l') die Summe $g_m + g_{m+1} + \ldots + g_l$, so ist also:

$$(lm) > \frac{g_m}{g_l} (g_l + g_{l-1} + \dots + g_{2l-m})$$

$$(ml') > \frac{g_m}{g_r} (g_l + g_{l+1} + \dots + g_{2l-m}).$$

Ist ferner L die Summe aller Glieder in (4) links von g_t , das letztere nicht mit eingeschlossen, und R die Summe aller Glieder rechts von g_t , dieses ebenfalls ausgeschlossen, so ist offenbar:

$$L < (g_{l} + g_{l-1} + \ldots + g_{2l-m}) \frac{l-1}{m-l+1}$$

$$R < (g_{t} + g_{t+1} + \ldots + g_{2l-m}) \frac{\mu - l'}{l'-m+1}$$
(5)

und man hat demzufolge:

$$(lm) > \frac{g_m}{g_l} L \cdot \frac{m-l+1}{l-1}; \ (ml) > \frac{g_m}{g_l} R \cdot \frac{l-m+1}{\mu-l'}; \ (6)$$

nennt man den kleineren der beiden Factoren von L und R in diesen beiden Gleichungen a, so ist sicher:

$$(lm) + (ml') > a(L + R).$$

Ist Σ die Gesammtsumme aller Glieder (4) und (ll') die Summe aller Glieder zwischen g_t und g_t , wobei indessen strenge genommen g_m doppelt gezählt wird, was übrigens bei einer sehr grossen Zahl von Gliedern nicht in Frage kommt, so hat man:

$$(ll') = (lm) + (ml'); \Sigma = (ll') + L + R,$$

und deshalb

$$(ll') > \frac{a\Sigma}{1+a}. (7)$$

H. Seeliger: Vertheilung der nach einer Ausgleichung etc.

Diese nach der Ars conjectandi von J. Bernoulli gebildeten Formeln sollen nun auf die Function (3) angewendet werden. Hier ist

$$\frac{V_x}{V_{x-1}} = \frac{(n-x+1)(m-x+1)}{x \cdot (x-1)}.$$

Dieser Quotient nimmt, wenn man von x=2 ausgehend x wachsen lässt, fortwährend ab. Er ist zuerst grösser als 1, von einer bestimmten Stelle an wird er aber < 1. Daraus folgt, dass die V_x bis zu einem gewissen Werth von x wachsen, hier ein Maximum erreichen, um wieder fortwährend abzunehmen. Die Einzelwerthe von V_x erfüllen also die für die g angenommenen Bedingungen. Das Maximum findet bei einer der beiden ganzen Zahlen statt, welche den Werth:

$$x = \frac{m\,n}{m+n+1} + 1$$

einschliessen. Nennt man diese beiden Zahlen ν und $\nu + 1$, so ist also

$$\nu-1<\frac{m\,n}{m+n+1}<\nu.$$

Man setze in der ersten Formel (6):

$$m = r$$
, $l = r - t$, $a_1 = \frac{V_r}{V_{r-t}} \cdot \frac{t+1}{r-t-1}$,

und in der zweiten

$$m = \nu + 1$$
, $l' = \nu + t$, $\mu = n$, $a_2 = \frac{V_{\nu+1}}{V_{\nu+t}} \cdot \frac{t}{n - \nu - t}$.

Da dann $\Sigma = 1$, so wird, wenn das kleinere der beiden a gewählt wird, die Wahrscheinlichkeit Ω dafür, dass die Anzahl der Zeichenwechsel zwischen

liegt:
$$2r - 2t + 1 \quad \text{und} \quad 2r + 2t - 2$$

$$2 > \frac{a}{1+a}.$$

$$(8)$$

Sitzung der math.-phys. Classe vom 7. Januar 1899.

Die Werthe der a sind in extenso geschrieben:

$$a_{1} = \frac{(n-v+1)(n-v+2)\dots(n-v+t)\cdot(m-v+1)\dots(m-v+t)}{(v-1)^{2}(v-2)^{2}\dots(v-t)^{2}} \cdot \frac{v-t}{v-t-1} \cdot \frac{t+1}{v-t-1}$$

$$a_{2} = \frac{(v+1)^{2}(v+2)^{2}+\dots+(v+t-1)^{2}}{(n-v-1)(n-v-2)\dots(n-v-t+1)\cdot(m-v-1)(m-v-2)\dots(m-v-t+1)} \cdot \frac{v+t}{v+1} \cdot \frac{t}{n-v-t}.$$

Diese Formeln sollen nur unter der Voraussetzung ausgerechnet werden, dass $m, n, n-r, m-r\pm t, n-r\pm t$ lauter sehr grosse Zahlen bedeuten. Man kann dann als Näherung die Stirling'sche Formel:

$$H(p) = \sqrt{2\pi} \cdot p^{p + \frac{1}{2}} \cdot e^{-p}$$

zur Anwendung bringen.

Setzt man noch:

$$m = n \varrho$$
, $t = n y$, $r = n \sigma$,

so wird für sehr grosse n und endliche ϱ , y, σ sein:

$$\begin{aligned} a_1 &= \frac{y}{\sigma - y} \left(1 - \sigma \right)^{ny} \left(\varrho - \sigma \right)^{ny} \left(1 + \frac{y}{1 - \sigma} \right)^{n(1 - \sigma + y)} \\ &\cdot \left(1 + \frac{y}{\varrho - \sigma} \right)^{n(\varrho - \sigma + y)} \cdot \sigma^{-2ny} \cdot \left(1 - \frac{y}{\sigma} \right)^{2n(\sigma - y)}. \end{aligned}$$

weiter ist. wenn für v der obige Werth:

$$v = \frac{m \, n}{m + n} = \frac{\varrho \, n}{1 + \varrho}$$

eingesetzt wird:

$$\sigma = \frac{\varrho}{1+\varrho}; \quad (1-\sigma)(\varrho-\sigma) = \sigma^2.$$

Man muss weiter beachten. dass ϱ eine endliche Zahl, etwa in der Nähe von $\frac{1}{2}$ liegend, sein wird. y ist als sehr kleine

11

Zahl, etwa vom Range $\frac{1}{\sqrt[4]{n}}$ anzusehen. Bildet man dann den

Logarithmus von a und vernachlässigt unendlich kleine Glieder. wie ny^3 , ny^4 etc., y, y^2 etc., so kann man schreiben:

$$\begin{split} \log a_1 &= \log \frac{y}{\sigma} + \frac{1}{2} n y^2 \left(\frac{1}{1-\sigma} + \frac{1}{\varrho - \sigma} + \frac{2}{\sigma} \right) \\ &= \log \frac{y}{\sigma} + \frac{1}{2} n y^2 \frac{(1+\varrho)^3}{\varrho^2}, \end{split}$$

woraus

$$n = \frac{2 \varrho^2}{(1 + \varrho)^3} \cdot \frac{\log\left(\frac{a_1 \varrho}{y(1 + \varrho)}\right)}{y^2} \tag{9}$$

folgt.

Entwickelt man in ähnlicher Weise a_2 , so erhält man zunächst mit Weglassung der augenscheinlich zu vernachlässigenden Glieder:

$$a_2 = \frac{y}{1 - \sigma - y} \cdot \left(1 + \frac{y}{\sigma}\right)^{2n(\sigma + y)} \cdot \left(1 - \frac{y}{1 - \sigma}\right)^{n(1 - \sigma - y)} \cdot \left(1 - \frac{y}{2\sigma - \sigma}\right)^{n(2\sigma - y)}$$

und weiter:

$$n = \frac{2 \varrho^2}{(1+\varrho)^3} \cdot \frac{\log\left(\frac{\alpha_2}{y(1+\varrho)}\right)^{1}}{y^2}.$$
 (10)

Da m > n also $\varrho > 1$ vorausgesetzt worden ist, ist für n der Werth (9) als der grössere von beiden zu wählen. Wenn also n grösser als die durch (9) angegebene Zahl ist, ist jedenfalls die Wahrscheinlichkeit Ω dafür, dass die Anzahl der Zeichenwechsel zwischen den Grenzen $2(\nu - t)$ und $2(\nu + t)$

¹⁾ Das oben erwähnte Versehen bestand darin, dass der reciproke Werth des zweiten Factors auf der rechten Seite der Ausdrücke a genommen worden ist. Infolge dessen erscheint, abgesehen von fortzulassenden Gliedern in den (9) und (10) entsprechenden Formeln unter dem Logarithmus der reciproke Factor von a₁ bezw. a₂.

Sitzung der math.-phys. Classe vom 7. Januar 1899.

liegt, grösser als $\frac{a}{1+a}$. Ω kann also durch Vergrösserung von n beliebig nahe der Einheit gebracht werden. Für m=n, also $\varrho=1$ wird:

$$n = \frac{1}{4 y^2} \log \left(\frac{a}{2y} \right).$$

Bestimmt man n nach dieser Formel, so ist die Wahrscheinlichkeit

$$W > \frac{a}{1+a}$$

. dafür, dass die Zahl der Zeichenwechsel zwischen

$$n(1-2y)$$
 und $n(1+2y)$

liegt.

Nennt man die Anzahl der Zeichenwechsel w, die der Zeichenfolgen f, so ist:

$$f + w = m + n - 1$$

im speziellen für m = n:

$$f + w = 2n - 1$$

und W ist dann die Wahrscheinlichkeit für das Bestehen der Ungleichheit:

$$\frac{1-2y}{1+2y} < \frac{w}{f} < \frac{1+2y}{1-2y}.$$

Soll z. B.:

$$\frac{49}{51} < \frac{w}{f} < \frac{51}{49}$$

und hierfür $\Omega > \frac{1000}{1001}$ sein, so ist zu setzen:

$$y = \frac{1}{100}$$
, $a = 1000$

nnd es wird $n = 2500 \log \text{ nat} (50000) = 27050$. Man muss also n mindestens so gross wählen.

Die aufgestellten Grenzen sind indessen zu weit und es lässt sich bekanntlich mit Hülfe der Integralrechnung eine einfachere und engere Begrenzung vornehmen. Die Formel (3) für V_x kann man auch schreiben:

$$V_x = \frac{H(m-1) H(m) H(n-1) H(n)}{H(m+n-1) H(x) H(x-1) H(m-x) H(n-x)}$$

und wenn man die Stirling'sche Formel anwendet für sehr grosse Werthe von m, n, x, m-x und n-x.

$$V_{x} = \frac{1}{\sqrt{2} \pi} \cdot \frac{n^{n+\frac{1}{2}} \cdot (n-1)^{n-\frac{1}{2}} \cdot m^{m+\frac{1}{2}} \cdot (m-1)^{m-\frac{1}{2}}}{(m+n-1)^{m+n-\frac{1}{2}} \cdot x^{x+\frac{1}{2}} \cdot (x-1)^{x-\frac{1}{2}} (n-x)^{n-x+\frac{1}{2}} (m-x)^{m-x+\frac{1}{2}}}$$

Man entwickle nun diesen Ausdruck für Werthe von x:

$$x = \nu + a \sqrt{\nu},$$

wo α eine endliche Zahl bedeutet, die also gegen das sehr grosse ν sehr klein ist. Zunächst ergiebt sich für $\nu = \frac{m n}{m+n}$

$$V_{x} = \frac{1}{\sqrt{2 \pi}} \frac{(m+n)^{\frac{3}{2}}}{m n} \cdot \frac{\left(1 - \frac{1}{n}\right)^{n-\frac{1}{2}} \cdot \left(1 - \frac{1}{m}\right)^{m-\frac{1}{2}}}{\left(1 + \frac{\alpha}{\sqrt{\nu}}\right)^{2x} \left(1 - \frac{1}{x}\right)^{x-\frac{1}{2}} \left(1 - \frac{\alpha \sqrt{\nu}}{n-\nu}\right)^{n-x+\frac{1}{2}}} \cdot \left(1 - \frac{\alpha \sqrt{\nu}}{m-\nu}\right)^{m-x+\frac{1}{2}}}$$

Man kann nun zu Näherungsformeln übergehen, die in der Wahrscheinlichkeitsrechnung überaus oft gebraucht werden. Diese beruhen darauf, dass man für sehr kleine z ansetzt:

$$(1+z)^y = e^{y \log (1+z)} = e^y \left(z - \frac{z^2}{2} + \frac{z^3}{3} + \dots\right).$$

Nimmt man nur die grössten Glieder mit, welche diese Reihenentwicklung ergiebt, so erhält man V_x bis auf einen um so geringeren Procentsatz richtig, je grösser die Zahlen n, m, n-r, m-r, v sind.

11 Sitzung der math.-phys. Classe vom 7. Januar 1899.

Es wird so:

$$V_x = \frac{1}{\sqrt{2\pi}} \frac{(m+n)^{\frac{3}{2}}}{m n} \cdot e^{-\frac{\alpha^2}{2} \cdot \frac{(m+n)^2}{m n}}.$$

Setzt man also zur Abkürzung:

$$\mu = \frac{m+n}{\sqrt{2m}n},\tag{11}$$

so wird:

$$V_x = \frac{2 \,\mu^2}{\sqrt{2 \,\pi \,(m+n)}} \cdot e^{-\,\alpha^2 \,\mu^2}.$$

Dies ist also die Wahrscheinlichkeit für das Vorkommen von 2x oder 2x-1 Zeichenwechseln. Nimmt x um eine Einheit zu, so ändert sich a um zf a:

$$\Delta a = \mu \sqrt{\frac{2}{m+n}}.$$

Die Wahrscheinlichkeit W für das Vorkommen von Zeichenwechseln, deren Anzahl zwischen den Greuzen:

$$\frac{2mn}{m+n} \pm 2\gamma \sqrt{\frac{mn}{m+n}}$$

liegt, ist demnach:

$$W = \frac{\mu}{\sqrt{\pi}} \sum e^{-a^2 \mu^2} \cdot A a.$$

wo die Summe auf alle Werthe von a auszudehnen ist, die in den Intervallen Aa aufeinander folgen und zwischen den Grenzen $\pm \gamma$ liegen. Man kann nun die Maclaurin-Euler'sche Summationsformel anwenden, wodurch sich für sehr grosse Werthe von m und n ergiebt:

$$W = \bigvee_{r=1}^{\mu} \int_{-r}^{+r} e^{-\mu^2 a^2} \cdot da,$$

15

II. Seeliger: Vertheilung der nach einer Ausgleichung etc.

was man auch so schreiben kann:

$$W = 1 - \frac{2}{\sqrt{\pi}} \cdot \int_{\mu\gamma}^{\infty} e^{-t^2} \cdot dt. \tag{12}$$

W kann also durch Vergrösserung von γ beliebig nahe der Einheit gebracht werden und wird schon für nicht grosse γ äusserst nahe = 1. Für m=n wird $\mu=\sqrt{2}$ und die Wahrscheinlichkeit W für das Vorkommen von Zeichenwechseln, deren Zahl zwischen:

$$n \pm \gamma \sqrt{n}$$

liegt, wird:

$$W = 1 - \frac{2}{\sqrt{\pi}} \cdot \int_{\gamma}^{\infty} e^{-t^2} \cdot dt.$$

Soll z. B. $W = \frac{999}{1000}$ werden, so sind die Grenzen für die Anzahlen der Zeichenwechsel:

$$n\left(1\pm\frac{2{,}33}{\sqrt{n}}\right).$$

Für das oben (S. 12) erwähnte Beispiel findet sich rund:

$$n = 13600$$
,

also eine bedeutend kleinere Zahl, wie die zuerst ausgeführte Betrachtung ergab, was ja auch zu erwarten war.

2.

Es sollen nun weiter die Vorzeichen der ersten Differenzen der vorliegenden Fehlerreihe betrachtet werden, wodurch die Grösse der Fehler in gewisser Beziehung Berücksichtigung findet. Es soll also jeder Fehler von dem ihm folgenden subtrahirt und auf diese Weise das Vorzeichen der Differenz bestimmt werden. Es soll x die Anzahl der positiven Vorzeichen der Differenzenreihe bedeuten, während n Fehler vorliegen sollen; die Anzahl der negativen Vorzeichen ist dann n-x-1. Ist ferner f(x, n) die Anzahl der Anordnungen der gegebenen

Fehler, welche *.c* positive Vorzeichen in der Differenzreihe ergeben, so ist die Wahrscheinlichkeit für dieses Ereigniss:

$$\frac{f(x,n)}{\Pi(n)}\tag{1}$$

Die Funktion f kann man leicht durch eine Differenzenreihe definiren. Man sondere von den n Fehlern $(1), (2), \dots, (n)$ den grössten ab und bezeichne ihn mit (n). Man bringe nun (n) an irgend eine Stelle der irgendwie angeordneten Reihe der Fehler $(1) \dots (n-1)$. Bringt man (n) zwischen 2 Fehler. von denen der folgende grösser ist, so wird die Anzahl der positiven Differenzen weder vermehrt, noch vermindert. Mit demselben Erfolge kann man (n) an die erste Stelle der Reihe setzen. Sind also in der Reihe $(1) \dots (n-1)$, x positive Differenzen vorhanden, so kann man (n) an x + 1 Stellen unterbringen, um in der Reihe der n Fehler wieder x positive Differenzen zu bekommen. Die Anzahl der ersteren möglichen Anordnungen ist aber f(x, n-1) und es entstehen demnach auf die erwähnte Weise (x+1) f(x, n-1) neue Anordnungen. In der Reihe $(1) \dots (n-1)$ sollen x-1 positive, also n-1-xnegative Differenzen vorkommen. Setzt man den Fehler an diese Stellen oder auch an das Ende der Reihe, so wird jedesmal die Anzahl der positiven Differenzen um eine Einheit vergrössert, sie wird also = x. Dies kann daher (n-x) f(x-1), n-1) mal geschehen. Jetzt sind aber alle Möglichkeiten, das Element n in die Reihe $(1) \dots (n-1)$ einzuordnen erschöpft und es ergiebt sich also:

$$f(x,n) = (x+1)f(x,n-1) + (n-x)f(x-1,n-1).$$
 (2)

Durch diese Differenzengleichung ist f(x, n) vollkommen bestimmt, wenn man noch die sich sofort darbietenden speciellen Werthe:

$$f(0, n) = 1$$
, $f(n-1, n) = 1$, $f(n, n) = 0$ (3)

hinzufügt. Zur Controle kann noch die Gleichung:

H. Seeliger: Vertheilung der nach einer Ausgleichung etc. 17

$$\sum_{x=0}^{x=n-1} f(x,n) = \Pi(n)$$
 (4)

benutzt werden.

Die Integration von (2) macht keine Schwierigkeit, wenn man nach und nach für x = 1, 2 etc. die Werthe von f(x, n) aufsucht, Man hat hierbei, wenn man von den Bedingungen (3) ausgeht, geometrische Progressionen und Reihen, die aus ihnen durch Differentiationen ableitbar sind, zu summiren. Auf diese Weise findet man:

$$f(0, n) = 1$$

$$f(1, n) = 2^{n} - (n+1)$$

$$f(2, n) = 3^{n} - (n+1) \cdot 2^{n} + \frac{n+1 \cdot n}{1 \cdot 2}$$

$$f(3, n) = 4^{n} - (n+1) \cdot 3^{n} + \frac{n+1 \cdot n}{2} \cdot 2^{n} - \frac{n+1 \cdot n \cdot n - 1}{1 \cdot 2 \cdot 3}$$

Der Fortgang ist ersichtlich und man wird demnach ansetzen:

$$f(x,n) = \sum_{\mu=0}^{n=x} (-1)^{\mu} \binom{n+1}{\mu} (x+1-\mu)^{\mu}.$$
 (5)

In der That genügt dieses f der Gleichung (2), da man diese so schreiben kann:

$$\sum_{\mu=0}^{n=x} (-1)^{\mu} {n+1 \choose \mu} (x+1-\mu)^n = \sum_{\mu=0}^{n=x} (-1)^{\mu} {n \choose \mu} (x+1) (x+1-\mu)^{n-1} + \sum_{\mu=0}^{n=x-1} (-1)^{\mu} {n \choose \mu} (n-x) (x-\mu)^{n-1}.$$

Transformirt man die zweite Summe rechts dadurch, dass man $\mu' = \mu - 1$ als Summationsindex einführt, so ergiebt sich unmittelbar die Identität der beiden Seiten der Gleichung.

Man überzeugt sich ferner leicht, dass (5) den Bedingungen (3) und (4) genügt. Betrachtet man den Ausdruck:

$$F_x = \sum_{\mu=0}^{\mu=n+1} (-1)^{\mu} \binom{n+1}{\mu} (x+1-\mu)^n,$$

1899. Sitzungsb. d. math.-phys. Cl.

so kann man leicht zeigen, dass:

$$F_x = 0$$
.

In der That kann man F_x erhalten, wenn man in:

$$\frac{d^n}{d\xi^n} \left\{ e^{(x+1)\xi} \left(1 - e^{-n\xi}\right)^{n+1} \right\}$$

nach der Differentiation $\xi = 0$ setzt. Da aber alle Glieder der ausgeführten Endformel $(1 - e^{-\mu \cdot \xi})^r$ als Factor enthalten müssen, wo r > 1, so werden alle Glieder schliesslich Null. Jetzt ergiebt sich sofort:

$$f(n,n) = F_n = 0.$$

Ebenso kann man zeigen, dass:

$$f(n-1-x,n)=f(x,n).$$

denn durch Einführung des Summationsindex $\mu' = n + 1 - \mu$ statt μ in die Formel (5), wenn man hier n - 1 - x statt x einsetzt, ergiebt sich ohne Weiteres:

$$f(n-1-x,n) = -F_x + f(x,n) = f(x,n).$$

Zum Beweise von (4) setzt man:

$$S_y = 1^n + 2^n + \ldots + y^n$$
.

Dann wird:

$$\sum_{x=0}^{x=n-1} f(x, n) = \sum_{r=0}^{r=n-1} (-1)^r \cdot {n+1 \choose r} S_{n-r}$$

und wenn man die bekannte Formel benutzt:

$$S_n = \frac{d^n}{d\xi^n} \left(\frac{e^{(p+1)\xi} - 1}{e^{\xi} - 1} \right) \text{ für } \xi = 0,$$

so ergiebt sich leicht:

$$\sum_{k=0}^{\infty} f(x, n) = \frac{d^n}{d^{\frac{2}{5}n}} (e^{\frac{x}{5}} - 1)^n = H(n).$$

Auch bei der vorliegenden Aufgabe wird es von wesentlichem Interesse sein, den Verlauf von $\varphi(x,n) = \frac{f(x,n)}{H(n)}$, für sehr grosse n kennen zu lernen und insbesondere für solche Werthe von x, welche in der Nähe von $x = \frac{n}{2}$ liegen, da hier $\varphi(x, n)$, wie man leicht sieht, einen Maximalwerth erreicht, von welchem ab es nach beiden Seiten zuerst langsamer, dann schneller abnimmt. Dies ist mit der Form (5) nicht gut zu erreichen, während eine andere Darstellung leicht zum Ziele führt. Ausdrücke von der Form (5) treten schon in den Wahrscheinlichkeitsbetrachtungen von Moivre auf. Laplace hat diese in der "théorie analytique" weiter behandelt und ist auf eine Integraldarstellung gekommen, die hier direct zu benutzen ist. Die Methoden von Laplace lassen indessen an Strenge, wie bekannt, viel zu wünschen übrig. Seine Resultate aber wurden in einwurfsfreier Weise durch Cauchy 1) neu abgeleitet. Danach ist:

$$\varphi(x,n) = \frac{f(x,n)}{II(n)} = \frac{2}{\pi} \int_{0}^{\infty} \left(\frac{\sin z}{z}\right)^{n+1} \cos(2x+1-n)z \, dz. \quad (6)$$

Die Verification dieser Formel ist leicht. Durch theilweise Integration findet man sofort:

$$\frac{\pi}{2} \varphi(x,n) = -\int_0^\infty z \, dz \left\{ (n+1) \left(\frac{\sin z}{z} \right)^n \left[\frac{\cos z}{z} - \frac{\sin z}{z^2} \right] \cdot \cos(2x+1-n)z - \left(\frac{\sin z}{z} \right)^{n+1} \cdot (2x+1-n)\sin(2x+1-n)z \right\}.$$

Man kann dies auch schreiben:

$$\frac{\pi}{2} \varphi(x, n) = (n+1) \frac{\pi}{2} \cdot \varphi(x, n) + \int_{0}^{\infty} \left(\frac{\sin z}{z}\right)^{n} dz \left[(x-n)\cos(2x-n)z - (x+1)\cos(2x+2-n)z \right]$$

¹⁾ Mémoire sur diverses formules relatives à la theorie des integrales définies. Journal de l'école polytechnique, cah. 28.

oder:

$$n \varphi(x, n) = (x + 1) \varphi(x, n - 1) + (n - x) \varphi(x - 1, n - 1),$$

und dieser Gleichung hat nach (5) in der That $\varphi(x, n)$ zu genügen.

Ferner sieht man augenblicklich, dass

$$\varphi(n-1-x,n)=\varphi(x,n),$$

während

$$\frac{\pi}{2} q(n-1,n) = \frac{\pi}{2} \frac{\pi}{H(n)} = \int_{0}^{\infty} \left(\frac{\sin z}{z}\right)^{n+1} \cos(n-1) z \, dz$$

und

$$\frac{\pi}{2} q(n,n) = 0 = \int_{0}^{\infty} \left(\frac{\sin z}{z}\right)^{n+1} \cos(n+1) z \, dz$$

bekannte Integralformeln darstellen.

Die Formel (6) ist nun sehr geeignet, um für sehr grosse n Näherungsausdrücke für q (x, n) zu gewinnen. Man sieht sofort, dass für sehr grosse n nur die kleinen Werthe von z nennenswerthe Beiträge zu dem Integrale (6) liefern können. Es liegt deshalb nahe

$$\frac{\sin z}{z} = 1 - \frac{z^2}{6}$$

und

$$\sin z = e^{\log\left(\frac{\sin z}{z}\right)} = e^{-\frac{z^2}{6}}$$

zu setzen. Nennt man noch der Kürze wegen c = 2x + 1 - n, so wird dann:

$$q(x,n) = \frac{2}{\pi} \int_{0}^{\infty} e^{-\frac{nx^2}{6}} \cos cx \cdot dx$$

und nach einer bekannten Integralformel:

$$\varphi\left(x,n\right) = \sqrt{\frac{6}{n\pi}} e^{-\frac{3}{2}\frac{c^2}{n}}.$$

H. Seeliger: Vertheilung der nach einer Ausgleichung etc. · 21

Nimmt man weiter an:

$$x = \frac{n}{2} + \frac{\alpha}{2}\sqrt{n},\tag{7}$$

wobei a eine endliche, also gegen n sehr kleine Zahl ist, so ergiebt sich

 $\varphi(x,n) = \sqrt{\frac{6}{\pi n}} e^{-\frac{3}{2}a^2}.$ (8)

Die Richtigkeit der eben ausgeführten Rechnung ist natürlich nicht strenge begründet. In dieser Beziehung kann aber auf die citirte Cauchy'sche Abhandlung verwiesen werden.

Jetzt kann leicht die Wahrscheinlichkeit W (ganz ähnlich wie in § 1) dafür, dass x zwischen den Grenzen

$$\frac{n}{2} \pm \frac{\gamma}{2} \sqrt{n}$$

liegt, angegeben werden. Man findet:

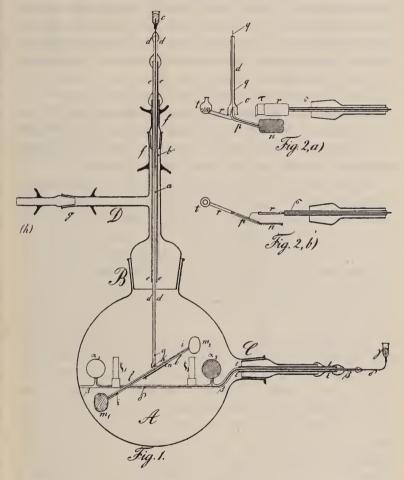
$$W = \sqrt{\frac{6}{\pi}} \cdot \int_{0}^{r} e^{-\frac{3}{2}a^{2}} da = 1 - \frac{2}{\sqrt{\pi}} \int_{\gamma\sqrt{\frac{3}{3}}}^{\infty} e^{-t^{2}} dt.$$
 (9)

Es kann also wieder durch Vergrösserung von γ . W beliebig nahe der Einheit gebracht werden und schon, wenn γ einige Einheiten beträgt, ist W bis auf viele Stellen gleich 1.

Man kann auch sagen: bei einer grossen Anzahl von Fehlern ist mit sehr grosser Wahrscheinlichkeit das Verhältniss der Anzahlen der positiven zu der Anzahl der negativen Vorzeichen in der ersten Differenzreihe nahezu gleich 1, wenn eine zufällige Vertheilung der Fehler angenommen werden darf.

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Zur Mechanik der Glimmlichtphänomene.


Von Hermann Ebert.

(Eingelaufen 7. Januar.)

Bei Gelegenheit einer früheren der Hohen Akademie am 5. November 1898 vorgelegten und in den Sitzungsberichten p. 497 abgedruckten Untersuchung war ich auf Grund zahlreicher Messungen zu der Vermutung geführt worden, dass sich in den Glimmlichtern der Gasentladungen Vorgänge abspielen, welche den Gasinhalt derart verändern, dass die an sich unsichtbaren Vorgänge doch auch den sichtbaren Verlauf der Entladung wesentlich mitbestimmen. Diese Veränderungen. denen eine gewisse Nachdauer zukam, konnten durch die Annahme gedeutet werden, dass die Teilchen, Jonen oder sonstige mit freier Elektricität geladene Partikelchen, welche die aus den Messungen namentlich von Hittorf und Warburg genauer bekannten positiven Ladungen der Glimmlichter bedingen, auch nach dem sichtbaren Aufhören der Entladung noch eine gewisse Zeit lang sich in dem von Glimmlicht durchsetzten Gasraume zu erhalten vermögen. Dann musste dem Eindringen neuer Glimmlichtstrahlen ein gewisser Widerstand, oder besser eine elektromotorische Gegenkraft entgegen treten, so dass das zum Einsetzen der Entladung nötige Potential sich wieder erhöht, während es durch die fortschreitende Evacuation bis dahin erniedrigt worden war; dies wurde thatsächlich beob-Auffallend war aber dabei, dass sich diese Wirkung bereits bemerklich machte, wenn nur die vordersten Spitzen zweier kurz nach einander erzeugten Glimmlichter in die gegenseitige Wirkungssphäre gerieten. Hat man auch schon auf Grund anderweitiger Beobachtungen gerade diese Stellen als den Sitz derienigen Processe betrachtet, durch welche die der eigentlichen Entladung vorhergehenden Spannungen, etwa diejenigen gewisser Polarisationszustände in dem Gase. ausgelöst werden, so war doch schwer zu verstehen, wie das Vordringen der Glimmlichtspitzen in denselben Teil des Gasraumes hinein seine Wirkung rückwärts bis zu den Elektroden selbst hin zu äussern vermag. Denkt man sich mit O. Lehmann und Righi die das Glimmlicht tragende Elektrode wie mit einer Wolke positiv geladener Teilchen umgeben und zieht man die oft hervorgehobene, relativ grosse, Steifheit der Glimmlichtstrahlen in Betracht, so wird die Mechanik des Vorganges freilich verständlicher. Immerhin war es wünschenswert, einen direkten Beweis für die Rückwirkung der zeitlich nach einander erzeugten Glimmlichter auf die sie tragenden Elektroden zu besitzen. Derselbe dürfte in der folgenden Erscheinung gefunden sein. Ich construierte eine "Vacuumdrehwaage", welcher der hochfrequente, hochtransformirte Wechselstrom, den ich schon früher verwendete, zugeführt wurde. An einem sehr dünnen Constantan- oder Messingdraht, der gleichzeitig die eine Stromzuführung bildet, hängt ein Querdraht mit zwei vertikal stehenden Aluminiumflügeln, welche gleichzeitig abwechselnd Anode und Kathode werden; durch Glasumhüllungen ist dafür gesorgt, dass sich die Entladung auf die Flügel beschränkt. Vor den Flügeln ist beiderseitig auf verschiedenen Seiten (vgl. Fig. 1) ein gleichbeschaffenes Plattenpaar fest aufgestellt, das mit dem anderen Transformatorpol leitend verbunden wird. Das Ganze ist in eine geräumige Glaskugel eingeschlossen, welche beliebig weit ausgepumpt werden kann. Beim Spiele des Wechselstromes ist je eine von den einander gegenüber stehenden Platten abwechselnd positiv geladen, die andere negativ und umgekehrt. Man sollte in allen Fällen Anziehung der stets ungleichnamig geladenen Platten erwarten. Diese macht sich auch sehr deutlich bei hohen Drucken bemerklich. bei denen die Wechselstromentladung überhaupt noch nicht

H. Ebert: Glimmlichtphänomene.

eintritt oder die Glimmlichter nur eben beginnen, einzelne Teile der Platten zu bedecken. Sowie sich aber bei tiefer werdendem Gasdrucke ausgedehntere Glimmlichthüllen ausbilden und dieselben beginnen, einander von beiden Seiten her zu

begegnen, so wird 'die elektrostatische Anziehung durch eine immer kräftiger werdende Abstossung überwunden. Die beweglichen Elektroden werden von den feststehenden zurückgestossen, wiewohl das Glimmlicht der einen vollkommen er-

loschen und durch Anodenlicht ersetzt ist, wenn das der anderen ausgebildet wird, wie man im Drehspiegel unzweifelhaft erkennt. Hier hat man eine mechanische Rückstauung der Elektroden und zwar von dem Momente an, in dem die Glimmlichtspitzen sich begegnen, eine Wirkung, welche die elektrostatische Anziehung überwindet, und welche nicht auf eine Rückstosswirkung der aus der Elektrode etwa austretenden Teilchen zurückgeführt werden kann, wie weiter unten nachgewiesen werden wird. —

Nach diesen orientierenden Vorbemerkungen möge zunächst die genauere Beschreibung des Apparates, dann die Aufführung der typischsten der mit demselben ausgeführten Versuche folgen.

Apparat. Die Vacuum-Drehwaage wurde in zwei Formen ausgeführt, als zweiarmige Waage und als einarmige.

a) Die zweiarmige Drehwaage. An eine dickwandige Glaskugel A Fig. 1 von 14 cm Durchmesser waren zwei Schliffe angeblasen, oben ein 4,5 cm weiter B, seitlich ein engerer C von 1.8 cm lichter Weite.1) Durch den ersteren wurde die mit dem einen Transformatorpol in metallischer Verbindung stehende Drehwaage, durch den letzteren das ablenkende, mit dem anderen Pole verbundene System eingeführt. Die Drehwaage hängt an dem 18 cm langen, nur 0,003 cm dicken Constantandraht a. der oben an den dicken kupfernen Zuführungsdraht b angelötet ist; an diesen ist oben das Quecksilbernäpfehen c angekittet zum Einführen des Zuleitungsdrahtes. Danit sich die Entladung nicht an den Aufhängedraht a ansetzt und ihn erwärmt, begleitet denselben die unten napfförmig erweiterte Schutzröhre d aus Glas, welche weit genug ist, um der Suspension die nötige Bewegungsfreiheit zu gewähren, aber eng genug, um das Auftreten von Entladungsbüscheln am Drahte selbst zu verhindern. Der Zuführungsdraht b ist oben in d mit Siegellack festgekittet. Die Röhre d

¹⁾ Die Glasteile wurden von Herrn Glasbläser Greiner in dem glastechnischen Institute des Laboratoriums der Herren Dr. Bender und Dr. Hobein in München in vorzüglichster Weise hergestellt.

wird von der Trageröhre e gehalten, in die sie eingekittet ist, letztere ist in dem Schliffstück f befestigt, welches unmittelbar auf B aufsitzt. Vermittelst des Schliffes ff wird es möglich, der Drehwaage jede gewünschte Anfangslage und dem Aufhängedrahte a nach erfolgter Ablenkung eine beliebige Torsion zu erteilen. Eine hier angebrachte, sowie eine zweite um den Aequator von A herumgelegte (in der Figur gleichfalls nicht gezeichnete) Gradskala gestattet wie bei der Coulombschen Drehwaage die entsprechenden Winkel zu messen.

Durch das seitliche Rohr D wird der Apparat evacuiert. Die Verbindung nach der Quecksilberpumpe wird durch den Schliff y und einen zweiten (h) vermittelt, dessen Axe senkrecht zur Zeichenebene steht. Durch Drehen um diese beiden Schliffe ist es möglich, auch dem an der Pumpe befindlichen Apparat jede beliebige Neigung gegen die Vertikale zu erteilen und zu bewirken, dass der Draht a genau axial in dem Rohre d herabhängt und nirgends anstösst; die Kugel A ruhte auf Strohkranz und einem in der Höhe verstellbaren Tischchen.

Die Drehwaage selbst besteht aus einem dünnen 8 cm langen Aluminiumstäbehen i, welches von einer eng anschliessenden, in der Mitte bei k geöffneten Glasröhre l umgeben ist. Durch die Oeffnung k ist der Aufhängedraht a eingeführt und an dem Stäbehen i befestigt. An beiden Enden sind die 1,5 cm im Durchmesser haltenden kreisscheibenförmigen Elektroden m_1 , m_2 aus dünnem Aluminiumblech durch angebogene Hülsen, welche in die Röhre l über die etwas zugespitzten Enden von i gesteckt werden, befestigt. Es besteht daher eine ununterbrochene metallische Verbindung von e bis zu $m_1 m_2$ hin, ohne dass irgendwo Veranlassung zu störender Funkenbildung gegeben wäre. Die etwas nach oben gebogenen Ränder der Oeffnung e greifen so unter die Erweiterung von e, dass hier keine Entladung zu Stande kommt und doch die völlige Bewegungsfreiheit der Waage gewahrt bleibt.

Um starke Bewegungsantriebe zu erhalten, war es geboten, die Ausbildung des Glimmlichtes auf diejenige Seite zu concentrieren, gegen welche die rücktreibende Kraft gerichtet sein Sitzung der math.-phys. Classe vom 7. Januar 1899.

sollte. Zu diesem Zwecke ist je eine Seite der Elektroden m_1 , m_2 mit einem Glimmerblättchen bedeckt (schraffiert), welche von drei nach rückwärts umgebogenen Fortsätzen, die man an dem Rande der Aluminiumscheibehen hatte stehen lassen, festgehalten werden. Diese Bedeckung hindert vollkommen den Anstritt der Entladung. In der perspectivischen Zeichnung 1 würde also das Glimmlicht an der Elektrode m_1 sich nur auf der vom Beschauer abgewandten, an m_2 nur an der diesem zugewandten Seite ausbilden.

Damit jedoch auch dem etwa zu erhebenden Einwande begegnet werden konnte, dass dabei durch Teilchen, welche von den Elektroden fortgeschleudert würden, ein merklicher Rückstoss eintreten und etwa durch diesen die beobachtete Abstossuug der Flügel erklärt werden könne, wurden auch zahlreiche Versuche mit Elektroden ohne diese Glimmerbedeckung ausgeführt. Bei diesen bedeckten sich dann beide Seiten vollkommen gleichmässig mit Glimmlicht, nur war dieses nicht so dicht, die Wirkung daher etwas schwächer.

Um der Drehwaage noch ansser der Torsionskraft der Suspension ein bestimmtes Direktionsmoment erteilen zu können, war meist an der Glasröhre l unten eine äusserst feine, stark magnetisierte Nadel n befestigt, welche in dem Felde eines Hilfsmagneten, oder der Erde, oder des mehr oder weniger vollkommen astasierten Erdfeldes schwingend, die Empfindlichkeit der Drehwaage innerhalb sehr weiter Grenzen von aussen her, ohne innern Eingriff nötig zu machen, variieren liess.

Das ablenkende System besteht ebenfalls aus je zwei 1,5 cm grossen, entweder einseitig mit Glimmer belegten oder beiderseitig freien Aluminiumelektroden a_1 a_2 , welche von Ansätzen der zweimal umgebogenen Glasröhre β getragen werden. Diese führt den am Ende mit dem Quecksilbernäpfchen γ versehenen Zuleitungsdraht δ und ist mit der Trageröhre ε in den Schliff C eingekittet. Beim Zusammensetzen des Apparates wird zuerst die Röhre β durch den Schliff C eingeführt, dann werden von B aus mittels einer langen Greifzange die Scheiben a_1 und a_2 mit ihren Hülsen in die Ansätze der Glasröhre β fest

eingesetzt. Diese lehnt sich dabei mit ihrem zugeschmolzenen Ende an die Innenwand der Kugel A an, um dem Drucke beim Einsetzen der Elektroden genügenden Widerstand entgegensetzen zu können. Kurze Drahtstücke und Auskleidungen mit Stanniol vermitteln eine sichere funkenlose Zuleitung zu den Elektroden $a_1 a_2$; die allseitige Umkleidung mit Glas bewirkt,

dass nur auf diesen Entladungserscheinungen auftreten.

Damit es, so lange noch die elektrostatische Anziehung zwischen den einander gegenüber stehenden unbedeckten Elektrodenflächen überwiegt, nicht bis zur metallischen Berührung und damit zu Kurzschlüssen in der Hochspannungsleitung kommen kann, sind an dem Glasstabe β noch zwei "Abweiser" aus Glimmer auf den den unbedeckten Hälften von a_1 und a_2 zugekehrten Seiten angekittet, zwei kleine Blättchen mit je zwei vertikalen Einschnitten, in die nach dem Einsetzen von C von oben her (durch B hindurch) die längeren Glimmerstreifen ζ_1 und ζ_2 eingeschoben werden.

b) Die einarmige Drehwaage. Schon bei den ersten Versuchen stellte es sich heraus, dass die rückstossenden Kräfte ziemlich grosse waren, so dass augenscheinlich auch schon mit einer viel weniger empfindlichen und darum auch weniger subtilen Anordnung auszukommen war. Es wurde daher noch das einarmige, in Fig. 2a) von vorn (in etwas perspectivischer Ansicht) in Fig. 2b) von oben gesehen dargestellte System angewendet. Die rechteckig gestaltete Elektrodenplatte n aus Messing von 0,8 × 2,2 cm² Fläche mit abgerundeten Ecken, mit oder ohne Glimmerbeleg, ist an einem Kupferdrahte o befestigt, der durch das rechtwinklig umgebogene Glasrohr p geschoben und an den dünnen, 12 cm langen, vorher gut gestreckten, harten Messingdraht q angelötet ist. Auf der entgegengesetzten Seite von p ist mittels des kurzen Glasstäbchens r die kleine, oben offene Kugel t angeschmolzen, in welche Tarierschrot zur Ausbalancierung der Elektrode n gethan wird. Die feste Elektrode v ist ebenso beschaffen, wird von dem Zuleitungsdrahte σ getragen, und hält den kleinen aus einem Glimmerblatte gebogenen Abweiser 7. Die bewegSitzung der math.-phys. Classe vom 7. Januar 1899.

liche Elektrode n ist an ihrer Ansatzstelle so gebogen, dass sie in der der Elektrode r nächsten Stellung, die sie vermöge der Grösse von τ einnehmen kann, dieser parallel steht: dies hat den Vorteil, dass auch die Glimmlichtschichten und ihre Begrenzungen einander parallel verlaufen, und der Druck der abstossenden Kraft auf der ganzen Fläche gleichmässig erfolgt.

Beobachtungen. 1. Ist der Druck in der Kugel A hoch, so vermag der Wechselstrom, der ja nur auf eine gewisse Spannung hinauftransformiert wird (etwa 2800 Volt), die Gasschicht nicht zu durchbrechen. Die Elektroden werden dann abwechselnd positiv und negativ auf diese Maximalspannung geladen. Da immer ungleichnamig geladene Platten einander gegenüber stehen, so findet Anziehung statt, die Drehwaagenflügel schlagen ziemlich heftig gegen die Abweiser.

- 2. Dieses Verhalten besteht fort, wenn bei allmählicher Evacuation die ersten Glimm- und Anodenlichter auf den Platten erscheinen. Selbst wenn der Abstand der Elektroden im Ruhezustand mehrere Centimeter beträgt, werden die beweglichen Elektroden herangezogen, schlagen an den Abweisern an, prallen zunächst zurück, die Schwingungen werden aber immer kleiner, bis der Drehwaagenarm dauernd in der nächsten Stellung verharrt, die ihm die Construction des Apparates gestattet. Hier wird er mit ziemlicher Kraft gehalten, so dass ihn erst eine stärkere Torsion des Aufhängedrahtes wegzurreissen vermag.
- 3. Bedeckt das Glimmlicht die ganze Elektrodenfläche, so ändert sich zunächst nichts an dem Verhalten, so lange die Glimmlichtschicht noch dünn ist. Breitet sich dieselbe aber bei fortschreitender Evacuation weiter in den Gasraum hinein aus, so tritt eine neue Erscheinung von dem Momente an ein, in welchem der vordere Glimmlichtsaum die Mitte des Abstandes zwischen den einander gegenüber stehenden, durch die elektrostatische Anziehung einander so nahe gebrachten Elektroden, als es die Abweiser gestatten, überschreitet: die Anziehung wird lockerer, schon eine geringere Torsionskraft zieht den Drehwaagenarm zurück, gegen-

H. Ebert: Glimmlichtphänomene.

über der Anziehung macht sich eine neue, rückstossende Kraft geltend.

- 4. Bei weiterem Auspumpen werden die Glimmlichtschichten immer dicker. In dem Momente der Anschaltung des Wechselstromes findet im ersten Momente noch Anziehung statt; die Entladung ist noch nicht voll ausgebildet, auch findet das erste Glimmlicht, wenn es auf einer Seite hervorbricht, ja noch nicht die Veränderung im Gase durch eine vorhergehende, von der anderen Seite kommende Glimmlichtsäule vor, auf die wir die rückstauende Wirkung zurückführen. Sowie das Glimmlicht aber vollkommen ausgebildet ist, schiebt es die beweglichen Elektroden deutlich zurück; die Anziehung der ungleichnamig geladenen Elektroden hat sich in eine Abstossung verwandelt. War an dem Schliffe ff so lange gedreht worden, bis der Drehwaagenarm sich in der Ruhelage eben an den Abweiser anlehnte, so wird derselbe deutlich zurückgestossen, wenn sich die Glimmlichter in dem Zwischenraum zwischen festen und beweglichen Elektroden begegnen und sich hier zu durchdringen scheinen.
- 5. Wird der Druck noch tiefer, so dass die Glimmlichtausbildung an beiden Elektroden immer stärker wird, so tritt die rückstossende Kraft immer deutlicher hervor. War der Schliff ff so gestellt, dass die festen Elektroden a_1 a_2 von den beweglichen m, m, einen grossen Abstand haben und dreht man nun ff so, dass die Drehwaagenflügel mit ihren Glinnilichtern denen der feststehenden Elektroden genähert werden. so stellt sich in dem Momente der Begegnung der Glimmlichter dem weiteren Annähern ein Hindernis entgegen, so dass nun der Aufhängedraht aa tordiert wird. Dabei tritt eine merkliche Deformation beider Glimmlichter ein; dieselben drücken sich scheinbar gegenseitig zusammen, wodurch selbst der unter ihnen liegende Dunkelraum schwache Zusammendrückungen erfährt; die zeitlich nach einander auftretenden Glimmlichter wirken wie elastische Kissen aufeinander. Nach der Grösse des Torsionswinkels konnte die Stärke der rücktreibenden Kraft annähernd geschätzt werden. (Bei diesen wie

den folgenden Versuchen war der kleine Richtmagnet n Fig. 1 entfernt worden).

6. Dass die Ursache der Erscheinung wirklich darin liegt. dass die Glimmlichter in die gegenseitige Wirkungssphäre gelangen, wird auch noch durch folgenden Controlversuch bestätigt: Die Drehwaage wird durch Drehen an dem Schliff ff senkrecht zu der Verbindungslinie der feststehenden Elektroden a, a, gestellt: Bei Erregung des Wechselstromes war nicht der geringste Bewegungsantrieb zu erkennen. Wurden die Elektroden einander mehr genähert, etwa in 45° Stellung gebracht. so schien eine schwache Anziehung sich bemerklich zu machen. Dies würde die von Herrn Warburg 1) bei Batterieentladungen genauer verfolgte Erscheinung sein. An der Kathode macht sich entsprechend dem starken Potentialgefälle an derselben der Bewegungsantrieb, welcher den Abstand von Anode und Kathode zu vermindern strebt, besonders stark geltend. Die hier studierte Abstossung trat aber erst in Entfernungen ein, bei denen die beiderseitigen Glimmlichter denselben Ort im Gasraum erreichten. Durch diese Versuche mit grossen Elektrodenabständen, bei denen weder Anziehung noch Abstossung eintrat, wird zugleich bewiesen, dass nicht irgend welche Störungen, etwa durch schwache Entladungen am Aufhängedraht die Ursache der oben beschriebenen Glimmlichtwirkungen sein können. Auch electrodynamische Wechselwirkungen sind nicht zur Erklärung heranziehbar. In den Zuleitungen pulsieren zwar Ströme. Wenn aber z. B. a, a, Fig. 1 positiv sind, der Strom also von rechts nach links in dem Drahte δ fliesst, und durch m, m, in den beweglichen Teil eintritt, so liegen von der Mitte nach links Stromteile, die entgegengesetzt gerichtet sind, in den gleichbeschaffenen Strombahnen rechts aber solche, welche gleichgerichtet sind, ihre Wirkung muss sich aufheben. Bei der Anordnung Fig. 2 sind die Zuführungen so weit von einander entfernt, dass ihre Wechselwirkung unmerklich klein ausfallen muss.

¹⁾ E. Warburg, Wied. Ann. 45, p. 1, 1892.

- 7. Betrachtet man die Leuchterscheinung im rotierenden Spiegel, etwa dann, wenn eine gewisse durch Drehen an ff erzeugte Torsionskraft der rückstossenden Kraft der Elektroden gerade das Gleichgewicht hält, so erkennt man, dass die Glimmlichter zeitlich nacheinander ausgebildet werden. Es ist in einem bestimmten Augenblicke immer nur ein Glimmlicht sichtbar; die gegenüber liegende Elektrode ist (in Luft) mit dem bekannten rötlichen Büschel von Anodenlicht bedeckt. Zwischen beiden liegt der dunkle Faradaysche Trennungsraum. Man kann also die Erscheinung nicht etwa darauf zurückführen, dass das Glimmlicht über die eigene Anode hinweggegangen wäre oder diese selbst gar in den zugehörigen Kathodendunkelraum eingetaucht hätte, in welch' letzterem Falle ja erhebliche Potentialsteigerungen eintreten, und folglich auch rückstauende mechanische Wirkungen möglich sind. In allen Fällen war der Elektrodenabstand so gross, dass sich die ganze Entladung vollkommen frei ausbilden konnte. Beim Zeichenwechsel des Wechselstromes war die Erscheinung vollkommen umgelagert, dazwischen wurde das Gas immer völlig dunkel, die Wirkung muss also auf einer unsichtbaren Nachdauer in der Wirkung der sichtbaren Glimmlichterscheinung beruhen.
- 8. Wird sehr tief ausgepumpt, so wird die Erscheinung immer kräftiger und deutlicher. Zu den allertiefsten Drucken, bei denen dann lebhafte Entwickelung der Kathodenstrahlen eintrat, wurde indessen absichtlich nicht gegangen, um nicht dem Einwande zu verfallen, es handle sich um eine Art Radiometererscheinung. Die gewöhnlich benutzten Drucke waren immer viel zu hoch, als dass Bewegungsimpulse wie bei den Radiometern hätten auftreten können.

Die folgenden Versuche sollen einige andere Bedenken zerstreuen.

9. Man könnte versucht sein, die Erscheinung auf eine Art Rückstosswirkung zurück zu führen. Waren die Drucke auch immer ziemlich hohe, so kann man doch annehmen, dass auch bei ihnen an der Kathode sich schon Kathodenstrahlen

Sitzung der math,-phys. Classe vom 7. Januar 1899.

entwickeln, welche nur nicht zur Erscheinung gelangen. Man hat ja auch Gründe dafür, in den Glimmlichtstrahlen ähnliche Gebilde zu erblicken, etwa die stark absorbierten, schon bei höheren Drucken emittierten Kathodenstrahlen selbst. Dann müssen nach der neuen Auffassung Teilchen mit grosser Geschwindigkeit von den Elektroden fortgeschleudert werden. Sind ihre Massen anch klein, so können ihre Bewegungsmomente doch erhebliche sein in Folge der grossen Geschwindigkeiten. mit denen sie die Elektrode verlassen. Man könnte daher anch schon bei höheren Drucken Rückstosskräfte vermuten. wie sie bei tieferen Drucken und heftiger Kathodenstrahlenentwickelung ja unzweifelhaft auftreten. Dass dadurch die hier beobachteten Erscheinungen nicht erklärt werden können, sieht man am besten, wenn man beide Elektrodenseiten unbedeckt lässt (vergl. S. 28), so dass sich das Glimmlicht auf beiden in gleicher Weise ausbildet. Dann müssten die Reactionsstösse auf beiden Seiten gleich stark erfolgen und sich ihre bewegenden Kräfte auf heben. Nichtsdestoweniger gelingt der Abstossungsversuch, wenn auch die entwickelten Kräfte geringer sind, weil die Stromdichte eine geringere ist und die Glimmlichter auf den Flächen, an denen sie allein in Wechselwirkung treten, schwächer sind. Auch müsste bei merklichen Reactionsstössen und einseitiger Elektrodenbedeckung sich die Drehwaage in allen Lagen in Bewegung setzen, was sie nach § 3 nicht thut. Vielleicht austretende Kathodenstrahlen würden ferner, schon bei einigermaassen grossen Drehungswinkeln die gegenüber liegenden Elektrodenflächen gar nicht mehr treffen, sondern an ihnen vorbeigehen, da sie ja immer vorwiegend senkrecht zur emittierenden Elektrodenebene verlaufen. Schon die Versuche § 3 zeigten, dass die Erscheinung überhaupt nicht durch Vorgänge an den Elektroden selbst bedingt sein kann, sondern die Wechselwirkung der abwechselnd von Glimmlicht durchstrahlten Gasmassen die Ursache tragen muss.

10. Mit Rücksicht auf die Ergebnisse der früheren, eingangs erwähnten Untersuchung ist vor allem auf den Nachweis Gewicht zu legen, dass die constatierte ponderomotorische

Abstossung auf einer Nachwirkung der alternierenden Entladung beruht. Man könnte aber endlich noch folgendermaassen schliessen und die Erscheinung auf die gleichzeitig bei derselben Entladung stattfindenden Ladungen zurückführen wollen: Durch zahlreiche Untersuchungen ist unzweifelhaft nachgewiesen, dass sich um die Kathode herum im Glimmlicht eine Art Atmosphäre von positiv geladenen Teilchen ausbildet, das Glimmlicht enthält "freie + Electricität". Breitet sich nun dasselbe bei der Evacuation immer mehr aus, so kommt es in die Nähe der positiv geladenen Anode und könnte folglich von dieser her eine rein electrostatische Abstossung erfahren. Wäre diese die Ursache unserer Erscheinung, so müsste der Versuch mit gleichgerichteten Entladungen ebenso gut gelingen. In der früheren Arbeit wurde erwähnt, dass auch bei diesen ähnliche Stauwirkungen auftreten können, wenn eine grosse Anzahl von Entladungen dicht aufeinander folgt; jede einzelne hinterlässt in dem Gase eine Nachwirkung (etwa freie Jonen); wenn die gleichgerichteten Einzelentladungen so rasch einander folgen, dass die Zufuhr an geladenen Partikelchen grösser ist als die Zahl der durch Diffusion sich zerstreuenden, so muss die Entladung selbst zu Rückstauungserscheinungen, z. B. Spannungserhöhungen Veranlassung geben. Es wäre daher nicht unmöglich, dass mit einer Hochspannungsbatterie, die mir leider noch nicht zur Verfügung steht, sich unter gewissen Bedingungen eine der hier beschriebenen ähnliche Abstossungserscheinung herbeiführen liesse. Bei grösseren Abständen fand Herr Warburg1) die von ihm genauer gemessenen Anziehungen zwischen der feststehenden Anode und der beweglichen Kathode, nicht aber Abstossungen wie bei den vorliegenden Versuchen. Sollte sich dennoch bei einer gewissen Lage der Anode zu der positiv geladenen Glimmlichtschicht eine Abstossung beobachten lassen, welche die elektrostatische Anziehung zwischen Anode und Kathode überwindet, so würde dieselbe aber ebenso wenig wie die Erscheinung bei Wechsel-

¹⁾ E. Warburg, Wied. Ann. 45, p. 1, 1892.

stromentladungen auf die zuletzt erwähnten direkten Wechselwirkungen der Anoden- und der Glimmlichtentladungen zurückgeführt werden können, wie die folgenden Versuche mit den gleichgerichteten Entladungen des Inductoriums und der Influenzmaschine zeigen.

- 11. Wurde bei Drucken, bei denen die Erscheinung unter Anwendung von Wechselstrom sehr deutlich war, die Vacuumdrehwaage an ein grosses Inductorium (25 cm Funkenlänge) angeschlossen, so gingen bei den grossen Elektrodenflächen in dem weiten Entladungsraume meist beide Ströme, der Oeffnungsstrom wie der Schliessungsstrom durch das Gas hindurch. Man hatte dann Wechselstromentladungen und auf beiden Seiten die charakteristische Kathodenerscheinung. Alsdann fehlte auch die Abstossung unter den oben genannten Bedingungen nicht. Freilich war die ganze Erscheinung minder deutlich und reinlich, dem unregelmässigen Verlaufe der Inductorienentladungen entsprechend. Wurde aber in den secundären Stromkreis vor die Vacuumkugel eine Funkenstrecke oder ein Geisslersches Rohr eingeschaltet, so dass nur der Oeffnungsinductionsstrom überging, so blieb die Abstossung völlig aus und nur Anziehung wurde beobachtet. Bei einseitig gerichteten Einzelentladungen, zwischen denen immer eine längere Zeit verstreicht, kommt also die abstossende Wirkung nicht zu Stande. Der Versuch zeigt zugleich, dass zu seinem Gelingen auch erheblich viel langsamere Zeichenwechsel, als hier gewöhnlich verwendet wurden, genügen. Besonderen Untersuchungen bleibt es vorbehalten, festzustellen, wie lang die Zeitintervalle sein können, d. h. wie lange die rückstauende Wirkung von Glimmlicht durchstrahlter Gase anhält; die erhaltenen Zahlen bieten Aussicht, Rückschlüsse auf die Diffusionsgeschwindigkeit der (Rieckeschen, vergl. die frühere Arbeit a. a. O. p. 523) Partikelchen und damit auf ihre Natur zu gestatten.
- 12. Die Entladungen der Influenzmaschine erfolgen weit regelmässiger als diejenigen des Inductoriums. Als eine grosse 20-plattige Töplersche Maschine von Leuner zum Betriebe der Drehwaage heraugezogen wurde, zeigte sich durchweg nur

Anziehung und zwar bei nahen Elektroden eine sehr kräftige. Hier hat man nur einseitige Einzelentladungen von sehr grosser Zahl (schätzungsweise bis zu 30000 in der Secunde); aber auch bei reichster Ausbildung des Glimmlichtes wurde die beschriebene Abstossung niemals erhalten, wiewohl die Glimmlichtschicht ebensoweit an die Anode heranreichte, wie bei den Wechselstromentladungen, und die Entladungen überaus kräftig und strahlend waren. Diese Versuche zeigen zugleich, dass auch nicht die vor der Kathode in Folge der Wirkung der elektrischen Kräfte eintretenden Steigerungen des hydrostatischen Druckes oder die ihren Ausgleich herbeiführenden Gasströmungen die Ursache sein können, auf welche Herr Warburg a. a. O. p. 5, 6 und 25 die Aufmerksamkeit gelenkt hat; dieselben kehren sich ausserdem mit dem Zeichenwechsel um und nehmen mit abnehmendem Gasdrucke ab, während die hier studierte Wirkung zunimmt. — Sonach dürfte nach allem Gesagten das folgende Resultat keinem Zweifel unterliegen: Bei rasch auf einander folgenden, fortwährend in der Richtung wechselnden kräftigen Entladungen kommt eine abstossende Wirkung der Elektroden, die beide die charakteristischen Kathodenerscheinungen nach einander zeigen, zu Stande, welche bei starker Ausbildung der Glimmlichter die elektrostatische Anziehung der in jedem Augenblicke ungleichnamig gelädenen Elektroden vollkommen überwinden kann. Dieselbe macht sich von dem Augenblicke an geltend, in welchem die Glimmlichter (nach einander) in denselben Teil des Gasraumes eindringen und können ihre Ursache nur in einer unsichtbaren Nachwirkung haben, welche das Glimmlichtphänomen in den von ihm durchstrahlten Teilen des Gases zurücklässt.

Sitzung vom 4. Februar 1899.

- 1. Herr Ferd. Lindemann legt eine Abhandlung der Herren K. R. Koch und C. Cranz in Stuttgart: "Untersuchungen über Vibration des Gewehrlaufes" zur Aufnahme in die Denkschriften vor.
- 2. Herr K. A. v. Zittel überreicht eine umfangreiche Abhandlung des Herrn Obermedizinalrathes Dr. Eggen: "Ueber Foraminiferen und Ostracoden aus den Kreide-Mergeln der bayerischen Alpen". Die Abhandlung ist für die Denkschriften bestimmt.
- 3. Herr Alfred Pringsheim spricht: "Zur Theorie des Doppel-Integrals, des Green'schen und Cauchy'schen Integralsatzes".

Zur Theorie des Doppel-Integrals, des Green'schen und Cauchy'schen Integralsatzes.

Von Alfred Pringsheim.

(Eingelaufen 4. Februar.)

Die folgende Mittheilung knüpft an eine frühere an, die ich unter dem Titel: "Zur Theorie des Doppel-Integrals" im vorigen Bande dieser Berichte veröffentlicht habe. Im Anschlusse an die daselbst abgeleitete Hauptformel:

$$\int_{(x_{0}, y_{0})}^{(X, Y)} f(x, y) \cdot dx \cdot dy \begin{cases} = \int_{y_{0}}^{Y} dy \underbrace{\int_{x_{0}}^{X}} f(x, y) \cdot dx \\ = \int_{x_{0}}^{X} dx \underbrace{\int_{y_{0}}^{Y}} f(x, y) \cdot dy \end{cases}$$

wird zunächst untersucht, in wieweit die Existenz jenes Doppel-Integrals diejenige der beiden einfachen Integrale $\int_{x_0}^{x} f(x,y) \cdot dx$, $\int_{y_0}^{r} f(x,y) \cdot dy$ nach sich zieht, bezw. deren Nicht-Existenz offen lässt, und sodann durch Beispiele festgestellt, dass der Fall der Nicht-Existenz in dem als möglich erkannten Umfange auch wirklich vorkommt (§ 1). Dagegen wird in § 2 durch Construction einer eigenthümlichen Gattung von Punktmengen gezeigt, dass selbst die durchgängige Existenz jener einfachen und der aus ihnen gebildeten iterirten Integrale, sowie die Gleichheit dieser letzteren noch keines-

¹⁾ Sitz.-Ber. Bd. 28 (1898), p. 59-74.

wegs die Existenz des Doppel-Integrals verbürgt. Das Resultat des § 1 wird hierauf benützt, um den Green'schen Satz über die Reduction eines Flächen-Integrals auf ein Linien-Integral unter etwas allgemeineren Voraussetzungen zu beweisen, als bisher wohl geschehen ist (§ 3). Die hierbei auftretende Eventualität von Integralen nicht-integrabler Differential-Quotienten führt zu einer Umgestaltung der fundamentalen Beziehung:

$$\int_{x_0}^{X} f'(x) \cdot dx = f(X) - f(x_0)$$

für den Fall eines nicht-integrablen f'(x), woraus dann noch ein zweiter, etwas kürzerer Beweis des Green'schen Satzes in dem fraglichen Umfange resultirt (§ 4). Die vorstehenden Ergebnisse werden dann schliesslich zu entsprechender Verallgemeinerung des Cauchy'schen Integralsatzes benützt (§ 5).

§ 1.

Bedeutet f(x, y) eine im Rechtecke $[x_0 \le x \le X, y_0 \le y \le Y]$ endlich bleibende¹) Function, so bestehen die Beziehungen:

(1)
$$\int_{(x_0, y_0)}^{(X, Y)} f(x, y) \cdot dx \cdot dy \begin{cases} = \int_{y_0}^{Y} dy \int_{x_0}^{X} f(x, y) \cdot dx \\ = \int_{y_0}^{Y} dy \cdot \int_{x_0}^{X} f(x, y) \cdot dx \end{cases}$$

allemal, wenn das betreffende Doppel-Integral existirt.²) Ist dies also der Fall, so hat man:

(2)
$$\int_{y_0}^{\mathbf{r}} dy \left\{ \int_{x_0}^{\mathbf{x}} f(x, y) \cdot dx - \int_{x_0}^{\mathbf{x}} f(x, y) \cdot d\dot{x} \right\} = 0.$$

¹⁾ D. h. |f(x, y)| < G für $x_0 \le x < X$, $y_0 < y \le Y$.

²) A. a. O. p. 69, Gl. (20).

Da nun, vermöge der Bedeutung des "oberen" und "unteren" Integrals¹) die in der Klammer stehende Differenz, welche man zweckmässig als die Integral-Schwankung von $\int_{x_0}^{X} f(x, y) dx$ bezeichnen kann, niemals negativ ausfällt, so folgt aus einer einfachen Umformung der Riemann'schen Integrabilitäts-Bedingung,²) dass Gl. (2) dann und nur dann besteht, wenn für eine im Intervalle (y_0, Y) überall dichte Menge von Werthen y':

(3)
$$\int_{x_0}^{X} f(x, y') \cdot dx - \int_{x_0}^{X} f(x, y') \, dx = 0,$$

so dass also $\int_{x_0}^{X} f(x, y') \cdot dx$ existirt, und wenn ausserden die Stellen y, für welche:

(4)
$$\int_{x_0}^{X} f(x,y) \cdot dx - \int_{x_0}^{X} f(x,y) \cdot dx > \varepsilon,$$

bei beliebig kleinem $\varepsilon > 0$ eine unausgedehnte Menge bilden.³) (NB. Dabei können immerhin die Stellen y, für welche jene Differenz von Null verschieden ist, auch eine ausgedehnte z. B. überall dichte Menge bilden).

Da im übrigen unter der gemachten Voraussetzung auch die zu (1) analogen Gleichungen bestehen:

(5)
$$\int_{(x_0, y_0)}^{(X, Y)} f(x, y) \cdot dx \cdot dy \begin{cases} = \int_{x_0}^X dx \int_{y_0}^{Y} f(x, y) \cdot dy \\ = \int_{x_0}^X dx \int_{y_0}^{Y} f(x, y) \cdot dy, \end{cases}$$

so gewinnt man den Satz:

¹⁾ A. a. O. p. 64.

²⁾ S. z. B. Dini-Lüroth, p. 359, Nr. 14.

³⁾ Dini-Lüroth, p. 355, Nr. 9.

Existirt für die Function f(x, y) ein über das Rechteck $[x_0 \le x \le X, y_0 \le y \le Y]$ erstrecktes eigentliches Doppel-Integral, so existiren die einfachen Integrale:

$$\int_{x_0}^{X} f(x, y) \cdot dx, \qquad \int_{y_0}^{Y} f(x, y) \cdot dy$$

für je eine im Intervalle (y_0, Y) bezw. (x_0, X) überall dichte Menge. Die Stellen y bezw. x, wo jene Integrale nicht existiren, können zwar ebenfalls überall dicht liegen: jedoch bilden diejenigen Stellen, für welche die Integral-Schwankung eine beliebig kleine positive Zahl ε übersteigt, allemal eine unausgedehnte Menge.¹)

Beispiele: I.²) Jede Zahl x lässt sich durch einen systematischen Bruch mit beliebig gewählter ganzzahliger Basis b > 2 darstellen und zwar auf eine einzige Weise, wenn man Brüche mit der Periode (b-1) ausschliesst. Bezeichnet man die Anzahl der hierbei auftretenden Bruchstellen mit p_x (wo

$$f(x, y) = \frac{1}{1 + p_x} + \frac{1}{1 + q_y},$$

wenn beide Veränderliche x, y durch endliche Decimalbrüche darstellbar sind, in jedem anderen Falle:

$$f\left(x,\,y\right) =0.$$

¹⁾ Unrichtig ist es also, mit Harnack (Elem. der Diff.- und Integr.-Rechnung, p. 313) anzunehmen, dass die Nicht-Existenz jener einfachen Integrale allemal auf eine unausgedehnte Menge y bezw. x beschränkt sein müsse, worauf schon Herr Stolz im Anschlusse an Du Bois Reymond (Journ. f. Math. 94 (1883), p. 278) aufmerksam gemacht hat (Math. Ann., Bd. 26 (1886), p. 93, Fussn.). Auf der andern Seite ist es aber für den Gültigkeits-Beweis der Formel (1) bezw. (5) auch nicht nothwendig, diese Beschränkung mit Herrn Stolz ausdrücklich unter die Voraussetzungen aufzunehmen, wie ich in der oben eitirten Mittheilung des näheren erörtert habe.

²) Dieses Beispiel ist lediglich eine etwas allgemeinere und genauere Fassung des a. a. O. p. 71 von mir gegebenen, welches letztere ein Versehen enthält. Es müsste auf p. 72, Gl. (6) heissen:

also: $p_x \ge 0$), so mag x eine systematische Zahl heissen, wenn p_x endlich ist, und (x, y) als systematischer Punkt bezeichnet werden, wenn beide Coordinaten x, y systematische Zahlen sind. Für ein systematisches x hat alsdann $\frac{1}{1+p_x}$ einen bestimmten positiven Werth ≤ 1 , für ein nicht-systematisches wird man diesem Symbole und dem allgemeineren: $\frac{\nu}{\nu+p_x}$ naturgemäss den Werth Null beizulegen haben. Definirt

$$(6) q_x = \lim_{r \to \infty} \frac{r}{r + n_x},$$

man sodann q_x durch die Gleichung:

so hat man offenbar:

(7)
$$\begin{cases} q_x = 1, & \text{wenn } x \text{ systematisch,} \\ q_x = 0, & \text{wenn } x \text{ nicht-systematisch.} \end{cases}$$

Nun werde gesetzt:

(8)
$$f(x,y) = \frac{q_y}{1+p_x} + \frac{q_x}{1+p_y},$$

so hat man:

(9)
$$\begin{cases} f(x,y) = \frac{1}{1+p_x} + \frac{1}{1+p_y}, \text{ wenn } (x,y) \text{ systematisch,} \\ f(x,y) = 0, & \text{wenn } (x,y) \text{ nicht-systematisch.} \end{cases}$$

Da es in jedem endlichen Intervalle (x_0, X) bezw. (y_0, Y) nur eine endliche Anzahl von Werthen x bezw. y giebt, für welche $1+p_x<\frac{1}{\varepsilon}$ bezw. $1+p_y<\frac{1}{\varepsilon}$, also auch in dem entsprechenden Rechtecke nur eine endliche Anzahl von Punkten, für welche $f(x,y)>2\,\varepsilon$, so erkennt man unmittelbar die Richtigkeit der Beziehungen:

$$(10) \int_{x_0}^{x} \frac{1}{1 + p_x} \cdot dx = 0, \int_{y_0}^{x} \frac{1}{1 + p_y} \cdot dy = 0, \int_{(x_0, y_0)}^{(x, y)} f(x, y) \cdot dx \cdot dy = 0.$$

44 Sitzung der math.-phys. Classe vom 4. Februar 1899.

Daraus folgt weiter:

(11)
$$\begin{cases} \int_{x_0}^{X} f(x, y) \cdot dx = \frac{1}{1 + p_y} (X - x_0), & \int_{x_0}^{X} f(x, y) \cdot dx = 0, \\ \int_{y_0}^{Y} f(x, y) \cdot dy = \frac{1}{1 + p_x} (Y - y_0), & \int_{y_0}^{Y} f(x, y) \cdot dy = 0. \end{cases}$$

Somit existiren die Integrale $\int_{x_0}^X f(x,y) \cdot dx$ bezw. $\int_{y_0}^Y f(x,y) \cdot dy$ nur für alle nicht-systematischen Werthe y bezw. x, während für die ebenfalls überall dicht liegenden systematischen die betreffende Integral-Schwankung den Werth $\frac{1}{1+p_y}(X-x_0)$ bezw. $\frac{1}{1+p_x}(Y-y_0)$ besitzt, der jedoch stets nur für eine endliche (also sicherlich unausgedehnte) Menge y bezw. x ein beliebig kleines $\varepsilon > 0$ übersteigt. Daraus folgt dann schliesslich, dass auch:

(12)
$$\int_{y_0}^{y} dy \int_{x_0}^{X} f(x, y) \cdot dx = \int_{x_0}^{X} dx \int_{y_0}^{y} f(x, y) \cdot dy = 0$$

wird, übereinstimmend mit dem Werthe des Doppel-Integrals (10).

II. Bei dem vorigen Beispiele bildeten die Punkte (x, y), für welche f(x, y) einen von Null verschiedenen Werth besitzt, eine in dem betreffenden Rechtecke überall dichte, aber abzählbare Menge (nämlich die Menge der systematischen Punkte). Um eine Function zu erhalten, bei welcher die entsprechende Rolle einer nicht-abzählbaren Menge zufällt, setze man:

(13)
$$\varphi(x,y) = (q_x - q_y)^2 \cdot \left(\frac{1}{1+p_x} + \frac{1}{1+p_y}\right).$$

Theilt man die nicht-systematischen Punkte (x, y) in unsystematische und halbsystematische, je nachdem jede

der beiden Coordinaten oder nur eine derselben eine nichtsystematische Zahl ist, so hat man:

(14a)
$$\varphi(x, y) = 0$$
, wenn (x, y) systematisch oder unsystematisch,

dagegen:

(14b)
$$\varphi\left(x,\,y\right) \left\{ \begin{aligned} &= \frac{1}{1+p_x}, \text{ wenn } x \text{ systematisch,} \\ &\quad y \text{ unsystematisch,} \\ &= \frac{1}{1+p_y}, \text{ wenn } y \text{ systematisch,} \\ &\quad x \text{ unsystematisch,} \end{aligned} \right.$$

so dass also (x, y) für die nicht-abzählbare Menge der halbsystematischen Punkte von Null verschieden ausfällt. Dennoch ist die Menge der Punkte, für welche $\varphi\left(x,y\right) > \varepsilon$ wird, eine zweidimensional-unausgedehnte, da dieselben nur auf einer endlichen Menge von Linien: $y = p_x$ bezw. $x = p_y$ (wenn auch daselbst überall dicht) vorkommen. In Folge dessen existirt wiederum das betreffende Doppel-Integral (mit dem Werthe 0), und es gelten im übrigen die Gleichungen (11), (12) genau wie im Falle I.

III. Zu analogen Functions-Bildungen kann man auch gelangen, wenn man statt der Eintheilung der Zahlen in systematische und nicht-systematische diejenige in rationale und irrationale zu Grunde legt. Ist x rational und setzt man $x = \frac{m_x}{n_x}$, so ist n_x eindeutig bestimmt, wenn man m_x , n_x als relativ prime ganze Zahlen und $n_x > 0$ annimmt. Im Falle eines irrationalen x mag dann wiederum dem Symbole $\frac{1}{n_x}$ bezw. $\frac{\nu}{\nu+n_x}$ der Werth Null beigelegt werden, so dass also:

(15)
$$r_x = \lim_{r = \infty} \frac{r}{r + n_x} \begin{cases} = 1, & \text{wenn } x \text{ rational,} \\ = 0, & \text{wenn } x \text{ irrational.} \end{cases}$$

Setzt man sodann:

(16)
$$\begin{cases} f(x,y) = \frac{r_y}{1+n_x} + \frac{r_x}{1+n_y} \\ \varphi(x,y) = (r_x - r_y)^2 \cdot \left\{ \frac{1}{1+n_x} + \frac{1}{1+n_y} \right\}. \end{cases}$$

so haben f(x, y), $\varphi(x, y)$ ganz analoge Integral-Eigenschaften, wie die entsprechenden Functionen in I und II.

§ 2.

Der Satz des vorigen Paragraphen in Verbindung mit Gl. (1) und (5) lehrt, dass die Existenz der Integrale $\int_{x_0}^X f(x,y) \cdot dx$. $\int_{y_0}^{\Gamma} f(x,y) \cdot dy$ für je eine im Intervalle (y_0,Y) bezw. (x_0,X) überall dichte Werthmenge, sowie die Beziehung:

(17)
$$\int_{y_0}^{Y} dy \int_{x_0}^{X} f(x, y) \cdot dx = \int_{x_0}^{X} dx \int_{y_0}^{Y} f(x, y) \cdot dy$$

nothwendige Bedingungen für die Existenz des Doppel-Integrals $\int_{(x_0,y_0)}^{(x,Y)} f(x,y) \cdot dx \cdot dy$ bilden. Ob dieselben auch hinreichend seien, entzieht sich zunächst der Beurtheilung. Soviel steht freilich fest, dass aus der Existenz und Gleichheit zweier Grenzwerthe von der Form $\lim_{x\to\infty} \varphi(\delta,\varepsilon)$ und

 $\lim_{\delta=0}\lim_{\varepsilon=0}\varphi\left(\delta,\varepsilon\right)$ im all gemeinen nicht ohne weiteres auf die

Existenz von $\lim_{\delta=0, \ \epsilon=0} \varphi(\delta, \epsilon)$ geschlossen werden darf. Anderer-

seits wird man bei der besonderen Art der hier vorliegenden Grenzwerthe die Richtigkeit der fraglichen Schlussfolgerung für äusserst wahrscheinlich halten müssen, zumal, wenn

¹⁾ Vgl. Sitz.-Ber. 27 (1897), p. 107.

man beachtet, dass ohne Beschränkung der Allgemeinheit f(x, y) durchweg als positiv vorausgesetzt werden kann.¹) Nichtsdestoweniger erweist sich jene naheliegende Vermuthung als unzutreffend, selbst wenn die betreffenden Voraussetzungen noch merklich eingeschränkt werden. Es lässt sich nämlich folgendes zeigen:

Ist f(x, y) eine im Rechtecke $[a \le x \le A, b \le y \le B]$ unter einer festen Grenze bleibende positive Function und bezeichnet man mit x_0, X, y_0, Y beliebige den Bedingungen: $a \le x_0 < X < A$. $b \le y_0 < Y \le B$, genügende Zahlen, so braucht kein Doppel-Integral von der Form:

(18)
$$\int_{(x_0, y_0)}^{(X, Y)} f(x, y) \cdot dx \cdot dy$$

zu existiren, auch wenn die einfachen Integrale:

(19)
$$\int_{a}^{A} f(x, y) \cdot dx, \qquad \int_{b}^{B} f(x, y) \cdot dy$$

für jedes y des Intervalles (b, B) bezw. für jedes x des Intervalles (a, A) existiren und ausserdem stets die Beziehung besteht:

(20)
$$\int_{y_0}^{Y} dy \int_{x_0}^{X} f(x, y) \cdot dx = \int_{x_0}^{X} dx \int_{y_0}^{Y} f(x, y) \cdot dy,$$

1) Da nämlich ein für allemal |f(x, y)| < G angenommen wird, so hat man: f(x, y) + G > 0. Aus der Existenz von:

$$\int_{(x_0, y_0)}^{(X, Y)} (f(x, y) + G) dx \cdot dy$$

würde aber sofort auch diejenige von:

$$\int_{(x_0, y_0)}^{(X, F)} f(x, y) \cdot dx \cdot dy$$

sich ergeben.

(welche natürlich auch die Existenz¹) der betreffenden iterirten Integrale involvirt).

Da die nothwendige und hinreichende Bedingung für die Existenz des Doppel-Integrales darin besteht, dass die Stellen (x, y). an welchen f(x, y) Sprünge $> \varepsilon$ erleidet, eine zweidimensional-unausgedehnte Menge bilden,²) so wird es für den Nachweis der obigen Behauptung im wesentlichen nur darauf ankommen, die Existenz von Punktmengen festzustellen, die zwar in einem zweidimensionalen Gebiete, dagegen auf keiner horizontalen oder vertikalen Linie ausgedehnt sind. Ob derartige Mengen bisher schon bemerkt worden sind, ist mir nicht bekannt. Ich will daher zunächst zeigen, wie man Mengen definiren kann, welche die

1) Man bemerke, dass die Existenz von:

$$\int_{x_0}^X dx \int_{y_0}^{\Gamma} f(x, y) \cdot dy$$

für $a \le x_0 < X < A$, $b < y_0 < Y \le B$, auch bei durchweg positivem f(x, y) merklich mehr besagt, als diejenige von:

$$\int_{a}^{A} dx \int_{b}^{B} f(x, y) \cdot dy.$$

Setzt man z. B.

$$f(x, y) = 1$$
 für rationale x ,
 $f(x, y) = 2 y$ für irrationale x ,

so wird:

$$\int_{0}^{1} dx \int_{0}^{1} f(x, y) \cdot dy = 1,$$

während

$$\int_0^1 dx \int_0^Y f(x, y) dy$$

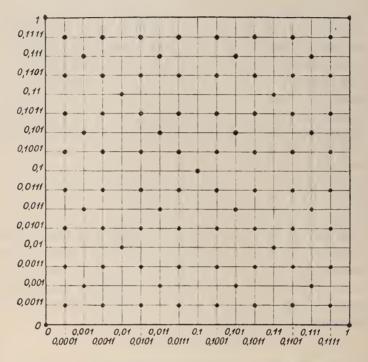
für Y < 1 nicht existirt. (Uebrigens existirt in diesem Falle auch nicht:

$$\int_{0}^{1} dy \int_{0}^{1} f(x, y) \cdot dx.$$

Vgl. Thomae, Zeitschr. f. Math. 23 (1878), p. 67).

2) Stolz, a. a. O. p. 90.

A. Pringsheim: Zur Theorie des Doppel-Integrals etc.


fragliche Eigenschaft gewissermaassen in höchster Vollkommenheit besitzen: dieselben liegen nämlich in jedem zweidimensionalen Gebiete überall dicht, während sie auf jeder Horizontalen oder Vertikalen nur in endlicher Anzahl vorkommen.

Man denke sich wieder wie in § 1 die Zahlen x, y als systematische Brüche mit beliebiger Basis b dargestellt. Ist dann x' irgend eine systematische (d. h. durch einen endlichen Bruch darstellbare) Zahl, px die zugehörige Bruchstellen-Anzahl, so sollen dem Werthe x' alle diejenigen y' zugeordnet werden, für welche $p_{y'} = p_{x'}$ — vice versa. Werden zugleich die x bezw. y auf ein ganz beliebiges endliches Intervall (a, A) bezw. (b, B) eingeschränkt, so gehört zu jedem x' nur eine endliche Anzahl von y' (nämlich innerhalb jedes ganzzahligen Intervalles z. B. (0, 1) genau $b p_{x'} - 1 (b - 1)$ und umgekehrt. Es liegt also auf jeder Vertikalen $\xi = x'$. sowie auf jeder Horizontalen $\eta = y'$ stets nur eine endliche Anzahl von Punkten (x', y'), während auf den Vertikalen $\xi = x$ und den Horizontalen $\eta = y$, wenn x, y nicht-systematisch, überhaupt keine Punkte (x', y') liegen. Nichtsdestoweniger liegen die Punkte (x', y') in jedem zweidimensionalen Gebiete überall dicht. Betrachtet man nämlich irgend eine um 45° gegen die Axen geneigte, durch den Anfangspunkt gehende Linie:

$$\eta = \xi + \alpha,$$

wo a eine positive oder negative systematische Zahl bezw. 0 bedeutet, so wird $p_{\eta} = p_{\xi}$, sobald $p_{\xi} > p_a$ (übrigens auch schon für $p_{\xi} = p_a$, mit Ausschluss derjenigen ξ , deren letzte Bruchstelle diejenige von a zu 0 oder b ergänzt). Darnach gehören alle Punkte jener Geraden, deren Abscissen systematische Zahlen mit einem $p_{\xi} > p_a$ sind, zur Menge der (x', y'), und die letzteren liegen also auf jeder solchen Geraden überall dicht. Da aber bei veränderlichem a auch diese Geraden überall dicht liegen, so folgt in der That, dass die Punkte (x', y') in jedem zweidimensionalen Gebiete überall dicht liegen.

Die beistehende Figur, welche sich auf den Fall $0 \le x < 1$, $0 \le y \le 1$ und b = 2 bezieht, mag die Anordnung der Punkte (x', y') bis zu $p_{x'} = p_{y'} = 4$ veranschaulichen. (NB. Die Mittelpunkte der kleinen Quadrate würden diejenigen (x', y') repräsentiren, für welche $p_{x'} = p_{y'} = 5$.)

Punktmengen von ähnlicher Art kann man wiederum auch erhalten, wenn man von der Eintheilung der Zahlen x, y in rationale und irrationale ausgeht. Man ordne jedem rationalen $x' = \frac{m_{x'}}{n_{x'}}$ alle diejenigen $y' = \frac{m_{y'}}{n_{y'}}$ zu, für welche $n_{y'} = n_{x'}$ — vice versa. Zu jedem x' gehört dann wiederum für jedes endliche y-Intervall nur eine endliche Auzahl von Werthen y' (nämlich im y-Intervalle (0,1) die φ ($n_{x'}$) Werthe: $\frac{m}{n_{x'}}$, für welche $m < n_{x'}$ und relativ prim zu $n_{x'}$) — und um gekehrt.

A. Pringsheim: Zur Theorie des Doppel-Integrals etc.

Die Punkte (x', y') kommen also wiederum auf jeder begrenzten Vertikalen oder Horizontalen nur in endlicher Anzahl (bezw. gar nicht) vor, während sie in jedem zweidimensionalen Gebiete wieder überall dicht liegen: letzteres kann in analoger Weise erkannt werden, wie in dem zuvor betrachteten Falle und folgt übrigens auch unmittelbar daraus, dass die dort für b=2 resultirende Punktmenge lediglich eine Theilmenge der hier definirten bildet. —

Bedeutet jetzt (x', y') irgend eine Punktmenge der eben charakterisirten Art und setzt man:

(21)
$$\begin{cases} f(x', y') = c', \\ \text{im "übrigen: } f(x, y) = c, \end{cases}$$

wo c, c'zwei beliebige von einander verschiedene Constanten bedeuten, so erscheint offenbar die Existenz jedes Doppel-Integrals von der Form:

$$\int_{(x_0, y_0)}^{(X, Y)} f(x, y) \cdot dx \cdot dy$$

definitiv ausgeschlossen. Nichtsdestoweniger hat man:

$$(22) \quad \int\limits_{x_0}^X f(x,y) \cdot dx = c \cdot (X-x_0), \quad \int\limits_{y_0}^Y f(x,y) \cdot dy = c \cdot (Y-y_0),$$

gleichgültig, ob y bezw. x zu den Zahlen y' bezw. x' gehört oder nicht. Daraus folgt dann weiter:

(23)
$$\int_{y_0}^{Y} dy \int_{x_0}^{X} f(x, y) \cdot dx = \int_{x_0}^{X} dx \int_{y_0}^{Y} f(x, y) \cdot dy = c \cdot (X - x_0) \cdot (Y - y_0).$$
q. e. d.

Schliesslich bemerke ich noch folgendes. Ordnet man in dem zuerst betrachteten Falle jedem x' mit endlichem $p_{x'}$ alle diejenigen y' zu, welche durch die Bedingung bestimmt sind: $p_{y'} \leq p_{x'}$, so liegen auf jeder Vertikalen ebenfalls nur eine endliche Anzahl von Punkten (x', y') (bezw. gar keine). Da aber andererseits zu jedem y' alle diejenigen x' gehören, für welche $p_{x'} \geq p_{y'}$, so liegen die Punkte (x', y') auf jeder zu

irgend einem y' gehörigen Horizontalen überall dicht. Definirt man nun bei dieser veränderten Bedeutung der Punkte (x', y') die Function f(x, y) wiederum durch die Gleichungen (21), so wird auch hier:

(24)
$$\begin{cases} \int_{y_0}^{Y} f(x, y) \cdot dy = c \cdot (Y - y_0), \\ \int_{x_0}^{X} dx \int_{y_0}^{Y} f(x, y) \cdot dy = c \cdot (X - x_0) \cdot (Y - y_0). \end{cases}$$

während das Integral:

(25)
$$\int_{x_0}^{x} f(x, y') \cdot dx$$

die Integral-Schwankung $|(c-c')\cdot(X-x_0)|$ besitzt, und somit:

$$\int_{y_0}^{Y} dy \int_{x_0}^{X} f(x, y) \cdot dx$$

nicht existirt.1)

§ 3.

Ich habe bei früherer Gelegenheit²) die Behauptung aufgestellt, dass für die Gültigkeit des Green'schen Satzes:

(26)
$$\iint \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \cdot dy = \int (P \cdot dx + Q \cdot dy)$$
 die Existenz der Doppel-Integrale:
$$\iint \frac{\partial Q}{\partial x} \cdot dx \cdot dy,$$

$$\iint \frac{\partial P}{\partial y} \cdot dx \cdot dy \text{ in Verbindung mit der Eindeutigkeit und}$$
 Stetigkeit von $Q(x, y)$, $P(x, y)$ eine hinreichende Bedingung

¹⁾ Dieses Beispiel erscheint mir für die in Frage kommende Möglichkeit wesentlich prägnanter, als das auf p. 48 Fussn. 1 angeführte des Herrn Thomae, da hier die Existenz der Integrale (24) von der Wahl der Grenzen völlig unabhängig ist.

²⁾ Sitz.-Ber. 25 (1895), p. 71, Fussnote.

bilde (ohne dass es also nothwendig wäre, über die Existenz von: $\int \frac{\partial Q}{\partial x} \cdot dx$, $\int \frac{\partial P}{\partial y} \cdot dy$ irgendwelche Voraussetzungen zu machen). Die nämliche Behauptung ist vielleicht auch schon anderweitig ausgesprochen, 1) aber, soviel ich weiss, niemals wirklich bewiesen worden. Und da andererseits ihre Richtigkeit keineswegs ohne weiteres einleuchtet und neuerdings auch wirklich angezweifelt worden ist,2) so dürfte ein solcher Nachweis vielleicht nicht überflüssig erscheinen. Dabei genügt es offenbar in der Hauptsache, den folgenden Satz zu beweisen:

Ist Q(x, y) eindeutig, endlich und stetig für das Rechteck $[x_0 < x < X, y_0 < y \le Y]$, $\frac{\partial Q}{\partial x}$ für jede einzelne Stelle im Innern eindeutig definirt und numerisch unter einer endlichen Grenze bleibend, so hat man:

(27)
$$\iint\limits_{(x_0, y_0)} \frac{\partial Q}{\partial x} \cdot dx \cdot dy = \iint\limits_{y_0} \{Q(X, y) - Q(x_0, y)\} \cdot dy,$$

falls jenes Doppel-Integral existirt.

Beweis. Aus dem Satze des § 1 folgt, dass das Integral $\int_{x_0}^{X} \frac{\partial Q(x,y')}{\partial x} \cdot dx$ für eine im Intervalle (y_0,Y) überall dichte Menge von Werthen y' existirt, so dass also:

¹) So könnte z. B. eine Stelle in Herrn Thomae's "Abriss einer Theorie der complexen Functionen etc." (2. Aufl., Halle 1873), p. 31, Fussn. in diesem Sinne gedeutet werden. Da aber dort ausdrücklich verlangt wird, dass die betreffenden Functionen "die doppelte Integration in eindeutigem Sinne zulassen sollen", so kann hierunter möglicher Weise auch die Existenz der betreffenden iterirten Integrale mit einbegriffen sein.

²) Herr Osgood (New-York M. S. Bullet. (2), V (1898), p. 86) setzt ausdrücklich noch die Existenz von $\int \frac{\partial Q}{\partial x} \cdot dx$, $\int \frac{\partial P}{\partial y} \cdot dy$ voraus, da er (wie ich einer brieflichen Mittheilung entnehme) diejenige des Doppel-Integrals allein nicht für ausreichend bält.

$$(28) \quad \int\limits_{x_0}^{X} \frac{\partial Q(x,y')}{\partial x} \cdot dx = \int\limits_{x_0}^{X} \frac{\partial Q(x,y')}{\partial x} \cdot dx = Q(X,y') - Q(x_0,y').$$

Sitzung der math,-phys. Classe vom 4, Februar 1899,

Da nun vermöge der Beziehung (§ 1, Gl. (1)):

(29)
$$\int_{y_0}^{Y} dy \int_{x_0}^{\frac{X}{2}} \frac{\partial Q(x,y)}{\partial x} \cdot dx = \int_{(x_0,y_0)}^{(X,Y)} \cdot dx \cdot dy$$

$$\int_{x_0}^{\frac{X}{2}} \frac{\partial Q(x,y)}{\partial x} \cdot dx \text{ eine im Intervalle } (y_0, Y) \text{ nach } y \text{ integrir-}$$

bare Function vorstellt, welche nach Gl. (28) mit der ebenfalls integrirbaren (weil stetigen) Function $\{Q(X,y)-Q(x_0,y)\}$ daselbst für eine überall dichte Werthmenge y' übereinstimmt, so hat man nach einem bekannten Satze: 1)

$$(30) \quad \int\limits_{y_0}^{\Gamma} dy \int\limits_{x_0}^{\frac{X}{2}} \frac{\partial \, Q(x,y)}{\partial \, x} \, \cdot \, d\, x = \int\limits_{y_0}^{\Gamma} \left\{ Q\left(X,y\right) - \, Q\left(x_0,y\right) \right\} \cdot d\, y,$$

und daher schliesslich:

$$(27) \int_{(x_{0},y_{0})}^{(X,Y)} \frac{\partial Q(x,y)}{\partial x} \cdot dx \cdot dy = \int_{y_{0}}^{Y} \left\{ Q(X,y) - Q(x_{0},y) \right\} \cdot dy,$$
q. e. d.

Das analoge gilt sodann für: $\int_{(x_0,y_0)}^{(x,y)} \frac{\partial P}{\partial y} \cdot dx \cdot dy$. Und da sich die vorstehenden Ergebnisse ohne Schwierigkeit auf den Fall übertragen lassen,²) dass an die Stelle des Rechtecks irgend ein zusammenhängender, von einer oder mehreren gegen die Coordinaten-Richtungen abtheilungsweise monotonen (stetigen)³) Rand-Curven begrenzter Bereich tritt, so er-

¹⁾ Dini-Lüroth, p. 356, Nr. 10.

²) Vgl. Sitz.-Ber. 25 (1895), p. 56; 28 (1898), p. 73.

³⁾ Die Stetigkeit ist eigentlich implicite schon in der Angabe enthalten, dass die betreffenden Curven die vollständige Begrenzung eines Bereiches bilden sollen.

giebt sich die Gültigkeit des Green'schen Satzes in dem folgenden Umfange:

Sind Q(x, y), P(x, y) eindeutig definirt und stetig im Innern und auf der Grenze C eines zusammenhängenden, von einer oder mehreren gegen die Coordinaten-Richtungen abtheilungsweise monotonen¹) Curven begrenzten Bereiches T, ausserdem $\frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial y}$ eindeutig definirt und numerisch unter einer endlichen Grenze bleibend im Innern von T, so hat man:

(31)
$$\iint\limits_{(T)} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cdot dT = \iint\limits_{(+C)} (P \cdot dx + Q \cdot dy),$$

wenn die Doppel-Integrale $\iint_{(T)} \frac{\partial Q}{\partial x} \cdot dT$, $\iint_{(T)} \frac{\partial P}{\partial y} \cdot dT$ existiren, d. h. wenn die Stellen, an welchen $\frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial y}$ Sprünge $> \varepsilon$ erleiden, eine zweidimensional unausyedehnte Menge bilden.

§ 4.

Der im vorigen Paragraphen gelieferte Nachweis, dass für die Gültigkeit des Green'schen Satzes eine besondere Voraussetzung bezüglich der Existenz der einfachen Integrale $\int_{x_0}^{X} \frac{\partial Q}{\partial x} \cdot dx$, $\int_{y_0}^{\Gamma} \frac{\partial P}{\partial y} \cdot dy$ nicht erforderlich ist, gewinnt durch den Umstand erhöhte Bedeutung, dass der hiernach als möglich zugelassene

¹⁾ Dabei ist also keineswegs ausgeschlossen, dass die Curven gegen irgendwelche anderen Richtungen unendlich viele Maxima und Minima (sogar überall dicht) besitzen.

Fall der Nicht-Existenz jener Integrale auch wirklich eintreten kann: es giebt nämlich thatsächlich solche in einem Intervalle $x_0 \le x \le X$ stetige Functionen f(x), welche durchweg ein eindeutiges und numerisch unter einer endlichen Schrankebleibendes, jedoch nicht integrables f'(x) besitzen,

d. h. für welche das bestimmte Integral
$$\int\limits_{x_{0}}^{X_{0}}f^{'}\left(x\right)\cdot dx\left(X_{0} < X\right)$$

nicht existirt. Die Möglichkeit derartiger Functionen ist wohl zuerst von Dini nachdrücklich hervorgehoben und durch den Nachweis des Satzes gestützt worden, dass eine Function mit überall dichten Oscillationen wohl eine eindeutige und endlich bleibende, aber niemals eine integrable Derivirte besitzen könne.¹) Die wirkliche Existenz ist sodann von Volterra²) durch Aufstellung eines Beispiels direkt dargethan und späterhin auch speciell in der Richtung des angeführten Dini'schen Satzes durch Koepcke's differenzirbare Function mit überall dichten Oscillationen³) bestätigt worden.

Ist nun aber einmal die Existenz solcher f(x) definitiv festgestellt, so liegt die Frage nahe: Was tritt in diesem Falle an die Stelle der Gleichung:

(32)
$$\int_{x_0}^{X} f'(x) \cdot dx = f(X) - f(x_0),$$

welche ja nur für integrable f'(x) einen Sinn hat? Auf diese Frage lässt sich mit Benützung des allemal existirenden oberen und unteren Integrals eine ganz präcise Antwort geben.

Schaltet man zwischen x_0 und X die Zwischenwerthe x_1 , x_2 , ... x_{n-1} ein, so hat man identisch:

(33)
$$f(X) - f(x_0) = \sum_{1}^{n} \frac{f(x_r) - f(x_{r-1})}{x_r - x_{r-1}} \cdot (x_r - x_{r-1})$$
 $(x_n = X).$

¹⁾ Dini, Fondameuti § 200 (Dini-Lüroth, p. 383).

²⁾ Giorn. di Mat. T. 19 (1881), p. 335.

Math. Ann. Bd. 29 (1887), p. 123; 34 (1880), p. 161; 35 (1890),
 p. 104. — Hamb. Mitth. Bd. II (1890), p. 128.

A. Pringsheim: Zur Theorie des Doppel-Integrals etc.

Ist jetzt f(x) im Intervalle $x_0 \le x \le X$ stetig und zum mindesten für $x_0 \le x \le X$ mit einer eindeutigen Derivirten begabt, so gestatten die betreffenden Differenzen-Quotienten die Anwendung des (Rolle'schen) Mittelwerthsatzes, d. h. es ergiebt sich:

(34)
$$f(X) - f(x_0) = \sum_{1}^{n} f_{\nu}(\xi_{\nu}) \cdot (x_{\nu} - x_{\nu-1}), \text{ wo: } x_{\nu-1} < \xi_{\nu} < x_{\nu}.$$

Unter der weiteren Annahme, dass f'(x) im Intervalle (x_0, X) numerisch unter einer endlichen Grenze bleibt, besitzt f'(x) in jedem Theil-Intervalle $x_{r-1} \leq x \leq x_r$ eine bestimmte obere und untere Grenze G'_r bezw. g'_r . Alsdann folgt aber aus Gl. (34):

(35)
$$\sum_{1}^{n} g'_{\nu} \cdot (x_{\nu} - x_{\nu-1}) \le f(X) - f(x_{0}) \le \sum_{1}^{n} G'_{\nu} \cdot (x_{\nu} - x_{\nu-1}),$$

und somit ergiebt sich für $\lim (x_{\nu} - x_{\nu-1}) = 0$, $\lim n = \infty$ die Ungleichung:

(36)
$$\int_{\overline{x_0}}^{X} f'(x) \cdot dx \leq f(X) - f(x_0) \leq \int_{x_0}^{X} f'(x) \cdot dx,$$

welche in der That die Gleichung (32) als speciellen Fall enthält und ohne weiteres in dieselbe übergeht, wenn f'(x) integrabel ist.

Mit Hülfe dieser Relation lässt sich der am Anfange des vorigen Paragraphen bewiesene Haupttheil des Green'schen Satzes unter den dort geltenden Voraussetzungen ableiten, ohne dass man nöthig hätte, auf den an jener Stelle benützten allgemeinen Integralsatz (p. 54 Fussn. 1) zu recurriren. Man hat nämlich nach (36):

(37)
$$\int_{x_0}^{x} \frac{\partial Q}{\partial x} \cdot dx \le Q(X, y) - Q(x_0, y) \le \int_{x_0}^{x} \frac{\partial Q}{\partial x} \cdot dx$$

und daher auch:

$$(38) \int_{y_0}^{Y} dy \int_{x_0}^{X} \frac{\partial Q}{\partial x} \cdot dx \leq \int_{y_0}^{Y} \{Q(X, y) - Q(x_0, y)\} \leq \int_{y_0}^{Y} dy \int_{x_0}^{X} \frac{\partial Q}{\partial x} \cdot dx.$$

Da aber nach Gl. (1) die beiden äusseren Glieder dieser Ungleichung mit dem entsprechenden, als existirend vorausgesetzten Doppel-Integral zusammenfallen, so erhält man unmittelbar:

(27)
$$\int_{(x_0, y_0)}^{(X, Y)} \frac{\partial Q}{\partial x} \cdot dx \cdot dy = \int_{y_0}^{Y} \left\{ Q\left(X, y\right) - Q\left(x_0, y\right) \right\} \cdot dy,$$

$$q. e. d.$$

§ 5.

Aus dem Green'schen Satze (Gl. (31)) ergiebt sich der Cauchy'sche, wenn die Functionen Q(x, y), P(x, y) so beschaffen sind, dass:

(39)
$$\iint\limits_{(T)} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cdot dT = 0$$

wird. Die hierzu nothwendige und hinreichende Bedingung besteht aber darin, dass die Stellen (x, y), für welche:

$$\left|\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right| > \varepsilon,$$

bei beliebig kleinem $\varepsilon > 0$ eine zweidimensional unausgedehnte Menge bilden. \(^1\)) Mithin ergiebt sich, wenn T wiederum einen Bereich von der am Schlusse von \(^3\) 3 definirten

$$\left| \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right| > 0,$$

immerhin auch eine zweidimensional-ausgedehnte Menge bilden, z. B. überall dicht liegen. (Vgl. die Beispiele in § 1).

¹⁾ Dabei können also die Stellen, für welche:

A. Pringsheim: Zur Theorie des Doppel-Integrals etc.

Art, C seine vollständige Begrenzung bedeutet, der Cauch y sche Integralsatz in dem folgenden Umfange:

Sind Q(x, y), P(x, y) eindeutig definirt und stetig im Innern und auf der Begrenzung von T, $\frac{\partial Q}{\partial x}$ und $\frac{\partial P}{\partial y}$ eindeutig definirt und numerisch unter einer endlichen Grenze bleibend im Innern von T, so hat man:

$$\int_{(\mathcal{C})} (P \cdot dx + Q \cdot dy) = 0,$$

wenn die Stellen (x, y), für welche $\frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial y}$ Sprünge $> \varepsilon$ erleiden¹) oder Ungl. (40) besteht, bei beliebig kleinem $\varepsilon > 0$ eine zweidimensional unausgedehnte Menge bilden.²)

Hierzu ist nun aber noch folgendes zu bemerken. Die Existenz der Beziehung (39) hängt ausschliesslich davon ab. dass Ungl. (40) höchstens für eine zweidimensional unausgedehnte Menge besteht, keineswegs aber davon, dass $\frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial y}$ irgendwelchen Stetigkeits-Bedingungen unterworfen werden. Diese sind lediglich erforderlich, um die getrennte Existenz der beiden Doppel-Integrale $\iint_{(T)} \frac{\partial Q}{\partial x} \cdot dT$,

$$\left| \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right| \leq \varepsilon,$$

mit Zulassung der näher bezeichneten Ausnahmen) von selbst erfüllt ist.

¹⁾ Es würde auch genügen, diese Stetigkeits-Bedingung für eine der beiden Functionen $\frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial y}$ zu statuiren, da sie dann für die andere vermöge der zweiten Bedingung (nämlich:

²) Man kann sogar noch die Bedingung der Stetigkeit von P, Q, sowie der Endlichkeit von $\frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial y}$ mit Hülfe bekannter Ausschliessungs-Methoden in gewissem Umfange fallen lassen.

 $\iint_{(T)} \frac{\partial P}{\partial y} \cdot dT \quad \text{zu gewährleisten, auf welcher der Beweis des} \\ \text{Green'schen Satzes wesentlich beruhte. Im Grunde genommen basirt aber Gl. (41) gar nicht nothwendig auf der Existenz jener beiden Doppel-Integrale, sondern lediglich auf derjenigen der beiden iterirten Integrale <math display="block">\int dy \int_{-\partial x}^{\partial Q} dx,$

 $\int dy \int \frac{\partial P}{\partial y} \cdot dx$, und auf der Vertauschbarkeit der Integrationsfolge bei dem zweiten dieser Integrale. Nachdem nun aber die Betrachtungen des § 2 deutlich gezeigt haben, dass diese letzteren Bedingungen sehr wohl erfüllt sein können, auch wenn jene Doppel-Integrale nicht existiren, so erkennt man, dass für die Gültigkeit des Cauchy'schen Satzes (Gl. (41)) die den Functionen $\frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial y}$ auferlegten Stetigkeits-

Bedingungen keineswegs nothwendige sind und sich durch andere, umfassendere ersetzen lassen müssen. Da man indessen für das Zustandekommen der Beziehung:

(42)
$$\int_{y_0}^{\mathbf{r}} dy \int_{x_0}^{\mathbf{x}} \frac{\partial P}{\partial y} \cdot dx = \int_{x_0}^{\mathbf{x}} dx \int_{y_0}^{\mathbf{r}} \frac{\partial P}{\partial y} \cdot dy$$

lediglich hinreichende Bedingungen kennt, von denen die Existenz des betreffenden Doppel-Integrals zur Zeit als die weitaus allgemeinste gelten darf, so gelangt man auf diesem Wege schliesslich doch zu keiner befriedigenden Fassung des fraglichen Satzes, die allgemeiner wäre, als die oben gegebene.

Immerhin geht aus dieser Betrachtung mit Evidenz hervor, dass der Green'sche Satz keineswegs als allgemeinste Grundlage des Cauchy'schen Satzes (41) angesehen werden kann. Dies gilt nun aber in erhöhtem Maasse für des letzteren Anwendung auf Functionen einer complexen Veränderlichen. Hier gelangt man zunächst auf Grund der oben gegebenen Fassung zu dem folgenden Resultate:

A. Pringsheim: Zur Theorie des Doppel-Integrals etc.

Ist $f(z) = f(x + yi) = \varphi(x, y) + i \cdot \psi(x, y)$ eindeutig definirt und stetig¹) im Innern und auf der Begrenzung von T; sind ausserdem $\frac{\partial \varphi}{\partial x}$, $\frac{\partial \varphi}{\partial y}$, $\frac{\partial \psi}{\partial x}$, $\frac{\partial \psi}{\partial y}$ eindeutig definirt und absolut genommen unter einer endlichen Grenze¹) bleibend, so hat man:

(43)
$$\int_{(\mathcal{C})} f(z) \cdot dz = 0,$$

wenn die Stellen z, für welche $\frac{\partial \varphi}{\partial x}$, $\frac{\partial \varphi}{\partial y}$ (oder auch: \(^1\)) $\frac{\partial \psi}{\partial x}$, $\frac{\partial \psi}{\partial y}$) Sprünge $> \varepsilon$ erleiden oder eine der Ungleichungen besteht:

$$(44) \left| \frac{\partial \varphi}{\partial x} - \frac{\partial \psi}{\partial y} \right| > \varepsilon, \left| \frac{\partial \varphi}{\partial y} + \frac{\partial \psi}{\partial x} \right| > \varepsilon,$$

bei beliebig kleinem $\varepsilon > 0$ eine zweidimensional unausgedehnte Menge bilden. Daraus folgt dann nach bekannten Methoden, dass f(z) im Innern von T eine analytische Function vorstellt.

Insbesondere ergiebt sich also, dass unter den gemachten Voraussetzungen f(z) im Innern von T einen "vollständigen", d. h. von der Art des Grenzüberganges (nicht nur von der Differentiations-Richtung) unabhängigen Differential-Quotienten besitzt. Wird nun, wie gewöhnlich geschieht, diese letztere Forderung schon in der Voraussetzung aufgenommen, so verlangt man damit von vornherein merklich mehr, als die Existenz jener partiellen Ableitungen und sogar die ausnahmslose Existenz der Beziehungen:

(45)
$$\frac{\partial \varphi}{\partial x} - \frac{\partial \psi}{\partial x} = 0, \qquad \frac{\partial \varphi}{\partial y} + \frac{\partial \psi}{\partial x} = 0$$

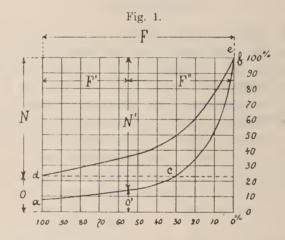
¹⁾ Vergl. die beiden vorigen Fussnoten.

besagen würde.¹) Hiernach erscheint es aber keineswegs ausgeschlossen, dass die Existenz eines solchen f'(z) schon allein die Integral-Beziehung (43) und somit den analytischen Charakter von f(z) nach sich zieht, ohne dass es nöthig wäre, f'(z) irgend welchen Stetigkeits-Bedingungen zu unterwerfen. Und so lange es nicht etwa gelingt, durch Aufstellung von Beispielen das Gegentheil festzustellen. wird diese Frage als eine offene gelten müssen.

¹⁾ Vergl. Thomae, Abriss etc., p. 17, 119. — Stolz, Grundlagen der Diff.- und Integr.-Rechnung, I, p. 134; II, p. 82. — Osgood, a. a. O. p. 87.

Sitzung vom 4. März 1899.

- 1. Herr K. Linde hält einen Vortrag über: "Vorgänge und Wirkungen bei der Verbrennung in flüssigem Sauerstoff".
- 2. Herr Johannes Ranke macht Mittheilungen "Ueber die überzähligen Knochen der menschlichen Schädeldecke". Die Abhandlung wird in den Denkschriften veröffentlicht werden.
- 3. Herr E. v. Lommel giebt einen Nachtrag zu seiner früheren Abhandlung: "Theorie der Dämmerungsfarben". Derselbe ist für die Denkschriften bestimmt.
- 4. Herr Ferd. Lindemann macht eine erste Mittheilung über die Ergebnisse seiner italienischen Reise: "Ueber einige prähistorische Gewichte aus deutschen und italienischen Museen".
- 5. Herr P. Groth legt eine von dem correspondirenden Mitgliede Herrn v. Fedorow in Moskau eingesandte Arbeit: "Ueber reguläre Plan- und Raum-Theilung" vor. Die Arbeit wird in den Denkschriften erscheinen.


Ueber Vorgänge bei Verbrennung in flüssiger Luft. Von Carl Linde.

(Eingelaufen 30. März.)

Es ist schon durch die Forscher, welche zuerst die Vorgänge bei der Verflüssigung atmosphärischer Luft und die Eigenschaften der verflüssigten Luft untersucht haben, die Thatsache festgestellt worden, dass der Stickstoff und der Sauerstoff der Atmosphäre sich gleichzeitig condensiren, dass also eine Flüssigkeit, welche durch Berührung atmosphärischer Luft mit Gefässwandungen von genügend tiefer Temperatur gewonnen wird, dieselbe Zusammensetzung zeigt, wie die Atmosphäre, dass aber in dieser Zusammensetzung eine Aenderung eintritt, sobald die Verdampfung beginnt, und zwar in dem Sinne, dass der Stickstoff in relativ grösserer Menge verdampft, als der Sauerstoff, so dass die Flüssigkeit um so sauerstoffreicher wird, je weiter die Verdampfung fortgeschritten ist.

Messende Versuche ergaben, dass diese Aenderung unter atmosphärischem Drucke ungefähr in der aus Fig. 1 ersichtlichen Weise erfolgt. Zeigen die Grössen O und N das anfängliche Gewichtsverhältniss von Sauerstoff und Stickstoff in der Flüssigkeitsmenge F an, so stellen O' und N' das jeweilige Verhältniss in dem entweichenden Gasgemische dar, nachdem die Flüssigkeitsmenge F' verdampft ist. Die Curve a b lässt also erkennen, wie die (anfänglich etwa $92\,^{\circ}/_{\circ}$ Stickstoff und $8\,^{\circ}/_{\circ}$ Sauerstoff enthaltenden) Verdampfungsproducte bei c die Zusammensetzung der Atmosphäre erreichen und von da an sauer-

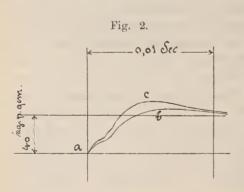
stoffreicher werden. Die Grössen der Flächen über der Curve $a\,b$ von der Länge F' und F'' stellen die jeweilen verdampften bezw. noch in der Flüssigkeit enthaltenen Stickstoffmengen dar, ebenso die unter der Curve $a\,b$ liegenden Flächen die Sauerstoffmengen. Das jeweilige Verhältniss der letzteren zu den ersteren ist in der Curve $d\,e$ veranschaulicht. Im Punkte c, wo die Verdampfungsproducte gerade die Zusammensetzung der Atmosphäre zeigen, sind die Flächen über und unter der Curve einander nahezu gleich, die Flüssigkeit enthält also ungefähr gleiche Mengen von Sauerstoff und Stickstoff. Es sind bis dahin nahezu $81\,^{0}/_{0}$ des ursprünglich vorhandenen Stickstoffes,

 $35\,^{\rm o}/_{\rm o}$ des Sauerstoffes und $70\,^{\rm o}/_{\rm o}$ der ganzen Flüssigkeitsmenge verdampft.

Bei geringerem Drucke (Verdampfung in vacuo) findet die Trennung der Gase in schnellerem Tempo statt, d. h. die entweichenden Verdampfungsproducte enthalten mehr Stickstoff, als die Fig. 1 zeigt. Unter höherem Drucke ist das umgekehrte der Fall, obwohl die Sättigungstemperaturen der beiden Gase bei höherem Drucke auseinanderrücken.

Im Zusammenhange mit dieser fractionirten Verdampfung fanden die oben erwähnten Forscher, dass ein glimmender

Spahn bei Annäherung an die Oberfläche einer solchen Flüssigkeit in einem Gefässe erlischt, so lange die Verdampfungsproducte vorwiegend Stickstoff enthalten, dass aber bei entsprechend vorgeschrittener Verdampfung der Spahn aufflammt und nach Eintauchen in die nunmehr sauerstoffreiche Flüssigkeit lebhaft verbrennt.


Mischt man brennbare Substanzen (z. B. pulverisirte Kohle) so mit einer derartigen Flüssigkeit, dass eine sehr grosse Berührungsoberfläche hergestellt ist, so findet nach einer Entzündung die Verbrennung ungefähr mit derselben Lebhaftigkeit und Schnelligkeit statt, wie bei gewöhnlichem Schwarzpulver und es erfolgt, wie bei solchem Pulver, eine Explosion, wenn die Zündung mit einem Initialstosse (durch eine Kapsel) verbunden ist.

War schon diese Erscheinung mit Rücksicht auf die tiefen Temperaturen eines solchen Gemisches merkwürdig (bei welchen jede chemische Reaction aufhört), so ist dies in weit höherem Maasse der Fall bezüglich der neuerdings gefundenen weitergehenden Wirkung, von welcher ich hier berichten will.

Die ausserordentliche Geschwindigkeit, mit welcher sich bei den modernen Sprengmitteln die gesammte Wärmezustandsänderung vollzieht und welche in Gemeinschaft mit sehr grosser volumetrischer Differenz im Anfang- und End-Zustande einem Sprengmittel die Eigenschaft der Brisanz verleiht, wird vielfach angesehen als die Wirkung des Zerfalles chemischer Verbindungen, bei welchem Gase (insbesondere Sauerstoff) in statu nascendi in Action treten. Mit dieser Auffassung steht die Thatsache nicht in Uebereinstimmung, dass gewisse Mischungen fester und flüssiger oxydirbarer Substanzen in sauerstoffreicher Flüssigkeit mit solcher Geschwindigkeit vollkommen verbrennen, dass sie sich als Sprengstoffe von allerhöchster Brisanz darstellen.

Lässt man z. B. Petroleum durch einen Körper von grosser Aufsaugefähigkeit (wie Kieselguhr oder Korkkohlepulver) so weit aufsaugen, dass derselbe weiterhin ein ausreichendes Quantum von flüssigem Sauerstoffe aufnehmen kann, so detonirt ein solches Gemisch freiliegend bei jeder Zündung. Patronen, welche damit gefüllt waren, übertrugen die Detonation auf andere 25 cm entfernt liegende, während Sprenggelatine (das brisanteste unter den in der Sprengtechnik verwendeten Sprengmitteln) nur auf 15 cm übertrug.

Ueber die Schnelligkeit der Verbrennung und über die volumetrische Wirkung derselben geben Versuche einen theilweise ziffermässigen Aufschluss, welche in einem sogenannten Brisanzmesser (in der Sprengstoff-Versuchstation zu Schlebusch) gemacht worden sind. In einem Hohlkörper aus Stahl (bei 20 Liter Rauminhalt) werden Sprengstoffpatronen verschiedener Art durch Knallquecksilberkapseln zur Detonation gebracht. Die hiebei entstehende Druckerhöhung wird durch einen "Indicator" (vermittels eines federbelasteten und seine Bewegung auf einen Schreibstift übertragenden Kölbchens) auf einer mit Papier bespannten Trommel aufgezeichnet, welche mit einer Umfangs-Geschwindigkeit von ungefähr 330 cm per Secunde rotirt, so dass einem Centimeter ungefähr 0,003 Secunde entspricht. Der Weg vom Beginn der Drucksteigerung bis zu ihrem Ende (bis zum Gipfel der aufgezeichneten Druckcurve)

würde die Dauer der entsprechenden Wärmezustandsänderung ohne weiters darstellen, wenn nicht die Trägheit von Kolben und Feder eine Verzögerung bewirkten. Absolute Zeitmessungen werden also für die Verbrennungs-Dauer nicht erzielt, wohl aber relative in Bezug auf die

verschiedenen Sprengstoffe. Unter den bis dahin untersuchten nahm die Sprenggelatine die erste Stelle ein. Bei Anwendung von Gemischen aus Petroleum (und Kieselguhr) mit sauerstoffreicher Flüssigkeit wurden nun aber Druckeurven erzielt, welche hinsichtlich der Verbrennungsdauer und der volumetrischen Wirkung die Sprenggelatine noch übertrafen. In Fig. 2 zeigt ab eine Druckcurve, welche mit 85 g Sprenggelatine, ac eine solche, welche mit einem Gemische von 17 g Petroleum und 62 g Flüssigkeit (schätzungsweise 80% Sauerstoff und 20% Stickstoff) mit 17 g Kieselguhr in 9 g Papier erzielt wurde.

Es scheint hiernach, dass die Verbrennung eines solchen Gemisches trotz seiner Temperatur von weniger als — 180° C. schneller erfolgt, als irgend eine bisher bekannte Verbrennung von festen oder flüssigen Substanzen.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Ueber einige prähistorische Gewichte aus deutschen und italienischen Museen. I.

Von F. Lindemann.

(Eingelaufen 6. April.)

Mit Taf. I.

In einer früheren Arbeit¹) über die Geschichte der Polyeder und der Zahlzeichen habe ich mich eingehend mit einem am Monte Loffa in den euganeischen Bergen gefundenen, aus Speckstein geschnittenen Dodekaëder, mit den auf den Flächen dieses Körpers eingegrabenen Zeichen und mit gewissen an derselben Fundstelle ausgegrabenen steinernen Gewichten beschäftigt. Auf diesen Gewichten finden sich teilweise dieselben Zeichen, wie auf jenem Dodekaëder, und durch Vergleichung beider Zeichensysteme gelang es, dieselben zu interpretiren. Es ergab sich das überraschende Resultat, dass diese Zeichen teils direkt, teils wenigstens durch das Princip ihrer Bildung mit den altägyptischen, hieratischen Zahlzeichen übereinstimmen. In diesen Ziffern vom Monte Loffa wurden gleichzeitig die Urtypen der etruskischen und damit der späteren römischen Zahlzeichen erkannt. Dieser Umstand wies darauf hin, dass jene Funde vom Monte Loffa, wenn meine Interpretation der Zeichen richtig ist, aus einer Zeit stammen müssen, wo die spätere etruskische Schrift noch nicht gebräuchlich war, und wo noch Beziehungen Oberitaliens zu Aegypten und überhaupt zum Oriente bestanden,

¹) Sitzungsberichte der math.-physik. Classe der k. bayer. Akademie d. Wiss. Band XXVI, 1896.

Sitzung der math.-phys. Classe vom 4. März 1899.

von denen die historische Zeit keine Erinnerung bewahrt hat. Bestätigt wurde dieser Schluss durch die Gewichtseinheit, nach welcher die steinernen Gewichte vom Monte Loffa normirt sind; dieselbe beträgt nämlich circa 100 gr, d. h. 1/5 = 12/60 einer leichten königlichen babylonischen Mine.

Die Umstände, unter welchen 1885 die Ausgrabungen am Monte Loffa von Stephano de' Stephani gemacht wurden. liessen diesen Gelehrten ebenfalls auf ein sehr hohes Alter der fraglichen Funde schliessen (vgl. a. a. O. p. 637 ff.). Da indessen diese Gegenstände in den Resten uralter Wohnstätten gefunden wurden, und da bei Ausgrabungen in solchen Wohnstätten immer der Zweifel besteht, ob nicht beim Graben die verschiedenen horizontalen Schichten durch einander gemischt sind, so konnte der Verdacht bestehen bleiben, dass die steinernen Gewichte und das Dodekaëder vom Monte Loffa doch aus einer wesentlich jüngeren Epoche stammen, denn aus anderen dort gemachten Funden ging hervor, dass die betreffenden Wohnplätze bis in die letzte Zeit der römischen Republik hinein benutzt wurden. Diesen Bedenken gab insbesondere Pigorini in einem a. a. O. (p. 653 f.) abgedruckten Briefe Ausdruck.

Inzwischen habe ich im Herbste 1897 auf einer Reise durch Ober- und Mittelitalien, bei der ich mich einer Beihilfe aus den Mitteln der bei der hiesigen Akademie errichteten Münchener Bürger-Stiftung zu erfreuen hatte, in verschiedenen Museen Stücke gefunden, welche nach den von mir vorgenommenen Wägungen, teilweise auch nach den auf ihnen befindlichen Zeichen als Gewichte angesehen werden müssen. Dieselben reichen unzweifelhaft bis in die Zeit der Terramaren, d. h. bis in die Anfänge der Broncezeit, vielleicht bis in die Steinzeit zurück. In ihnen glaube ich neue Beweisstücke dafür sehen zu dürfen, dass schon in jenen ältesten prähistorischen Zeiten Beziehungen Oberitaliens zum Oriente, insbesondere zu Aegypten bestanden haben, und dass somit die von mir in meiner früheren Arbeit ausgesprochenen Vermutungen fast zur Gewissheit werden.

Einen vollständigen Bericht über die Ergebnisse meiner in Italien angestellten Untersuchungen kann ich leider noch nicht veröffentlichen; 1) denn die Bearbeitung derselben erfordert zunächst eine neue Darstellung der in Vorderasien und Aegypten gebräuchlich gewesenen Gewichtssysteme und ihrer historischen Entwicklung. Hierfür ist aber durch die neueren Ausgrabungen von Flinders Petrie in Aegypten ein so überreiches Material geliefert, dass die Sichtung nicht ohne grossen Zeitaufwand geschehen kann. Allerdings ist dieses Material neuerdings von Hultsch²) bearbeitet worden; derselbe geht dabei von Gesichtspunkten aus, die so wesentlich von den meinigen verschieden sind, dass ich eine Veröffentlichung der letzteren noch verschieben muss.

Die Ergebnisse der erwähnten Reise veranlassten mich, auch hier in München, so wie im September vorigen Jahres in Königsberg in Preussen und in Schwerin in Mecklenburg Nachforschungen nach prähistorischen Gewichtsstücken anzustellen. Nachdem ich in den italienischen Museen gelernt hatte, auf welche Merkmale besonders zu achten ist, gelang es mir in der That, auch in den genannten deutschen Orten eine ganze Reihe von Stücken mit ziemlicher Sicherheit als Gewichte festzustellen. Auch hier weisen die vorgenommenen Wägungen, sowie teilweise die auf den Stücken befindlichen Zeichen auf uralte Beziehungen zum Oriente, besonders zu Aegypten. Hervorragendes Interesse scheinen zwei Gewichtsstücke der hiesigen prähistorischen Sammlung des Staates beanspruchen zu dürfen, welche mit ägyptischen Zeichen markiert sind, und welche unter solchen Umständen gefunden wurden. dass man sie mit Sicherheit aus der Steinzeit, spätestens aus dem Anfange der Broncezeit datiren kann; dieselben werden deshalb in den ersten beiden Paragraphen ausführlich besprochen.

¹⁾ Einen kurzen vorläufigen Bericht findet man in den Sitzungsberichten der math.-physik. Classe der k. bayer. Akademie der Wissenschaften 1897. Band XXVII, p. 479 ff.

²) Vergl. Friedrich Hultsch, die Gewichte des Altertums nach ihrem Zusammenhange dargestellt; Bd. XVIII der Abhandlungen der k. sächsischen Gesellschaft der Wissenschaften, Leipzig 1898.

Auf diese Stücke hat Herr College Furtwängler, dem ich dieselben zeigte, neuerdings¹) hingewiesen, und aus ihrer Existenz ebenfalls Schlüsse auf uralte Beziehungen zum Oriente gemacht, indem er die damalige Bevölkerung Bayerns mit den Kämpfen im mittländischen Meere zur Zeit der mykenischen Epoche in Verbindung bringt, ähnlich wie ich es a. a. O. für die Etrusker gethan hatte.

Für die Geschichte der Zahlzeichen ist die Untersuchung alter Gewichte von besonderem Interesse, da wir in ihnen jedenfalls die ältesten Documente für den Gebrauch der Ziffern bei den europäischen Völkern vor uns haben.

§ I. Ein Gewicht mit ägyptischer Aufschrift aus dem fränkischen Jura.

In der hiesigen prähistorischen Sammlung des Staates (altes Akademiegebäude an der Neuhauserstrasse) befinden sich eine grosse Menge von Funden aus den Höhlen des fränkischen Jura. Die betreffenden Ausgrabungen sind von Herrn Limmer gemacht. Mit Ausnahme von zwei oder drei kleinen Bronceringen sind sämmtliche Stücke aus Stein, Knochen oder Thon gefertigt. Es scheint kein Zweifel darüber zu bestehen, dass dieselben der jüngeren Steinzeit angehören.²) Zu diesen Fundstücken gehört das im Folgenden zu beschreibende Gewicht.

Nr. 1. Inventar-Nr. 2006^a. Fundort in einer Höhle des Püttlachthales. Material sehr feinkörniger Sandstein von äusserlich braungrauer Farbe, wie er in jenen Gegenden vorkommen soll. Die Gestalt ist aus der auf beiliegender Tafel gegebenen

¹⁾ Das betr. Werk über die Geschichte der Gemmen wird demnächst erscheinen.

²⁾ Vergl. J. Ranke: Die Felsenwohnungen aus der jüngeren Steinzeit in der fränkischen Schweiz, Beiträge zur Anthropologie und Urgeschichte Bayerns, Bd. III, 1880, p. 205 ff. Einzelne Reste von Bronce-Stücken, auch vereinzelte Eisen-Reste wurden in analogen benachbarten Höhlen gefunden. Die grosse Mehrzahl der Höhlen lieferte aber nur Geräthe aus Stein und Knochen.

Figur 1 u. 2 ersichtlich. Das Stück scheint vollkommen unverletzt zu sein. Das Gewicht beträgt ungefähr 100 gr. Da dasselbe mit zwei Inventar-Nummern beklebt ist und in den Vertiefungen noch erdiger Staub haftet, so mag das ursprüngliche Gewicht etwa 98,2 bis 98,5 gr betragen haben; das ist aber genau ½0 der von Lehmann¹) festgestellten babylonischen Gewichtsmine gemeiner Norm, welche schon in der altbabylonischen Epoche (also rückwärts bis über 3000 v. Chr.) in Gebrauch war.

Die geometrische Gestalt des Gewichtes lässt sich etwa in folgender Weise beschreiben. Es handelt sich um einen geraden Cylinder von verhältnissmässig geringer Höhe (1—2,5 cm) mit dreieckiger Basis. Die Grundlinie der Basis ist circa 5 cm lang, die Höhe der Basis beträgt circa 6,4 cm. Die beiden andern Seiten des Dreiecks sind etwas nach aussen gebogen und haben eine Länge von 6,4 beziehungsweise 7 cm. Die der Basis gegenüber liegende Fläche ist zu ihr nicht vollkommen parallel, der Abstand beider Dreiecksflächen von einander beträgt an der Spitze des nahezu gleichschenkligen Dreiecks ca. 2,5 cm, an der einen Ecke der Grundlinie ca. 0,8, an der anderen Ecke ca. 2 cm. In der Mitte der nach aussen etwas gewölbten Seitenfläche des Cylinders, welche die zuletzt erwähnte Ecke des Basisdreiecks mit der Spitze verbindet, verläuft parallel der Basisfläche eine etwa 2 mm tiefe Rille.

Auf den beiden Dreiecksflächen sind die Zeichen angebracht, welche die Wichtigkeit des Stückes bedingen. Auf der Basisfläche ist nahe der Grundlinie ein Kreis von ca. 2,4 cm Durchmesser eingegraben; darüber befinden sich zwei zu einander rechtwinklige vertiefte Striche, von denen der eine die Mitte des andern trifft. Auf der gegenüber liegenden Fläche befindet sich in der Mitte parallel der Grundlinie das Zeichen

²) Das altbabylonische Maass- und Gewichtssystem als Grundlage der antiken Gewichts-, Münz- und Maasssysteme, Actes du huitième congrès international des orientalistes, tenu en 1889 à Stockholm, Leyden 1892.

und darüber ein Punkt; vergl. übrigens Fig. 1 u. 2 auf beigefügter Tafel.

Die beiden zu einander rechtwinkligen, eingegrabenen Striche auf der Basisfläche stellen das ägyptische Zeichen für 10 in hieratischer Schrift dar. Allerdings sollte das Zeichen einer umgekehrten römischen Fünf (A) gleichen; in der jüngeren Zeit und vollends in der demotischen Schrift wird es indessen in der Form geschrieben¹), welche auf unserm Gewicht erscheint; es ist daher nicht wunderbar, wenn das Zeichen schon früher von Nicht-Aegyptern in dieser flüchtigen Form ausgeführt wurde. Georg Ebers, dem ich das vorliegende Gewicht zeigte, und der meiner Interpretation desselben vollkommen zustimmte, sagte mir, dass er gewohnt sei, die Ziffer 10 ägyptisch genau so zu schreiben, wie sie auf dem Gewichte steht.

Der Ring auf der Basisfläche ist das im alten Aegypten übliche Zeichen für ein Gewicht. Derselbe findet sich bereits auf einem Gewichte des Königs Chufu (Cheops) aus der IV. Dynastie²), ferner auf einem solchen des Königs Thuthmes aus der VIII. Dynastie (Nr. 4 bei Griffith), auf einem Gewichte der X. Dynastie, dessen Aufschrift im übrigen zweifelhaft ist (a. a. O. Nr. 13), auf einem Gewichte aus Gurob, das der XVIII. oder XIX. Dynastie zugeschrieben wird (a. a. O. Nr. 14), auf einem Gewichte aus Memphis, dessen Aufschrift verschieden interpretirt werden kann (a. a. O. Nr. 22), auf einem anderen ebenfalls nicht datirten Gewichte (a. a. O. Nr. 18), und auf zwei Gewichten der XXVI. Dynastie (a. a. O. Nr. 8 u. 10). Der Ring war also in der That von den ältesten Zeiten Aegyptens ab bis in das 6. Jahrhundert v. Chr. hinein als Gewichtszeichen in Gebrauch, verhältnismässig häufiger aber in der älteren Zeit.

¹⁾ Vergl. Tafel VI in meiner früheren Arbeit über die Geschichte der Polyeder und Zahlzeichen.

²) Es ist dies Nr. 1 in dem von Griffith veröffentlichten Verzeichnisse der mit Inschriften versehenen ägyptischen Gewiehte; Proceedings of the Society of Biblical Archäology, vol. XIV 1891—1892, p. 442 ff.

Die Aufschrift sagt uns hiernach, dass es sich um ein Gewicht von 10 Einheiten, jede zu ca. 9,85 gr. handelt. Auf den verschiedenen, soeben erwähnten ägyptischen Gewichten bedeutet das Zeichen © eine ganz verschiedene Menge von gr, wie aus folgender Tabelle ersichtlich ist:

Nr. bei Griffith	Dynastie	1 🔘 =
2	IV.	13,35 g
4	XVIII.	12,77 ,
13	?	14,18 , (?)
14	XVIII—XIX.	14,92 ,
22	\$	13,08 , (?)
18	?	16,40 ,
8	XXVI.	?
10	XXVI.	?

Die beiden letzten Stücke sind stark verletzt, deshalb die Gewichtsangabe unsicher. Hinzufügen kann man zu dieser Liste ein ellipsoïdisch gestaltetes, scheinbar ganz unverletztes Gewicht aus dunkelm polirten Stein mit Aufschrift, das ich im ägyptischen Museum zu Turin bemerkte (Inv.-Nr. 4466), und das bisher noch nicht veröffentlicht zu sein scheint. Nach Urteil des Herrn Professor Schiaparelli, Direktors jenes Museums, gehört es dem sogenannten "Alten Reiche" an. Es ist auf ihm (neben dem Namen eines Priesters) das Gewicht mit den Zeichen O∩ angegeben, von denen letzteres das hieroglyphische Zeichen für die Ziffer 10 ist; das Stück wiegt 195 gr; ein

hat also die Bedeutung von 19,5 gr, das ist $2 \times 9,75$ gr, d. h. fast genau das Doppelte derjenigen Einheit, welche auf unserem Gewichte aus dem fränkischen Jura mit einem Ringe bezeichnet ist. Man könnte dieses dadurch erklären, dass im ganzen Altertume bei den vorderasiatischen Gewichtssystemen "leichtes" und "schweres" Gewicht neben einander hergehen, von denen das schwere immer doppelt so viel wiegt, wie das leichte, während zur Bezeichnung beider Gewichtstypen dasselbe Wort gebraucht wird.

Sitzung der math.-phys. Classe vom 4. März 1899.

Von den in obiger Tabelle angegebenen Einheiten steht nur noch die unter Nr. 18 aufgeführte in einer sofort ersichtlichen Beziehung zu unserer Einheit von 9,85 gr, denn es ist $16,49 = \frac{985}{60}$. Es wurden eben im alten Aegypten zu verschiedenen Zeiten, vielleicht auch zu gleicher Zeit an verschiedenen Orten bei den Wägungen verschiedene Einheiten benutzt; ausserdem variierte die Gewichtseinheit nach der Natur des zu wiegenden Gegenstandes, z. B. Gold, Silber, Getreide, Honig u. s. w.¹), worauf ich bei anderer Gelegenheit zurückzukommen gedenke.

Der Ring scheint überhaupt nicht zur Bezeichnung einer bestimmten Einheit gedient zu haben, sondern nur im allgemeinen zur Bezeichnung des Begriffes Gewicht, also als Determinativ gebraucht worden zu sein. Es wird dieses wahrscheinlich dadurch erklärlich, dass schon in ältester Zeit die wertvollen Metalle in Gestalt von Ringen bestimmten Gewichtes in den Handel kamen.2) Nach meinen Untersuchungen hatten überdies die ältesten Gewichte in den Terramaren und Pfahlbauten Oberitaliens, der Schweiz und Deutschlands die Gestalt von Ringen, gefertigt aus Thon oder Stein, denn durch meine Wägungen konnte ich (in Uebereinstimmung mit den allerdings seltenen Zeichen auf diesen Ringen) nachweisen, dass die vielfach als Untersätze von Vasen, Bechern u. dergl. aufgefassten und in fast allen Museen zahlreich vorhandenen Ringe, wenigstens zum grossen Teil, Gewichte waren.3) Um so weniger ist es auffallend, wenn der Ring noch später als Gewichtszeichen gebraucht wurde. In diesem Sinne kommt der Ring auf mehreren steinernen Gewichten des etruskischen Museums von Marzabotto bei Bologna vor, und in gleicher Bedeutung erscheint er sonst auf steinernen Gewichten ältester Zeit; ins-

¹⁾ Vergl. Brugsch, Die Aegyptologie, Leipzig 1895, p. 376 ff.

²) Vergl. z. B. die Darstellung der Abwiegung solcher Ringe aus der Zeit der Königin Hatshepsu (ca. 1500 v. Chr.) bei Naville: The temple of Deir el Bahari, London 1894; Egypt exporation fund, XII. memoir, pl. X.

³⁾ Vergl. unten § VII, VIII und IX.

besondere auf dem in § II zu besprechenden Stücke. Zu beachten ist auch für Aegypten, dass dort das für die kleinere Gewichtseinheit gebrauchte Wort "ket" oder "kite" (oder " oder " identisch ist.

Die zweite dreieckige Fläche unseres Gewichtsstückes trägt, wie schon erwähnt, die Aufschrift Da in Aegypten mit Vorliebe decimale Teilung benutzt wurde, so ist zu vermuten, dass mit dem Zeichen adie grössere Gewichtseinheit bezeichnet werden sollte, welche 10 kleinere Einheiten (∩ □) umfasst. Das erwähnte Zeichen wird im Aegyptischen in der Regel für das Wort Himmel $\binom{\square}{\hookrightarrow}$, pet gebraucht; diese Bedeutung passt hier nicht; im übertragenen Sinne steht1) dasselbe Zeichen auch für das Wort ḥri-ï 🍣 📉 gleich "oben", "erster" und damit könnte in der That das höhere Gewicht gegenüber dem niedrigeren bezeichnet werden. Andererseits kommt das Zeichen = in der ptolomäischen and römischen Epoche auch für den Buchstaben p vor.2) Erst in dieser Zeit kam die Sitte auf, ein Wortzeichen phonetisch für den Anfangsbuchstaben dieses Wortes zu gebrauchen. Diese Sitte wird durch das massenhafte Eindringen fremder Elemente erklärt; es erscheint daher sehr gut möglich, dass Fremde, die schon in älterer Zeit ägyptische Hieroglyphen anwendeten, ein Wortzeichen mit einem Buchstabenzeichen verwechselten. Legt man in Uebereinstimmung hiermit dem Zeichen adie Bedeutung von p bei, so würde dieses darauf hinweisen, dass unser oberfränkisches Gewicht von einem indogermanischen Volksstamme

¹⁾ Vergl. Brugsch, Wörterbuch der ägyptischen Sprache, p. 379 und Erman, Aegyptische Grammatik, p. 182, Brugsch, Aegyptologie, p. 241, 242, 268.

²⁾ Vergl. Brugsch, Hieroglyphische Grammatik, p. 118 und 128, und Aegyptologie p. 3; ferner z. B. Piehl, notes de philologie égyptienne, Proceedings of the Society of Biblical Archaeology, vol. XIV, p. 54 f.

gebraucht wurde, wenigstens einem Volke, bei dem ein mit dem Buchstaben p beginnendes Wort für Gewicht oder Pfund angewandt ward.

Wir lesen die Aufschrift auf dem vorliegenden Steine hiernach etwa: ein Pfund, zehn Loth.

Längs der horizontalen Mittellinie der einen Seitenfläche unseres dreieckigen Cylinders von geringer Höhe, welcher die Gestalt des Gewichtsstückes angenähert darstellt, verläuft eine vertiefte Rille, wie schon oben hervorgehoben. Dieselbe dürfte den Zweck gehabt haben, das sichere Aufhängen des Gewichtstückes an einem Faden zu ermöglichen, denn Waagen mit nur einer Waagschale und mit verschiebbarem Gewichte am anderen Ende des Waagebalkens (also mit Laufgewicht) sind schon sehr früh in Gebrauch gewesen.¹

Die durch unser oberfränkisches Gewicht repräsentirte Einheit von 9,85 gr findet sich direkt in zwei Gewichten, welche der XII. oder XIII. Dynastie angehören und beide mit Ziffern markiert sind (Nr. 26 u. 27 der Liste von Griffith a. a. O.), welche also bis in das Ende des dritten oder den Anfang des zweiten Jahrtausends v. Chr. zurückgehen. Auch dies spricht für das hohe Alter unseres Gewichtsstückes. Uebrigens lässt sich auch die Einheit von 13,35 gr des ältesten, ägyptischen Gewichtes aus der Zeit des Königs Chufu (vergl. obige Tabelle), auf die babylonische Mine gemeiner Norm zurückführen, denn es ist 13,68 = 985/72. Gleiches gilt von einem Gewichte, welches ebenfalls der XII. oder XIII. Dynastie angehört, und welches sich auf eine Einheit von 27,7 gr bezieht, denn es ist 27,36 = 985/36. Wir haben hier wiederum zwei Einheiten, von denen eine die Hälfte der andern darstellt.

¹⁾ Vergl. z. B. die von Lehmann erwähnte Waage aus Chiusi, Congrès international des orientalistes, Stockholm a. a. O. p. 208 f. und eine andere solche bei Gamurrini, Monumenti antichi vol. I. 1892, p. 157.

§ II. Ein Gewicht mit ägyptisch-phönikischer Aufschrift aus dem fränkischen Jura.

Nr. 2. An einer anderen Fundstätte (im Inventar der hiesigen prähistorischen Sammlung des Staates mit Nr. 89, II bezeichnet) und zwar in einer Höhle bei Weidmannsgesees (bei Tückersfeld) wurde ein ziemlich grosser Stein aus schmutziggelbem Sandstein in Gestalt eines Schuhes gefunden, welcher durch die auf ihm befindlichen Zeichen sofort die Aufmerksamkeit erregt (Inv.-Nr. 4618a). Diese Zeichen erweisen sich auch als ägyptischen Ursprungs und kennzeichnen das seltsame Stück als ein Gewicht, so dass uns hier eine wesentliche Ergänzung zu dem im § 1. besprochenen Gewichte vorliegt.

Der Stein wiegt 4715 gr; rechnet man etwa 4% Abnutzung hinzu, so kommt man auf ca. 4900 gr. Andererseits wiegt eine leichte babylonische Mine gemeiner Norm 491 bis 493 gr: wir hätten also in dem Fundstücke ungefähr 10 leichte babylonische Minen gemeiner Norm oder fünf schwere Minen dieser Art vor uns.

Die Gestalt des Stückes wird durch Fig. 3 u. 4 auf beigegebener Tafel erläutert. Es ist ein nicht ganz regelmässiger Cylinder, dessen Basis eine schuhsohlenförmige Gestalt hat; die gegenüber liegende Fläche hat ein ähnliches Aussehen. Die Länge dieser Sohlen beträgt 30—33 cm; genau lässt sich das Maass nicht angeben, da die Ränder gegen den Seitenmantel des Cylinders nicht scharf abgesetzt sind. Die Höhe beträgt an der Stelle der Ferse ca. 10 cm, an der Stelle der Zehen ca. 3 cm. Die Seitenfläche des Cylinders ist ziemlich unregelmässig gestaltet, doch sind Bruchstellen aus jüngerer Zeit nur in ganz unbedeutender Ausdehnung vorhanden. Das Ganze macht den Eindruck, als wenn uns der Stein in seiner ursprünglichen Gestalt ziemlich unverletzt erhalten wäre.

Auf der oberen Fläche in Gestalt einer Schuhsohle befindet sich die in Fig. 3 ersichtliche Aufschrift. Wir haben wieder das Zeichen des Ringes, das auf ein Gewicht hinweist; rechts Sitzung der math.-phys. Classe vom 4. März 1899.

daneben das Zeichen A, d. h. die ägyptisch-hieratische Ziffer 10, zwischen zwei fast vertikalen, gegen einander etwas geneigten Strichen. Diese Combination ist aus dem Aegyptischen nicht bekannt, wohl aber begegnet sie uns unter den phönikischen Zahlzeichen. Die phönikische 10 ist mit der babylonischen identisch und geht aus der ägyptischen durch eine Drehung um 90° hervor; zwischen zwei vertikale Striche gesetzt, wird aus diesem Zeichen dasjenige für 100 nach dem phönikischen Systeme (vergl. p. 715 u. Tafel IX, Fig. 1 meiner früheren Arbeit). Auf unserem Steine ist also die phönikische Methode, wonach die Multiplication mit 10 durch Einschliessen zwischen zwei vertikale Striche angedeutet wird, auf die ägyptische 10 angewandt:1) und unsere Aufschrift bedeutet: 100 Gewichtseinheiten, deren jede durch einen Ring bezeichnet ist. Dieser Ring repräsentirt uns demnach ein Gewicht von circa 49 gr, d. h. das fünffache derjenigen Einheit, welche auf dem in \$1 besprochenen Gewichte mit einem Ringe bezeichnet war. Diese Verschiedenheit in der Bezeichnung der Gewichtseinheit ist nicht auffallend, nachdem oben gezeigt wurde, dass der Ring in verschiedenstem Sinne bei Aufschriften von Gewichten benutzt ward. Bemerkt sei noch, dass die hier vorkommende Einheit von ca. 49 gr das Dreifache der in § I unter Nr. 18 der dortigen Tabelle vorkommenden Einheit von ca. 16,4 gr beträgt, welche selbst mit dem hebräischen Goldschekel identisch ist (vergl. p. 635 a. a. O.).

Die zweite schuhsohlenförmige Fläche unseres Steines zeigt die in Fig. 4 wiedergegebene Aufschrift. Wir haben das hieratische Zeichen für 10 (Λ) und rechts daneben ein in der hieroglyphischen Schrift wohlbekanntes Zeichen. Dasselbe (χ)

¹⁾ Da die betrachtete Aufschrift auf Beziehungen zum Oriente beruht, die wahrscheinlich durch Oberitalien vermittelt sind, so glaube ich in dem hier festgestellten Auftreten der phönikischen Schreibweise für Ziffern eine Bestätigung meiner früheren Hypothese erblicken zu dürfen, nach welcher die Erklärung gewisser etruskischer und römischer Zahlzeichen durch die phönikische Methode der Zahlenschreibung geschah (vergl. a. a. O. p. 715).

F. Lindemann: Ueber einige prähistorische Gewichte.

kommt als Determinativ für den Begriff "binden" vor; insbesondere steht es für das Wort "ser" (—, ausführlicher:

geschrieben) = Messschnur,¹) hängt also jedenfalls mit dem Begriffe einer Maassbestimmung zusammen.

Andererseits könnte die Schleife \Im auf unserm Steine auch für das hieroglyphische Zeichen \Im stehen, welches Sack bedeutet.²) Man könnte dabei etwa an das Gewicht eines Sackes Getreide denken; jedenfalls wäre die fragliche Schleife \Im dann das Zeichen für eine grössere Gewichtseinheit, hier eine solche von einer leichten babylonischen Mine gemeiner Norm, so dass das Gewicht unseres Steines gleichzeitig in grösseren und in kleineren Einheiten auf den beiden Seiten desselben angegeben ist, genau wie bei dem in \S I behandelten Gewichte, nur dass dort die Einheiten andere waren.

Nicht unerwähnt mag bleiben, dass eine Schleife unserer Art auch als Silbenzeichen im Aegyptischen vorkommt, und zwar & für die Silbe "rot" oder "rwd"; wie man auf dem ersten Gewichte das Zeichen wielleicht als Buchstaben "p" d. h. als Anfangsbuchstaben eines Wortes wie Pfund oder dgl. auffassen konnte, so könnte man bei der Silbe "rot", da die Aegypter "r" und "l" nicht unterschieden, an ein indogermanisches Wort ähnlich unserem Loth denken, das zur Bezeichnung einer Gewichtseinheit gewählt wurde; doch scheint mir die vorhin gegebene Deutung am meisten Wahrscheinlichkeit für sich zu haben.

Hervorgehoben mag nochmals werden, dass die babylonische Mine von 985 gr schon sehr früh in Italien verbreitet war. Im etruskischen Museum des Grafen Aria zu Marzabotto bei Bologna fand ich zum Beispiel ein steinernes, beiderseits durch einen Ring bezeichnetes Gewicht im Betrage

¹⁾ Vergl. Brugsch, Grammatik p. 132 und Wörterbuch p. 1262.

²) Vergl. Erman, Grammatik, p. 190; in der That ist & auch das Zeichen für ein gewisses Hohlmaass Getreide; vergl. Brugsch, Aegyptologie p. 381.

von 1435 gr; rechnet man 3% Abnutzung hinzu, so kommt man auf 1477 gr d. i. ca. die Hälfte von drei Minen zu je 985 gr. oder 30 Einheiten zu je 49 gr (gleich 1/2 von 98); und innerhalb des einen Ringes war das Gewicht durch drei parallele Striche bezeichnet, welche durch eine vierte Linie senkrecht durchsetzt werden: und diese Combination von vier Linien ist das altbabylonische Zeichen für die Ziffer 30.1) Die zu Grunde liegende Einheit von 49 gr aber ist identisch mit der Einheit, welche wir in unserm schuhförmigen Gewichte aus dem fränkischen Jura erkannten. Ein anderes sorgfältig in Gestalt eines etwas schiefwinkligen Rhombus gearbeitetes Steingewicht in Marzabotto wog 491 gr, also fast genau eine leichte babylonische Mine gemeiner Norm. Ein nur wenig verletztes aus gebranntem Thone gefertigtes Gewicht im Museo civico zu Adria wog 490 gr, ein etwas stärker verletztes 468 gr; und so könnte ich eine Menge Beispiele anführen (vgl. unten § VII, Nr. 67, 68, 72).

Die schuhförmige Gestalt des hier besprochenen Gewichtsstückes lässt vermuten, dass dasselbe mit dem "Fusse" als Längenmaass in Verbindung steht. In der That hat Pigorini aus seinen Beobachtungen an den Pfahlbauten der Terramaren (insbesondere in Castellazzo di Fontanellato) den Schluss gezogen, dass die Bewohner der Terramaren ihren Constructionen eine Maasseinheit von ca. 30 cm zu Grunde legten.²) So viel aber beträgt auch ungefähr die Länge unseres steinernen Fusses (vergl. oben p. 81). Die Länge von 33 cm kommt nach Lehmann³) auch dem altbabylonischen Fusse zu, wie er schon im dritten Jahrtausend v. Chr. beglaubigt ist.

¹⁾ Vergl. p. 709 und Tafel IX Fig. 4 meiner früheren Abhandlung.

²⁾ Vergl. Pigorini, La Terramara Castellazzo di Fontanellato nel Parmense, scavi del 1894, Notizie degli scavi del mese di gennuio 1895, und die dort citierten Arbeiten.

³) Metrologische Nova, Verhandlungen der Berliner anthropologischen Gesellschaft, Juli 1896.

§ III. Ein Gewicht aus Sermide mit ägyptischer Aufschrift.

Nr. 3. In seinem Werke "Ueber die Sprache der Etrusker" Band II, p. 580 ff. giebt Corssen die Beschreibung eines 1873 bei Sermide am Po, in der Provinz Mantua, gefundenen Gewichtes aus gebranntem Thon, wie es nach Corssen in Fig. 5 auf beiliegender Tafel dargestellt wird. Die Inschrift tritt in Relief aus der einen Fläche der Terracotte hervor, ist also auf den weichen Thon vor dem Brennen mittelst einer Form aufgeprägt. Unter der abgestumpften Spitze ist die Pyramide durchbohrt, parallel mit der beschriebenen Vorderseite derselben und mit der Basis. Thönerne Gewichte von der Form solcher abgestumpften Pyramiden haben sich mehrfach auf antikem Boden gefunden; sie werden meist als Webstuhl-Gewichte betrachtet, welche dazu dienten, den Fäden des antiken Webstuhles die nötige Spannung zu geben. Diese Deutung ist in Uebereinstimmung mit der Darstellung eines solchen Webstuhles auf einer Vase von Chiusi, deren Malerei etwa dem Jahre 400 v. Chr. angehört; 1) sie trifft jedenfalls für einen Teil der fraglichen Stücke zu. Durch meine Wägungen an einer grossen Anzahl solcher Gewichte in italienischen Museen glaube ich festgestellt zu haben, dass dieselben nach bestimmten Einheiten normiert und als Handelsgewichte gebraucht worden sind, was teilweise auch durch Aufschriften bestätigt wird. Die betreffenden Einzelheiten kann ich erst später veröffentlichen; vgl. auch unten § VII.

Nach Mantovani²) hat das fragliche Stück eine Höhe von 15 cm und ein Gewicht von 930 gr. Es wurde in den Resten eines antiken Brennofens nahe der via Emilia gefunden.

Die Inschrift, welche Corssen und Deecke für etruskisch erklären, ist von rechts nach links zu lesen und lautet

¹⁾ Vergl. Conze, Il ritorno di Ulisse, Annali del'instituto di corrispondenza archeologica, Band XXXXIV 1872, p. 198 ff. und 331.

²) Lettere sermidesi, Bullettino dell' instituto di corrispondenza archeologica per l'anno 1876, p. 131. Vergl. desselben Verfassers Werk: Il territorio Sermidese, Bergamo 1886, p. 40 ff.

I X TVINB@NIVI I X

Der erste Buchstabe T ist unten verletzt: die Verletzung ist aber geringer, als es nach der beigegebenen Abbildung scheinen könnte; ich überzeugte mich davon im Museo civico in Mantua. wo sich das Stück gegenwärtig befindet. Der fünfte Buchstabe 8 ist nach Corssen als "e" zu lesen und findet sich in dieser Form sowohl auf alten, griechischen 1) als auf einigen anderen etruskischen Inschriften. Das sechste Zeichen @ wird von Corssen und Bugge') als Interpunktionszeichen gedeutet und nicht weiter berücksichtigt. Ersterer fasst die Worte tuine nivi als einen Eigennamen auf, während die Ziffer IX die Anzahl der kleineren Gewichtseinheiten angeben soll, welche das thönerne Gewicht von Sermide enthält. Bugge will dagegen puine lesen und vergleicht dieses Wort mit dem lateinischen pondo, und nivi mit novem. Hiermit wäre dann ein starker Beweis für den indogermanischen Charakter der etruskischen Sprache gegeben, welcher von anderen, insbesondere von Pauli entschieden bestritten wird. Letzterer, dem ich im August 1897 in Lugano diese Inschrift (und meine unten folgende Deutung derselben) vorlegte, bezweifelt, dass es sich überhaupt um eine etruskische Inschrift handelt, sondern glaubt, dass dieselbe von einem andern (vielleicht ligurischen) Volke herrührt, dessen Spuren er in verschiedenen inschriftlichen Resten habe verfolgen können. Für uns ist die Entscheidung dieser Streitfrage im Folgenden nicht von Belang.3)

Vergl. Kretschmer, Die griechischen Vaseninschriften, Gütersloh 1894, p. 32 ff.

²) Beiträge zur Erforschung der etruskischen Sprache, etruskische Forschungen und Studien, herausgegeben von Deecke, Heft IV, Stuttgart 1883, p. 177 ff.

³⁾ Für die strittige Frage nach der Natur der etruskischen Sprache sind die Zahlwörter immer von besonderer Bedeutung gewesen; vergl. p. 748 f. meiner früheren Arbeit.

F. Lindemann: Ueber einige prähistorische Gewichte.

Als ich das Stück zuerst sah, fiel mir sofort das Zeichen © auf; ich glaubte darin eine Wiedergabe der ägyptischen Ziffer 9 in demotischer Schrift zu erkennen, aus welcher nach meinen früheren Darlegungen unsere heutige Ziffer 9 entstanden ist (vergl. a. a. O. p. 751). Wir würden also hier einen Beweis für meine damalige Hypothese vor uns haben, nach der zu den Zeiten des Pythagoras in Italien (entsprechend dem Berichte des Boëtius) demotische Ziffern gebraucht wurden. Ueber und unter dem Zeichen © befindet sich die Ziffer IX, um dies Zeichen zu interpretieren, so dass wir gewissermassen eine bilinguis vor uns haben.

Diese Erklärung wird durch das Wort tuine bestätigt, in welchem ich das ägyptische Wort 🚃 vermuthe, das zur Bezeichnung eines Gewichtes, und zwar einer bestimmten Gewichtseinheit ausscrordentlich häufig in ägyptischen Inschriften vorkommt. Das Zeichen wird als Darstellung eines metallischen Drahtes gedeutet, in Erinnerung daran, dass die Metalle in Form von Drähten bestimmten Gewichtes in den Handel kamen; www ist der Buchstabe n;

ist das Determinativ für Stein, Gewicht. Chabas1) vergleicht das Wort mit dem andern 🖒 🚃 🕽 🖂 gleich "uten", Schwere. andrerseits aber auch mit dem Worte 🚃 🕽 🖂 , gleich Gewicht (in übertragenem Sinne), wobei der Buchstabe 除 (= u) fehlt, drittens mit dem Worte gleich tenu, von einem Rezepte aus dem Tempel von Edfu, wobei der Buchstabe @ (= u oder w) an anderer Stelle erscheint. Brugsch2) liest wtn oder woten, Lepsius tinu; Erman³) liest uten und vergleicht das Wort mit dbn. (umkreisen). Neuerdings liest man nach Spiegelberg deben und legt dem Worte die Bedeutung "Ring, aufgewickelter Draht"

¹) Mélanges égyptologiques, Paris 1862, p. 23 ff. und Détermination métrique de deux mesures égyptiennes de capacité, Paris 1867, p. 5 f.

²⁾ Vergl. z. B. Aegyptologie p. 382.

³⁾ Aegypten p. 406 und 657 und ägyptische Grammatik p. 191.

Sitzung der math,-phys. Classe vom 4. März 1899.

bei. 1) Auf letztern Umstand machte mich Herr College Hommel aufmerksam, als ich ihm vor etwa 2 Jahren meine Vermutung mitteilte, nach der das Wort tuine unserer etruskischen (?) Inschrift mit jenem ägyptischen Worte identisch sein sollte; gerade die neuere Lesung deben bestätigt meine Vermutung, denn kurze Vokale werden im Aegyptischen nicht geschrieben, und der Buchstabe v würde für den Laut b des ägyptischen Wortes stehen.

Da unser Gewicht 930 gr wiegt, so würde ein Deben oder Tvin ein Gewicht von 103,33 darstellen, während für ein ägyptisches Deben allgemein das Gewicht von 90,09 gr angenommen wird. Diese Annahme beruht darauf, dass ein uns erhaltenes, aus Heliopolis stammendes Gewicht²) von 45,48 gr mit den Zeichen $\overline{\Pi\Pi}$ versehen ist, von denen das obere die Bedeutung von $^4/_2$ hat. während die unteren fünf Striche auf eine Einheit von ca. 9,09 gr = $^4/_{10}$ Deben hinweisen, dass uns ferner diese kleinere Einheit von 1 "kite" durch ein anderes, vollkommen gut erhaltenes, aus Heliopolis stammendes Gewicht sehr genau bekannt ist, dass uns endlich auch ein mit der Ziffer 10 (\cap) bezeichnetes Gewicht vorliegt, welches 10 Deben darstellt.

Andererseits ist schon mehrfach vermutet, dass in manchen Inschriften das ägyptische Wort sich auf eine andere Einheit bezieht, zumal dann, wenn es sich um ein Gewicht handelt. das zur Abwägung von edlen Metallen diente. Zu diesem Zwecke wurde offenbar eine andere Einheit benutzt, über deren Höhe verschiedene Ansichten³) ausgesprochen sind. Handelt es sich um ein Goldgewicht, so wird das Zeichen für Gold () vor das Wort deben oder vor die betr. Ziffer gestellt;

¹⁾ Vergl. Hultsch, Die Gewichte des Altertums a. a. O. p. 10.

²⁾ Vergl. Nr. 7 der oben erwähnten Liste von Griffith.

³⁾ Vergl. Brandis, Das Münz-, Maass- und Gewichtswesen in Vorderasien, Berlin 1866, p. 91 ff.; Hultsch, Griechische und römische Metrologie, Berlin 1882, p. 374 ff.; Brugsch, Zeitschrift für ägyptische Sprache, Band XXVII, 1889, p. 19 ff. und p. 87 ff.

F. Lindemann: Ueber einige prähistorische Gewichte.

so geschieht es auch auf einigen uns erhaltenen steinernen Gewichten, nämlich:

Nr. bei Griffith	Zeichen	Dynastie	Gewicht	Einheit
2.	7mm	XII.	$50.84~\mathrm{gr}$	12,71 gr
3.		XVIII.	67,28 . (?)	13.73
4.		XVIII.	76,75 ,	12,78 ,
5.	× (?)	(;)	4,73 .	18,92 "

Bei Nr. 5 bedeutet das Zeichen × den Bruch ¼; die Einheit von 18,92 gr dürfte dieselbe sein, die uns auf dem Turiner Gewichte (vgl. oben p. 77) begegnete. Das Stück Nr. 3 ist stark verletzt: die angegebene Zahl bezieht sich auf die von Flinders Petrie gemachte Schätzung des ursprünglichen Werthes; diese Schätzung kann leicht etwas zu hoch ausgefallen sein. In Uebereinstimmung mit Revillout¹) schliessen wir hieraus, dass die Einheit des alten Goldgewichtes zur Zeit der XII. und XVIII. Dynastie ca. 13,00 gr betrug, wahrscheinlich etwas mehr, da man bei jedem Gewichte aus so alter Zeit auf Abnutzung rechnen muss.

Diese Einheit von 13 gr steht zu unserm Gewichte aus Sermide in einfacher Beziehung, denn es ist $13 \times 8 = 104 = \frac{1}{9}$ von 936; letztere Zahl, vielleicht eine etwas grössere, wird ungefähr das ursprüngliche Gewicht unseres Stückes darstellen. dessen gegenwärtiges Gewicht oben auf 930 gr angegeben wurde. Es ist denmach die Frage aufzuwerfen, ob die grössere Einheit von mindestens 104 gr, welche dem Gewichte von Sermide zu Grunde liegt, auch in Aegypten oder sonst im Oriente nachweisbar ist. Darauf kommen wir bei anderer Gelegenheit zurück (vergl. auch unten § X).

Das Wort "nivi" der Inschrift auf dem betrachteten Ge-

¹⁾ Proceedings of the Society of Biblical Archaeology, vol. XIV, p. 245 ff.

wichte mag das Zahlwort "neun" in einer norditalischen Sprache darstellen, wie es Bugge vorschlägt. Es erscheint mir aber auch eine andere Erklärung möglich. In dem Worte tvine stand der Buchstabe v für den Buchstaben b des ägyptischen Wortes dbn; nehmen wir an, dass der Buchstabe v in nivi denselben Wert habe und lassen die Vokale fort, so kommen wir zu dem ägyptischen Worte nb, welches Gold bedeutet und durch das Zeichen argestellt wird. Die Einheit des Gewichtes von Sermide wäre dadurch als Goldgewicht charakterisiert, und es ist natürlich, wenn sie (wie soeben erwähnt) zu der ägyptischen Goldeinheit in einfacher Beziehung steht.

§ IV. Einige Gewichte aus Marzabotto.

Herr Professor Brizio, Direktor des Museo civico in Bologna, machte mich auf die steinernen Gewichte aufmerksam, welche in der altetruskischen Ansiedelung von Marzabotto ausgegraben wurden und daselbst im Museum des Grafen Aria aufbewahrt wurden. Abbildungen derselben sind von Brizio publiciert¹); die Gewichtsangaben sind von ihm beigefügt; soweit es die Waage, welche ich bei mir hatte, gestattete, habe ich sie (znsammen mit vielen anderen Stücken, die keine Aufschrift tragen) im September 1897 gewogen. Die auf der beigegebenen Tafel befindlichen Abbildungen sind der Abhandlung von Brizio entnommen.

Nr. 4. Das grösste Stück im Gewichte von 37800 gr. Die Oberfläche des Steines ist stark verwittert, die Aufschrift aber noch gut lesbar (vergl. Fig. 6 und 6 a). Auf der einen Seite steht:

III MILAF VI IEM d. h. III milav tunies:

(der letzte Buchstabe steht verkehrt, wie häufig bei etruskischen Inschriften), auf der andern Seite:

$\mathbf{H} * \mathbf{H}$.

¹⁾ Relazione sugli scavi eseguiti a Marzabotto presso Bologna dal novembre 1888 a tutto maggio 1889; Monumenti antichi publicati per cura della R. Accademia dei Lincei, vol. I, 1889, p. 343.

Auf der Abbildung von Brizio sieht man links von dem Kreuze ** einen Strich weniger, als ich hier auf Grund meiner Zeichnung angegeben habe. Das Stück ist für uns wegen des Wortes tunies von besonderem Interesse. Wir werden, da es sich um eine Gewichtsbezeichnung handelt, dem Worte dieselbe Bedeutung beilegen, wie dem Worte tuine in § III. Die verschiedene Schreibweise ist nicht auffällig, denn in etruskischen Inschriften kommen Umstellungen von Buchstaben häufig vor, und überdies handelt es sich für die Etrusker um ein ägyptisches Fremdwort.

Ein eben solches Fremdwort vermute ich in dem Worte milav, indem ich es mit dem ägyptischen Worte merav, welches die Bedeutung von richtig, genau hat1), identificiere. Dass auf dem Steine ein 1 statt des r steht, erklärt sich dadurch, dass im Aegyptischen 1 und r vor der Zeit der Ptolemäer überhaupt nicht unterschieden werden. Georg Ebers, dem ich diese Erklärung der Aufschrift vorlegte, hielt dieselbe für zutreffend. Herr Dr. Dyroff macht mich indessen darauf aufmerksam. dass die Brugsch'sche Lesung merav für das betr. jüngere (demotische) ägyptische Wort wahrscheinlich nicht zutreffend sei. Denn der Stamm des ursprünglichen ägyptischen Wortes lautet "mtr = Mitte": noch im Koptischen habe sich der t-Laut (mete) erhalten; es sei demnach unthunlich, diesen Laut im Demotischen ausfallen zu lassen, und das betr. demotische Wort müsse auch mit t gelesen werden. Andererseits ist aber daran zu erinnern, dass gerade in Betreff des t-Lautes die jüngere ägyptische Orthographie eine sehr schwankende war (zumal am Ende der Wörter). "Von Jahrhundert zu Jahrhundert2) büssten die Schreiber das Bewusstsein ein, dass die Buchstaben, die sie schrieben, auch bestimmte Laute bezeichnen sollten, da man trotz Veränderung der Sprache die alte Orthographie beibehalten wollte." So wurde limt "Frau" ge-

¹) Vergl. Brugsch, Wörterbuch, p. 724 f.

²⁾ Vergl. Erman, Aegypten, p. 456.

Sitzung der math-phys. Classe vom 4. März 1899.

schrieben, aber hime gelesen: es wurde prt (). Winter geschrieben, aber pro gelesen. Viele Schreiber fingen an, dieses t überall über das Zeichen zu setzen, wo es gebraucht wurde, so dass statt das Determinativ für Haus wird. Der oft stumme Buchstabe t wurde also auch dort geschrieben, wo er keinen Sinn hatte. Um so leichter konnte ein nicht-ägyptisches Volk ihn auslassen, wo er vielleicht noch gesprochen wurde. Ueberdies leitet Brugsch das Wort "mr= richtig (= genau entsprechend) auch von = mer "getäfeltes Bauwerk" ab"). wo dann kein t-Laut ausgefallen wäre.

Die Deutung der übrigen Zeichen unserer Inschrift wird erleichtert, wenn wir zuvor einige andere Steingewichte von Marzabotto studieren.

Nr. 5. Grosser Stein im Gewichte von 38300 gr. Nr. 65 bei Brizio, versehen mit dem Zeichen *. Die sogenaunte phönikische Mine erhöhter königlicher Norm wird auf 382 bis 383,3 gr veranschlagt²); etwa derselbe Betrag wird für die kartagische Mine angesetzt.³) Wenn also das Zeichen * für die Ziffer 100 steht, so haben wir genau 100 phönikische Minen erhöhter Norm.

Dieses wird durch folgende Ueberlegung bestätigt: In meiner früheren Arbeit habe ich gezeigt, dass die etruskische (und später römische) Ziffer 50 aus der ägyptischen hieratischen Ziffer 7 entstanden ist (a. a. O. p. 712). Indem die drei oben zusammenlaufenden Striche gleich lang gemacht wurden, entstand das allerdings seltene Zeichen Λ^4), und hieraus durch Verkürzung der beiden äusseren Striche das gewöhnliche Zeichen Λ . Durch Verdoppelung des altertümlichen Λ entsteht nun in der That das Zeichen * auf dem jetzt betrachteten Steine, wodurch

¹⁾ Vergl. Brugsch, Wörterbuch, p. 671.

²⁾ Vergl. Lehmann, Congrès des orientalistes a. a. O.

³⁾ Vergl. Hultsch, Metrologie, p. 420 ff.

⁴⁾ Corssen erwähnt (a. a. O. Bd. I, p. 40) nur eine Belegstelle dafür.

unsere Annahme erwiesen wird. Eine weitere Bekräftigung derselben finden wir in folgendem Umstande. Die Fischer von Chioggia bei Venedig bedienen sich noch heute bei ihren gegenseitigen Abrechnungen einer eigenartigen Gattung von Zahlzeichen, die durch Ninni¹) publiciert sind, worauf mich Herr Professor Cav. Milani, Direktor des Museo etrusco in Florenz, aufmerksam machte. Darnach hat ∧ die Bedeutung 5, X od. O od. A die Bedeutung 10, ∧ od. V od. M die Bedeutung 50, ferner ★ od. ⊙ od. ⊗ die Bedeutung 100. Wir haben also das bekannte etruskische Ziffernsystem und darunter das jetzt besprochene Zeichen für 100. Weitere eigenartige Zeichen kommen für 500 und 1000 bei den Fischern vor.

Dieselbe Einheit von ca. 383 gr wird durch folgende Gewichte vertreten:

- Nr. 6. Gewicht 3800 gr; Nr. 55 bei Brizio, bezeichnet auf der einen Seite mit ★, auf der andern mit X; also ursprünglich wohl 10 phönikische Minen zu 383 gr oder 100/10 einer solchen Mine zu je 38,3 gr.
- Nr. 7. Gewicht 26300 gr; Nr. 50 bei Brizio, von mir nicht gesehen²); darauf die Zeichen Λ und \mathcal{H} . In letzterem haben wir das altbabylonische Zeichen für 20 (vgl. § 15 meiner früheren Arbeit), an welches auch die auf den Steingewichten von Monte Loffa vorkommende 20 erinnert. Wir haben also 50 + 20 = 70 Gewichtseinheiten, und das ursprüngliche Gewicht des Steines ist demnach auf 70.383 = 26810 gr anzusetzen.
- Nr. 8. Gewicht 3700 gr; Nr. 44 bei Brizio, Zeichen ⊙, also 100 Einheiten zu ursprünglich 38,3 gr; von mir nicht gesehen.
- Nr. 9. Gewicht 3500 gr; Nr. 45 bei Brizio; Zeichen ★; wo die drei Striche zusammenlaufen, ist eine Stelle ausgebrochen. Wieder 100 Einheiten zu je 38,3 gr.

¹⁾ Sui prealfabetici usati anche ora nella numerazione scritta dai pescatori chodiensi, Atti del R. Istituto Veneto dei scienze, lettre et arti. Serie VI, t. 7.

 $^{^{2}\!)}$ Die in den geschlossenen Schränken liegenden Stücke waren mir nicht zugänglich.

Sitzung der math.-phys. Classe vom 4. März 1899.

Nr. 10. Gewicht 1880 gr: Nr. 47 bei Brizio, Zeichen

Nr.~11. Gewicht 3650 gr: Nr. 48 bei Brizio, Zeichen X; ursprünglich 10.383=3830 gr.

Nr. 12. Gewicht 3720 gr; Nr. 49 bei Brizio, Zeichen X; ebenso.

Nr. 13. Gewicht 1835 gr; Nr. 60 bei Brizio. Zeichen

Nr. 14. Gewicht 3600 gr; Nr. 62 bei Brizio, Zeichen X; 10.383 = 3830.

Nr. 15. Gewicht 1905; Nr. 67 bei Brizio, Zeichen IIIII, auf der andern Seite &, von mir nicht gesehen; 5.383 = 1915 gr.

Nr.~16.~ Gewicht 750 gr: Nr. 51 bei Brizio, Zeichen H: $2.383=766~{\rm gr}.$

Nr. 17. Gewicht 115 gr: Nr. 52 bei Brizio, Zeichen I; ¼3.383 = 127,67 gr, also auch gleich 10 mal der altägyptischen Einheit von 12,78 gr; vergl. oben p. 89 und unten § IX.

Nr.~18. Gewicht 116 gr; Nr. 53 bei Brizio, Zeichen I, auf der andern Seite X; 1 /₃.383 = 127,67 gr.

Hierzu kommen noch die folgenden Stücke, welche bei Brizio nicht erwähnt sind.

Nr. 19. Gewicht 7600 gr, nach einer auf dem Steine gemachten Angabe; Zeichen X; 20.383 = 7660; in der That ist X das ursprüngliche etruskische Zeichen für 20, entstanden durch Verdoppelung des hieratischen Zeichens Λ für 10 (vergl. p. 711 f. in meiner früheren Arbeit).

Nr. 20. Gewicht 368 gr; Zeichen 1; 1.383 gr.

Nr. 21. Gewicht 1520 gr: Zeichen IIII; 4.383 = 1532 gr.

Nr. 22. Gewicht 317 gr; Zeichen X in einem Ringe, auf der andern Seite X: verletzt: an jedem der beiden Kreuze findet sich ein kleiner Strich; deutet man ihn subtraktiv, so hätte man 9.38,3 = 344,7 gr.

Nr. 23. Gewicht 370 gr: Zeichen \times mit einer Vertiefung in der Mitte; 10.38,3 = 383 gr.

Nr. 24. Gewicht 1065 gr: Zeichen III in einem Ringe. Auf der andern Seite die Hälfte einer Ellipse, begrenzt durch ihre kleine Achse und darin zwei Striche; 3.383 = 1149 gr. Die Hälfte hiervon, also 574,5 gr., würde genau eine leichte babylouische Silbermine königlicher erhöhter Norm darstellen; darauf beziehen sich wahrscheinlich die zwei Striche auf der andern Seite des Steines. Letzterer ist von flacher ovaler Gestalt.

Nr. 25. Gewicht 1620 gr: Zeichen IIII. Der Stein ist, dem Aussehen nach, entweder sehr roh bearbeitet oder stark verwittert. 5.383 = 1915 gr.

Ausserdem finden sich im Museum zu Marzabotto eine Menge anderer Gewichte, die nicht bezeichnet sind, sich aber gleichfalls auf die Einheit von ca. 383 gr zurückführen lassen. Daneben treten andere Gewichte auf, die sich auf eine andere Einheit beziehen, von welchen eines schon oben erwähnt wurde (p. 83 f.), und auf die wir weiter unten zurückkommen.

Das Ueberwiegen der Einheit von 383 gr bei den alten steinernen Gewichten lässt uns vermuten, dass dem oben unter Nr. 4 besprochenem Gewichtstücke ein ursprüngliches Gewicht von 38300 gr zukam, wie dem Gewichte Nr. 5, das mit dem Zeichen \pm = 100 versehen war, umsomehr, als dieses selbe Zeichen sich auch in der Mitte der Rückseite von Nr. 4 befindet. Ausserdem lässt sich dies Gewicht von 38300 gr mit dem Worte tvin, das nach § III eine Einheit von mindestens 104 gr bezeichnet, durch die auf Nr. 4 befindliche Inschrift in überraschende Beziehung setzen. Wir lesen zu dem Zwecke die Inschrift fortlaufend über beide Seiten des Steines, nämlich:

III * III III MILA / V NIEM.

Durch die ersten drei Striche wird nach unserer Auffassung angegeben, wie viele Hunderte (*) zu nehmen sind; die auf das Zeichen ** folgenden sechs Striche geben die Anzahl der Einheiten der nächst niedrigen Abteilung, d. h. der Zehner an. so dass die ganze Inschrift bedeutet:

360 richtige tvin.

Ein tvin müsste dann gleich dem 36. Teile von 3830 gr sein,

d. h. = 106,38 gr. Berücksichtigt man, dass der Wert von 383 gr dem Maximum für die betr. phönikische Mine entspricht, indem dieselbe bei einer gewöhnlichen königlichen Norm nur auf 373 gr, bei der vollen königlichen Norm auf 379—380 gr und bei der erhöhten auf 382—383 angesetzt wird,¹) dass ferner dem nicht unverletzten Gewichte von Sermide leicht ein Gewicht von mehr als 936 gr ursprünglich zugekommen sein mag, so ist die Uebereinstimmung hinreichend gut, denn ¹/₃6 von 373 würde 103,61 ergeben.

Es ist ¼s von 106,38 = 13,30; diese Zahl entspricht ungefähr dem Gewichte des Königs Chufu aus der IV. Dynastie, das wir oben unter Nr. 2 erwähnt haben (p. 77), während ⅙s von 104 dem Gewichte des Königs Thutmes 1. aus der XVIII. Dynastie und einem andern Gewichte aus der XII. Dynastie (vergl. oben p. 76 f.) als Einheit zu Grunde liegt. Dadurch sind auch diese beiden Einheiten zu einander in Beziehung gesetzt.

Das ägyptische tvin-Gewicht galt bei den Etruskern von Marzabotto offenbar als etwas Fremdländisches, während die phönikische leichte Mine von 373—383 gr so gebräuchlich war, dass sie keiner besonderen Bezeichnung bedurfte.²) Es entspricht dies der allgemeinen Annahme, wonach die Phöniker oder andere verwandte Völker von den Küsten Syriens und Aegyptens den Verkehr Italiens mit dem Oriente vermittelten. Für direktere Beziehungen Oberitaliens zu Aegypten lassen sich auch manche Belege anführen (vergl. § 13 meiner früheren Arbeit); die früher von mir entwickelte Geschichte der Ziffern, die in Vorstehendem betrachteten tvin-Gewichte (Nr. 3 und 4) und die sogleich zu erwähnenden Aichzeichen sind als solche Belege aufzufassen.

¹⁾ Vergl. Lehmann a. a. O., ferner unten den Schluss von § IX.

²⁾ Zu dieser Einheit gehört auch das von Pauli besprochene Gewicht von Oderzo; vergl. p. 661 meiner früheren Arbeit.

F. Lindemann: Ueber einige prähistorische Gewichte.

§ V. Aichzeichen auf altitalischen Gewichten.

Neben den Ziffern finden sich auf altitalischen Gewichten einige andere Zeichen häufig wiederholt, deren Bedeutung durch Vergleichung mit der hieroglyphischen Schrift klar gelegt wird, und über die man sich so wenigstens annähernd Rechenschaft geben kann.

Die Bedeutung des häufig vorkommenden Ringes wurde schon oben erörtert (p. 76 f.). Ausserdem kommen vor:

- 1) ein Blatt (), der Rand desselben meist mehrfach gezackt,
- 2) eine Mittelrippe. von der nach beiden Seiten in verschiedener Auzahl (3 bis 6) Seitenlinien unter spitzen Winkel ausgeheu &, ein Ornament, das als Baum oder als Fischgräte bezeichnet werden kann,
- 3) mehrere einander nahezu parallele Linien (2 bis 6), die durch zwei oder drei Linien ungefähr senkrecht durchschnitten werden ####,
- 4) das Kreuz X, welches nicht immer als Ziffer 10 oder 20 aufzufassen ist, wie ich nach meinen vielfachen Gewichtsbestimmungen als sicher angeben kann, wenn gleich bei den oben betrachteten Gewichten aus Marzabotto diese Deutung zufällig erlaubt war.

Nr. 26. Dieses letztere Zeichen habe ich nur einmal gefunden und zwar auf einem Gewichte aus rötlichem gebrannten Thon von Gestalt einer abgestumpften Pyramide. ähnlich dem Gewichte Nr. 3 von Sermide. Unter dem Zeichen befinden sich vier vertikale Striche IIII. die ebenso wie jenes Zeichen reliefartig hervortreten. Das Stück befindet sich im Museum zu Este unter der Inventarnummer 978. Es wiegt 770 gr und ist wenig verletzt. Wir haben also vier Einheiten von etwas mehr als 19,2 gr und kommen damit auf die Einheit von 19,5 gr, welche dem altägyptischen Gewichte des Turiner Museums zu Grunde liegt, das oben besprochen wurde

Sitzung der math.-phys. Classe vom 4, März 1899.

(vergl. p. 77). und welche doppelt so gross ist, als die Einheit des Gewichtes Nr. 1 aus dem fränkischen Jura.

Das Zeichen ist gleichbedeutend mit ∞ und ist eine auch sonst beglaubigte abgekürzte Schreibweise für das Wort ∞ , d. i. unversehrt, beil.¹) Es bedeutet also, dass unser Gewicht ganz unversehrt sei, und kann mit Recht als Aichzeichen angesehen werden. Ueber ihm befindet sich ein Dreizack, wahrscheinlich das Hoheitszeichen für eine Behörde oder eine Stadt oder einen Fürsten.²)

Die Einheit von ca. 19,5 gr findet sich auch sonst in Italien. Im Museo Civico in Padua befindet sich ein Gewicht aus Bronze in Gestalt eines Astragalus,³) das mir von dem betr. Beamten als sehr alt, wahrscheinlich vorrömisch bezeichnet wurde. Es ward 1862/63 in Abano gefunden und wiegt 19,5 gr.

Ein Stück von derselben Gestalt eines Astragalus befindet sich in der hiesigen prähistorischen Sammlung des Staates (Inv.-Nr. 2037). Es wiegt 162 gr, ist aber etwas abgestossen, so dass sein ursprüngliches Gewicht gegen 195 gr betragen haben mag. Gefunden wurde es am Eingange zur Teufelshöhle im Weiersthale (Fundstelle Nr. 28) im fränkischen Jura; es handelt sich aber hier um einen wirklichen Wirbelknochen.

Ein Stück von Gestalt einer abgerundeten Pyramide, von demselben Gewichte (770 gr) und ebenfalls mit 4 Strichen bezeichnet, ist in der Terramare von Redù gefunden, jetzt im Museo civico in Modena, Inv.-Nr. 90.

¹⁾ Vergl. Brugsch, Wörterbuch, p. 228 f. und Erman, Grammatik, p. 190 und 45*.

²⁾ Der Dreizack kommt auch auf antiken Münzen vor, z. B. solchen aus Carien (Halikarnass), aus welcher Gegend bekanntlich die Etrusker nach alter Sage gekommen sein sollen; vergl. Brandis a. a. O. p. 593 und eine solche Münze im Museum zu Mantua.

³⁾ Zwei sehr grosse Bronzestücke von gleicher Gestalt sah ich in der etruskischen Abteilung des Museo Vaticano in Rom, ein kleines Stück dieser Form im Museum zu Perugia (Schrank O). Bekannt ist das schön bemalte Trinkgefäss gleicher Form im faliskischen Museum in Rom.

Das unter 2) erwähnte Zeichen kommt ausserordentlich häufig auf Gewichten aus gebranntem Thon vor, die in Gestalt dem Gewicht Nr. 3 von Sermide gleichen. Drei Stücke, die als römische Gewichte bezeichnet wurden, fand ich im Museo civico in Verona, gefunden in der Stadt nahe bei der Kirche Sa Trinità, eines im Museo civico zu Padua, zwei im Museo civico in Mantua, dreizehn im Museo nazionale in Este.1) eines im städtischen Museum zu Trient. Aelter als diese Thongewichte von pyramidaler Form sind die schon in den Pfahlbauten und Terramaren vorkommenden ringförmigen Gewichte; auf einem solchen fand ich das fischgrätenartige Zeichen im Museo civico zu Adria. Auch in jüngerer Zeit kommt es noch auf dem sogenannten aes signatum, der ältesten in Italien üblichen Form des Geldes, vor (vergl. ein Stück im Museo civico zu Pesaro). Eines der steinernen Gewichte von Marzabotto, deren Abbildung Brizio a. a. O. giebt, ist ebenfalls mit diesem Zeichen markiert.2)

Durch meine Wägungen habe ich mich überzeugt, dass nicht etwa die Anzahl der seitlichen Striche, welche von der Mittelrippe auslaufen, zu der Schwere des Gewichtes in Beziehung stehen. Auf einer Seitenfläche eines pyramidenförmigen Gewichtes in Este gehen von der Mittelrippe zwölf seitliche Aeste aus, und zwar fünf an der einen, und sieben an der andern Seite. Auf der gegenüberliegenden Seitenfläche desselben Stückes ist dasselbe Muster mit dreizehn seitlichen Aesten angebracht, von denen sechs an der einen, sieben an der andern Seite.

Entweder haben wir es also mit einem blossen Ornamente zu thun, oder es muss demselben eine symbolische Bedeutung

¹⁾ Vergl. die Abbildungen bei Pauli, Altitalische Forschungen, Band III, Die Veneter und ihre Schrift-Denkmäler, Leipzig 1891, Taf. VI, sowie bei Ghirardini, Notizie d. Scavi 1888, p. 170, Nr. V, Taf. XIII.

²⁾ Dasselbe ist wahrscheinlich identisch mit dem unten unter Nr. 31 besprochenen Stücke, von dem auf der Abbildung nur eine Seite sichtbar ist. Vergl. Fig. 8 auf der beigegebenen Tafel.

zukommen. Im Zusammenhange mit den übrigen hier besprochenen Zeichen liegt es nahe, die Erklärung im Aegypti-

Sitzung der math.-phys. Classe vom 4. März 1899.

schen zu suchen.

In der That wird das Zeichen ∫ nach Brugsch¹) als Silbenzeichen ☐ für die Silbe sep gebraucht. Diese Silbe hat die Bedeutung²) "das Auserwählte, Vorzügliche"; auf einem Gewichte kann daher das Zeichen ∫ sehr wohl zur Beglaubigung für die Richtigkeit des Gewichtes angebracht worden sein.

Auf einigen der erwähnten Thongewichte von Este³) befindet sich unterhalb unseres Aichzeichens die Inschrift MLV = mlv, gewissermassen als nähere Erläuterung desselben, denn das ägyptische Wort milav. oder (wenn man die Vokale weglässt) mlv hat die Bedeutung von "wahr, richtig"; vergl. oben p. 91.

Das unter 3) genannte Zeichen mit hat im Wesentlichen dieselbe Bedeutung. Es ist Determinativ für Gau, Feld, Weinberg und bezeichnet insbesondere ein abgemessenes Feld. Das Wort of the gleich hap bedeutet ein bestimmtes Ackermaass. Im "alten Reiche" endlich kommt das Zeichen nach Brugsch auch als Silbenzeichen für die Silbe sep uvor. Mit demselben Rechte wie das Zeichen können wir daher auch das andere Zeichen mit als Aichzeichen annehmen.

¹⁾ Hieroglyphische Grammatik, p. 128.

²⁾ Vergl. Brugsch, Wörterbuch, p. 1196.

³⁾ Pauli spricht a. a. O. von 6 kleinen Thonpyramiden des Museums zu Este mit dieser Aufschrift und von weiteren 3 mit verstümmelter Aufschrift. Ich habe die Buchstaben mlv nur auf zwei Stücken dentlich gesehen.

⁴⁾ Vergl. Brugsch, Grammatik, p. 138, Wörterbuch, p. 995.

⁵⁾ Proceedings of the Society of Biblical Archaeology, Vol. XIV, p. 78.

⁶⁾ Vergl. Grammatik, p. 128. Vielleicht kann man auch das Wort hab () ansrechnen, abschätzen" heranziehen (Wörterbuch p. 994).

F. Lindemann: Ueber einige prähistorische Gewichte.

Dazu kommt, dass auch der Ring, welcher als Gewichtszeichen sich sowohl auf altägyptischen als auf altetruskischen Gewichten vielfach findet (vergl. oben p. 77), als Silbenzeichen für die Silbe sep — gebraucht wurde. 1)

Das Zeichen TITT habe ich auf fünf Gewichten im Museum zu Este gefunden, zweimal mit 6, einmal mit 5, zweimal mit 3 Querstrichen gesehen; dabei fehlt der mittlere Längsstrich.²)

Das Zeichen hat im Aegyptischen der jüngeren Epoche die Bedeutung von hat im Aegyptischen der jüngeren Epoche Zeit auch für den Buchstaben m oder hat. Meine Vermutung geht dahin, dass hier eine Verwechselung der Silben im und mi vorliegt; letztere hat die Bedeutung von "wahr. richtig," geschrieben —.3) Eine solche Verwechslung ist um so leichter möglich, als das Wort im "in" auch mit einem auslautenden Vokale (emi oder emo) gelesen ward. Eine Verwechslung wird ferner durch folgenden Umstand nahe gelegt: es ist — das Zeichen für mi — "wahr") und (im alten Reiche) das Zeichen für am oder im — "in, befindlich in.")

Bestätigt wird diese Deutung dadurch, dass sich die

¹⁾ Vergl. Brugsch, Grammatik, p. 133, Wörterbuch, p. 1196.

²⁾ Die Zeichen IIII und fand ich auch auf dem Boden von Schalen im faliskischen Museum in Rom, wohl in gleicher Bedeutung, ersteres auf einem Thon-Scherben in Adria, letzteres auf einem Vasenfusse daselbst und auf einem Scherben in Modena.

³⁾ Vergl. Brugsch, Grammatik, p. 127, Wörterbuch, p. 566 u. 574.

⁴⁾ Vergl. Erman, a. a. O. p. 127 u. 186; Brugsch, Wörterbuch, p. 574.

⁵⁾ Vergl. Brugsch, Grammatik, p. 31; Wörterbuch p. 63. So bedeutet nach Lepsius (Die Metalle in den ägyptischen Inschriften, Abhandlungen der Berliner Akademie, 1871) zesbet — "der echte zesbet (Lasurstein)", mafek — "echtes mafek (Smaragd)". Ebenda wird auch (p. 80, Anmk.) von der Möglichkeit einer Verwechslung der Silben em und me, ma gesprochen.

beiden Zeichen J und () auf drei Thongewichten von Gestalt einer abgestumpften Pyramide (gegenwärtig im Museum zu Este) je vereinigt finden, und zwar auf derselben Seitenfläche der Pyramide übereinander. Dieses Doppelzeichen würde dann zu übersetzen sein: "Richtig abgeschätzt." Das Blatt allein findet sich auf einem andern Gewichte des Museums.

Nr. 27, 28, 29. Diese drei Gewichte mit dem erwähnten Doppelzeichen wiegen bez. 200, 210 und 220 gr; das schwerste von ihnen ist sehr gut erhalten, die andern beiden sind sehr wenig verletzt. Das Gewicht von 220 gr würde ungefähr vier Einheiten von je 56,85 gr entsprechen, auf welche wir sogleich bei dem Gewichte Nr. 31 zurückkommen, denn es ist 4.56,85 gr = 227,40 gr.

Nr. 30. Das ebenfalls gut erhaltene Gewicht im Museum zu Este, auf welchem sich ein Blatt als Aichzeichen befindet, wiegt 149 gr: es ist nicht ganz unverletzt, dürfte daher ursprünglich ein Gewicht von 3 halben tvin darstellen, d. h. gleich 12 Einheiten des sogleich zu besprechenden Gewichtes von ca. 13 gr zu setzen sein.

Die Silbe im (oder am) oder das Wort im werden im Aegyptischen auch durch das Zeichen — dargestellt,1) und letzteres wird auch durch ein einfaches Kreuz + ersetzt.2) Solche Kreuze finden sich teils eingeritzt, teils durch Stempel in den weichen Thon vor dem Brennen eingedrückt, teils im niedrigen Relief hervortretend, so ausserordentlich häufig bei den verschiedensten Formen von Gewichten, dass es nicht nötig erscheint, dieselben hier aufzuführen. Jedenfalls ist das Zeichen — gleichbedeutend mit (), und was über die Verwechslung

¹⁾ Vergl. Erman, Grammatik, p. 187 und Brugsch, Grammatik, p. 135.

²⁾ Hierauf machte mich Georg Ebers aufmerksam, als ich ihm die vorstehende Deutung der ägyptischen Aichzeichen auf altitalischen Gewichten vorlegte und ihm gleichzeitig mitteilte, dass das Kreuzzeichen eine ähnliche Bedeutung haben müsse. Vergl. Brugsch, Grammatik, p. 135, Nr. 600.

der Silben im und mi gesagt wurde, kann auch für das Zeichen + in Anspruch genommen werden.

Nr. 31. Die hier besprochenen Zeicheu +, (), , finden sich vereinigt auf einem bisher nicht erwähnten Gewichte aus Marzabotto; ein sicherer Beweis, dass die Zeichen zusammengehören. Das Gewicht besteht aus grauem Stein und hat die Gestalt eines nicht ganz regulären Würfels. Von den sechs Seitenflächen ist eine frei gelassen, die gegenüberliegende trägt das Zeichen des Blattes (vergl. Figur 8 auf beiliegender Tafel); auf der dritten Fläche sehen wir das Kreuz, gebildet durch zwei Paare von sich kreuzenden Parallellinien, auf der gegenüberliegenden Fläche das Fischgrätenmuster. Ueber dieses letztere Zeichen hinweg sind ganz feine punktierte Linien gezogen, die man erst bei genauerer Besichtigung bemerkt, und die genau das ägyptische Zeichen IIII darstellen und zwar jetzt, ohne dass der bei den früheren Stücken vermisste mittlere Längsstrich fehlt; der fünfte Querstrich ist nur sehr schwach wahrnehmbar. Der Umstand, dass diese beiden Zeichen hier über einander angebracht sind, führte mich zuerst auf die Vermuthung, dass beiden dieselbe Bedeutung zukomme, was durch die vorstehende Betrachtung bestätigt wurde.

Auf der fünften Fläche des Würfels ist das Zeichen $\Lambda=50$ deutlich eingegraben. Auf der gegenüberliegenden sechsten Fläche befinden sich vier Striche, die man als die Buchstaben NI lesen könnte, und die dann an das Wort Nivi auf dem Gewichte von Sermide (§ III) erinnern würden. Wahrscheinlicher stellen dieselben eine Ziffer dar; in der That ist eine gewisse Form des phönikischen Zahlzeichens für 20 von dem lateinischen Buchstaben N nicht zu unterscheiden (vergl. Tafel IX meiner früheren Arbeit). Es wäre also NI gleich 21.

Der Würfel wiegt 2790 gr, und es ist 2790 = 21.130,0. Die von uns bereits besprochene Einheit von ca. 130 gr ist also 21 mal in dem vorliegenden Gewichte enthalten; dieselbe Einheit, deren Zehntel in Aegypten zur Zeit der XII. und XVIII. Dynastie dem Goldgewichte zu Grunde lag und achtmal

genommen das Gewicht von Sermide (§ III) gab. Dieser Einheit von ca. 130 gr oder 16/8 tvin begegnen wir auch sonst auf alten Gewichten. Im Museo civico zu Bologna befinden sich zwei runde steinerne Gewichte von flacher Gestalt, in der Mitte durchbohrt, von denen jedes mit drei Punkten deutlich markiert ist. Das eine wiegt 383 gr und ist stark abgenutzt, so dass man das ursprüngliche Gewicht zu 390 = 3.130 gr sicher wird annehmen können. An dem andern fehlt ein Stück; es wiegt nur 348 gr. wird aber ursprünglich auch 390 gr gewogen haben. Beide Stücke stammen aus der altetruskischen Ansiedelung der Via Sargozza in Bologna. Von demselben Fundorte rührt ein ähnliches Gewicht von gegenwärtig 500 gr her, das mit zwei Punkten markiert ist, ursprünglich also das Doppelte der doppelten Einheit von 130 gr dargestellt haben mag. Im Museo civico zu Modena, unter den Funden aus der Terramare von Gorzano, ist ein Gewicht aus Thon in Gestalt eines Cylinders mit kreisförmiger Basis, der in seiner Achse durchbohrt ist (Inv.-Nr. 99). Längs einer Seitenlinie des Cylindermantels ist das gut erhaltene Gewicht deutlich mit sechs Punkten markiert; es wiegt 800 gr = 6.133,3 gr. Ein Stein aus demselben Fundorte stellt genau das Gewicht von 132 gr dar, also das 10 fache des besprochenen ägyptischen Stückes. Dasselbe ursprüngliche Gewicht erkennen wir in einem kleinen Terracotta-Gegenstande von der Form eines Spinnwirtels, der gegenwärtig 126 gr wiegt und aus der Terramare von Gazzade stammt (Inv.-Nr. 52). Unter den Funden von Gorzano sehen wir noch einen kleinen Terracotta-Cylinder. der auf seinem Mantel durch drei parallele Ringe rundherum markiert ist (Inv.-Nr. 504). Das Gewicht desselben beträgt 40 gr = 3.13,33 gr. Der Hälfte von 130 gr, d. h. ca. 65 gr, begegnet man auf anderen etruskischen und faliskischen Gewichten, worauf wir aber jetzt nicht eingehen (vergl. unten § IX. Nr. 35, 36).

Die auf der fünften Fläche unseres Würfels befindliche Ziffer $\Lambda=50$ (vergl. oben Nr. 7, p. 93) sagt aus, dass 21 Einheiten von je 130 gr zugleich 50 Einheiten von je 55,8 gr dar-

stellen. Diese letztere Einheit steht mit dem bekannten babylonischen Systeme in enger Beziehung, denn 561 gr wird als Normalgewicht für die leichte babylonisch-persische Silbermine königlicher Norm angenommen. In Aegypten ist die Hälfte dieser Einheit, das ist ein Gewicht von ca. 28 gr, durch drei Stücke vertreten, welche aus der Zeit der XII. bis XIII. Dynastie stammen; es sind die Nummern 19, 21, 23 in dem Verzeichnisse von Griffith (vergl. oben p. 76). Die Verbindung mit der phönikischen Mine wird dadurch hergestellt, dass 28 gr Gold dem Werte nach gleich 373 gr Silber waren, bei einem Verhältnis von Gold zu Silber wie 1:13½.¹)

Wenig verschieden ist die Einheit von 56 gr ferner von dem äthiopischen Honiggewichte. Dasselbe beträgt nach Brugsch 170.5 gr, und ½ davon ist gleich 56,85 gr: dieselbe Zahl, der wir soeben bei den Gewichten Nr. 27, 28 und 29 begegneten. Mit diesem Honiggewichte hängt ferner das ägyptische Goldgewicht der jüngeren Zeit zusammen, wie es durch die Münzen der Ptolemäer festgelegt ward.²)

Auch in Italien scheint die Einheit von 56 oder 28 gr verbreitet gewesen zu sein; doch sind Gewichte mit entsprechender Bezeichnung nicht häufig. Im Museo civico zu Verona findet sich ein sehr gut erhaltenes Thongewicht von Gestalt einer abgestumpften Pyramide (versehen mit dem Fischgrätenmuster und deshalb schon oben erwähnt), welches mit drei neben einander stehenden Ziffern X (XXX) markiert ist; es wiegt 850 gr, enthält also in der That 30 Einheiten zu je 28,33 gr. Das Auftreten der etwas niedrigeren Einheit von 27,3 gr in Italien ist natürlich sehr häufig, denn dieses Gewicht entspricht der späteren römischen Unze. Um so wichtiger

¹⁾ Vergl. Hultsch, Metrologie, p. 417.

²) Vergl. Brugsch, Zeitschrift für ägyptische Sprache, Bd. XXVIII, p. 24 ff. Die Einheit von ca. 56 gr wird auch durch ein in der Donau bei Rustschuck gefundenes Gewicht mit der Aufschrift "legionis primae italic", 5558,05 gr schwer, repräsentirt (vergl. Hultsch a. a. O. p. 673). Ein hierher gehöriges Bronce-Gewicht von 560 gr hat Gamurrini veröffentlicht: Della libbra etrusca, Monumenti antichi vol. I, p. 61 ff.

Sitzung der math.-phys. Classe vom 4. März 1899.

wäre die Beantwortung der Frage, wann diese Gewichtseinheit zuerst in Italien erscheint, eine Frage, auf die wir jetzt nicht eingehen.

Der hier besprochene Würfel von Marzabotto giebt uns ein neues Beispiel dafür, dass auf demselben Stücke das Gewicht in verschiedenen Einheiten angegeben wird; vergl. dafür oben Nr. 5 und Nr. 24; ausserdem aber auch ein neues Beispiel für das gleichzeitige Auftreten von phönikischen bezw. altbabylonischen und etruskischen Ziffern (vergl. oben Nr. 2 u. 7).

Wir schliessen hieraus, dass nicht die Aegypter allein in jenen alten Zeiten den internationalen Handelsverkehr auf dem mittelländischen Meere vermittelten, sondern auch semitische Stämme¹) von den Küsten Syriens oder Aegyptens, die unter ägyptischer Herrschaft standen und teilweise ägyptische Schrift sowie ägyptische Bezeichnung für ihre Gewichte angenommen hatten. Dadurch wird es erklärlich, dass sie die ägyptischen Zeichen nicht immer in genau demselben Sinne anwandten, wie die Aegypter selbst. Nur von den letzteren sind uns schriftliche Aufzeichnungen überliefert; auf sie mussten wir uns beziehen, um die Aufschrift der altitalischen Gewichte zu deuten. Diese Aufschriften gehören hiernach zu demselben Kreise von symbolischen Zeichen,²) Eigentumsmarken und Ziffern, von denen ich in Verbindung mit den Gewichten und mit dem Dodekaëder vom Monte Loffa gesprochen habe.

¹⁾ So hat auch das Wort "kid" oder "kite" (in dieser Form auch auf zwei Thon-Pyramiden des Museo civico zu Mantua vorkommend) nach Mittheilung des Herrn Collegen Hommel (Beilage zur "Allgemeinen Zeitung," 3. Juni 1896) seinen Ursprung in der Aussprache "kuddu" des babylonischen Schriftzeichens für Shekel. Vielleicht hängt das Wort tvin auch mit dem altbabylonischen tu "Gewicht" (das Lehmann erwähnt, Congrès a. a. O. p. 173) zusammen? Dadurch hätten wir eine direktere Anknüpfung an den asiatischen Orient.

²⁾ Damals habe ich auch die Ornamentik der etruskischen Hausurnen als eine besondere Anwendung solcher symbolischen Zeichen aufgefasst, indem ich mich auf die Abbildung zweier solcher Urnen bei Virchow stützte. Hausurnen mit derartigen Zeichen scheinen indessen sehr selten zu sein; die von mir gesehenen zeigten (abgesehen von der einen im Vatikan befindlichen) keinerlei Ornamente.

§ VI. Einige andere Gewichts-Zeichen.

Schon oben wurde erwähnt, dass neben den Aichzeichen auch der Dreizack auf einigen Gewichten angebracht und etwa als Hoheitszeichen aufzufassen ist. Er findet sich auf einem Thongewichte des Museo civico zu Mantua (Nr. LV), indem dort die Mittelrippe des Fischgrätenmusters in einen Dreizack ausläuft, in gleicher Weise auf dem Bruchstücke eines anderen Gewichtes (Nr. LIV), ferner eingeritzt auf zwei Bruchstücken von Thongewichten im Museum zu Este, und auf dem oben besprochenen Gewichte Nr. 26.

Nr. 32. Im Museo civico zu Pesaro findet sich ein Terracottagewicht von der Gestalt der sogenannten Webstuhlgewichte (das ist der Gestalt des Gewichtes von Sermide), auf dessen beiden Seiten je eine menschliche Figur mit ausgebreiteten Armen durch eingeritzte Striche dargestellt ist. Auf der einen Seite ist neben dem Kopfe das Zeichen A angebracht, dessen Bedeutung uns aus den Untersuchungen über die Gewichte vom Monte Loffa bekannt ist,1) indem es die Ziffer 20 darstellt. Das Stück wiegt 380 gr; die Ecken und Kanten sind scheinbar durch den Gebrauch abgerundet: sonst ist es gut erhalten. Ursprünglich hat es demnach etwas mehr gewogen. Wir kommen damit wieder der phönikischen Mine königlicher erhöhter Norm, die in Marzabotto zahlreich vertreten war (vergl. oben § IV), sehr nahe. Besser als die frühere Einheit von 19,15 gr passt indessen hier die Einheit von ca. 19,5 gr, welche dem altägyptischen Gewichte des Turiner Museums zu Grunde liegt (vergl. § I), und der wir bei dem Gewichte Nr. 26 aus Este und den im Zusammenhange damit erwähnten Gewichten aus Abano, Redù und dem Weiersthale begegneten. Hierdurch wird es wahrscheinlich, dass das ursprüngliche Gewicht unseres Stückes auch ca. 394 = 20.19,7 gr betragen hat.

¹⁾ Vergl. § 10 meiner früheren Arbeit.

Nach den Bemerkungen Lehmanns¹) dürfte die menschliche Figur mit wagerecht ausgebreiteten Armen als symbolische Darstellung der Waage und des Gleichgewichtes aufzufassen sein.

Nr. 33 u. 34. Eine menschliche Figur sehen wir noch auf zwei anderen Terracottagewichten gleicher Gestalt im Museum zu Pesaro dargestellt. Die Figur ist aber nicht nachträglich in den gebrannten Thon eingeritzt, sondern vor dem Brennen in flachem Relief roh herausgearbeitet. Der eine Arm hängt an der Seite des Körpers herab, der andere ist gekrümmt und das Ende desselben bis über den Kopf gehoben. Es entsteht so die Figur des hieroglyphischen Zeichens dem die Bedeutung von fa — Waage, Last zukommt,²) nur mit dem Unterschiede, dass die auf den beiden Gewichten angebrachte menschliche Gestalt aufrecht steht; doch hat nach Brugsch die aufrecht stehende Figur im Aegyptischen genau dieselbe Bedeutung,³) wie die hockende.

Beide Stücke sind gut erhalten: nur ist an jedem eine Ecke ausgebrochen. Jedes wiegt 465 gr, das ursprüngliche Gewicht wird etwa 492 gr betragen haben. Auf jedem ist neben der menschlichen Gestalt ein Punkt (ebenfalls in Relief) angebracht, so dass das Gewicht von ca. 492 gr als Einheit selbst zu betrachten ist. Dasselbe stellt eine leichte babylonische Mine gemeiner Norm dar, eigentlich 491 bis 493 gr. Wir kommen sonach wieder auf diejenige Einheit, deren Hundertfaches durch das schuhförmige Stück aus dem fränkischen Jura dargestellt wird (vergl. oben § II).

Nr. 35 u. 36. Eine vierte derartige menschliche Gestalt findet sich auch auf einem gleichgeformten Terracottagewichte aus Saggio in Piano, gegenwärtig im Museo civico

¹) Metrologische Studien im British Museum; Verhandlungen der authropologischen Gesellschaft zu Berlin, Juni 1891.

 $^{^2)}$ Vergl. Erman, Grammatik, p. 105; Brugsch, Wörterbuch, p. 534 ff.

³⁾ Vergl. Brugsch, Grammatik, p. 119, Nr. 8 u. 35.

zu Modena (Inv.-Nr. 1064). Die Gestalt tritt wieder in niedrigem Relief hervor, die Arme sind wagerecht ausgebreitet. Das Gewicht beträgt 426 gr. Aus demselben Fundorte stammt ein ähnliches Stück (Inv.-Nr. 1065) mit einem Gewichte von 445 gr; dasselbe ist auf zwei Seitenflächen mit dem Zeichen A markiert. Es ist gut erhalten, während von dem zuerst erwähnten Stücke eine Ecke fehlt; beide haben offenbar ursprünglich gleichviel gewogen. Dieses Gewicht von ca. 455 gr scheint mir mit dem ägyptischen Hohlmaasse Hin, das 0,456 Liter fasste, und mit dem griechischen Hohlmaase Chus, das 4,55 Liter fasste, zusammen zu hängen; darauf komme ich später zurück.

Nr. 37 u. 38. Im Museo Nazionale zu Este befinden sich zwei Terracottagewichte, auf deren einer Seitenfläche ein Haus andeutungsweise dargestellt ist,¹) d. i. ein Trapez oder Quadrat mit einem Dache darüber. Auch diese Darstellung erinnert an ägyptischen Gebrauch. Das Gewicht Nr. 6 der Liste von

Griffith (a. a. O.) trägt die Bezeichnung Collin Co

nur noch das Determinativ für Haus angebracht, womit offenbar angedeutet sein soll, dass das Gewicht im Palaste des Königs angefertigt wurde. Eine ähnliche Bedeutung werden wir auch der Darstellung des Hauses auf unseren Gewichten Nr. 37 und 38 beilegen.

Ersteres trägt unter dem Hause einen achtstrahligen Stern, bestehend aus vier sich in einem Punkte kreuzenden Linien:

¹⁾ Eine Abbildung des Gewichtes Nr. 37 giebt Pauli a. a. O. p. 43, Tafel IV. Er spricht von drei solchen Thonpyramiden (nach Ghiradini), die sich im Museum zu Este befinden.

auf letzterem ist unterhalb des Hauses das oben besprochene Fischgrätenmuster (als Aichzeichen) angebracht. Ersteres wiegt 790 gr, letzteres 755 gr. Beide sind ziemlich gut erhalten. Die auf beiden unterhalb der erwähnten Zeichen angebrachte Inschrift ist wegen Abnutzung nicht zu lesen. Das ursprüngliche Gewicht beider Stücke wird 800 gr betragen haben, d. h. das sechzigfache der Einheit von ea. 13,2 gr, die schon wiederholt besprochen wurde (vergl. oben § V Nr. 31). Wir haben schon damals ein mit sechs Punkten markiertes Gewicht aus Gorzano erwähnt, das denselben Betrag von 800 gr darstellt. Auch im Museum zu Este befinden sich noch mehrere Terracotta-Gewichte von ungefähr gleicher Schwere.

Eine andere, aber weniger wahrscheinliche Deutung für die Darstellung des Hauses auf den Gewichten könnte man darin suchen, dass die Silbe am (() auch zur Bezeichnung der königlichen Wohnung gebraucht wurde. 1) und dass in Folge dessen das Zeichen des Hauses irrtümlicherweise für das oben besprochene Zeichen () angebracht wurde. Oder man könnte in gleichem Sinne daran denken, dass das Haus zur Darstellung der Silbe mer (oder merau, vergl. oben p. 91 f.) dienen soll, denn diese Silbe (ägyptisch auch die Bedeutung von Bauwerk, Haus.2)

Nr. 39. Endlich sei des Zeichens Y Erwähnung gethan, das auf einem stark verletzten Terracotta-Gewichte des Museums von Este vorkommt, und zwar verbunden mit dem als Aichmarke gedeuteten Zeichen des Kreuzes, indem ein Arm des letzteren deutlich in die Gabel des Zeichens Y ausläuft. Dieses steht zur Abkürzung für das Wort

¹⁾ Vergl. Brugsch, Wörterbuch, Supplement p. 65. Auch der Silbe ma kommt im Demotischen (aus hieroglyphisch) die Bedeutung "Stätte. Wohnung" zu; vergl. ib. p. 599.

²⁾ Vergl. Brugsch, Wörterbuch, p. 671.

die Bedeutung "Gerät, instrumentum, vasa" zukommt.") Besser würde das ähnlich lautende Wort \bigcap " (setep) mit der Bedeutung "auswählen" passen, indem dadurch wieder die Richtigkeit des Gewichtes bezeugt würde.

Auch bei dieser Erörterung sind bekannte ägyptische Verhältnisse zur Erklärung beigezogen, ohne dass damit der rein ägyptische Ursprung der betreffenden Zeichen behauptet werden soll. Insbesondere kommt es auch bei babylonischen Gewichten vor, dass in der Aufschrift des Gewichtes der Palast des Königs erwähnt wird. So geschieht es auf einem von Lehmann²) behandelten altbabylonischen Gewichte mit der Aufschrift, ½ Shekel Palast des Nabu-Sum-esir, Sohnes des Darlat, des fürstlichen Priesters des Marduk², ferner auf mehreren der von Brandis³) besprochenen assyrischen Gewichte der Könige Tiglatpilesar und Salmanassar. Auf einigen dieser letzteren Gewichte ist auch das Zeichen des Kreuzes angebracht, vielleicht ebenfalls als Aichzeichen.

§ VII. Die Verbreitung der besprochenen Gewichts-Einheiten. A) Die Einheit von 98,5 bezw. 49,25 und 19,7 gr.

Wir haben nur solche Gewichte behandelt, die durch eine Aufschrift, insbesondere durch Ziffern zu bestimmten Einheiten in Beziehung gesetzt sind. Wir haben dabei Stücke aus Aegypten, Oberitalien und aus dem fränkischen Jura in Betracht gezogen und nachgewiesen, dass überall die gleichen Einheiten benutzt wurden. Nachdem die Grösse der letzteren festgestellt ist, kann auch die grosse Zahl nicht bezeichneter prähistorischer Gewichtsstücke berücksichtigt

¹⁾ Brugsch, Grammatik, p. 131, Nr. 435 u. Wörterbuch, p. 1357.

²⁾ Congrès international des orientalists a. a. O.

³) Das Münz-, Maass- und Gewichtswesen in Vorderasien, Berlin 1866, p. 46 ff.; vergl. ferner Ledrain, Revue égyptologique 2^{ième} année, 1881, p. 173 f.

Sitzung der math.-phys. Classe vom 4. März 1899.

werden, und kann man versuchen, dieselben nach Vielfachen der erkannten Einheiten zu ordnen. Die Lösung dieser Aufgabe ist natürlich nicht immer eindeutig bestimmt, indem einzelne Gewichte mit gleichem Rechte auf verschiedene Einheiten bezogen werden können. Immerhin werden die folgenden Tabellen eine ungefähre Vorstellung über die örtliche und zeitliche Verbreitung der betreffenden Gewichtsnormen geben.

Dabei führe ich nur solche Stücke auf, die von mir gewogen wurden, schon deshalb, weil die Gegenstände, um die es sich hier handelt, bisher meist nicht als Gewichte betrachtet sind. Nur im Museo civico zu Modena hatte Herr Crespellani Cav. Arsenio einen Teil der betreffenden Stücke (insbesondere die ringförmigen Steine) als Gewichte erkannt und deren Schwere bestimmt; auch in Este (wo ich mich der Unterstützung des Herrn Direktor Prosdocini und des Assistenten Herrn Alfonso zu erfreuen hatte) wurden mir die fraglichen Terracotta-Pyramiden teilweise als Gewichte bezeichnet.

Wenn in der folgenden Tabelle Terracotta-Pyramiden erwähnt werden, so sind immer abgestumpfte Pyramiden von der Form gemeint, wie sie bei dem Gewichte von Sermide vorkam (vergl. § III); dieselben sind alle nahe dem oberen Rande durchbohrt, und deshalb wurden sie als Webstuhl-Gewichte angesehen: man nahm eben an, dass das Loch zum Durchziehen eines Fadens gedient habe. In dem Falle müssten am Rande des Loches deutliche Spuren der Abnutzung durch den Faden bemerkbar sein, während nach meiner Beobachtung bei der grossen Mehrzahl dieser Gewichte die betreffenden Ränder vollkommen unversehrt erscheinen. Der Zweck der Durchbohrung muss also ein anderer gewesen sein; ich möchte annehmen, dass durch das Loch ein kleiner (die Schwere des Gewichtes kaum beeinflussender) Holzstab gesteckt war, um eine bequeme Handhabe zu bieten.

Auch steinerne Gewichte sind öfter von ähnlicher Form; dieselbe nähert sich manchmal der Gestalt eines runden Kegels mit abgerundeter Spitze; auch bei roher gearbeiteten (oft

scheinbar nur an der Luft getrockneten) Thongewichten kommt diese Form vor. Auch dann ist das Gewicht nahe der Spitze durchbohrt.

Die ringförmigen Gewichte sind teilweise aus Thon, teilweise aus Stein: sie sind ausserordentlich häufig in der Periode der Terramaren und der Pfahlbauten. Die Thonringe sind bisher meist als Untersätze für unten spitz zulaufende Gefässe aufgefasst und mögen auch gelegentlich diesem Zwecke gedient haben. Die steinernen Gewichte sind im folgenden auch dann als Ringe aufgeführt, wenn sie die Gestalt einer fast eckigen, in der Mitte durchbohrten Platte annehmen. Zu den ringförmigen Gewichten müssen auch manche Stücke gezählt werden, die man bisher als Keulenköpfe bezeichnete.

Endlich sind die sogenannten Reib- und Mahlsteine zu erwähnen. Besonders in den Museen von Schwerin und Königsberg (wo mir bezw. die Herren Dr. Beltz und Professor Jentsch freundlichst behilflich waren) fiel mir auf, dass viele dieser Steine dieselbe Gestalt haben, wie manche der von Flinders Petrie in Aegypten so zahlreich ausgegrabenen und veröffentlichten Gewichte. Die betreffende Form entsteht, wenn man von einem Doppelkegel die beiden Spitzen durch zwei der Basis parallele Ebenen abschneidet.

Die Ausdehnung der Untersuchung auf diese nordischen Sammlungen lässt erkennen, wie Ober-Italien zur Stein- und Bronzezeit den Verkehr zwischen dem Oriente und den baltischen Gebieten vermittelte, wobei dem Bernsteinhandel eine nicht unwesentliche Rolle zukam; eine Vermittlung, die sich bis in die jüngere Bronzezeit und die Hallstatt-Periode durch die Verbreitung der Haus- und Gesichtsurnen verfolgen lässt (vergl. p. 686 und 719 meiner früheren Arbeit). Die von uns in § I und II besprochenen (in der nachfolgenden Tabelle unter Nr. 27 und 38 aufgeführten) Stücke geben einen wichtigen Fingerzeig für die Richtung solcher Handelsverbindungen.

In den Tabellen beschränke ich mich auf eine Auswahl von Stücken, die mir charakteristisch zu sein scheinen.

Nr.	InvNr.	Fundort	Material	Gestalt
1	17877	Montecchio il Monte, Prv. Reggio	Stein	abgerundete Pyramide 1)
2 3	33353 48810	Gorzano, Modena Villa di Cappella, Cere-	Thon	Mahlstein Ring
4	48818	sara, Prov. Mantova	Stein	Kegel abge- rundet
5 6	46199 46195	97 99	Thon	Sphäroid durchbohrt
7	17610	Rigarello, Castellazzo, Mantova	7	Ring
8 9 10	16913 16999 —	Möringen, Schweiz Schweiz Via Sargozza, Bologna	Stein	wie Nr. 4 Doppelkegel Ring
11 12 13	_ _ 8	Gavello	r Thon	n n
14	_	Vetulonia Cità	Stein	Pyramide abgestumpft
15 16 17		Luna bei Carrara Telamon	Thon	77
18	_		ת מ	77
19 20	225 —	Casinalbo, Terramare	יד דל	Ring abgest. Pyramide
21 22 23	1890. 54 St. 24	Nürnberger Reichsforst	Stein .	Ring Reibstein
24 25	4863 26099	PfahlbanGoldberg,Mecklb. , Wismar Olanda, Ungarn	Thon	Ellipsoid
26 27 28	2006 a 3445	Luna b. Carrara Püttlachthal Presen bei Brön, Mecklb.	Stein "	— Ellipsoid
29 30	E. M. 936 E. M. 500	Roseninsel, Würmsee NeuenburgerSee, Estavayer	7	Reibstein Ring
31 32	E. M. 496 E. M. 494	ת ה	71 71	77
				,

¹⁾ Aehnlich wie bei den Gewichten von Monte Loffa, aber plumper. Die Gestalt dieser letzteren (im Museo civico in Verona befindlichen) Gewichte könnte am ehesten mit der Thüre eines gewölbten Thorbogens verglichen werden; das in § I besprochene Gewicht steht diesen der Gestalt nach sehr nahe, ist nur oben spitzer, und unregelmässiger ge-

F. Lindemann: Ueber einige prähistorische Gewichte.

Gewicht	Museum	Bemerkungen	Ursprüngl Gewieht
970	preistorico Rom	abgestossen; Terramare	985,0
450		stark abgenutzt; "	492.5
450	7	verletzt; aus Terramare	492,5
480	7	ausgezeichnet erhalten; desgl.	492,5
442		verwittert; Terramare	492,5
470	77	abgestossen; "	492,5
460	7	יי וי	492,5
452		abgenutzt	492,5
870		gut erhalten; 9.98,2 =	883,8
460	Bologna	aus Wohnplätzen	492,5
480	*		492,5
450	,,	Ein Stück fehlt	492,5
985	Modena	sehr gut erhalten; Zeiehen XX	985,0
453	Florenz	stark abgenutzt; etruskisch	492,5
490	71	gut erhalten;	492,5
490	7	, ,	492,5
865	79	unten abgestossen; vergl. Nr. 9, etruskiseh	883,8
470	,	abgestossen; etruskisch	492,5
940	Modena	*	985,0
465	Pesaro	Vergl. oben § VI, Nr. 33	492,5
465	7	, Nr. 34	492,5
480	Münehen	Durchbohrung nicht vollständig	492,5
980	Schwerin	Steinzeit	985,0
480	71	Glatt poliert; etw. abgestossen	492,5
465	Rom		492,5
96	Florenz		98,5
98,3	Münehen	Vergl. oben § I, Nr. 1	98,5
865	Sehwerin	gut erhalten; vergl. Nr. 17	883,8
490	Münehen	1/. 1 1 1 / 20	492,5
47	n	¹ /10 leichte Mine gem. Norm	49,25
46	n	π	49,25
50	79	71	49,25

arbeitet. Im genannten Museum befinden sich ausser den von de Stefano; Pauli und mir behandelten Gewichten noch weitere von derselben Fundstelle (noch andere sind in Rom), theilweise ebenfalls mit Ziffern, auf die ich bei anderer Gelegenheit zurückkomme; vergl. unten § VIII, p. 121.

Sitzung der math.-phys. Classe vom 4. März 1899.

Nr.	InvNr.	Fundort	Material	Gestalt
33	E. M. 961	Roseninsel, Würm-See 1)	Thou	Pyramide
34	E. M. 960	_		
35	E. M. 944			Ring
36	96. 297		Stein	Reibstein
37	94. 57	Im Main b. Landenbach	Thon	Ring
38	4618a	Weidmannsgesees, Franken	Stein	Schuh
39		Wallgraben, Mecklb.	Thon	Spinnwirtel
40	_	Druglin-See bei Arys in Ostpreussen	77	Ring
41	2230	Sorgenau, Ostpreussen	Stein	Keulenkopf
42	2232	——————————————————————————————————————	Granit	—
43	20785	Hissarlik	Thon	Pyramide
				2 J Ittiliao
44	20780	7	77	Cyliuder
		,	,,	durchbohrt
45	22286)	Gupra marittima, Prov.	Thon	1
	}	Ascoli-Piceno, contrada		
46	22303	Monti	77	
47	22082	Belvedere; Corropuli; Ab-	77	*
48	22083	ruzzo Ulteriore		79
49	3398	Ungarn	77	Pyramide
50		n	,	77
51	-	Tiber und Gegend des Palatin	7	77
52		Abano	Bronze	Astragalus
53	2037	Weiersthal (Franken)	Knochen 4)	-
54	_	——————————————————————————————————————	-	Pyramide
55	-)	25	7	- //
56		Monte Gnragazza am		7
57		Reno ⁵)		
58		_	Thon	
59	18958	Gardasee	Stein	Reibstein
60	17868	Gorzano, Modena	Thon	Kegel

¹⁾ Die Stücke Nr. 33 und 34 sind abgebildet bei von Schab: Die Pfahlbauten im Würmsee, Beiträge zur Anthropologie und Urgeschichte Bayerns, Bd. I, 1877, p. 23 und 46; bezeichnet als Senk-Gewichte.

²) Hier und im Folgenden: Provinzial-Museum der physikalischökonomischen Gesellschaft.

³⁾ Auf dem Speicher dieses Musenus befindet sich eine grosse Anzahl von Gewichten der bekannten pyramidalen Form, die wahrscheinlich aus den vorrömischen Ansiedelungen am Palatin stammen. So wurde mir durch Herrn Dr. Mariani mitgeteilt, der mich auf Grund der gütigeu

117

Gewicht	Museum	Bemerkungen	Ursprüngl Gewicht
91	München	gut erhalten) beide mit X	98,50
77	77	verletzt for markiert	98,50
190	n	- 4.49,25	197,00
440	n	abgeschliffen	492,50
140	n	— 3.49,25	147,75
4715 140	Schwerin	Vergl. § Il, Nr. 2 Einzelfund 3.49.25	4925,00
291	Königsberg	von einer Fcuerstein-Werkstättc	147,75
201	in Pr.2)	gut erhalten 6.49,25	295,50
291,3	III I I . ,	3 de Charletti 0.10,20	295,50
435	π	verwittert 9.49,25	443,25
170	Rom	stark abgenutzt; 4. archäologi-	
	preistorico	sche Schicht 1/5.985,00	197,00
180	η	3. Schicht; abgestossen	197,00
165	77	aus einem Grabe der ersten	
		Eisenzeit	197,00
190	n	ebenso. Schiefe Durchbohrung	197,00
165 190	n	erste Eisenzcit. Abgestossen	197,00
165	π	weniger verletzt verletzt	197,00 197,00
150	n	abgenutzt	197,00
180—185	delle Terme	angenutzt	197,00
	Rom ³)		,
19,5	Padua	Vergl. oben p. 98	19,7
162	München	, , , 98	197,0
380	Pesaro	, §Vl, Nr. 32; 20.19,7	394,00
490	Bologna		492,5
465	n		492,5
480 900	Este	etwas verletzt, mit dem Fisch-	492,5
300	Estc	grätenmuster (p. 99) und 5 Strichen markiert, von Ghira- dini publiciert 5.197	985,0
755	Rom preist.	Pfahlbau 4.197 =	788
750	n	Terramare	788

Empfehlung des Herrn Commodore Barnabei bei meinen Arbeiten im Museo delle Terme und im faliskischen Musenm der Villa di Papa Giulio freundlichst unterstützte.

- 4) Im Inventar als Wirbel vom Rind bezeichnet.
- ⁵) Diese Stücke wurden in einem etruskischen Tempel zusammen gefunden, daneben Reste von Getreide (was an die Fundumstände bei den Gewichten vom Monte Loffa erinnert, vergl. p. 632 und 661 f. meiner früheren Arbeit); auch eine grössere Zahl kleiner Doppelkegel aus Terracotta, im Gewichte von 50, 55, 60, 65, 70, 80, 85 gr.

Sitzung der math.-phys. Classe vom 4. März 1899.

Nr.	InvNr.	Fundort	Material	Gestalt
61	_	_	Thon	Pyramide
62 63	_	_	n	n
64	Schrank XX		7 1	71 77
	Tomba 10 Nr. 16 rot 74			
65	schwarz27 Schrank XX		n	77
66	n	_	,	27
67	_	-	n	n
68			,	7
69	978		77	71
70	90	Redù Terramare	Ct. T	T21112 2 2 3
71	21287	Servirola di Sampolo	Stein	Ellipsoid
72	_	Wohnplatz Marzabotto) , 79	_

Endlich gehört hierzu eine grosse Anzahl kleiner Stücke im Gewichte von ca. 20 gr, 40 gr, 60 gr etc., d. h. von Vielfachen der Zahl 19,7, die ich sowohl im Museo preistorico in Rom als im Museo etrusco in Florenz und in der prähistorischen Sammlung des Staates in München gefunden habe, und die meist eine flache ringförmige oder eine spinnwirtelartige Gestalt haben.

Die Norm von ca. 390,0 gr scheint auch noch für die ältesten Kupferbarren massgebend gewesen zu sein; so wiegt der in Pesaro befindliche As 390,3 gr. 1)

Wie Lehmann bemerkt,²) wird die Einheit von ca. 49,0 gr auch durch ein in Helgoland gefundenes goldenes Armband repräsentirt, das aus dem frühesten Mittelalter stammt und so eine Verbindung zwischen den prähistorischen, bezw. antiken und den modernen Gewichtseinheiten darstellt.

¹⁾ Vergl. Hultsch, Metrologie, p. 259, Anmkg.

²⁾ Verhandlungen der Berliner anthropologischen Gesellschaft. Januar 1893.

F.	Lindemann:	Heber	einiae	prähistorische	Gewichte.

Gewicht	Museum	Bemerkungen	Ursprüngl. Gewicht
1020 860 830 340	Este , Papa "Giulio Rom	ebenso; 6 Striche stärker verletzt noch stärker verletzt. 6 Striche sehr stark verletzt. 5 Striche aus demselben Grabe ein Crater a colonnette; demnach aus dem fünften Jahrhundert v. Chr. 2.197 =	1182 1182 985
350 1180 490 475 770 770 775	Adria 1) Este Modena Rom Marzabotto	abgcrundet - 6.197 = vergl. p. 84 roh gearbeitet vergl. § V Nr. 26; 4.197 = "oben p. 98 Aequator und Meridian tief eingekerbt vergl. oben p. 83 f. 30.49,25	394 1182 492,5 492,5 788 788 788 1477,50

§ VIII. Fortsetzung. B) Die Einheit des tvin-Gewichtes.

Die Gewichts-Einheit, welche wir auf Grund der Fundstücke von Sermide und Marzabotto als tvin bezeichnet hatten, betrug mindestens 104 gr (§ III), war aber wahrscheinlich höher anzusetzen und wurde später von uns zu 106,38 angenommen (§ IV). Wir fassten sie auf als das achtfache der altägyptischen Einheit von 12,77 bis 13.35 gr; dadurch würden wir eigentlich zu einem tvin-Gewichte von 102,16 bis 106,80 geführt werden. Berücksichtigt man, dass das Gewicht des Königs Chufu (IV. Dynastie) jedenfalls durch Abnutzung gelitten hat, so würde sich für das tvin ein noch höherer Wert ergeben.

¹⁾ Das vielfache Auftreten der Stücke im Gewichte von ca. 490 gr aus den oberitalienischen Fundstellen macht es verständlich, dass diese leichte babylonische Mine gemeiner Norm im Altertume als Ἰταλική μνᾶ oder μνᾶ κατὰ τὴν Ἰταλικὴν χοῆσιν bezeichnet wurde (vergl. Hultsch a. a. O., p. 673), wofür bisher eine befriedigende Erklärung fehlte.

In den folgenden Tabellen ist ein tvin zu 106,6 gr augenommen, und dementsprechend ist in der letzten Columne das "ursprüngliche Gewicht" jedes Stückes berechnet. Der niedrigste Wert von 104 gr für das tvin ist von der Einheit zu 101 gr (gleich ½ der leichten babylonisch-persischen Mine königlicher Norm), auf welche ich bei der Untersuchung über die Gewichte vom Monte Loffa geführt wurde, so wenig ver-

Nr.	InvNr.	Fundort	Material	Gestalt
1	18955	Phahlbau Gardasee	Thon	Ring
2	55948	Necropoli del Castellazzo	_	eylindrisch
3	55946	di Paroletta, Fontanel- lato, Parma	_	ellipsoidisch
4	48862	Castelnovo Rangoni, Mo- dena Montale		wie Nr. 2
5	41284)	Borgo S. Donnino,	Thon	Ring
6	17859	Castione dei Marchesi, Parma	77	"
7	41353	Busseto, Parma	77	Kegel
8	17873	Maranello, Gorzano Mo- dena	ת	Cylinder
9	41352	Busseto, Parma	_	Cylinder
10	18108	Montata di San Pellegrino, Reggio, Emilia	-	durchbohrt Ring
11	18110	wie Nr. 4	-	,,
12	17855	Campeggine il Grumo,	Stein	niedriger
13	33281	Reggio Emilia wie Nr. 4		Cylinder cylindriseh
14	17857	wie Nr. 8	יד ת	ellipsoidisch
				25.114.
15 16	17858 48817)	Monteechio il Monte Reggio	, ,	Mahlstein
17	46200	Villa di Capella Ceresara,	7	Reibstein
18	46191	Prov. Mantova	Thon	Ring
19	54120	Terramare Ognissanti	Stein	wie Nr. 14
00	49459	S. Giaeomo, Cremona Palafitta dei Lagass, Vhò,		Ring
20	49499	Cremona	n	rong
21	42620	Aus einem Grabe Nr. I.	Thon	Pyramide
22	,,	Torre del Modillo	**	,,
23	22000	(Eisen-Zeit) Laposhalom bei Pest	ת	"
24 25	33200 54774	Laposnatom ber rest	7*	"
26	54777	7	7	33
219	02111	7	,	1

schieden, dass man viele der im Folgenden aufgeführten Gewichte, die alle mehr oder weniger verletzt sind, auch als vielfache von 101 gr wird darstellen können. Da aber die höhere Einheit von 104 bis 107 gr entschieden überwiegt, so bin ich geneigt umgekehrt die Gewichte vom Monte Loffa auf diese höhere Einheit zu beziehen (vergl. Nr. 62 und Nr. 79 der folgenden Tabelle, sowie den Nachtrag am Schlusse dieser Abhandlung).

Gewicht	Museum	Bemerkungen	Ursprüngl Gewicht
525	preistorico Rom	gut erhalten; 5 tvin	533
515 202	21	abgestossen; 2 tvin	$533 \\ 213,2$
500	"	Nr. 4 bis 19 aus Terramaren	533
525 400	?? ??	nicht gebrannt ein Stück abgebrochen	533 426,4
820 830	?? ??	gut erhalten; 8 tvin Kante abgestossen	852,8 852,8
1000	•,	wenig abgenützt; Stück abgestossen	1066
1530	7.9	stark verletzt; Zeichen X; 20 tvin	2132
800 600	77	abgenutzt abgestossen; Einkerbung rings	852,8
595 500	27 22	um den Mantel des Cylinders gut; der Aequator des eiförmigen Steines durch Einkerbung markirt	639,6 639,6
500	,,	markirt —	533 533
400	19	abgestossen	426,4
500	22		533
$\begin{array}{c} 630 \\ 400 \end{array}$	";	mit 3 Strichen markirt; 6 tvin gut; vergl. Nr. 14	639,6 426,4
400	,,	mit 2 Strichen markirt; 4 tvin = 2 etrusk. Pfund	426,4
98	"	wenig abgestossen	106,6
100	:,	gut; abgerundet	106,6
135 600	,,	1 ¹ /3 tvin gut	142,15 639,6
260	"	2 ¹ / ₂ tvin	266,5
250	"	2 ¹ / ₂ tvin	266,5

Sitzung der math.-phys. Classe vom 4. März 1899.

Nr.	InvNr.	Fundort	Material	Gestalt
27 28	54776	Laposhalom bei Pest	Thon	Pyramide
29	54779 54780	71	7	٠,
30	16939	Möringen, Schweiz	77 77	23
31	16995	Schaffhausen, Schweiz	77	Ring
32 33	16996 Schrank	Sehweiz (faliskisch)	ת	Pyramide
	XX	(Remorated in)	7	73
34 35	"	7	77	*9
36	N. 8. 1894	Vano	Stein	oval
37		Luna, vergl. § VII, 15	*	rund
38 39	_	•	Blei	Mahlstein Pyramide
		7	Diei	1 yramide
40 41		π '	Thon	Muschel
42		Bisentia	Blei Thon	Muschel Pyramide
43	_	Telamon 1)	7	,,
44	_	Telamon ')	29	21
45	_	7 7 C1 2 G 7777	Ti.	?
46 47	_	Via Šargozza, vgl. § VII, 10		Ring
48	-	Monte Guragazza	Thon	77
49		7	77	,,
50 51	M. C. T.)	7 DC111	7	,,
52	N. 15	aus einem Pfahlbau in der Schweiz	Stein	,,
53	1	Sermide	Thon	Pyramide
54 55	1890. 20	Marzabotto bei Lindau (?)	Stein Thon	Kegel
56	E. M. 945	Roseninsel, § VII, 33	THOH	Ring
	E. M. 942 E. M. 944	7	77	22
	E. M. 944 E. M. 929	,	Stein	Reibstein
60	E. M. 390			Quetschstein
61 62	96. 307 E. M. 425	Robenhausen (Schweiz)	Thon	Ring Kegel
63		Kannensberg (Mecklen- burg)	Stein	Ellipsoid

¹⁾ Hier wurden in einem Tempel eine sehr grosse Anzahl solcher

Gewicht	Museum	Bemerkungen	Ursprüngl. Gewicht
210 1210 1550 1340	preistorico Rom	stark abgenutzt verletzt Gestalt wie bei den Gewichten	213,2 1279,2 1599,0
250 252 300	" " Papa Giulio,	vom Monte Loffa, doch andere Durchbohrung 2½ tvin gut wenig abgestossen	1385,8 266,5 266,5 319,8
400 1180 1020 1030 1535	Rom ", Florenz ",	abgenutzt etruskisch gut gut; es fehlt der Griff	426,4 1279,2 1066 1066 1599
620	"	dat; es femt der dim das Stück trägt die deutliche Inschrift "clo. firmi," davor ein nicht erkennbares Zeichen, vielleicht Ziffer wenig abgestossen	639,6 639,6
210 300 190 420	99 97 99 99 99	auf der oberen Fläche der Buch-	213,2 319,8 213,2 426,4
625 635 620 590	Bologna	stabe A; sehr gut crhalten gut crhalten abgestossen, vergl. § VII, Nr. 55,	639,6 639,6 639,6 639,6
590 570 490 420	Turin	abgestossen	639,6 639,6 533 426,4
930 37800 1070 105 190	Mantua Marzabotto München	Vergl. oben § III u. d. Nachtrag " § IV, Nr. 4 stark verletzt gut erhalten etwas verletzt	38300 1279,2 106,6 213,2
190 625 512 185 1080	31 37 31 31 37	abgestossen abgeschliffen verletzt gut erhalten; 10 tvin	213,2 639,6 533 213,2 1066
2485	Schwerin	aus einem Hügelgrabe der älteren Bronzezeit; 24 tvin	2558,4

Gewichte gefunden, von denen noch mehrere sich annähernd als Vielfache von ca. 106 gr darstellen.

124

¹⁾ Die beiden Ringe Nr. 75 und 77 zeigen einen deutliehen Absatz in ihrem Querschnitte. Weniger deutlich ist dieser ringförmige Absatz bei den weiteren hier erwähnten Gewichten aus dem Königsberger Provinzial-Museum. Es erinnert dies an die althergebrachte Bezeichnung von Gewichten durch Ringe, vergl. oben p. 76 f. Stufenförmige Absätze kommen auch bei den ältesten Bronzegewichten aus Olympia vor, sind aber dort, entsprechend der Gestalt der betr. Stücke, nicht ringförmig. Auch manche Ringscheiben aus den Pfahlbauten der Roseninsel und den Höhlen Frankens sind mit Ringen markirt.

F. Lindemann: Ueber einige prähistorische Gewichte.

Gewicht	Museum	Bemerkungen	Ursprüngl. Gewicht
2255 820 100 100 425 1030 1280 825 1030 1365 210 516 314 546 605 330 206 225,5	Schwerin ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	desgleichen und zwar aus Grab Nr. 4, benachbart zu Kannes- berg; stark verwittert abgestossen sehr gut erhalten abgeschliffen versteinerter Schwamm wenig verletzt gut erhalten sehr gut erhalten; die Einheit ist hier ca. 109 gr, vgl. Nachtrag verletzt es fehlt etwas weniger als die Hälfte 2½ tvin	2558,4 852,8 106,6 106,6 426,4 1066 1279,2 852,8 1066 1385,8 213,2 533 319,8 533 639,6 639,6 213,2 266,5
520 520 520 515 1535 218 200	Adria ,, ,, Este	gut abgestossen gefunden in Wohnplätzen der Steinzeit; verhältnissmässig gut erhalten sehr gut; vgl. oben p. 102, Nr. 29 vgl. Nachtrag u. " " 102, " 27	

²) Die Kurische Nehrung ist besonders reich an Funden der Steinzeit aus Wohnplätzen und Gräbern. Die zahlreichen Bernstein-Artefacte der Steinzeit, die dort gefunden wurden, weisen darauf hin, dass dies mit dem schon damals blühenden Bernsteinhandel zusammenhing, vergl. Schieferdecker, Schriften der physikalisch-ökonomischen Gesellschaft zu Königsberg i/Pr., Band XIV, 1873 und Klebs, Der Bernsteinschunck der Steinzeit, Beiträge zur Naturkunde Preussens, Bd. 5, Königsberg 1882. Tischler, ib. Bd. XVIII, 1877, XXIII und XXIV.

Sitzung der math.-phys. Classe vom 4. März 1899.

Die Tabelle zeigt, dass dem tvin-Gewichte eine ebenso ausgedehnte Verbreitung in der Stein- und Bronzezeit zukam, wie der babylonischen Mine gemeiner Norm und den aus ihr abgeleiteten Teilgewichten. Für Italien wird das tvin-Gewicht auch deshalb von besonderer Bedeutung gewesen sein, weil sein dreifaches (wenn man von 109 gr als Einheit ausgeht) ungefähr das spätere römische Pfund, sein zweifaches das spätere etruskische Pfund ergiebt (vergl. besonders Nr. 19 und 20).

Für die mecklenburgischen Funde scheint das häufige Auftreten der ellipsoidischen Form für die steinernen Gewichte charakteristisch zu sein. Wir haben diese Form in Nr. 63, 64 und 70, ferner in § VII, Nr. 24 und 28, während unter den zahlreichen oberitalienischen Gewichten nur die Stücke Nr. 3 und 14 in § VIII und Nr. 6 und 71 in § VII verglichen werden können. Kugeln finden wir nur in Mecklenburg (§ VIII, Nr. 67; § IX, Nr. 29 und 33).

Keulenköpfe (aus Stein und Thon) sind nur aus den

Nr.	InvNr.	Fundort	Material	Gestalt
1 2 3 4 5 6	-	Marzabotto	Stein Thon Stein " Thon	Pyramide Ring "
7	-	-	**	2.9
8 9 10 11 12 13 14 15 16 17 18	1166 	Cimiterio Este Via Sargozza Redù, Terramare Nonantola, Terramare	Thon Stein Thon	Pyramide "" "" Ring Pyramide Ring

Museen von Schwerin und Königsberg verzeichnet. Das kann Zufall sein, da ich früher auf diese Form nicht geachtet hatte.

§ IX. Fortsetzung. C) Die Einheit von 13,3 gr.

Neben dem Achtfachen des Gewichtes von ca. 13 gr, das wir als tvin-Gewicht eingeführt hatten, ist auch das Zehnfache dieser Einheit in den Terramaren Ober-Italiens als neue Gewichtseinheit gebräuchlich gewesen, wie wir bei Besprechung des Würfels von Marzabotto (vergl. oben § V Nr. 31) gesehen haben, und wie durch mehrere mit Zeichen versehene Gewichte bestätigt wurde. Auch die Verbreitung dieser Einheit kann durch zahlreiche nicht bezeichnete Gewichtsstücke näher verfolgt werden. In der folgenden Tabelle sind solche zusammengestellt; dabei ist der Rechnung ein Gewicht von 13,3 gr zu Grunde gelegt, dessen 8-faches wieder 1 tvin giebt.

Gewicht	Museum	Bemerkungen	Ursprüngl. Gewicht
2790 149 383 348 590 590	Marzabotto Este Bologna ,, ,, ,, ,, Adria	vergl. oben p. 103, Nr. 31 "", §V,Nr.30; 12.13,3= "", p. 104 ein Stück abgebrochen "", vergl.§VII Nr. 55 gut erhalten, mit 2 Stempeln in Fischgrätenmuster. Vergl. oben p. 99 60.13,3=	2793 159,6 399 399 665 665
740 370 350 790 780 730 500 530 1030 530 780	Este "Bologna Modena "" ""	verletzt gut erhalten Ecken und Kanten abgerundet Vergl. oben § V, p. 104 gut erhalten ,, 80.13,3 =	798 399 399 798 798 798 532 532 1064 532 798

Sitzung der math.-phys. Classe vom 4. März 1899.

Nr.	InvNr.	Fundort	Material	Gestalt
19 20 21 22 23 24	291 99 100 52 46 42	Nonantola Gorzano, Terramare Gazzade. Terramare	Thon " " Stein "	Ring Cylinder Ring Spinnwirtel rund, platt, oben ge-
25 26	150	Marzabotto	Thon Stein	wölbt ¹) Pyramide
27	41288	S.Donnino,Parma,Castione	.,	_
28 29 30 31 32 33	4574 4996 3576 2768 2534 415	dei Marchesi; § VIII, 6 Gnewitz. Mecklenburg Pinnow Gnoien Quaal Schwetzin Wittenburg	Stein " " " "	Ring Kugel Cylinder Ring Keulenkopf Kugel
34	2306	Alt-Samit		Ring
35 36	-	Volsinii "	Thon	Pyramide ,,

Hierher könnte man ferner zahlreiche Stücke im Gewichte von ca. 380 gr rechnen, insbesondere die oben in § IV behandelten, welche sich im Museum zu Marzabotto befinden. Wir haben dieselben mit der sogenannten phönikischen Mine erhöhter königlicher Norm und mit der karthagischen Mine in Verbindung gebracht und zwar deshalb, weil das unter Nr. 5 besprochene Gewicht gerade 38300 gr wiegt. Da aber keines dieser Gewichte unverletzt oder unverwittert sein dürfte, so erscheint es mir sehr wahrscheinlich, dass auch bei jenen Gewichten aus Marzabotto an Stelle der Einheit von 383 gr besser diejenige von 30.13,3 = 399 gr zu Grunde gelegt werden sollte.

¹⁾ Diese gewölbte Form ist für viele der von Flinders Petrie veröffentlichten Gewichte charakteristisch. Die im Texte genannten Gewichte zeigen ausserdem eine Einkerbung rund um den äusseren Mantel.

F. Lindemann: Ueber einige prähistorische Gewichte.

Gewicht	Museum	Bemerkungen	Ursprüngl. Gewicht
65 800	Modena	Vergl. oben § V, p. 104; 60.13,3	66,5
260 126	92 99 99	gut erhalten Vergl. oben § V, p. 104; 60.13,3	798 266 133
530 630	97 99	gut erhalten abgestossen	532 665
1040 1985	Marzabotto	gut erhalten 80.13,3 Nr.66 bei Brizio; auf dem Steine ist das hieratische Zeichen für 80 (!!!!) doppelt angebracht.	1064
1250	Rom preistorico	Wir haben 160.13,3 = kleine Stücke abgestossen	2128 1330
79	Schwerin	- 6.13,3	79,8
126	**		133
368	11	Cylindermantel eingeschnürt	399
248	**	_	266
344	,,	verwittert	399
79	71	aus Hügelgrab mit dürftigem	
26	**	Inhalt aus Kegelgrab, sehr gut erhalten,	79,8
0=	771	am Aequator eingekerbt	26,6
65 65	Florenz	Beide aus einem Grabe mit Buc- chero-Gefässen(Orvieto)5.13,3=	66,5

Hierfür spricht auch die Thatsache, dass durch den in § V Nr. 31 besprochenen und doppelt bezeichneten Würfel diese Einheit von ca. 13 gr zu einer anderen Einheit von 56 gr in Beziehung gesetzt wird, gerade wie das in § IV besprochene Steingewicht Nr. 4 eine Beziehung zwischen dem tvin und der Einheit von 383—399 gr herstellte.

Neben der phönikischen Mine von 383 gr scheint auch diejenige gemeiner Norm von 365 gr vielfach aufzutreten; doch würden entsprechende ausführliche Zusammenstellungen unserm gegenwärtigen Zwecke fern liegen. Auch auf die Verbreitung der erwähnten Einheit von 56 gr kann ich erst bei einer anderen Gelegenheit zurückkommen, ebenso auf die Einheit von 16,4 gr (Shekel, vergl. oben p. 82), die babylonische Silbermine (vergl. oben § IV. Nr. 24) und auf die Verbreitung der ägyptischen Einheit von 90 bis 91 gr.

§ X. Chronologisches.

Bisher haben wir uns darauf beschränkt, die thatsächlichen Funde zusammenzustellen, sie nach der Höhe ihres Gewichtes zu ordnen, oder sie nach ihren Aufschriften zu einander in Beziehung zu setzen und ihre örtliche Verbreitung über Mittel-Europa zu diskutiren; die zeitliche Verbreitung mussten wir zunächst ausser Acht lassen. Ueber letztere ein sicheres Urteil zu gewinnen, wird auch kaum möglich sein; immerhin mag versucht werden, einige Gesichtspunkte dafür aufzustellen.

Nach unten wird uns eine Grenze für die Beziehungen Oberitaliens zu Aegypten etwa durch die punischen Kriege gegeben, in denen gleichzeitig mit der karthagischen die etruskische Seemacht gebrochen wurde, und durch die römische Besetzung Ober-Italiens. Eine obere Grenze wird durch die ältesten Beziehungen Nord-Italiens zu Aegypten gegeben. Im § 13 meiner früheren Arbeit habe ich versucht, kurz zusammen zu stellen, was darüber bekannt ist. Durch die ägyptischen Nachrichten über die Völker der Tursch und der Sharden liessen sich solche Beziehungen (allerdings sehr hypothetischer Art) bis ins 14. Jahrhundert vor Chr. zurückverfolgen, d. h. bis in die Blütezeit der mykenischen Kultur und in die Zeit der Kämpfe Aegyptens gegen die "von den Inseln des Meeres" anstürmenden fremden Völker. Die damals von mir für diese frühe Zeit angenommene Uebertragung babylonischer Gewichte und ägyptischer Ziffern zu den Bewohnern der Po-Ebene und der euganeischen Berge schien im Widerspruche zu der Vorstellung zu stehen, wonach die Bewohner der Terramaren und der Pfahlbauten damals noch in den Anfängen der Steinzeit-Kultur standen. Inzwischen haben auch Montelius1) und Evans²) die prähistorische Chronologie der Terramaren-Epoche

¹⁾ Preclassical chronology in Italy and Greece, Reports of the British Association for the advancement of science 1896, p. 933, und: The Tyrrhenians in Greece and Italy, ib. p. 931.

²⁾ The Eastern Question in Anthropology, ib. p. 906 ff.

so modifizirt, dass sie direkte Beziehungen West-Europas zum mykenischen Kulturkreise annehmen.

In eine noch fernere Zeit zurück, nämlich bis in die Zeit der XII. und XIII. Dynastie Aegyptens, werden wir durch die Ausgrabungen von Flinders Petrie in Kahun versetzt. Nach denselben lebten fremde Völker des Nordens schon um 2500 v. Chr. in dieser ägyptischen Stadt; ihre Anwesenheit wird geschlossen aus den Resten der von ihnen benutzten Thongefässe, welche nur mit den ältesten italischen Formen verglichen werden können und deren Alter in Aegypten durch entsprechende sicher datirte Grabfunde festgelegt wird.1) Auf diesen alten Scherben finden sich diejenigen Zeichen, welche ich in meiner früheren Arbeit (a. a. O. § 17) mit den in der Bronzezeit allgemein verbreiteten Marken und Ziffern verglichen habe. Selbst wenn damals in den Terramaren Italiens noch die Kultur der Steinzeit herrschte, so darf man sich von dieser doch keine zu geringe Vorstellung machen. "Diese europäische Epoche ist in tiefes Dunkel gehüllt. das nur wenige Funde wie vereinzelte Blitze erhellen. Wir müssen aus den ägyptischen Verhältnissen auf die Kultur der anderen Völker zurückschliessen; wir dürfen nicht annehmen, dass das Nilland mit seiner Kultur inmitten von Barbaren allein gestanden habe. Abgesehen von ihrem nationalen Charakter ist der wesentliche Unterschied zwischen ägyptischer und europäischer Kultur der Urzeit, dass die erstere sich in ihren Denkmälern infolge besonderer Verhältnisse durch Jahrtausende erhielt und nun gleichsam wie ein offenes Buch am Wüstenrande des Nilthales daliegt, während die letztere gleichsam in Regen und Schnee zu Grunde ging. "2)

In der XII. oder XIII. Dynastie tritt in Aegypten die

¹⁾ Vergl. Flinders Petrie, Illahun, Kahun and Gurob 1889-90, London 1891, p. 10 f. — Auch durch in Kreta gefundene Bildwerke werden Beziehungen dieser Insel zu Aegypten schon für das "mittlere Reich" wahrscheinlich gemacht. Vergl. von Bissing: Die statistische Tafel von Karnak, Leipzig 1897, p. 59 und XXIV.

²) Stern, Aegyptische Kulturgeschichte, Bd. I, p. 3 f. Magdeburg 1896.

Einheit von 12,77 gr zuerst auf (vergl. oben p. 89), die allerdings von dem noch älteren Chufu-Gewichte wenig verschieden ist. Sie verschwindet dann scheinbar, um unter der XVIII. Dynastie von Neuem uns bemerkbar zu werden. In dieser Zeit (d. h. im 16. oder 15. Jahrhundert v. Chr.) spätestens, vielleicht aber schon in jener früheren Zeit, wird diese Ge-

wichtseinheit im internationalen Handelsverkehre gebräuchlich

gewesen und nach Italien übertragen sein.

Einen festeren chronologischen Anhaltspunkt haben wir für einige Gewichte, die in Gräbern gefunden wurden. Es sind das erstens die tvin-Gewichte, welche in § VIII unter Nr. 21, 22 und 23 aufgeführt wurden; sie stammen aus einem Grabe, das nach den dabei gefundenen Schlangen-Fibeln in den Anfang der Eisenzeit zu setzen ist. Annähernd der gleichen Zeit entstammen die Gewichte Nr. 45, 46, 47 in § VIII. Ferner sind als Grabfunde die beiden Gewichte zu je 65 gr hervorzuheben, welche in § IX unter Nr. 35 und 36 genannt wurden; sie gehören ins 7. Jahrhundert v. Chr. Noch jünger ist das Gewicht § VII Nr. 64, das ins fünfte Jahrhundert zu setzen ist, vielleicht auch nicht der Einheit von 197 gr, sondern der leichten phönikischen Mine gemeiner Norm von 365 gr zuzuteilen ist. 1)

Die Gewichte mit Inschrift, welche in § III und IV behandelt wurden, mögen auch dem siebenten oder achten Jahrhundert angehören, denn früher wurde die Buchstabenschrift schwerlich in Oberitalien eingeführt. Das tvin-Gewicht selbst muss allerdings viel früher nach Italien gekommen sein. Darauf deutet der Umstand, dass es als Achtfaches der sonst bekannten Einheit von ca. 13 gr auftritt; denn die Teilung und Multiplikation mit 2, 8, 16 u. s. w. erinnert an uralten ägyptischen Gebrauch, und in späterer Zeit beherrschte in

¹⁾ In dem Museum der Villa di Papa Giulio finden sich noch drei andere aus Grabfunden stammende Terracotta-Gewichte, die in obigen Tabellen nicht erwähnt wurden. Eines von ihnen, das gegenwärtig 640 grwiegt und ursprünglich 50.13,3 = 665 gr schwer gewesen sein mag, gehört ins dritte Jahrhundert v. Chr.

Acgypten ausschliesslich die dezimale, in Vorderasien daneben die duodezimale Teilung das Gewichtssystem. Da grössere Einheiten auf den ältesten ägyptischen Gewichten, die eine Aufschrift tragen, nicht genannt werden, so lässt sich schwer entscheiden, ob hier in früherer Zeit ein dem tvin entsprechendes Gewicht üblich war. Wir müssen dafür die nicht bezeichneten. von Flinders Petrie veröffentlichten Gewichte durchsehen: aus ihnen lässt sich in der That eine grosse Anzahl zusammenstellen. die sich als Vielfache unseres tvin ergeben, und zwar sowohl aus den älteren Ausgrabungen von Kahun und Gurob als aus den jüngeren von Naukratis und Tanis.1) Ausserden könnte man die berühmten Tributlisten aus dem Tempel von Karnak zu Rate ziehen, in denen die in Gold oder Silber gezahlten Tribute asiatischer Völker nach debn und kite aufgezählt sind, und von denen man mit Recht nach Brandis vermutet, dass die Angaben sich auf ursprünglich in runden asiatischen Gewichtseinheiten gemachte Lieferungen beziehen. Auf diese Frage soll gegenwärtig nicht mehr eingegangen werden. denn es müsste eine erneute Bearbeitung der altägyptischen Gewichtssysteme voraufgehen (vergl. oben die Einleitung).

Noch in ptolemäischer Zeit ist in Aegypten ein Gewicht in Gebrauch gewesen, das mit dem Gewichte von Sermide übereinstimmt, nämlich 954 gr wiegt. Nach Revillout²) lautet die Uebersetzung der demotischen Aufschrift dieses von Mariette publizirten Gewichtes: "2 tema de l'atelier de fonderie du; temple du seigneur d'Hermopolis." Das Stück wiegt 1908 gr es wäre also ein tema in der That gleich 954 = 9.106 gr = 9 tvin. Die Aufschrift wird aber von Griffith anders übersetzt; deshalb können wir keine sicheren Schlüsse ziehen.

Auch die in § V besprochenen Aichzeichen lassen sich auf ägyptischen Gewichten nicht nachweisen. Das mit dem Zeichen — äquivalente Zeichen — (vergl. oben p. 98) findet sich

¹) Im ägyptischen Museum zu Turin befindet sich ein Bronzegewicht von 108 gr, stark oxydirt, also gerade gleich 1 tvin.

²) Vergl. Revillout, Revue égyptologique 2^{ième} année 1881, p. 183 Anmk. und Nr. 28 der Liste von Griffith.

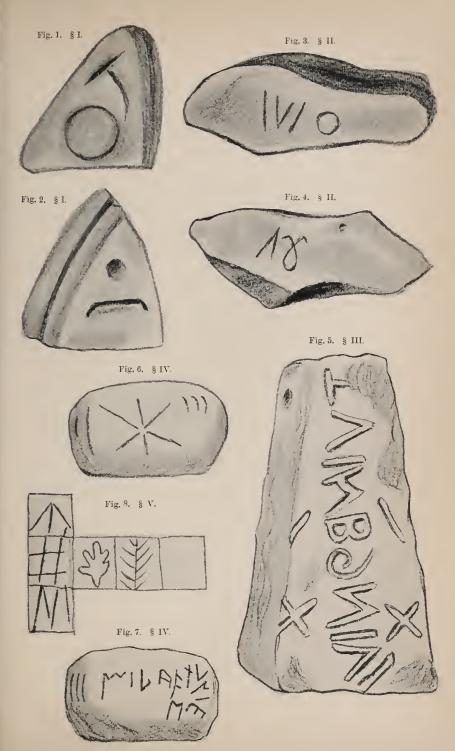
auf einer Vase aus Tanis, die aus der Zeit der XX.—XXV. Dynastie stammt; es ist auf diesem Gefässe vielleicht auch als Aichzeichen zu deuten

Auf einer andern Scherbe aus Tanis¹) findet sich das Pentagramm zusammen mit der Kartouche des Königs Aahnues (XXVI. Dynastie 564—526 v. Chr.), also aus der Zeit des Pythagoras, mit dem dies symbolische Zeichen nach alter Ueberlieferung in Verbindung gebracht wird. Dasselbe Pentagramm fand ich auf einem Scherben vom Fusse einer Thonvase des Museo civico zu Adria (ebenda auf einem andern Scherben das verwandte Zeichen, gebildet von zwei sich durchsetzenden Dreiecken), ferner auf zwei derartigen Scherben von Vasenfüssen im Museum zu Marzabotto. Auch hierin sehen wir eine Bestätigung unserer früheren Entwicklungen über die Beziehungen der pythagoräischen Lehren zu den Aegyptern und Etruskern (vergl. §§ 19 und 20 meiner früheren Arbeit).

Für die Geschichte der Ziffern, durch welche ich zur Untersuchung der Gewichte geführt wurde, haben wir das Resultat gefunden, dass um die Zeit des Pythagoras demotische Ziffern in Italien geschrieben wurden, dass aber in den ältesten Zeiten sowohl hieratische Ziffern aus Aegypten, als babylonische und phönikische Ziffern vorkommen. Belege hierfür sind die in § I, II und III besprochenen Gewichte Nr. 1, 2, 3, das auf p. 84 erwähnte Gewicht aus Marzabotto, das Stück Nr. 31 in § V, Nr. 32 und 36 in § VI und Nr. 26 in § IX. Auch hierin erkennen wir weitere Anhaltspunkte für die von mir früher entwickelte historische Uebersicht über die Wanderung der Zahlzeichen.

¹⁾ Vergl. Flinders Petric, Tanis, Band II, Pl. XXVI, Fig. 5 und Pl. I, sowie p. 109.

Nachtrag.


Inzwischen habe ich im April d. J. Gelegenheit gehabt. das Gewicht von Sermide (§ III) im Museum zu Mantua genauer zu studiren (während bei meiner früheren Anwesenheit der betr. Schrank nicht geöffnet werden konnte) und zu wiegen. Das Gewicht beträgt darnach nicht 930, sondern 935 gr. Ferner ist das Stück an einer Seitenfläche, die man bei der Corssenschen Abbildung nicht sieht, stärker verletzt, als ich früher annehmen konnte. Das ursprüngliche Gewicht kann daher mit ziemlicher Sicherheit auf etwa 980 gr angesetzt werden, so dass ein tvin nicht gleich 106,4 gr, sondern gleich 109 gr zu setzen wäre, d. h. gleich dem Betrage, der auch schon oben als vielleicht zulässig angegeben wurde (vergl. p. 119 und 126 und Nr. 42, 62, 77, 87, 88 in § VIII).

Besonders wichtig für den Zusammenhang Ober-Italiens mit Aegypten sind die beiden in der ersten Anmerkung auf p. 106 erwähnten Terracotta-Pyramiden im Museum zu Mantua, auf denen das ägyptische Wort zute vorkommt; die Anzahl der zute ist auf dem einen Gewichte in demotischen Ziffern, auf dem andern mit dem in etruskischen Buchstaben geschriebenen ägyptischen Zahlworte angegeben. Beide Gewichte tragen (wie wir es oben mehrfach sehen, vergl. § IV, Nr. 4 und § V, Nr. 31) eine zweite Angabe, ebenfalls ägyptisch in etruskischer Transscription, die zeigt, dass auch das äthiopische Honig-Gewicht in Italien Eingang gefunden hatte. Auf diese Stücke konnte ich im Vorstehenden nicht eingehen, da es mir erst jetzt möglich war, ihr Gewicht zu bestimmen.

Meine auf p. 112 ausgesprochene Vermuthung über den Zweck der Durchbohrungen bei den Terracotta-Pyramiden ist inzwischen dadurch bestätigt worden, dass ich im Museo civico zu Rovereto noch Holz-Reste in der Durchbohrung einer solchen Pyramide (Fundort Chizzola) bemerkte.

Inhalt.

			Seite
S	I.	Ein Gewicht mit ägyptischer Aufschrift aus dem fränki-	
		schen Jura	74
S	H.	Ein Gewicht mit ägyptisch-phönikischer Aufschrift aus	
		dem fränkischen Jura	81
§	III.	Ein Gewicht aus Sermide mit ägyptischer Aufschrift .	85
S	IV.	Einige Gewichte aus Marzabotto	90
Ş	V.	Aichzeichen auf altitalischen Gewichten	97
S	VI.	Einige andere Gewichtszeichen	107
Ş	VII.	Die Verbreitung der besprochenen Gewichtseinheiten.	
		A) Die Einheit von 98,5 bez. 49,25 und 19,7 gr .	111
S	VIII.	Fortsetzung. B) Die Einheit des tvin-Gewichtes	119
Š	IX.	Fortsetzung. C) Die Einheit von 13,3 gr	127
S	X.	Chronologisches	130

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.a

Sitzungsberichte

der

königl. bayer. Akademie der Wissenschaften.

Mathematisch-physikalische Classe.

Sitzung vom 6. Mai 1899.

Herr P. Groth legt eine Abhandlung des Herrn Dr. Ernst Weinschenk, Privatdozenten an der Universität: "Zur Classifikation der Meteoriten" vor.

Zur Classification der Meteoriten.

Von Dr. E. Weinschenk.

(Eingelaufen 6. Mai.)

Trotz des ausserordentlich bedeutenden Umfanges, welchen die Meteoritenliteratur namentlich in den beiden letzten Jahrzehnten angenommen hat und trotz des grossen Interesses, welches weite Kreise diesen Gebilden entgegenbringen, ist bis heute merkwürdigerweise von keiner Seite der Versuch gemacht worden, die modernen Anschauungen der Petrographie auch auf die Classification der Meteoriten anzuwenden, und dieselben in ein System zu bringen, welches wenigstens einigermassen ein natürliches genannt werden kann.

Unser heutiges System fusst auf der von Gust. Rose im Jahre 1864 aufgestellten Eintheilung, welche später von Tschermak und Brezina mehrfach erweitert wurde, wobei im Allgemeinen die schon makroskopisch leichter zu unterscheidenden Eisenmeteo-

riten eine Trennung nach ihrer Zusammensetzung und Structur erfahren haben, während dagegen bei den Steinmeteoriten. deren structurelle und mineralische Verhältnisse zu erforschen erst den modernsten petrographischen Methoden gelungen ist, die Eintheilung zum grossen Theil nach rein äusserlichen Gesichtspunkten ausgeführt wurde, welche einer wissenschaftlichen Kritik keineswegs Stand halten. Um von diesem System auf ein eigentlich petrographisches überzugehen, bedarf es einer vollständigen Neugestaltung, allerdings nicht in dem Sinne Meuniers, welcher bei den Steinmeteoriten nur die Art des Auftretens und die Menge des in denselben enthaltenen Nickeleisens als Eintheilungsprincip annimmt, sondern eines Princips, welches thatsächlich auf bezeichnende Eigenthümlichkeiten der Steinmeteoriten sich stützt. Eine kleine Reihe von Meteorsteinen unterscheidet man von der grossen Masse derselben, welche bei oberflächlicher Betrachtung recht einförmig erscheinen. leicht durch ihre abweichende mineralische und chemische Zusammensetzung, sowie durch ihre Struktur; sie wurden daher schon frühe als besondere Typen ausgeschieden und werden in jedem System ihren Rang als selbständige Gesteine einnehmen müssen.

Es sind dies die von G. Rose und seinen Nachfolgern als Angrit, Bustit. Chassignit, Chladnit, Eukrit, Howardit, Shergottit und Ureilit bezeichneten Gesteinsarten. — meist ausserordentlich seltene Vorkommnisse, welche insgesammt ca. 20 Fälle umfassen, — ferner die gleichfalls nicht sehr verbreiteten kohligen Chondrite, welche durch die Eigenart ihrer Zusammensetzung die am schärfsten abgegrenzte Gruppe bilden. Alle übrigen Meteorsteine — ca. 300 an Zahl — werden sodann wegen der bei den meisten hervortretenden Chondrenstruktur als Chondrite zusammengefasst (die sogenannten Amphoterite lassen sich von diesen absolut nicht trennen), welche dann wieder eine Eintheilung nach durchaus äusserlichen Kennzeichen finden, die weder in der chemischen und mineralischen Beschaffenheit der Steine begründet sind noch auch eine ausgesprochene structurelle Classification dar-

139

stellen. Die Gruppen der weissen, intermediären, grauen und schwarzen Chondrite, der Kügelchenchondrite und krystallinischen Chondrite etc. konnte man nur so lange als zusammengehörige Gruppen gelten lassen, als man nicht in der Lage war, die feinere Structur dieser allerdings oft ganz ausserordentlich schwierig zu erforschenden Gebilde zu entziffern. Vom modernen petrographischen Standpunkt aus haben sie etwa ebenso viel Bedeutung wie die Namen der Grünsteine, Trappe, Wacken etc. für die Systematik unserer irdischen Gesteine. Wenn man aber vollends diese einzelnen Gruppen, wie dies heute geschieht, je nach der grösseren und geringeren Anzahl von Rissen, welche dieselben durchsetzen, und die meist mit Schmelzmasse ausgefüllt sind, in die weiteren Unterabtheilungen der geaderten und breccienähnlichen zerlegt, so hat eine solche Eintheilung etwa ebenso viel wissenschaftliche Bedeutung, wie wenn man die Granite z. B. in zerklüftete und nicht zerklüftete eintheilen wollte.

Mit Ausnahme einiger der oben angeführten seltenen Typen gehören alle Steinmeteoriten zu den Magnesiasilicatgesteinen. einer Gruppe von Gesteinen, welche auf unserer Erde nur ganz ausnahmsweise in frischem Zustande vorkommen, die vielmehr bei uns fast stets zu Serpentin geworden sind. Diese Serpentinbildung, wie überhaupt alle wasserhaltigen Mineralien. fehlen vollständig bei dieser ganzen Gruppe von Meteorsteinen und wir haben die ursprüngliche mineralische Zusammensetzung derselben durchaus erhalten. Dieselbe ist aber bei dem geringen Wechsel in der chemischen Zusammensetzung der ganzen Gruppe eine ganz ungemein einförmige, so dass es nicht möglich erscheint, eine Eintheilung der Chondrite auf dieser Basis zu ermöglichen, zumal die Mengenverhältnisse der einzelnen Mineralien in einem und demselben Stein sehr wechselnde sein können. Von der mineralischen Zusammensetzung wird daher bei diesem Classificationsversuch völlig abgesehen. Vielleicht dass später, wenn auf Grund des hier dargelegten Systemes eine bessere Uebersicht der Eigenschaften der Meteorsteine ermöglicht ist, auch das mineralogische Princip sich als nicht ganz unfruchtbar für die Classificirung erweist. Wir sind also für die Eintheilung der Chondrite ausschliesslich auf die Merkmale ihrer Mikrostructur angewiesen, welche auch, wie im Folgenden gezeigt wird, in durchaus ungezwungener Weise die Aufstellung eines Systems gestatten.

Die Untersuchungen müssen natürlich auf möglichst breiter Basis ausgeführt werden, wenn man zu einer allgemein gültigen Theilung gelangen will, und ich habe mich daher bemüht, ausser dem in der Meteoritensammlung der Akademie befindlichen, recht reichhaltigen Material möglichst viele andere Steinmeteorite dem mikroskopischen Studium zu unterziehen, wozu mir in liberalster Weise von den verschiedensten Seiten das Material zur Verfügung gestellt wurde. Namentlich den Herren Prof. Cohen, Berwerth und Fletcher, ferner Herrn Geo. F. Kunz bin ich in dieser Beziehung zu grossem Dank verpflichtet.

Als erstes und wichtigstes Resultat einer auf viele hundert Dünnschliffe ausgedehnten Untersuchung von über zweihundert Lokalitäten ist zunächst zu betonen, dass bei allen jenen Steinmeteoriten, von welchen zu solchen Studien taugliches Material— sehr dünne Schliffe, welche weder stark rostig noch auch zu sehr zerrissen sind— vorlag, mit Sicherheit constatirt werden konnte, dass die Structur derselben, welche allerdings oft erst mit starken Immersionssystemen und bei Anwendung eines Beleuchtungsapparates mit Centrumsblenden etc. gut kenntlich wird, mit Sicherheit auf eine Entstehung der Chondrite aus dem Schmelzfluss hinweist und fast stets eine durchaus krystallinische ist oder doch jedenfalls gewesen ist.

Allerdings ist diese ursprünglich krystallinische Structur häufig verwischt und oft fast unkenntlich gemacht und zwar hauptsächlich in zwei Arten, welche unter sich weit abweichen. Einmal dadurch, dass eine mehr oder minder fortgeschrittene Zermalmung der einzelnen Gemengtheile¹), eine Auflockerung

¹⁾ Auf die Ursachen dieser verschiedenen Umbildungen einzugehen, ist hier nicht der Platz. Dieselben werden vielmehr in einer Studie über

des ganzen Gefüges eingetreten ist, welcher eine grosse Anzahl von Steinmeteoriten ihr eigenartiges "tuffartiges" Aussehen verdankt, und auf welche auch von Linck kürzlich hingewiesen wurde. Eine andere Art der Umbildung besteht darin, dass die betreffenden Steine entweder in ihrer ganzen Masse oder wenigstens im grössten Theil derselben injicirt sind mit einer schwarzen Substanz, welche alle Eigenthümlichkeiten der Schmelzmasse der Rinde der Meteoriten an sich trägt, und die durch die ganze Art des Auftretens durch ihr Eindringen in alle Spalten der Mineralien und Chondren etc. sich als eine jüngere Bildung charakterisirt, welche aber das ganze Gestein so innig imprägnirt, dass sie zu einem eigentlichen Gesteinsbestandtheil wird.

Die unter dem Namen der Chondrite zusammengefassten Mcteorsteine zeigen ferner einen äusserst wechselnden Gehalt an den eigenthümlichen Gebilden, welche man als Chondren bezeichnet hat, einigen derselben fehlen sie so gut wie ganz (Ensisheim, Pillistfer etc.), andere bestehen fast ausschliesslich aus denselben und lassen kaum Spuren einer Zwischenmasse erkennen. Es ist dabei in hohem Masse charakteristisch, dass unter den stark zermalmten Gesteinen die chondrenreichen vorherrschen, während sie unter denjenigen, welche ihre ursprüngliche Struktur erhalten haben, viel seltener sind. Dagegen traten hier chondrenfreie und chondrenarme Steine häufiger auf. Weitaus die meisten Chondrite zeigen zwischen den stark vorherrschenden Magnesiasilicaten, deren ursprüngliche Körnerform mehr oder weniger deutlich erhalten ist, kleinere oder grössere Flecken einer schwach lichtbrechenden farblosen Substanz, gegen welche die Magnesiasilicate meist gute krystallographische Umgrenzung zeigen, und die geradezu charakterisirt ist dadurch, dass sie fast immer ringsum ausgebildete, aber stark gerundete und daher im Dünnschliff eiförmig erscheinende

die Entstehung der Meteoriten eingehender besprochen werden, welche der Verfasser mit Herrn Prof. Renard zusammen in einiger Zeit veröffentlichen wird.

Individuen dieser Silicate umschliesst. Diese Zwischenklemmungsmasse ist meistens schwach doppelbrechend und zeigt dann mehr oder weniger deutlich die Zwillingslamellirung der Plagioklase, zu welchen sie wohl zu stellen ist. In andern Fällen erkennt man die Doppelbrechung nicht (Chateau Renard), die Substanz hat dann die Eigenschaften des Maskelynits. Sehr viel seltener sind Chondrite, welche eine ursprüngliche, glasige Basis, meist mit krystallitischen Entglasungsproducten enthalten.

Mit der allmähligen Zunahme des Gehaltes an gediegenem Eisen geht dann allmählig wieder die Chondrenstructur verloren und die Uebergangsglieder zu den Eisenmeteoriten sind meist völlig chondrenfrei. Aus den obigen Gesichtspunkten ergibt sich folgende Classification:

A. Eisenarme Meteorsteine.

I. Anormale:1)

- a. Eukrit (Shergottit): Feldspathreich mit ursprünglicher ophitischer Structur.
- b. Chladnit:
 c. Angrit:
 discrete the discret
- d. Chassignit: Vorherrschend Olivin mit körniger Structur.
- e. Bustit: Feldspathfreies f. Howardit: Feldspathhaltiges

Pyroxen. Structur stellenweise ganz breccienartig.

¹⁾ Dieser seinerzeit viel angegriffene Ausdruck von Partsch scheint mir den Charakter dieser Gruppe gegenüber den übrigen am besten zu kennzeichnen, da diese Typen hauptsächlich durch ihre abweichende mineralische Zusammensetzung sich von den übrigen trennen lassen, nicht aber durch den Mangel an Chondren etc., da sich auch bei den übrigen Gruppen einzelne chondrenfreie Steine finden.

E. Weinschenk: Zur Classification der Meteoriten.

II. Normale:

- 1. Meteorsteine mit glasiger Basis und Krystallskeletten (Zertrümmerung nur in den ersten Stadien).
 - a. Typus Ensisheim: Chondren kaum oder nicht entwickelt, mit lichtem Glas und massenhaften Bronzitskeletten in der Grundmasse.

Beispiele: Ensisheim, Bluff Settlement, Pipe Creek. Long Island.

b. Typus Parnallee: Ebenso, aber mit reichlichen. gut ausgebildeten Chondren.

Beispiele: Parnallee, Beaver Creek, Tysnäsöen.

c. Typus Farmington: Chondrenreich mit schwarzer. glasiger Grundmasse und Krystallskeletten.

Beispiel: Farmington.

- 2. Meteorsteine mit Plagioklas (Maskelynit)-ausfüllung, in welcher rundliche Krystalle von Olivin oder Bronzit enthalten sind:
 - a. Structur erhalten, Zertrümmerung höchstens raudlich an den Körnern.
 - a. Typus Pillistfer: Ohne Chondren.

Beispiele: Pillistfer, Guareña.

b. Typus Chateau Renard: Chondren in geringer Anzahl und undeutlich.

Beispiele: Chateau Renard, Wold Cottage, Politz, Drake Creek.

c. Typus Bjelokrinitschie: Chondren zahlreich und gut ausgebildet.

Beispiele: Bjelokrinitschie, Butsura.

- β. Die Krystallkörner sind stets randlich zertrümmert. stellenweise ist die Structur undeutlich.
- a. Typus St. Den is Westrem: Chondren wenig entwickelt.

 Beispiele: St. Den is Westrem, Kernouvé, Erxleben,
 Hartford.

144 Sitzung der math.-phys. Classe vom 6, Mai 1899.

b. Typus Duruma: Chondren zahlreich und gut ausgebildet.

Beispiele: Duruma, Dhurmsala, Savtschenskoje.

- γ. Zertrümmerung weiter fortgeschritten, Structur nur noch stellenweise erhalten.
- a. Typus Manbhoom: Chondren wenig entwickelt. Beispiele: Manbhoom, Honolulu.
- b. Typus Schönenberg: Chondren gut ausgebildet und zahlreich.

Beispiele: Schönenberg, Lesves, Mauerkirchen, Mocs, New Concord.

- δ . Vollendete Zertrümmerung.
- a. Typus Jeliza: Chondren wenig entwickelt. Beispiel: Jeliza.
- b. Typus Pultusk: Chondren zahlreich und gut ausgebildet.

Beispiele: Pultusk, Sokobanja. Knyahinya, L'Aigle.

- c. Typus Eichstädt: Chondren vorherrschend. Beispiele: Eichstädt, Forest. Ochansk.
- d. Typus Ornans: Fast nur Chondren.
 Beispiele: Ornans, Ngawi, Richmond.
- 3. Mit schwarzer schlackiger Masse injicirte Steine.
 - a. Typus Nowo-Urei: Starke Injection, choudrenfrei. Beispiel: Nowo-Urei.
 - b. Typus Tadjera: Fast der ganze Stein umgeschmolzen: mit Chondren.

Beispiele: Tadjera, Indarch, Grossnaja.

c. Typus Orvinio: Nur die Grundmasse umgeschmolzen, stellenweise ohne Injection; mit Chondren.

> Beispiele: Orvinio, Sewrukow. Mac Kinney, Prairie Dog Creek.

d. Typus Krawin: Grundmasse zeigt nur noch Spuren einer Injection: mit Chondren.

Beispiel: Krawin. Gnarrenburg.

E. Weinschenk: Zur Classification der Meteoriten.

B. Eisenreiche Meteorsteine.

1. Mit Chondren.

Typus Kesen: Eisen- und chondrenreiche. normale Steine.

Beispiele: Kesen, Trenzano.

2. Ohne Chondren.

a. Typus Grahamit: Gabbro.

Beispiele: Hamblen Cy., Crab Orchard.

b. Typus Llano del Inca: Olivingabbro.

Beispiel: Llano del Inca.

c. Typus Siderophyr: Pyroxenit mit Tridymit. Beispiel: Rittersgrün.

d. Typus Mesosiderit: Lherzolith. Beispiele: Miney, Sierra de Chaco.

e. Typus Pallasit: Dunit.

Beispiele: Pallas, Brenham Township, Eagle Station.

Die im Obigen aufgeführten Typen sind selbstverständlich nicht als scharf getrennte anzusehen, namentlich sind die verschiedenen Stadien der Veränderung, welche die Steine erlitten haben, durchaus nicht exact gegen einander abzugrenzen. Anderntheils dürften noch einige Lücken vorhanden sein, welche auszufüllen mir das Material mangelte. So dürfte z. B. durch den Krähenberger Meteorstein ein Typus repräsentirt sein, welcher den Charakter einer Contactbreccie an sich trägt, indem mehr oder weniger breite Adern einer makroskopisch schon dunkler erscheinenden und härteren Masse, scharf abgegrenzte Bruchstücke einer lichten und zerreiblichen umschliessen, und zu demselben Typus dürfte auch der Stein von Wawilowka gehören.

Sitzung vom 3. Juni 1899.

- 1. Herr Gustav Bauer legt eine Abhandlung des Herrn Professor L. Maurer in Tübingen: "Ueber die Endlichkeit der Invariantensysteme" vor.
- 2. Herr Richard Hertwig überreicht eine Abhandlung des Assistenten an der zoologisch-zootomischen Sammlung Dr. Franz Doflein: "Amerikanische Dekapoden der k. bayerischen Staatssammlungen".

Ueber die Endlichkeit der Invariantensysteme.

Von L. Maurer.

(Eingelaufen 3. Juni.)

Einleitung.

Herr Hilbert hat den Satz von der Endlichkeit des Formensystems in voller Allgemeinheit bewiesen:¹) er hat bewiesen, dass sich die Invarianten eines Systems von beliebig vielen Grundformen mit beliebig vielen Variabelnreihen als ganze Functionen einer endlichen Anzahl derselben darstellen lassen. Der Gang des Beweises hat zu der Erkenntniss geführt, dass der Satz anch dann seine Geltung behält, wenn man auf die verschiedenen Variabelnreihen verschiedene Substitutionen anwendet, und auch dann, wenn man nicht die Gesammtheit der linearen Substitutionen, sondern nur gewisse Untergruppen derselben zur Anwendung bringt und Invarianz nur gegenüber diesen Untergruppen fordert.

Einer jeden Transformation der Variabeln durch eine lineare und homogene Substitution entspricht eine Transformation der Coefficienten der Grundformen durch eine lineare und homogene Substitution. Man kann daher die Invarianten auch durch die Eigenschaft charakterisiren, dass sie durch eine Gruppe G von linearen und homogenen Substitutionen in sich selbst transformirt werden. Dies lässt sich noch etwas anders

¹) Ueber die Theorie der algebraischen Formen. Math. Annalen Bd. 36, S. 473.

Sitzung der math.-phys. Classe vom 3. Juni 1899.

ausdrücken. Die Coefficienten der Grundformen mögen in irgend einer Reihenfolge mit $x_1, x_2, \ldots x_n$ bezeichnet werden und es seien

$$C_{\varrho}(f) = \sum_{\lambda=1}^{n} \sum_{n=1}^{n} c_{\varrho\lambda\mu} \frac{\partial f}{\partial x_{\lambda}} x_{\mu}$$
 $\varrho = 1, 2, ... r$

die infinitesimalen Transformationen, die die Gruppe G erzeugen. Die Invarianten sind dann durch die r Differentialgleichungen

$$C_{\varrho}(f) = 0$$

definirt.

Es ist nun eine naheliegende Frage — Herr Hilbert hat sie im 42. Annalenband (S. 314) ausdrücklich formulirt – : entspricht jeder linearen und homogenen Transformationsgruppe, oder was dasselbe sagen will, jedem System von partiellen Differentialgleichungen $C_{\varrho}(f)=0$, ein endliches Formensystem? Ich werde im Folgenden beweisen, dass das in der That der Fall ist: es lassen sich alle ganzen Functionen, die den partiellen Differentialgleichungen $C_{\varrho}(f)=0$ genügen, als ganze Functionen einer endlichen Anzahl derselben darstellen.

Das Beweisverfahren, das im Folgenden angewendet wird. führt mit Nothwendigkeit zu einer Erweiterung des Satzes.

Angenommen, die Grössen x seien nicht unabhängig von einander, sondern genügen einem System algebraischer Gleichungen

$$(F) F_1 = 0 F_2 = 0 .. F_s = 0$$

Dieses Gleichungssystem sei der Gruppe G gegenüber invariantiv, d. h. jedes den Gleichungen (F) genügende Werthsystem der x genüge auch den Gleichungen

$$C_{\varrho}(F_{\sigma}) = 0$$
 $\varrho = 1, 2, ... r : \sigma = 1, 2... s$

Das System der Functionen von $x_1 x_2 \dots x_n$, die den Differentialgleichungen $C_g(f) = 0$ bei Berücksichtigung der Gleichungen (F) genügen, bezeichne ich als "specielles" Invariantensystem der Gruppe G im Gegensatz zu dem "allgemeinen" Invariantensystem, das die Functionen umfasst, die

denselben Differentialgleichungen bei unbeschränkter Variabilität der Grössen x genügen.

Es wird im Folgenden nachgewiesen:

Alle ganzen Functionen, die einem speciellen Invariantensystem angehören, lassen sich als ganze Functionen einer endlichen Anzahl derselben darstellen.

Den Beweis zerlege ich in zwei Theile. Im ersten Theil wird mittelst einer Modification des Hilbertschen Beweisverfahrens nachgewiesen, dass der Satz gilt — und zwar sowohl für das allgemeine Invariantensystem als auch für jedes specielle — wenn die Ordnung der Gruppe G gleich eins ist. wenn also das Invariantensystem durch eine einzige Differentialgleichung bestimmt ist (Art. III und IV). Im zweiten Theil setze ich voraus, der Satz gelte für alle Gruppen, deren Ordnung kleiner als r ist, und beweise, dass er dann auch für eine Gruppe von der Ordnung r gilt. Dabei hat man die beiden Möglichkeiten zu unterscheiden, dass die Gruppe G zusammengesetzt (Art. VI) oder einfach ist (Art. VI).

I.

Im Vorangehenden wurde vorausgesetzt, dass die infinitesimalen Transformationen

$$C_1(f) = C_2(f) \dots C_r(f)$$

eine lineare und homogene Gruppe erzeugen.

Die nothwendige und ausreichende Bedingung hiefür lautet:

Die infinitesimalen Transformationen $C_{\varrho}\left(f\right)$ müssen identischen Gleichungen der Form

$$C_{\varrho} C_{\sigma}(f) - C_{\sigma} C_{\varrho}(f) = \sum_{\tau=1}^{r} \varepsilon_{\tau}^{\varrho\sigma} C_{\tau}(f) \quad \varrho, \sigma = 1, 2, \dots r$$

genügen, wo die $\varepsilon_i^{\sigma\sigma}$ Constante sind.

In einer früheren Arbeit¹) habe ich die Gesammtheit der infinitesimalen Transformationen der Form

$$C(f) = \sum_{\lambda=1}^{n} \sum_{\mu=1}^{n} c_{\lambda\mu} \frac{\partial f}{\partial x_{\lambda}} x_{\mu}$$

¹⁾ Ueber allgemeine Invariantensysteme; diese Berichte 1888, S. 103.

Sitzung der math.-phys. Classe vom 3. Juni 1899.

auf Grund der Eigensehaften der zu C(f) gehörigen charakteristischen Determinante

in drei Classen geteilt.

Ich nenne C(f) regulär von der ersten Art, wenn die charakterische Gleichung $A(\omega) = 0$ keine von Xull verschiedene Wurzel besitzt, ich nenne C(f) regulär von der zweiten Art, wenn die Determinante $A(\omega)$ keinen Elementartheiler höherer Ordnung besitzt und nur für ganzzahlige Werthe vor ω verschwindet. In allen anderen Fällen heisst C(f) irregulär.

Ist C(f) irregulär, so kann man stets eine Anzahl regulärer infinitesimaler Transformationen

$$K_{0}(f) = K_{1}(f) \ldots K_{r}(f)$$

von denen die erste von der ersten Art ist, während die übrigen von der zweiten Art sind, in der Weise bestimmen, dass

$$C(f) = \gamma_0 K_0(f) + \gamma_1 K_1(f) \ldots + \gamma_r K_r(f)$$

wo $\gamma_0 \gamma_1 \dots \gamma_\tau$ Constante sind.

Jede rationale Function von $x_1 x_2 \dots x_n$, die der Differentialgleichung C(f) = 0 genügt, genügt auch den Differentialgleichungen

$$K_0(f) = 0$$
 $K_1(f) = 0$. . $K_2(f) = 0$

Eine lineare und homogene Gruppe bezeichne ich als regulär, wenn die sie erzeugenden infinitesimalen Transformationen so gewählt werden können, dass eine jede regulär ist. In diesem Fall können die Coefficienten der allgemeinen Substitution der Gruppe als rationale Functionen einer Anzahl von verfügbaren Parametern dargestellt werden und umgekehrt gilt der Satz: wenn zwischen den Coefficienten der allgemeinen Substitution der Gruppe nur algebraische Relationen bestehen, so ist die Gruppe regulär.

L. Maurer: Ueber die Endlichkeit der Invariantensysteme, 1

Ich setze voraus, die Gruppe G, die durch die infinitesimalen Transformationen $C_{\varrho}(f)$ erzeugt wird, sei regulär. Hiedurch wird die Allgemeinheit der Untersuchung in keiner Weise beschränkt.

II.

Ganze Functionen zeigen gegenüber den regulären infinitesimalen Transformationen erster und zweiter Art ein durchaus verschiedenes Verhalten.

Ist die infinitesimale Transformation C(f) regulär von der ersten Art, so kann man für jede ganze Function f eine Zahl ν der Art bestimmen, dass $C^{\nu}(f) = 0$ während $C^{\nu-1}(f)$ von Null verschieden ist. 1)

Solange die Variabeln x von einander unabhängig sind, verschwinden mit dem Ausdruck $C^{\nu}(f)$ selbstverständlich auch die Ausdrücke $C^{\nu+1}(f)$ $C^{\nu+2}(f)$ u. s. w. Dies gilt aber auch in dem Fall, dass zwischen den Variabeln invariantive Relationen bestehen, denn alsdann besteht gleichzeitig mit der Gleichung F=0 auch die Gleichung C(F)=0,

Der Beweis der oben aufgestellten Behauptung beruht auf einer Transformation der infinitesimalen Transformation C(f), zu der man auf folgendem Weg gelangt:

Die charakteristische Determinante

$$A(\omega) = \begin{vmatrix} c_{11} - \omega & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} - \omega & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} - \omega \end{vmatrix}$$

besitzt nur Elementartheiler der Form r^e . Die Exponenten dieser Elementartheiler seien der Reihe nach $e_1 e_2 \dots e_m$. Man kann nun n^2 Grössen $[gh\lambda]$ mit nicht verschwindender Determinante der Art bestimmen²), dass

Es ist zweckmässig überdies festzusetzen $C^0(f) = f$.

⁾ lch setze zur Abkürzung in üblicher Weise $CC(f) = C^{\,2}(f) \qquad CCC(f) = C^{\,3}(f) \quad \text{n. s. w.}$

²) Den Beweis habe ich in meiner Inauguraldissertation (Strassburg 1886) gegeben.

Sitzung der math.-phys. Classe vom 3. Juni 1899.

$$\sum_{\lambda=1}^{n} c_{\lambda\mu} [1 h \lambda] = 0 \qquad \mu = 1, 2, \dots n$$

$$\sum_{\lambda=1}^{n} c_{\lambda\mu} [g h \lambda] = (g-1) [g-1 h \mu] \qquad g = 2, 3, \dots c_h$$

Man kann die beiden Formelgruppen in eine zusammenziehen, wenn man mn Grössen $[0h\lambda]$ einführt, auf deren Werthe es nicht ankommt, da sie aus den Formeln wegfallen.

Ich führe nun neue Variable ein mittelst der Substitution:

$$y_{gh} = \sum_{\lambda=1}^{n} [gh\lambda] x_{\lambda}$$

Es ist

$$\frac{\partial f}{\partial x_{\lambda}} = \sum_{h=1}^{m} \sum_{g=1}^{e_h} \frac{\partial f}{\partial y_{gh}} [gh \lambda]$$

Folglich

$$C'(f) = \sum_{\lambda=1}^{n} \sum_{\mu=1}^{n} c_{\lambda\mu} \frac{\partial f}{\partial x_{\lambda}} x_{\mu} = \sum_{h=1}^{m} \sum_{g=1}^{e_{h}} \sum_{\mu=1}^{n} (g-1) [g-1h\mu] x_{\mu} \frac{\partial f}{\partial y_{gh}}$$
$$= \sum_{h=1}^{m} \sum_{g=1}^{e_{h}} (g-1) y_{g-1h} \frac{\partial f}{\partial y_{gh}}$$

Oder ausgeschrieben

$$C(f) = \sum_{h=1}^{m} \left[y_{1h} \frac{\partial f}{\partial y_{2h}} + 2 y_{2h} \frac{\partial f}{\partial y_{3h}} + 3 y_{3h} \frac{\partial f}{\partial y_{4h}} \dots + (e_h - 1) y_{e_h - 1h} \frac{\partial f}{\partial y_{e_h}} \right]$$

Infinitesimale Transformationen dieser Form sind aus der Theorie der Binärformen bekannt.¹) Man bezeichnet in dieser Theorie bekanntlich als Gewicht eines Productes

¹) Die Differentialgleichung C(f) = 0 ist identisch mit der Aronholdschen Differentialgleichung

$$D_{21}^{(1)}(f) + D_{21}^{(2)}(f) + \dots + D_{21}^{(m)}(f) = 0$$

die sich auf das System der m Binärformen

$$y_{1h} \, \xi^{e}_{h}^{-1} + (e_{h} - 1) \, y_{2h} \, \xi^{e}_{h}^{-2} \, \eta + \frac{(e_{h} - 1) \, (e_{h} - 2}{1 \cdot 2} \, \xi^{e}_{h}^{-3} \, \eta^{2} + \dots$$

 $h=1,2,\ldots m$ bezieht. Es genügen derselben bekanntlich die leitenden Coefficienten der Covarianten — die Semiinvarianten — des Formensystems.

L. Maurer: Ueber die Endlichkeit der Invariantensysteme,

$$P = \prod_{h=1}^{m} \prod_{g=1}^{e_h} y_{gh}^{\lambda_{gh}}$$

wo die λ_{gh} ganze nicht negative Zahlen sind, die Summe

$$p = \sum_{h=1}^{m} [\lambda_{2h} + 2\lambda_{3h} + 3\lambda_{4h} \dots + (e_h - 1)\lambda_{e_h^h}]$$

Das Gewicht des Ausdrucks U(P) ist mindestens um eine Einheit geringer als das Gewicht von P, es ist daher sicher $C^{p+1}(P) = 0$ und hieraus ergibt sich die Richtigkeit der oben aufgestellten Behauptung.

Aus dem eben bewiesenen Satz folgt: eine ganze Function f kann keiner Gleichung der Form

$$\gamma_0 f + \gamma_1 C(f) + \gamma_2 C^2(f) \dots + \gamma_{\mu} C^{\mu}(f) = 0$$

genügen, wo die \gamma Constante sind.

Ist nämlich $C^{\nu}(f) = 0$ aber $C^{-\nu_1}(f)$ von Null verschieden, so ergibt sich durch Anwendung der Operation $C^{\nu-1}(f)$ $\gamma_0 = 0$; die Operation $C^{\nu-2}(f)$ ergibt $\gamma_1 = 0$ u. s. w.

Die bisherigen Ausführungen gelten gleichviel, ob die Variabeln x von einander unabhängig sind, oder ob sie einem invariantiven Gleichungssystem genügen. Sind sie von einander unabhängig, so gilt der weitere Satz:

Genügt das Product oder der Quotient zweier relativ primer ganzer Functionen der Differentialgleichung C(f) = 0, so genügt eine jede der beiden Functionen selbst dieser Differentialgleichung.

Aus

$$C(\varphi \psi) = \varphi C(\psi) + \psi C(\varphi) = 0$$

folgt nämlich

$$C(\varphi) = \gamma \varphi$$
 $C(\psi) = -\gamma \psi$

wo γ eine Constante ist.

Aber diese Relationen erfordern $\gamma = 0$.

Nehmen wir nunmehr an, die infinitesimale Transformation C(f) sei regulär von der zweiten Art. In diesem Fall gelten die beiden Sätze:

1. Genügt eine ganze Function f der Differentialgleichung C(f) = kf, so muss k eine ganze Zahl sein.

Ich bezeichne eine ganze Function dieser Art als ausgezeichnete Function und k als ihren Index.

2. Zwei ganze Functionen f und f' können — sofern f' nicht verschwindet — nicht Differentialgleichungen der Form

$$C(f) = kf + f'$$
 $C(f') = kf'$

genügen.

Der Beweis wird wieder vermittelst einer Transformation der infinitesimalen Transformation C(f) geführt.

Es gibt im vorliegenden Fall n^2 Grössen $[r \lambda]$ mit nicht verschwindender Determinante, die den Gleichungen genügen

$$\sum_{k=1}^{n} c_{k\mu} [r\lambda] = \omega_r [r\mu] \quad r, \mu = 1, 2, \dots n$$

Die n Grössen ω_r sind die Wurzeln der charakteristischen Gleichung $A(\omega) = 0$, die zur infinitesimalen Transformation C'(f) gehört, also ganze Zahlen.

Es können sich darunter beliebig viele einander gleiche befinden.

Ich führe nun neue Variable ein durch die Substitution

$$y_r = \sum_{\lambda=1}^n [r\lambda] x_{\lambda} \quad r = 1, 2, \dots n$$

Es ergibt sich

$$C(f) = \sum_{\nu=1}^{n} \omega_{\nu} \frac{\partial f}{\partial y_{\nu}} y_{\nu}$$

Nehmen wir zunächst an, die Variabeln seien von einander unabhängig. In diesem Fall ist ohne weiteres klar, dass die ganze Function f dann und nur dann ausgezeichnete Function ist, wenn für alle Glieder Constans $\times y_1^{i_1}y_2^{i_2}\dots y_n^{i_n}$, aus denen sie sich zusammensetzt, die Summe $\lambda_1 \omega_1 + \lambda_2 \omega_2 \dots + \lambda_n \omega_n$ einen und denselben Wert k hat. Diese ganze Zahl k ist der Index der Function.

Es ist ferner klar, dass sich jede ganze Function als Summe einer Auzahl ausgezeichneter Functionen darstellen lässt. L. Maurer: Ueber die Endlichkeit der Invariantensysteme. 155

Nehmen wir nun einen Augenblick an, es sei

$$C(f) = kf + f'$$
 $C(f') = kf'$

also

$$C^2(f) - 2kC(f) + k^2f = 0$$

Auch in diesem Fall kann f nur solche Glieder Constante $\times y_1^{\lambda_1}y_2^{\lambda_2}\dots y_n^{\lambda_n}$ enthalten, für die $\lambda_1 \omega_1 + \lambda_2 \omega_2 \dots + \lambda_n \omega_n = k$. Ist aber diese Bedingung erfüllt, so C(f) = kf und f' = 0 entgegen der gemachten Voraussetzung.

Nehmen wir nunmehr an, die Variabeln x und also auch die Variabeln y genügen einem System invariantiver Gleichungen.

Wir machen von der eben gemachten Bemerkung Gebrauch, dass sich jede ganze Function f als Summe einer Anzahl von ganzen Functionen $q_1 q_2 \dots q_{\varrho}$ darstellen lässt, von denen jede bei unbeschränkter Variabilität der Grössen y einer Differentialgleichung der Form

$$U(\varphi_{\sigma}) = k_{\sigma} \varphi_{\sigma} \quad (\sigma = 1, 2, \dots \varrho)$$

genügt. Die Darstellung der Function f durch die Function φ kann man so einrichten, dass unter den Indices k_{σ} keine zwei einander gleich sind, und dass keine der ϱ Functionen φ infolge der Relationen zwischen den Variabeln verschwindet.

Unter dieser Voraussetzung können die Functionen q keiner linearen Relation

$$F = \gamma_1 \varphi_1 + \gamma_2 \varphi_2 \dots + \gamma_g \varphi_g = 0$$

nnit constanten Coefficienten γ genügen. Denn mit F=0 bestehen auch die Gleichungen

$$C(F) = \sum_{\sigma=1}^{g} k_{\sigma} \gamma_{\sigma} \varphi_{\sigma} = 0$$
 $C^{2}(F) = \sum_{\sigma=1}^{g} k_{\sigma}^{2} \gamma_{\sigma} \varphi_{\sigma} = 0$ u. s. w.

und diese erfordern unter den gemachten Voraussetzungen, dass alle Constanten γ verschwinden.

Nun ist

$$C(f) - kf = \sum_{\sigma=1}^{\varrho} (k_{\sigma} - k) q_{\sigma}$$

und

$$\ell'^{2}(f) - 2k \ell'(f) + k^{2}f = \sum_{\sigma=1}^{2} (k_{\sigma} - k)^{2} \varphi_{\sigma}$$

Sitzung der math.-phys. Classe vom 3. Juni 1899.

Es ist sonach ersichtlich:

Die Gleichung C(f) = kf erfordert $\varrho = 1$ $f = \varphi_1$ $k = k_1$. Die Forderung $C^2(f) = 2kC(f) + k^2f = 0$ C(f) = kf von Null verschieden führt zu einem Widerspruch.

Aus dem Vorangehenden ergibt sich, dass sich jede ganze Function, die der Gleichung C(f) = kf bei Berücksichtigung der Relationen zwischen den Variabeln genügt, als ganze Function darstellen lässt, die derselben Differentialgleichung auch bei unbeschränkter Variabilität der Grössen y genügt.

III.

Nunmehr kann man die Endlichkeit eines Invariantensystems, das durch eine einzige reguläre Differentialgleichung zweiter Art bestimmt wird, leicht beweisen.

Auf Grund des Fundamentaltheorems des Herrn Hilbert lassen sich alle ganzen Invarianten¹) unseres Systems als lineare und homogene Functionen einer endlichen Anzahl derselben $i_1 i_2 \dots i_m$ darstellen. Die Coefficienten dieser Linearformen sind ganze Functionen der Variabeln x.

Nach Herrn Hilberts Vorgang beweisen wir zunächst:

Die Darstellung lässt sich so einrichten, dass die auftretenden Coefficienten ebenfalls ganze Invarianten sind. Diese Coefficienten kann man dann ebenfalls als lineare und homogene Functionen von $i_1 i_2 \dots i_m$ der Art darstellen, dass die Coefficienten wieder ganze Invarianten sind. In dieser Weise fortfahrend überzeugt man sich von der Richtigkeit des Satzes.

Es sei nun

$$J = a_1 i_1 + a_2 i_2 \ldots + a_m i_m$$

eine beliebige ganze Invariante des Systems: $a_1 a_2 \dots a_m$ sind ganze Functionen der Variabeln x.

Die Coefficienten a lassen sich als lineare und homogene Functionen einer Anzahl von ausgezeichneten Functionen $q_1q_2...q_n$

¹⁾ Es ist allgemein üblich, rationale Functionen, die invariant sind, als "rationale Invarianten" zu bezeichnen. Dementsprechend bezeichne ich invariante ganze Functionen als "ganze Invarianten".

L. Maurer: Ueber die Endlichkeit der Invariantensysteme. 157

der Art darstellen, dass die Coefficienten Constante sind. Sei etwa

$$a_{\mu} = \sum_{\sigma=1}^{g} a_{\mu\sigma} \varphi_{\sigma} \quad \mu = 1, 2, \dots m$$

wo die $a_{\mu\sigma}$ Constante sind.

Die Indices der ausgezeichneten Functionen $\varphi_1 \varphi_2 \dots \varphi_{\varrho}$ bezeichne ich wieder mit $k_1 k_2 \dots k_{\varrho}$. Unter denselben können beliebig viele einander gleiche vorkommen.

Sind alle Indices gleich Null, so sind alle Coefficienten a Invarianten. Nehmen wir an, es sei wenigstens k_g von Null verschieden. Nun ist wegen

$$C(J) = 0$$
 und $C(i_n) = 0$

auch

$$\sum_{\mu=1}^{m} C\left(a_{\mu}\right) i_{\mu} = 0$$

also

$$J = \sum_{n=1}^{m} \left[a_n - \frac{1}{k_g} C(a_n) \right] i_n$$

und

$$a_{\mu} - \frac{1}{k_{\varrho}} C(a_{\mu}) = \sum_{\sigma=1}^{\varrho-1} \left(1 - \frac{k_{\sigma}}{k_{\varrho}}\right) a_{\mu\sigma} \varphi_{\sigma}$$

Die in der neuen Darstellung von J auftretenden Coefficienten $a_{\mu} = \frac{1}{k_{\varrho}} C\left(a_{\mu}\right)$ lassen sich somit als Summen von höchstens $\varrho = 1$ ausgezeichneten Functionen darstellen. Man kann offenbar das eben angewendete Verfahren solange fortsetzen, bis man zu einer Darstellung von J gelangt, bei der nur mehr Invarianten als Coefficienten auftreten.

Mit Hilfe des Hilbert'schen Verfahrens kann man auch leicht zeigen, dass sich alle ausgezeichneten Functionen als ganze Functionen einer gewissen Anzahl derselben darstellen lassen.

IV.

Da die ganzen Invarianten, die durch eine reguläre Differentialgleichung erster Art bestimmt sind, als Semi-invarianten eines Systems von Binärformen betrachtet werden können, so ergibt sich die Endlichkeit des Formensystems aus dem Gordan schen Satz. sofern die Grössen x von einander unabhängig sind. Dagegen bleibt der Fall, dass Relationen zwischen ihnen bestehen, noch zu erledigen.

Geht man von der in Art. II nachgewiesenen Normalform der regulären infinitesimalen Transformation erster Art aus:

$$C(f) = \sum_{h=1}^{m} \left[y_{1h} \frac{\partial f}{\partial y_{2h}} + 2y_{2h} \frac{\partial f}{\partial y_{3h}} \dots + (c_h - 1) y_{c_h - 1h} \frac{\partial f}{\partial y_{c_h} h} \right]$$

so erkennt man: es gibt eine reguläre infinitesimale Transformation zweiter Art

$$A(f) = \sum_{h=1}^{m} \left[(e_{h} - 1) y_{1h} \frac{\partial f}{\partial y_{1h}} + (e_{h} - 3) y_{2h} \frac{\partial f}{\partial y_{2h}} \dots - (e_{h} - 3) y_{e_{h} - 1h} \frac{\partial f}{\partial y_{e_{h} - 1h}} - (e_{h} - 1) y_{e_{h}}^{h} \frac{\partial f}{\partial y_{e_{h}}^{h}} \right]$$

und eine reguläre infinitesimale Transformation erster Art

$$B(f) = \sum_{h=1}^{m} \left[(e_h - 1) y_{2h} \frac{\partial f}{\partial y_{1h}} + (e_h - 2) y_{3h} \frac{\partial f}{\partial y_{2h}} \dots + y_{e_h h} \frac{\partial f}{\partial y_{e_h - 1h}} \right]$$

die den identischen (für beliebige Functionen f giltigen) Gleichungen genügen:¹)

$$\sum_{h=1}^{m} \left[D_{11}^{(h)}(f) - D_{22}^{(h)}(f) \right] \sum_{h=1}^{m} D_{12}^{(h)}(f) \sum_{h=1}^{m} D_{21}^{(h)}(f)$$

— Es ist zu bemerken: einer bestimmten Normalform von C(f) entsprechen bestimmte infinitesimale Transformationen A(f) und B(f). Weil aber die Transformation von C(f) in die Normalform von willkürlich zu wählenden Parametern abhängt, so sind die der infinitesimalen Transformation C(f) zu adjungirenden Transformationen A(f) und B(f) nicht vollkommen bestimmt.

⁾ Aronhold gebraucht für die infinitesimalen Transformationen A(f) B(f) C(f) die Bezeichnungen

159 L. Maurer: Ueber die Endlichkeit der Invariantensysteme.

(1)
$$AB(f) - BA(f) = -2B(f)$$
 $AC(f) - CA(f) = 2C(f)$
 $CB(f) - BC(f) = A(f)$

Zwischen den infinitesimalen Transformationen A(f)B(f)C(f)finden eine Reihe von bemerkenswerthen Beziehungen statt. Sie ergeben sich — was einer später zu machenden Anwendung wegen (Art. IV) betont werden muss — aus den Gleichungen (1). ohne dass es nöthig wäre, auf die oben angegebenen expliciten Ausdrücke dieser infinitesimalen Transformationen zurückzugreifen.

Es ist für eine beliebige Function f

(2)
$$AB^{\nu}(f) - B^{\nu}A(f) = -2\nu B^{\nu}(f) AC^{\nu}(f) - C^{\nu}A(f) = 2\nu C^{\nu}(f)$$

 $C^{\nu}B(f) - BC^{\nu}(f) = \nu C^{\nu-1}A(f) + \nu(\nu-1)C^{\nu-1}(f)$
 $B^{\nu}C(f) - C^{\nu}B^{\nu}(f) = -\nu B^{\nu-1}A(f) + \nu(\nu-1)B^{\nu-1}(f)$

Man beweist diese Gleichungen leicht durch den Schluss von ν auf $\nu + 1$.

Nehmen wir nunmehr an, f sei ganze Function und es sei A(f) = kf, also f der infinitesimalen Transformation A(f)gegenüber ausgezeichnete Function, dann gilt für $\lambda < \mu$ die Gleichung

(3)
$$C^{\mu}B^{\lambda}(f) - B^{\lambda}C^{\mu}(f) = \sum_{\sigma=1}^{\lambda} \gamma_{\sigma}(\mu, \lambda, k) B^{\lambda-\sigma}C^{\mu-\sigma}(f)$$

Hier ist

$$\gamma_{\sigma}(\mu, \lambda, k) = (\sigma!)^2 (\mu)_{\sigma} (\lambda)_{\sigma} (\mu - \lambda + k)_{\sigma}$$

Man beweist diese Gleichung leicht durch den Schluss von λ auf $\lambda + 1$.

Nehmen wir nun an, es sei $C^{\nu}(f) = 0$ aber $C^{\nu-1}(f)$ von Null verschieden und es sei à die kleinste Zahl, für die die Gleichung $B^{\lambda}(f) = 0$ besteht.

Setzen wir $\mu = \lambda + \nu - 1$, dann verschwinden in der Gleichung (3) die beiden Glieder auf der linken Seite und auf der rechten Seite alle Glieder mit Ausnahme des letzten $\gamma_{\lambda}(\lambda+\nu-1,\lambda,k) C^{\nu-1}(f)$. Nun ist

$$\gamma_{\lambda}(\lambda+\nu-1,\lambda,k) = (\lambda!)^2(\lambda+\nu-1)_{\lambda}(\nu-1+k)_{\lambda}$$

Es muss also eine der Zahlen

$$v-1+k$$
 $v-2+k...$ $v-\lambda+k$

gleich Null sein, daher ist

$$1 < r + k < \lambda$$

Wenn die Variabeln x von einander unabhängig sind, lässt sich die Beziehung zwischen den Zahlen λ , ν , k noch genauer angeben.

Die Gleichungen (1) bleiben bestehen, wenn man B(f) und C(f) vertauscht und A(f) durch -A(f) ersetzt.

Tritt -A(f) an Stelle von A(f), so tritt -k an Stelle von k. Es gilt daher die der Gleichung (3) entsprechende Gleichung

$$B^{\mu} C^{\nu}(f) - C^{\nu} B^{\mu}(f) = \sum_{\sigma=1}^{\nu} \gamma_{\sigma}(\mu, \nu, --k) C^{\nu-\sigma} B^{\mu-\sigma}(f) \qquad \mu \ge \nu$$

Ich setze wieder $\mu = \lambda + \nu - 1$. Es ergibt sich in diesem Fall

$$\gamma_{\nu}(\lambda+\nu-1,\nu,-k) = (\nu!)^{2}(\lambda+\nu-1)_{\nu}(\lambda-k-1)_{\nu} = 0$$

und es muss daher eine der Zahlen

$$\lambda = 1-k$$
 $\lambda = 2-k \dots \lambda = \nu - k$

gleich Null sein. Es ist also

$$1 + k \le \lambda \le \nu + k$$

und folglich ist

$$r + k = \lambda$$

Diese Schlussweise ist nicht anwendbar, wenn die Variabeln einem Gleichungssystem genügen, das gegenüber der infinitesimalen Transformation C(f) aber nicht gegenüber B(f) invariantiv ist. Denn dann folgt zwar aus dem Verschwinden von $C^{\nu}(f)$ das Verschwinden von $C^{r+1}(f)$ $C^{r+2}(f)$ u. s. w. aber aus der Gleichung $B^{k}(f) = 0$ folgt nicht $B^{k+1}(f) = 0$.

Die Function f' = BC(f) ist ebenso wie f der infinitesimalen Transformation A(f) gegenüber ausgezeichnet und ihr Index ist ebenfalls = k.

L. Maurer: Ueber die Endlichkeit der Invariantensysteme. 161

Es ergibt sich dies aus den Identitäten

$$A(f') = ABC(f) = (AB - BA)C(f) + B(AC - CA)(f) + BCA(f)$$

= -2BC(f) + 2BC(f) + kBC(f) = kf'

Aus (1) folgt

$$AC(f) = (k+2)C(f)$$

und aus (2)

$$(C^{\nu}B - BC^{\nu})C(f) = r(r+k+1)C^{\nu}(f)$$

Folglich ist

$$C^{r}(f') = C^{r}BC(f) = r(r+k+1)C^{r}(f) + BC^{r+1}(f)$$

Dementsprechend ist für r > 1

$$C^{\nu-1}(f') = (\nu-1)(\nu+k)C^{\nu-1}(f) + BC^{\nu}(f)$$

Da $\nu + k$ eine ganze positive Zahl ist, so ist $C^{\nu}(f') = 0$ und wenn $\nu > 1$ $C^{\nu-1}(f')$ von Null verschieden.

Aus dem Bewiesenen folgt:

Unter der Voraussetzung r > 1 ist die ganze Function $\varphi = f - \frac{1}{(r-1)(r+k)}BC(f)$ ebenso wie f der infinitesimalen Transformation A(f) gegenüber ausgezeichnet und sie hat denselben Index k. Sie genügt überdies der Differentialgleichung $C^{r-1}(\varphi) = 0$.

Nach diesen Vorbereitungen kann man das Hilbert'sche Beweisverfahren anwenden.

Eine jede ganze Invariante J der durch C(f) erzeugten eingliedrigen Gruppe lässt sich als lineare und homogene Function einer gewissen Anzahl derselben $i_1 i_2 \ldots i_m$ darstellen. Sei etwa

$$J = a_1 i_1 + a_2 i_2 \ldots + a_m i_m$$

wo $a_1 a_2 \dots a_m$ ganze Functionen der Variabelu x sind. Es kommt wieder nur darauf an zu beweisen, dass sich die Darstellung so einrichten lässt, dass die Coefficienten a ebenfalls ganze Invarianten sind. Wir denken uns diese Coefficienten als lineare und homogene Functionen einer Anzahl in Bezug

auf die infinitesimale Transformation A(f) ausgezeichneter Functionen $g_1 g_2 \dots g_n$ dargestellt. Sei

Sitzung der math,-phys. Classe vom 3, Juni 1899.

$$a_{\mu} = \sum_{\sigma=1}^{q} a_{\mu\sigma} \, \varphi_{\sigma} \quad \mu = 1, 2, \dots m$$

wo die Coefficienten $\alpha_{\mu\sigma}$ Constante sind.

Der Index der Function φ_{σ} in Bezug auf A(f) sei k_{σ} und es sei $C^{r_{\sigma}}(\varphi_{\sigma}) = 0$ aber $C^{r_{\sigma}-1}(\varphi_{\sigma})$ von Null verschieden. Sind alle Zahlen $r_{\sigma} = 1$, so sind die Coefficienten a Invarianten. Nehmen wir an, eine dieser Zahlen — etwa r_{ϱ} — sei > 1. Nun ist wegen C(J) = 0 und $C(i_{\varrho}) = 0$

$$\sum_{n=1}^{m} BC(a_n) i_n = 0$$

also

$$J = \sum_{\mu=1}^{m} \left[a_{\mu} - \frac{1}{(r_{\varrho} - 1)(r_{\varrho} + k_{\varrho})} BC(a_{\mu}) \right] i_{\mu}$$

An Stelle der Functionen qu treten nunmehr die Functionen

$$\psi_{\sigma} = \varphi_{\sigma} - \frac{1}{(\nu_{\sigma} - 1)(\nu_{\sigma} - k_{\sigma})} BC(\varphi_{\sigma})$$

Die ψ_{σ} sind ebenso wie die φ_{σ} ausgezeichnete Functionen in Bezug auf A(f) und es ist für $\sigma = 1, 2, \dots \varrho - 1$ $C^{r_{\sigma}}(\psi_{\sigma}) = 0$, aber ausserdem ist $C^{r_{\varrho}-1}(\psi_{\varrho}) = 0$.

Durch wiederholte Anwendung des eben benützten Verfahrens gelangt man offenbar zu einer Darstellung von J, bei der als Coefficienten nur ganze Invarianten auftreten.

V.

Wir nehmen nun an. der Satz von der Endlichkeit des Formensystems gelte für alle Gruppen, deren Ordnung < r ist, und beweisen, dass er dann auch für alle zusammengesetzten Gruppen von der Ordnung r gilt.

Zu diesem Zweck soll zunächst gezeigt werden:

Besitzt die von den regulären infinitesimalen Transformationen

$$C_1(f) = C_2(f) \dots C_r(f)$$

erzeugte Gruppe r^{ter} Ordnung G eine ausgezeichnete Untergruppe Γ , so besitzt sie sicher eine reguläre ausgezeichnete Untergruppe.

Damit G überhaupt eine ausgezeichnete Untergruppe I der Ordnung ϱ besitzt, ist erforderlich, dass man ϱ linear unabhängige in der Gruppe G enthaltene infinitesimale Transformationen

$$K_{\scriptscriptstyle 1}(f) \qquad K_{\scriptscriptstyle 2}(f) \ . \ . \ . \ K_{\scriptscriptstyle \varrho}(f)$$

der Art bestimmen kann, dass

$$C_{\lambda} K_{\mu}(f) - K_{\mu} C_{\lambda}(f) = \sum_{r=1}^{\varrho} \delta_{r}^{\lambda \mu} K_{r}(f) \quad \lambda = 1, 2, ... r \colon \mu = 1, 2... \varrho$$

wo die $\delta_{\nu}^{\lambda\mu}$ Constante sind.

Es kann der Fall eintreten, dass jede der Untergruppe I angehörende Substitution T mit jeder Substitution S der Gruppe G vertauschbar ist, dass also ST = TS. In diesem Fall müssen alle Constanten $\delta_r^{\lambda\mu}$ verschwinden und es ist demnach auch jede infinitesimale Transformation $K_{\mu}(f)$ von I mit jeder infinitesimalen Transformation $C_{\lambda}(f)$ von G vertauschbar.

Nehmen wir nun an, die Gruppe I' sei nicht regulär und $K_1(f)$ sei eine ihr angehörende nicht reguläre infinitesimale Transformation. Jede derartige infinitesimale Transformation lässt sich als Summe einer Anzahl regulärer Transformationen

$$L_1(f) = L_2(f) \dots L_k(f)$$

darstellen (vergl. Art. I). Alle diese infinitesimalen Transformationen gehören der Gruppe G an.

Man kann nun leicht beweisen: ist eine beliebige infinitesimale Transformation C(f) mit $K_1(f)$ vertauschbar, so ist C(f) auch mit jeder der infinitesimalen Transformationen $L_1(f)$ $L_2(f)$. $L_k(f)$ vertauschbar. Die Gesammtheit der regulären Transformationen L(f), zu denen man durch Zerlegung der ϱ Transformationen $K_{\mu}(f)$ gelangt, erzeugen offenbar eine reguläre Gruppe I', der folgende Eigenschaften zukommen:

- 1. Jede in I' enthaltene infinitesimale Transformation ist mit jeder in G enthaltenen infinitesimalen Transformation vertauschbar.
- 2. Γ' ist entweder ausgezeichnete Untergruppe von G oder Γ' fällt mit G zusammen.

Im letzteren Fall sind je zwei infinitesimale Transformationen von G mit einander vertauschbar und beliebige ϱ reguläre Transformationen von G erzeugen eine reguläre ausgezeichnete Untergruppe.

Nehmen wir nunmehr an, Γ enthalte Substitutionen, die nicht mit jeder Substitution von G vertauschbar sind. Es sei T eine bestimmte derartige Substitution.

Die allgemeine Substitution der Gruppe G, deren Coefficienten sich als rationale Functionen von r variabeln Parametern $u_1 u_2 \dots u_r$ darstellen lassen, bezeichne ich mit S(u). Wir transformiren nun T durch S(u).

Das System (Σ) der transformirten Substitutionen

$$P(u) = S(u)^{-1} TS(u)$$

hat folgende Eigenschaften:

- 1. Jede Substitution des Systems gehört der Untergruppe \varGamma an.
- 2. Transformirt man eine Substitution von (Σ) durch eine beliebige Substitution der Gruppe G, so gehört die Transformirte wieder dem System (Σ) an. Dieses System ist also in der Gesammtgruppe ausgezeichnet.
- 3. Das System (Σ) ist durch ein irreducibles System algebraischer Gleichungen bestimmt, denen die Coefficienten der allgemeinen Substitution P(u) genügen. Man gelangt zu diesen Gleichungen durch Elimination der rational auftretenden Parameter u.

Bilden die Substitutionen des Systems (Σ) eine Gruppe — was im Fall $\varrho=1$ nothwendig eintritt — so haben wir in (Σ) eine reguläre ausgezeichnete Untergruppe von G. Ist dies nicht der Fall, so setzen wir zwei allgemeine Substitutionen

von (Σ) P(n) und P(v), die zwei verschiedenen Systemen variabler Parameter entsprechen, zu einer Substitution

L. Maurer: Ueber die Endlichkeit der Invariantensysteme.

$$Q(u|v) = P(u) P(v)$$

znsammen. Auch das System (Σ') der Substitutionen Q(u|v) besitzt die oben genannten drei charakteristischen Eigenschaften. Die Anzahl der Coefficienten von Q(u|v), über die durch geeignete Bestimmung der Parameter $u_1 u_2 \dots u_r v_1 v_2 \dots v_r$ verfügt werden kann, ist mindestens um eins grösser als die Anzahl der verfügbaren Coefficienten von P(u). Hat das System (Σ') Gruppencharakter, so ist (Σ') eine reguläre ausgezeichnete Untergruppe von G. Andernfalls bilden wir das System (Σ'') , das die Substitutionen

$$R(u|v|w|t) = Q(u|v) Q(w|t)$$

umfasst u. s. w. Auf diesem Weg fortschreitend, müssen wir schliesslich zu einer regulären ausgezeichneten Untergruppe von G gelangen.

Nunmehr können und wollen wir voraussetzen, die ausgezeichnete Untergruppe I sei regulär. Wir wollen ferner annehmen, die infinitesimalen Transformationen

$$C_1(f) = C_2(f) \dots C_r(f)$$

seien so gewählt, dass eine jede regulär ist, und dass

$$C_{r-\varrho+1}(f) = C_{r-\varrho+2} \dots C_r(f)$$

der Untergruppe I' augehören. Es bestehen dann Relationen der Form

$$C_{\lambda}C_{\mu}(f) - C_{\mu}C_{\lambda}(f)$$

$$= \sum_{r=1}^{\varrho} \varepsilon_{r}^{\lambda \mu} C_{r-\varrho+1}(f) \quad \lambda = 1, 2, \dots r; \ \mu = r - \varrho + 1, \ r - \varrho + 2, \dots r$$

Ist nun f Invariante der Untergruppe Γ , so ist $C_{\mu} C_{\lambda}(f) = 0$. Daraus ergibt sich: Ist f ganze Invariante der Untergruppe Γ , so gilt dasselbe für jede der Functionen

$$C_{\lambda}(f)$$
 $(\lambda = 1, 2, \dots r - \varrho)$

Nach Voraussetzung lassen sich alle ganzen Invarianten

der Gruppe I, deren Ordnung $\varrho < r$ ist. als ganze Functionen einer Anzahl derselben $q_1, q_2, \dots q_n$ ausdrücken.

Durch wiederholte Anwendung der Operation $C_{\lambda}(f)$ $(\lambda = 1, 2, ..., r - \varrho)$ auf diese Functionen erhalten wir nun ganze Invarianten der Gruppe I. Da aber der Grad von $C_{\lambda}(f)$ in den Variabeln x nicht höher sein kann als der von f, so ist klar, dass sich alle Functionen, zu denen man auf diesem Weg gelangt. als lineare und homogene Functionen einer Anzahl derselben $\varphi_1 \varphi_2 ... \varphi_m$ der Art darstellen lassen, dass die Coefficienten der Linearformen Constante sind. Es bestehen daher für die Functionen φ_a Gleichungen der Form:

$$C_{\lambda}(q_{\mu}) = \sum_{r=1}^{m} a_{\lambda \mu r} q_{r}$$
 $\lambda = 1, 2, ..., r - \varrho : \mu = 1, 2, ..., m$

wo αλμν eine Constante ist.

Da sich jede ganze Invariante f von G als ganze Function von $q_1 q_2 \dots q_\sigma$ darstellen lässt, so ist

$$C_{\lambda}(f) = \sum_{\mu=1}^{n} \sum_{r=1}^{n} c_{\lambda\mu r} \frac{\partial f}{\partial x_{\mu}} x_{r} = \sum_{\mu=1}^{n} \sum_{r=1}^{n} \sum_{\kappa=1}^{\sigma} \frac{\partial f}{\partial q_{\kappa}} c_{\lambda\mu r} \frac{\partial q_{\kappa}}{\partial x_{\mu}} x_{r}$$
$$= \sum_{\kappa=1}^{\sigma} C_{\lambda}(q_{\kappa}) \frac{\partial f}{\partial q_{\kappa}} = \sum_{\kappa=1}^{\sigma} \sum_{r=1}^{m} \alpha_{\lambda\kappa r} q_{r} \frac{\partial f}{\partial q_{\kappa}}$$

Den Ausdruck
$$\sum_{k=1}^{\sigma} \sum_{r=1}^{m} a_{kkr} \varphi_r \frac{\partial f}{\partial \varphi_k}$$
 bezeichne ich mit $\overline{C}_{\lambda}(f)$.

Die $r-\varrho$ infinitesimalen Transformationen $\overline{C}_{\lambda}(f)$ erzeugen eine lineare Gruppe G der Ordnung $r-\varrho$, die mit G isomorph ist. Die Gruppe \overline{G} ist regulär, denn sie lässt sich aus der regulären Gruppe G durch algebraische Operationen ableiten.

Da die Anzahl-m der Functionen φ im Allgemeinen grösser als die Anzahl der von einander unabhängigen Lösungen der Differentialgleichungen

$$C_{r-o+1}(f) = 0$$
 $C_{r-o+2}(f) = 0$... $C_r(f) = 0$

ist, so werden zwischen den Functionen φ algebraische Gleichungen bestehen. Weitere Relationen zwischen diesen Functionen

L. Maurer: Ueber die Endlichkeit der Invariantensysteme.

ergeben sich, wenn die Variabeln x nicht von einander unabhängig sind. sondern einem System invariantiver Gleichungen

$$(F) F_1 = 0 F_2 = 0 \dots$$

genügen. Sei nun $\Phi = 0$ eine der Gleichungen, denen die Functionen φ genügen. Drückt man die Functionen φ durch ihren Werth in Function der x aus, so muss die Gleichung $\Phi = 0$ entweder identisch oder infolge der Gleichungen (F) erfüllt sein. Auf jeden Fall besteht mit $\Phi = 0$ auch die Gleichung $C_{\lambda}(\Phi) = 0$ also auch die Gleichung $\overline{C}_{\lambda}(\Phi) = 0$ ($\lambda = 1, 2, ..., r - \varrho$). Das Gleichungssystem, dem die Functionen φ genügen, ist also der Gruppe \overline{G} gegenüber invariantiv. Das allgemeine Invariantensystem der Gruppe G— und ebenso jedes specielle—kann somit auch als specielles Invariantensystem der Gruppe \overline{G} betrachtet werden. Das letztere Invariantensystem ist nach Voraussetzung endlich; dasselbe gilt daher auch für das allgemeine und jedes specielle Invariantensystem der Gruppe G.

VI.

Wir halten an der im vorigen Artikel eingeführten Voraussetzung fest, dass jede Gruppe, deren Ordnung kleiner als r ist, ein endliches System ganzer Invarianten besitzt, und beweisen nunmehr, dass dies auch für jede einfache Gruppe der Ordnung r gilt.

Ich schicke einen Hilfssatz voraus.

Nehmen wir an, zwischen den infinitesimalen Transformationen

$$A(f) = \sum_{\lambda=1}^{n} \sum_{\mu=1}^{n} a_{\lambda\mu} \frac{\partial f}{\partial x_{\lambda}} x_{\mu}$$

$$B(f) = \sum_{\lambda=1}^{n} \sum_{\mu=1}^{n} b_{\lambda\mu} \frac{\partial f}{\partial x_{\lambda}} x_{\mu}$$

$$C(f) = \sum_{\lambda=1}^{n} \sum_{\mu=1}^{n} c_{\lambda\mu} \frac{\partial f}{\partial x_{\lambda}} x_{\mu}$$

bestehen die identischen Gleichungen

$$\begin{array}{ll} AB(f) - BA(f) = -2B(f) & AC(f) - CA(f) = 2C(f) \\ CB(f) - BC(f) = A(f) & \end{array}$$

dann sind nothwendig die infinitesimalen Transformationen B(f) und C(f) regulär von der ersten Art. und A(f) ist regulär von der zweiten Art.

Den ersten Teil dieser Behauptung habe ich schon früher bewiesen,¹) die Richtigkeit des zweiten Teils ergibt sich auf folgendem Weg:

Wir bezeichnen mit k eine Wurzel der zu A(f) gehörigen charakteristischen Gleichung, mit $u_1 u_2 \dots u_n$ ein Lösungssystem der Gleichungen

$$\sum_{k=1}^{n} a_{\lambda\mu} u_{\lambda} = k u_{\mu} \quad \mu = 1, 2, \dots n$$

Die Linearform $f = u_1 x_1 + u_2 x_2 ... + u_n x_n$ genügt der Gleichung A(f) = kf. Nehmen wir an, es sei

$$B^{\lambda}(f) = 0$$
 $C^{\nu}(f) = 0$

dagegen verschwinden die Linearformen $B^{\lambda-1}(f)$ und $C^{\nu-1}(f)$ nicht identisch. Dann ist $k = \lambda - \nu$ (s. Art. IV), also ist jede Wurzel der zu A(f) gehörigen charakteristischen Gleichung eine ganze Zahl.

Nehmen wir nun einen Augenblick an, die charakteristische Determinante der infinitesimalen Transformation A(f) besitze einen zur Wurzel k gehörigen Elementartheiler höherer Ordnung. Man kann dann zwei Werthsysteme $u_1u_2\ldots u_n$ und $u'_1u'_2\ldots u'_n$ der Art bestimmen, dass

$$\sum_{k=1}^{n} a_{\lambda \mu} u_{\lambda} = k u_{\mu} + u'_{\mu} \sum_{k=1}^{n} a_{\lambda \mu} u'_{\lambda} = k u'_{\mu} \quad \mu = 1, 2, \dots n$$

Die Linearformen

 $f = u_1 x_1 + u_2 x_2 ... + u_n x_n$ und $f' = u_1' x_1 + u_2' x_2 ... + u_n' x_n$ verschwinden nicht ideutisch und sie genügen den Gleichungen

(1)
$$A(f) = kf + f' \quad A(f') = kf'$$

¹⁾ Diese Berichte 1894, S. 307.

L. Maurer: Ueber die Endlichkeit der Invariantensysteme.

Ich werde beweisen, dass diese Gleichungen nicht bestehen Damit ist dann bewiesen, dass die zu A(f) gehörige charakterische Determinante nur Elementartheiler erster Ordnung besitzt, und dass folglich die infinitesimale Transformation A(f) regulär von der zweiten Art ist.

Nehmen wir wieder an, es sei $B^{\lambda}(f) = 0$ und $C^{\nu}(f) = 0$ aber $B^{\lambda-1}(f)$ und $C^{\nu-1}(f)$ seien von Null verschieden; es sei ferner $B^{\lambda'}(f') = 0$ und $C^{\nu'}(f') = 0$ dagegen seien $B^{\lambda'-1}(f)$ und $C^{\nu'-1}(f')$ von Null verschieden.

Es ist dann $k = \lambda' - \nu'$.

Da (Art. IV, 2)

$$AC^{\nu}(f) = C^{\nu}A(f) + 2\nu C^{\nu}(f) = (k+2\nu) C^{\nu}(f) + C^{\nu}(f')$$
so ist $C^{\nu}(f') = 0$ also $\nu > \nu'$. Analog ist $\lambda > \lambda'$.

Man kann die Functionen f, f', wenn Gleichungen von der Form der Gleichungen (1) überhaupt möglich sind, stets so wählen, dass $\lambda = \lambda' = 1$.

Wäre nämlich $\lambda' > 1$, so ersetzen wir f durch $\varphi = B^{\lambda'-1}(f)$ und f' durch $\varphi' = B^{\lambda'-1}(f')$.

Wegen

$$B^{\chi-1}A(f) = -(AB^{\chi-1} - B^{\chi-1}A)(f) + AB^{\chi-1}(f) \quad (Art. IV, 2)$$

= 2(\lambda' - 1)B^{\chi-1}(f) + AB^{\chi-1}(f)

ist

$$A(\varphi) = (k-2\lambda'+2)\varphi + \varphi'$$

und auf analogem Weg ergibt sich

$$A(\varphi') = (k-2\lambda'+2)\,\varphi'$$

Es ist also zulässig $\lambda' = 1$ vorauszusetzen.

Ist nun nicht λ ebenfalls = 1, so ersetze ich f durch

$$\psi = f - \frac{1}{(\lambda - 1)(\lambda - k)} CB(f)$$

(Da $k = \lambda' - \nu' = 1 - \nu'$, so ist $\lambda - k$ nicht gleich Null.)

1899. Sitzungsb. d. math.-phys. Cl.

170 Sitzung der math.-phys. Classe vom 3. Juni 1899.

Es ist nun

$$A(\psi) = A(f) - \frac{1}{(\lambda - 1)(\lambda - k)} A C B(f)$$

und

$$ACB(f) = (AC - CA)B(f) + C(AB - BA)(f) + CBA(f)$$

= $kCB(f) + CB(f')$

also wegen

$$B(f') = 0$$

$$A \cap B(f) = k \cap B(f)$$

Folglich

$$A(\psi) = kf + f' - \frac{k}{(\lambda - 1)(\lambda - k)} CB(f)$$
$$= kw + f'$$

Ferner ist wegen $B^{\lambda}(f) = 0$ (vergl. Art. IV, 2)

$$B^{\lambda-1}CB(f) = (B^{\lambda-1}C - CB^{\lambda-1})B(f)$$

= -(\lambda-1)B^{\lambda-2}AB(f) + (\lambda-1)(\lambda-2)B^{\lambda-1}(f)

und

$$AB(f) = BA(f) - 2B(f) = (k-2)B(f)$$

Folglich

$$B^{\lambda-1} \cap B(f) = (\lambda-1)(\lambda-k) B^{\lambda-1}(f)$$

Demnach ist $B^{\lambda-1}(\psi) = 0$.

Ist $\lambda=2$, so ist also $B(\psi)=0$, ist dagegen $\lambda>2$, so ersetze ich ψ durch

$$\chi = \psi - \frac{1}{(\lambda - 2)(\lambda - 1 - \overline{k})} CB(\psi)$$
 u. s. w.

Nunmehr sind wir berechtigt anzunehmen $\lambda = \lambda' = 1$.

Es ist nun wegen B(f) = 0 und $C^{\nu}(f) = 0$

$$(BC^r - C^p B)(f) = 0$$

Andererseits ist (Art. IV, 2)

$$\begin{array}{l} (B\ell'^{\nu}-\ell'^{\nu}B)(f) = -\nu\,\ell'^{\nu-1}A(f) - \nu(\nu-1)\,\ell'^{\nu-1}(f) \\ = -\nu(\nu+k-1)\,\ell'^{\nu-1}(f) - \nu\,\ell'^{\nu-1}(f') \end{array}$$

also weil k=1-r'

$$v(v-v')C^{\nu-1}(f) + vC^{\nu-1}(f') = 0$$

Diese Gleichung fordert, wenn v' = v $C^{\nu-1}(f') = 0$ und wenn v' < v $C^{\nu-1}(f) = 0$. Beides widerspricht unseren Voraussetzungen.

Das Tripel der Differentialgleichungen

$$A(f) = 0$$
 $B(f) = 0$ $C(f) = 0$

zeigt ganzen Functionen gegenüber eine merkwürdige (übrigens aus der Invariantentheorie der Binärformen bekannte) Eigenschaft: genügt irgend eine ganze Function f den Bedingungen

$$A(f) = kf \qquad B^{\lambda}(f) = 0 \qquad \ell^{\nu}(f) = 0$$

während $B^{\lambda-1}(f)$ und $C^{\nu-1}(f)$ nicht verschwinden, so ist (Art. IV) $k=\lambda-r$. Ist daher k=0 und eine der beiden Zahlen λ , ν gleich eins, so ist auch die andere gleich eins. Jede ganze Function, die den Differentialgleichungen A(f)=0 und B(f)=0 oder den Differentialgleichungen A(f)=0 und C(f)=0 genügt, genügt auch der Differentialgleichung C(f)=0 beziehungsweise B(f)=0.

Dies gilt, gleichviel ob die Variabeln x unabhängig variabel sind oder nicht, wenn nur im letzteren Fall die Relationen, an die sie gebunden sind, den Differentialgleichungen A(f) = 0 B(f) = 0 C(f) = 0 gegenüber invariantiv sind.

Um nun den im Eingang dieses Artikels angekündigten Beweis zu führen, stütze ich mich auf die folgenden Sätze von Killing über einfache Gruppen:¹)

Man kann die infinitesimalen Transformationen, durch die die einfache Gruppe G erzeugt wird, so wählen, dass eine gewisse Anzahl l derselben

$$C_{01}(f) = C_{02}(f) \dots C_{01}(f)$$

paarweise vertauschbar sind. Diese erzeugen eine l-gliedrige Untergruppe Γ . Die übrigen r-l, deren Anzahl nothwendig gerade ist, $C_1(f)$ $C_2(f)$. $C_{r-l}(f)$ genügen Relationen der Form $C_{0\lambda}C_{\mu}(f)-C_{\mu}C_{0\lambda}(f)=\omega_{\lambda\mu}C_{\mu}(f)$ $\lambda=1,2,...l;$ $\mu=1,2,...r-l$

¹) Math. Annalen, Bd. 33, S. 1 und Bd. 34, S. 187; vergl. auch die Thèse von Cartan: Sur la structure des groupes de transformations. Paris 1894.

Die Grössen $\omega_{\lambda_1} \omega_{\lambda_2} \dots \omega_{\lambda_{r-l}}$ sind, wenn die infinitesimalen Transformationen der Untergruppe I' passend gewählt werden, alle unter einander verschieden. Jeder Transformation $C_{\mu}(f)$ ist eine zweite $C_{\mu'}(f)$ der Art zugeordnet, das $\omega_{\lambda\mu'} = -\omega_{\lambda\mu}$ für $\lambda = 1, 2, ... l$. Es gibt eine in der Untergruppe I' enthaltene infinitesimale Transformation $K_{\mu}(f)$, die den identischen Gleichungen genügt:

$$K_{\mu} C_{\mu}(f) - C_{\mu} K_{\mu}(f) = 2 C_{\mu}(f) K_{\mu} C_{\mu'}(f) - C_{\mu'} K_{\mu}(f) = -2 C_{\mu'}(f)$$

$$C_{\mu} C_{\mu'}(f) - C_{\mu'} C_{\mu}(f) = K_{\mu}(f)$$

Unter diesen infinitesimalen Transformationen $K_{\mu}(f)$ gibt es l linear unabhängige; man kann also die Untergruppe Γ durch l von den Transformationen $K_{\mu}(f)$ erzeugen.

Aus diesen Sätzen ergibt sich bei Berücksichtigung des oben bewiesenen Hilfssatzes:

Die infinitesimalen Transformationen $C_{\mu}(f)$ sind alle regulär von der ersten Art, die infinitesimalen Transformationen $K_{\mu}(f)$ sind alle regulär von der zweiten Art.¹)

Man kann die l infinitesimalen Transformationen $C_{0\lambda}(f)$ so wählen, das eine jede regulär ist.

Unter dieser Voraussetzung sind die Grössen $\omega_{\lambda\mu}$ alle ganze Zahlen. Die r-l infinitesimalen Transformationen $C_{\mu}(f)$ zerfallen in zwei Classen; die erste enthält die Transformationen. die positiven Zahlen $\omega_{\lambda\mu}$ entsprechen, die zweite die negativen Zahlen $\omega_{\lambda\mu}$ entsprechenden. Von jedem Paar einander zugeordneter infinitesimaler Transformationen $C_{\mu}(f)$ $C_{\mu}(f)$ gehört die eine zur ersten, die andere zur zweiten Classe. Die zur ersten Classe gehörigen $\frac{r-l}{2}$ infinitesimalen Transformationen erzeugen eine Untergruppe G^+ und ebenso erzeugen die zur zweiten Classe gehörigen eine Untergruppe G^- . 2)

Die Untergruppen G^+ und I zusammengenommenen bilden wieder eine Untergruppe H der Ordnung $\frac{r+l}{2}$.

¹⁾ Ich möchte beiläufig den bemerkenswerthen Satz hervorheben, dass jede einfache oder halb-einfache Gruppe linearer Substitutionen regulär ist.

²⁾ Vergleiche meine schon erwähnte Arbeit, diese Berichte 1894.

Jede ganze Function, die der Untergruppe H gegenüber invariant ist, ist auch der Gesammtgruppe G gegenüber invariant, denn wenn eine ganze Function den Differentialgleichungen $K_{\mu}(f) = 0$ und $C_{\mu}(f) = 0$ genügt, so genügt sie auch der dritten Differentialgleichung des Tripels $C_{\mu}(f) = 0$. Da nach Voraussetzung die Gruppe H ein endliches System ganzer Invarianten besitzt, so gilt dasselbe für die Gruppe G.

VII.

Im Vorangehenden ist bewiesen worden: alle ganzen Functionen, die einem System von Differentialgleichungen

(1)
$$U_1(f) = 0$$
 $U_2(f) = 0$. . . $U_r(f) = 0$

genügen. lassen sich als ganze Functionen einer endlichen Anzahl derselben darstellen. Aber die Frage, unter welchen Bedingungen es überhaupt ganze Functionen gibt, die diesen Differentialgleichungen genügen, ist offen geblieben. Diese Frage soll noch kurz erörtert werden. Dabei beschränke ich mich aber auf den Fall, dass die Grössen $x_1 x_2 \dots x_n$ als unabhängig variabel betrachtet werden.

Von den r Differentialgleichungen (1) können eine Anzahl — etwa r-r' — eine Folge der übrigen sein.

Ich setze voraus. die Anzahl n der Variabeln x sei grösser als r' und ich halte an der Voraussetzung fest, die Gruppe G, die von den r infinitesimalen Transformationen $C_g\left(f\right)$ erzeugt wird, sei regulär.

Unter diesen Voraussetzungen steht von vornherein die Existenz von n-r' unter einander unabhängigen rationalen Functionen fest. die den Differentialgleichungen (1) genügen.

Es sei nun $J=\frac{q}{q}$ eine derartige rationale Function, q und q seien ganze Functionen. Diese Functionen müssen Differentialgleichungen der Form

$$C_{\varrho}(\varphi) = k_{\varrho} \varphi$$
 $C_{\varrho}(\psi) = k_{\varrho} \psi$ $\varrho = 1, 2, ... r$

genügen, wo die k_o Constante sind. In zwei Fällen lässt sich nachweisen, dass die Constante k_o gleich Null sein muss.

Nämlich erstens in dem Fall, dass die infinitesimale Transformation $C_{\varrho}(f)$ regulär von der ersten Art ist (vergl. Art. II). Den zweiten Fall betreffend ist zu bemerken: die infinitesimalen Transformationen

$$C_{\sigma}C_{\tau}(f) - C_{\tau}C_{\sigma}(f)$$
 $\sigma, \tau = 1, 2, ... r$

gehören sämmtlich der Gruppe G an und sie erzeugen eine ausgezeichnete Untergruppe derselben, "die Hauptuntergruppe", die übrigens auch mit der Gruppe G selbst zusammenfallen kann. Nun ist

$$C_{\sigma}C_{\tau}(\varphi) - C_{\tau}C_{\sigma}(\varphi) = 0$$

Es ist somit die Constante k_{ϱ} jedesmal gleich Null, wenn die infinitesimale Transformation $C_{\varrho}(f)$ der Hauptuntergruppe angehört.

Aus dem Vorangehenden ziehen wir den Schluss:

- 1. Wenn die Gruppe G keine reguläre infinitesimale Transformation zweiter Art enthält, die nicht zugleich der Hauptuntergruppe angehört, so gibt es n-r' unter einander unabhängige ganze Invarianten der Gruppe.
- 2. Unter derselben Voraussetzung gilt auch der auf demselben Weg zu beweisende Satz:

Ist das Product von mehreren ganzen Functionen Invariante, so gilt dasselbe für jeden der Factoren.

Wenn dagegen die Gruppe G reguläre infinitesimale Transformationen zweiter Art enthält, die nicht der Hauptuntergruppe angehören, so gilt im Allgemeinen keiner dieser beiden Sätze. Man kann aber auch in diesem Fall die Analogie mit der Theorie der projectiven Invarianten aufrecht erhalten, indem man den in Art. II eingeführten Begriff der ausgezeichneten Functionen erweitert. Eine ganze Function g werde als ausgezeichnet bezeichnet, wenn sie r Differentialgleichungen der Form

$$C_{\varrho}(q) = k_{\varrho} q \qquad \varrho = 1, 2, \dots r$$

genügt, wo die ko irgend welche ganze Zahlen sind.

L. Maurer: Ueber die Endlichkeit der Invariantensysteme.

Da diese ausgezeichneten Functionen Zähler und Nenner der rationalen Invarianten der Gruppe G bilden, so steht von vornherein die Existenz von n-r'+1 unter einander unabhängigen derartigen Functionen fest.

Es gelten für sie die beiden Sätze:

- 1. Alle ausgezeichneten Functionen lassen sich als ganze Functionen einer endlichen Anzahl derselben darstellen und
- 2. Ist das Product von mehreren ganzen Functionen ausgezeichnete Function, so gilt dasselbe für jeden der Factoren.

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Amerikanische Dekapoden der k. bayerischen Staatssammlungen.

Von Dr. F. Doflein.

(Eingelaufen 3. Juni.)

I. Liste der von Dr. Doflein auf seiner Reise in Westindien und Nordamerika gesammelten Dekapoden-Krebse.

a) Martinique.

Wenn auch die hier publizierte Liste wenig Neues an Arten und morphologischen Beobachtungen bringt, so hielt ich ihre Veröffentlichung dennoch für nützlich, da viele der aufgeführten Arten an für sie neuen Lokalitäten gefunden wurden; deun ich glaube zum Ausbau einer wissenschaftlichen Tiergeographie ist es notwendig, über die Verbreitung der einzelnen Arten möglichst zahlreiche und genaue Daten zu besitzen. Ausserdem enthalten die nachfolgenden Zeilen eine Anzahl von Beobachtungen über die Lebensweise verschiedener Formen. Die tiergeographischen Folgerungen aus den aufzuführenden Funden werde ich am Schluss dieser verschiedenen Listen zusammenfassen.

1. Palaemon lamarrei M. Edw.

Das Rostrum meiner Exemplare ist nicht länger als die Scaphoceriten.

Bei St. Anne, Südmartinique, gefangen im Seewasser, aber in der Nähe einer Flussmündung.

2. Pagurus tuberculosus(?) M. Edw.

Meine Exemplare liessen sich nicht mit absoluter Sicherheit auf diese unscharf definierte Art zurückführen, jedoch noch weniger auf irgend eine andere.

Martinique.

3. Petrochirus granulatus Olivier.

Ich fand ein riesiges Exemplar dieses grössten bekannten Paguriden. Die Kiemenzahl ist 14, was nach Ortmann noch nicht genau festzustehen scheint, (11 + 3).

In Strombus gigas L. bei St. Anne, Südmartinique, zwischen Korallen.

4. Alpheus parvirostris Dana.

Sonst nur aus dem tropischen Indo-pacific bekannt. Meine Exemplare sind aber mit keiner anderen Art zu identifizieren.

Bei St. Pierre, Nordmartinique in Spongien.

5. Alpheus sp.

Diese Art ist jedenfalls neu: ich werde die Artdiagnose erst später publizieren, wenn mir mehr Vergleichsmaterial zur Verfügnug steht. Sie ist auffallend durch ihre fenerrote Farbe, welche vollkommen mit der Färbung der von den Tieren bewohnten Spongien (Geodia-artige Schwämme) übereinstimmt.

St. Anne, Südmartinique.

6. Senex argus Latr.

Die Furchen auf den Abdomensegmenten sind nicht überall deutlich unterbrochen, entsprechen aber der von Ortmann angegebenen Variationsbreite. Die von der Behaarung gebildete Faser am Unterrand der grossen Antennen ist sehr ausgeprägt. Die Dornen dunkelbraun.

St. Anne, Martinique, Strandregion.

7. Podochela grossipes Stimpson.

Am Meeresgrunde, nahe der Küste zwischen Spongien. Algen, Hydroïden. Das Tier ist an seinem Aufenthaltsort durch Anpassung vorzüglich geschützt. Bietet schon die bizarre Form zwischen den Stengeln der bodenbewachsenden Tiere und Pflanzen einen ausgezeichneten Schutz, so wird derselbe noch gesteigert durch die Maskierung der Krabben. Dieselben sind bedeckt mit Hydroïdenstöckehen, Algen u. s. w., welche an Körper und Beinen mit Angelhaken (s. Aurivillius) befestigt sind. Bei P. grossipes stehen diese Haken auf den Extremitäten vereinzelt, während sie bei anderen Arten von Podochela in bestimmter Anordnung z. B. paarweise angebracht sind.

St. Pierre, Martinique.

8. Pericera cornuta M. Edw.

Auch bei dieser Art gibt es eine, allerdings sehr enge Fissur im oberen Orbitalrand.

St. Pierre und St. Anne, Martinique. Zwischen Algen, Gorgonien, Korallen am Meeresboden in der Strandnähe.

9. Mithrax sculptus Lam. (= Mithraculus aut.).

Diese an der ganzen Küste von Martinique häufige Art, wird auf Felsen und Klippen der Ebbezone kletternd angetroffen.

10. Mithrax hispidus Herbst.

Ich erhielt in St. Pierre, Martinique, aus 4—5 Faden Tiefe ein riesiges Exemplar einer Mithraxart, welche in vielen Punkten mit den bisher von Amerika beschriebenen nicht übereinstimmt. Am nächsten steht es den Arten M. hispidus Herbst und M. laevimanus Desh. et Schr., welche Ortmann bereits als eine Art auffasst, wobei er geneigt ist, auch M. verrucosus M. Edw. hinzu zu zichen. Mir scheint es nicht unwahrscheinlich, dass die als obige Arten beschriebenen Exemplare nicht ausgewachsen waren, und dass mein Exemplar den erwachsenen Typus darstellt. Doch dies wird nur auf Grund eines sehr reichen Materials zu entscheiden sein. Die Masse meines Exemplares sind

Länge des Thorax								17,5	cm
Grösste Breite des	Thor	ax (Caro	lial	reg	ion	(16-17	**
Länge der Scheere								20	**
Breite der Scheere								8.5	7
Fingerlänge								12	**

Der Rücken ist mit zahlreichen spitzen Höckern versehen, wie bei laevimanus: die Cardialregion ist sehr scharf abgesetzt und von ihr aus laufen zwei tiefe Furchen nach vorn.

Die Scheeren sind kolossal ausgebildet. Merus und Carpus sind mit sehr zahlreichen spitzen Höckern besetzt, einzelne derselben sind abgestumpft. knopfförmig. Die Hand selbst ist auf der Aussenseite ziemlich glatt, bedeckt mit sehr feinen Granulationen, welche eine Tendenz zur Anordnung in unregelmässigen Querreihen haben. Die Innenseite der Hand besitzt die nämlichen Granulationen, auf der Mitte der Fläche ausserdem 2—3 warzenartige Auswüchse von 5—7 num Länge. Aehnliche Warzen, 5—7 mm lang, 4—5 mm breit, bilden am Oberrand der Hand eine Reihe.

Die feinen Granulationen erstrecken auch auf den beiden Fingern bis gegen die Spitze hin, sind aber gröber als auf der Hand selbst. Die Finger sind stark gebogen, berühren sich nur an den löffelartig ausgehöhlten Enden. Diese Endlöffel sind von einer Leiste eingefasst, welche auf der Innenseite glatt verläuft, nach vorn aus einzelnen Teilen zusammengesetzt, fast einem geschlossenen Wirbeltiergebiss gleicht, und auf der Aussenseite in mehrere zahnartige Höcker verläuft: am beweglichen Finger sind es deren 3. am unbeweglichen 5. Der bewegliche Finger trägt an seiner Unterseite etwa in der Mitte einen 1 cm langen und 1 cm breiten dreieckigen, zahnartigen Vorsprung, welcher aber nicht wie bei anderen Gattungen zahnähnlich in seiner Substanz ist, sondern vom cutikularen Panzer mit seinen Granulationen überzogen ist.

Das Tier war im lebenden Zustand am Thorax dunkelrot. an den Schreitbeinen ziegelrot, die Scheeren waren rosenrot mit gelben Fingern. Es wurde zwischen Korallen gefunden und bewegte sich ausserhalb des Wassers infolge der Schwere seiner Scheeren nur mit Mühe.

11. Pilumnus vinaceus M. Edw.

Bei St. Pierre auf tierreichem Meeresgrund, 20-30 m Tiefe; besonders auf und in Spongien (Kakospongien und Geodien).

F. Doflein: Amerikanisehe Dekapoden.

12. Domoecia hispida Souleyet.

Bei St. Pierre in 20 m Tiefe auf Gorgonien kletternd und sich besonders auf flabellum mit den feinen Krallen sehr fest anlicftend.

13. Neptunus sp. juv.

Dieser junge N. ist in seiner äusseren Form durchaus mit diacanthus übereinstimmend. Der Hinterleib ist aber dreieckig.

St. Pierre.

14. Achelous spinimanus Leach.

St. Pierre.

15. Achelous ruber Lam.

Diese Art, von Brasilien und Mexiko bekannt. war in den Antillen noch nicht gefunden worden.

St. Anne.

16. Grapsus lividus M. Edw.

St. Pierre, am Strand, Ebbezone und auf Felsen.

17. Sesarma cinerea M. Edw.

St. Pierre.

18. Ocypoda arenaria Latr.

Bei St. Anne am flachen Sandstrand, wo oft am Morgen der Sand ganz von den zickzackformigen Spuren der Tierc bedeckt ist. Bei Annäherung von Menschen vergraben sie sich mit grosser Schnelligkeit.

19. Gecarcinus ruricola Fabr.

Sehr häufig bei St. Pierre, wo besonders die Berghänge in der Nähe des botanischen Gartens von den Krabben wimmeln. Besonders auch in der Nähe der Bäche. Weibehen mit Eiern habe ich nicht gefunden, aber zur Zeit meines Aufenthaltes gab es sehr zahlreiche junge Tiere bis herab zur Grösse von 0,75 bis 1 cm; diese wurden gefunden am Land in der Nähe eines Baches. Daraus geht hervor, dass die Tiere, wenn es sich auch bestätigen sollte, dass die Eier im Meere abgelegt werden, doch schon in sehr jungem Alter das Land wieder aufsuchen.

Sitzung der math.-phys. Classe vom 3. Juni 1899.

20. Megalobrachium granuliferum Stm.

Die Gattung wird wohl nicht als solche zu Recht bestehen. Die Definition bei Stimpson ist nicht sehr genau; doch scheint mir die Art zu Petrolisthes zu ziehen und sie würde zwischen die Gruppe von lamarcki und galathinus gehören. Doch ist dies nach meinem einzigen, dazu jungen Exemplar nicht definitiv zu entscheiden.

St. Anne, Korallenriff.

21. Calappa marmorata Fabr.

St. Anne.

22. Dromia vulgaris M. Edw.

Mit einer grossen Spongelia auf dem Rücken. Das Exemplar ist zugleich ein guter Beweis für die Richtigkeit der Beseitigung der Species D. lator M. Edw. durch Ortmann. Die westindische Art stimmt durchaus mit der mediterranen überein.

St. Anne.

23. Remipes scutellatus Fabr.

St. Pierre, am Sandstrand.

Von den aufgeführten Arten waren bisher für die Antillen eigentlich nur Palaemon lamarrei, Achelous ruber und Alpheus parvirostris unbekannt. Palaemon lamarrei, welcher in Südamerika besonders im Amazonasgebiet an zahlreichen Orten gefunden worden ist, erstreckt sich also nach Norden bis Martinique; da er in den Antillen somit überhaupt vorkommt, ist es wahrscheinlich, dass er sich auch noch weiter nördlich wird nachweisen lassen. Der Fund von Achelous ruber verbindet die beiden bisher bekannten Wohnbezirke dieser Art: Brasilien und Mexiko. Anders ist es mit Alpheus parvirostris; diese Art ist bisher nur aus dem Indopacifischen Gebiet bekannt. Es ist also aus diesem Grunde zweifelhaft, ob es sich thatsächlich um diese Art handelt. Die Abgrenzung der Arten dieser Gattung bedarf der Revision, bei welcher sich vielleicht die von mir gefundene Art als nen herausstellen wird.

F. Doflein: Amerikanische Dekapoden.

b) Bai von Monterey, Mittel-Californien.

Die sehr tierreiche Bai von Monterey verfügt über die verschiedenartigsten Wohnbezirke; daher finden sich in derselben Tiere vereinigt, welche wir sonst selten in so enger Nachbarschaft beisammen finden. In meiner Dekapodensammlung kommt diese Thatsache nicht sehr zum Ausdruck, dafür ist die Sammlung zu klein. Sie ist hauptsächlich zusammengesetzt aus Formen, welche die Gezeitentümpel und die Algenwiesen und Felsen der Gezeitenzonen bewohnen.

1) Oregonia gracilis Dana.

Diese Form bewohnt das tiefere Wasser. Das Tier wohnt zwischen Algen etc. In der Diagnose von Dana ist nicht erwähnt, dass der Rücken mit zahlreichen Angelhaaren bedeckt ist. Diese vermitteln eine Maskierung durch Hydroïdpolypen etc., welche den Tieren einen ausgezeichneten Schutz gewährt.

2) Seyra acutifrons Dana.

Meine Exemplare unterscheiden sich von Danas Beschreibung durch etwas gedrungenere Gestalt und Zähnchen an den Innenseiten der äusseren Antennenglieder.

Strandregion.

3) Epialtus productus Rand.

Diese schöne Form ist sehr häufig in der Gezeitenzone; sie bewohnt die Algenwiesen und ist durch die olivengrüne Farbe und den öligen Glanz der Körperbedeckung ausserordentlich den Algen und Tangen ähnlich. Verfolgt flüchtet sie sich stets in die Algenbüsche, bleibt unbeweglich stehen und ist dann sehr schwer zu entdecken.

4) Cryptolithodes typicus Brandt.

Mein Exemplar ist ein Weibelen mit Eiern unter dem Abdomen (im Juni gefangen). Diese sehr seltene Form ist ein echt arktischer Repräsentant. Bisher ist sie aus dem nördlichen Eismeer von Alaska bis Californien bekannt. Die Farbe Sitzung der math.-phys, Classe vom 3. Juni 1899.

des Tiers ist silbergrau mit einem leicht durchschimmernden rötlichen Ton.

Tieferes Wasser.

5) Cancer antennarius Stm.

kommt häufig in den Gezeitentümpeln bei Pacific Grove vor. Es kommen hier Exemplare der glatten und der behaarten Varietät nebeneinander vor. Ob es sich hiebei vielleicht nur um ein Stadium des Panzerwechsels handelt? Ein junges Exemplar hat im Gegensatz zum Typus weissen Finger und Daumen; bei den übrigen normal schwarz.

- Cancer gracilis Dana.
 Ist ebenfalls in der Gezeitenzone zuhause.
- Pachygrapsus crassipes Rand.
 Auf den Felsen nahe der Küste.
- 8) Pseudograpsus nudus Dana. Ebenda.
- 9) Pachycheles rudis Stm. Algenzone.

Diese wenigen Arten zeichnen sich alle übereinstimmend dadurch aus, dass sie in ihrer Verbreitung nach Norden weisen. Fast alle sind im Puget-Sound, an der Küste von Oregon und bis nach Alaska hin gefunden worden. Sehr wenige erstrecken sich viel weiter als die Kalifornische Küste nach Süden. Ebenso zeigt die übrige Fauna nordischen Charakter. Dieser ist sehr erklärlich durch das Vorhandensein einer kalten Strömung, welche der westamerikanischen Küste entlang bis etwa zur Südspitze von Niederkalifornien verlauft, um sich dann nach Westen zu wenden. Diese Strömung, welche das Klima der kalifornischen Küste stark beeinflusst und ihre Vegetation bestimmt, gibt auch der marinen Fauna ihr Gepräge: ganz im Gegensatz zur Landfauna, welche zahlreiche Beimischungen aus dem Süden enthält.

II. Liste der von I. K. H. Prinzessin Therese von Bayern auf einer Reise in Südamerika gesammelten Dekapoden-Krebse.

I. K. H. Prinzessin Therese hatte die Güte, mir die von ihr auf einer Reise durch Südamerika gesammelten Krebse zur Bestimmung zu übergeben. Da viele der neuen Fundorte ein grosses tiergeographisches Interesse beanspruchen, so publiziere ich an dieser Stelle die vollständige Liste, indem ich die sehr genauen Notizen der hohen Sammlerin über Färbung der Tiere und ihr Vorkommen hinzufüge. Die Collektion ist in der Privatsammlung der Prinzessin Therese aufgestellt.

1) Penaeus brasiliensis Latr.

Färbung weisslich-farblos.

Pernambuco. Oktober.

2) Palaemon lamarrei M. Edw.

Färbung: Scheeren rötlich mit blauem Fleck. Sonst ist das ganze Tier weiss.

Guayaquil. Mitte August.

Die Exemplare wurden in Guayaquil auf dem Markt gekauft; da die Art aus Zuflüssen des stillen Ozeans noch nicht bekannt ist, vermutete ich zuerst sie könnten etwa aus Zuflüssen des Amazonas stammen, wie die ebenfalls in Ecuador gesammelten Exemplare von Reiss (nach Ortmann), welche aus dem Rio Paute kamen, einem Zufluss des Amazonas. Wie mir jedoch Prinzessin Therese schreibt, kann der Markt von Guayaquil aus Zuflüssen des Amazonas nicht beschickt werden, da deren Quellen mindestens 8 Tagereisen weit entfernt sind.

3) Palaemon sp. juv.

Jugendformen von Palaemon sind unmöglich zu bestimmen, da sich die Artdiagnosen auf Merkmale beziehen, die sich während des Wachstums beständig ändern.

Baranquilla. August.

Sitzung der math.-phys. Classe vom 3. Juni 1899.

- 4) Bithynis Gaudichaudii M. Edw.
- 1 Grosses Exemplar.

Rio Tambo bei Mollendo.

2 kleine Exemplare.

Von Lima (Markt) aus dem Rio Chillon. September.

Färbung gelbgrün mit gelbbraunen Flecken am Rücken; Glieder des ersten Brustbeins rötlich, die Scheeren selbst jedoch grünblau.

5) Coenobita diogenes Latr.

Färbung vorwiegend rot, kleine Scheere rot, grosse Scheere rotviolett.

Cartagena, August. Am Meeresstrand.

6) Hippa emerita L.

Die Exemplare bestätigen die Ansicht Ortmanns, dass die Art der Westküste mis derjenigen der Ostküste übereinstimmt, also H. emerita L. = H. analoga Stm. Färbung: Beine, Schwanz und Unterseite weiss. Rücken im kons. Zustand mit rotvioletten Streifen und Flecken.

Mollendo, Peru. Ende September.

7) Pseudocorystes armatus M. Edw.

An dem Exemplar sind sichtbare Spuren von roter Marmorierung auf ockergelbem Grunde; die Beine sind an den Gelenken rötlich angehaucht.

Mollendo, Südperu. September. Trocken an der Küste gefunden.

- 8) Neptunus diacanthus Latr.
 - 1) 2 Å 1 Q Pernambuco, Oktober.
 - 2) 1 💍 Baranquilla, August.
 - 3) 1 \eth Guayaquil, September.

Das Männchen von Baranquilla unterscheidet sich in einigen kleinen Merkmalen von den übrigen, welche typisch sind. Vor allem ist der Vorderrandbogen grösser. Die Art scheint, nach anderen Exemplaren unserer Sammlung zu schliessen, ziemlich stark zu variieren. Der Fund in Guayaquil ist sehr auffallend; man betrachtete die Art bisher als gänzlich auf die Ostküste von Amerika beschränkt. Das Exemplar ist gut charakterisiert, die **T**-Form des Abdomens sehr ausgesprochen.

Färbung: Rückenschild graulichgrün, Brustbeine im ganzen kobaltblau, die Scheeren rotlila, blaugerandet, die letzten Glieder des 5. Beinpaares graulichgrün, die vorderen Glieder blau.

- Neptunus anceps Sauss.
 Trockenes Exemplar. Carupano, Venezuela. Juni.
- 10) Neptunus sp. juv. Cartagena.
- 11) Cancer dentatus Bell.

Auf dem Markt in Lima gekauft. Färbung blaurot. Wurde bisher in Chile und durch Reiss (nach Ortmann) im Ancon-Golf (Ecuador) gefunden. Der neue Fund verbindet somit die beiden bisherigen getrennten Fundorte.

Callao. September.

12) Cycloxanthus sexdecemdentatus M. Edw. et Lucas. Färbung blaurot.

Callao, September. Meer.

13) Potamocarcinus dentatus Latr. (früher Pseudotelphusa dentata Latr.).

Martinique, Juni. Gebirge zwischen Fort de France und St. Pierre, in den Strassengräben gefangen.

Färbung: Mitte des Rückenschildes schwarzbraun samtig, Rand desselben und Scheeren orange, Bauchseite gelb.

Bei den jungen Exemplaren ist die Stirnkante vollkommen deutlich; somit scheinen die von Ortmann erwähnten "jungen Exemplare" aus Ecuador zu Potamocarcinus planus Smith zu gehören (vgl. Ortmann Zool. Jahrb. Abt. Syst. VII. p. 494 unter Pseudotelphusa dentata Latr.).

Sitzung der math.-phys. Classe vom 3. Juni 1899.

14) Potamocarcinus aequatorialis Ortmann.

Rio grande bei Soacha, Hochebene von S. Fé de Bogotá, gekauft auf dem Markte in Bogotá. Juli.

Die Exemplare nähern sich sehr der von Ortmann aus Ecuador beschriebenen Art, weichen aber in einigen Punkten ab. Zur Aufstellung einer neuen Art scheinen mir die Abweichungen aber nicht auszureichen. Ausserdem ist mein Vergleichsmaterial ungenügend.

Der Exopodit des 3. Maxillarfusses ohne Geissel, Stiel bedeutend kürzer als das Ischium. Eine obere Stirnkante ist vorhanden; oft allerdings etwas abgeschliffen. Sie steht nicht über der unteren vor, bildet eine ziemlich stumpfe Kante, keinen Kiel. Der obere Stirnrand bei den meisten Exemplaren glatt, weil abgeschliffen. Bei manchen deutlich gekörnelt; leicht gebogen. Die untere Stirnkante ist gekielt. Abdomen beim 5 wie Ortmanns Beschreibung, beim \$\varphi\$ kolossal breit, wobei die drei letzten Glieder die Hauptmasse ausmachen. Das Abdomen ist hochgewölbt mit leerem Raum darunter, auch in der Zeit der Eilosigkeit.

2 ♀ 2 古.

Färbung: Ziemlich einförmig dunkelbraun. Scheere etwas rötlicher, aber ebenfalls dunkel. Ein \heartsuit ist fast schwarzviolett einfarbig.

15) Trichodactylus quinquedentatus Rathbun.

Die Arten von Trichodactylus scheinen sehr willkürlich abgegrenzt zu sein und bedürfen der Revision. Die Bezahnung des Thoracalrandes variiert. Bei den mir vorliegenden Exemplaren sind die Zähne z. B. sehr klein. Färbung grau.

Quebrada Cabuial bei Ibagué, Juli. Oberlauf des Magdalena, 1200 km vom atlantischen Ozean.

16) Leptograpsus variegatus Fabr.

Grundfarbe des Rückenschilds matt gelblich-graugrün. Scheeren an einzelnen Stellen violettlich, Endglieder der Schreitbeine orangerot.

Antofagasta, Chile. Oktober. Strand, in einem Salzwassertümpel.

- 17) Sesarma cinerea Bosc.
 - 1) & u. Q von Baranquilla 2) Junge von Cartagena

Cartagena: Hafenstrand, Baranquilla: Caño der von Baranquilla in den Magdalena fliesst und in dem die Dampfer liegen. Daher wohl Salz- und Brackwasser. Ortmann bezeichnet Sesarma als reine Süsswasserform.

Färbung: grau mit schwarzer Zeichnung.

18) Oedipleura cordata L. (= Uca una Latr.)

Färbung: dunkelbraun, Beine rotviolett. Bahia, Oktober. Auf dem Markt gekauft.

- 19) Cardisoma guanhumi Latr.
 - 1) 💍 Martinique, Fort de France. Juni.

Farbe graugrün.

2) Q Cartagena, August. Brack- und Süsswasser.

Rückenschild dunkelblau, hintere Glieder des ersten Brustbeinpaares dunkelblau, Scheere bläulich; die Schreitbeine fleischfarbig.

3) Q von Pernambuco, Oktober.

Färbung blau. Die Scheeren der jüngeren Exemplare sind mehr zusammenschliessend als die der alten.

Vgl. Ortmann a. a. O. VII. S. 736.

- 20) Ocypoda gaudichaudii M. Edw. et Lucas.
- Ocypoda urvillei M. Edw. = ceratophthalma Pall.
 Mollendo, Peru. September.

Mein Exemplar ist ein junges Tier, daher schwer definitiv zu bestimmen. Sonst wäre dies der erste Fund der Art in Amerika, eine neue Art für Amerika. Die Art ist sonst indopacifisch.

Färbung: Weiss und grau gezeichnet.

22) Ocypoda arenaria Say.

Cartagena, August. Eine Anzahl junge Exemplare.

Färbung: Grau mit schwarzer Zeichnung.

Einige Uca (=Gelasimus)arten behandele ich im Zusammenhang mit den übrigen Ucaarten der Münchener Sammlung.

Einige der Funde sind sehr auffallend und wichtig für unsere Kenntnis von der Verbreitung der betreffenden Arten. So vor allem der von Palaemon lamarrei in Zuflüssen des stillen Ozeans. Es ist dies der erste Fall, in welchem eine Art von Palaemon sich als dem atlantischen und pacifischen Gebiet gemeinsam erweist. Da bereits durch Ortmann aus dem Rio Paute, einem Zufluss des Amazonas, in nicht allzugrosser Ferne von Guayaquil, die Art bekannt ist, so muss es sich um eine Ueberschreitung der Wasserscheide beider Ozeane handeln, analog dem Falle des P. niloticus, welcher Ostafrika und dem Nil gemeinsam ist. Man muss wohl an eine Uebertragung durch Wasservögel denken.

Noch weit auffallender ist aber der Fund von Neptunus diacanthus in Guayaquil. Wenn sich die Art in Zukunft nicht als reichlicher im stillen Ozean verbreitet herausstellen sollte, ist dieser ganz vereinzelte Fund rätselhaft.

Potamocarcinus aequatorialis von Bogotá bietet den umgekehrten Fall, indem eine Art, welche bisher nur im Westen des Kontinents bekannt war, nun auch aus dem Osten sich nachweisen liess. Bei einer Telphuside ist dies weniger verwunderlich, da deren Verbreitungsfähigkeit ja ziemlich gross ist. Möglicherweise wird sich die Art noch als weiter im centralen Südamerika verbreitet herausstellen.

Der Nachweis von Trichodactylus quinquedentatus 1200 km den Magdalena stromaufwärts, beweist, dass die Angehörigen dieser Gattung zu ausgesprochenen Süsswasserbewolnnern geworden sind. Der von Rathbun angegebene Fall, wo Exemplare der gleichen Art in Nicaragua, im Escondidofluss 50 Meilen von der Mündung bei Bluefields gefunden wurden, bezeichnete bisher die äusserste Grenze des Vorkommens im Süsswasser.

III. Die Uca-Gelasimusarten der Münchener Staats-Sammlung.

Die wenigen Arten der nach der Ortmann'schen Prioritätsreform nunmehr Uca benannten, bisher als Gelasimus bezeichneten Gattung, welche unser Münchener Museum enthält, bieten
einige der Wissenschaft neue Thatsachen dar; ich hielt es daher
für nützlich, sie im Zusammenhange zu veröffentlichen. Ich
stellte der Liste voraus die von I. K. H. Prinzessin Therese gesammelten Arten, welche sich in ihrem eigenen Besitze befinden.

- 1) Uca vocator Herbst.
 - a) Brackwasser bei Cartagena. August.
 - b) Guayaquil. September.

Verbreitet an beiden Küsten Amerikas. An der Westküste bisher südlich nur bis Panama bekannt. Die Länge des überstehenden Fingers ist bei den einzelnen Exemplaren oft verschieden und zwar weil dessen Spitze öfters abgenützt oder abgebrochen und gut verheilt ist.

Färbung: Rückenschild braungrau, bei einem Exemplar graugrün. Scheeren graurötlich bis fleischfarbig.

leg. Prinzessin Therese.

- 2) Uca pugilator Desm.
 - 1) Baranquilla, leg. Prinz. Therese. August 98.
 - 2) Florida, leg. Packard 76.

Viele ♂ und ♀ und Junge. Auffallend ist der Unterschied in der Form der Scheerenfinger bei Jungen und Alten. Bei Jungen erscheinen sie glatter und schärfer; dazu im Verhältnis zur Hand viel kürzer als im späteren Alter. Die ganze Scheere wird dann viel schlanker, nicht unähnlich denen der jungen U. stenodactylus. Von diesen unterscheiden sie sich, abgesehen von der fehlenden bei stenodactylus aber auch oft abgeschliffenen Leiste durch den weniger geschweiften Contour des Vorderrandes.

3) Uca sp. juv.

Cartagena, leg. Prinz. Therese.

4) Uca cultrimana White.

1) Südsee, Salmin leg.

Der bewegliche Finger auffallend komprimiert, breiter als die Zeichnung bei Kingsley 1880. Jedoch scheinen alle Zeichnungen von Kingsley nicht sehr genau.

2) Viti Ins. Kandavu. Dr. Buchner leg. 78. juv.

Abweichende Form der Scheere, die Lappen sehr nahe beieinander. Scheere auch noch klein, vor allem Verhältnis der Länge zur Breite abweichend vom ausgewachsenen Tier.

- 3) Indischer Ozean, Salmin leg.
- 2 Exemplare typisch. Ob nicht kontinuierliche Uebergänge zu U. Dussumieri existieren? Die Bestachelung des Merus scheint doch sehr schwankend zu sein.
 - 4) Angebl. von Charleston, U. S. Amerika leg. Josefine Dingle. Da infolge der Persönlichkeit der Sammlerin kein anderes

Da infolge der Persönlichkeit der Sammlerin kein anderes Charleston gemeint sein kann, so ist kaum anders anzunehmen, als dass einmal eine Verwechslung irgendwelcher Art stattgefunden hat; obwohl bei der peinlichen Genauigkeit, mit welcher v. Siebold die Sammlung leitete, eine solche kaum möglich war.

5) Uca vic. Gaimardi.

Viti Ins. Kandavu, lebt in warmen Quellen. Dr. Buchner leg. 78.

Die Exemplare, vielleicht einer neuen Art angehörend, sind zur Gaimardi-Gruppe, Ortmann zu rechnen. Sie unterscheiden sich jedoch von den beiden Ortmann'schen Arten

a. von latreillei:

Untere schräge Leiste deutlich, wenn auch nicht grob granuliert. Körnerleisten noch ziemlich deutlich.

b. von variabilis:

Körner der Leiste nicht grob; Körnerleiste an der Basis der Finger deutlich; keine accessorische Körnerreihe am unteren Orbitalrand.

Steht also latreillei M. Edw. näher.

- 6) Uca stenodactylus M. Edw. et Lucas. Rio Bayano bei Panama (zum stillen Ozean). M. Wagner leg.
- 1. Exemplar gross, ausgewachsen. Mit deutlicher Leiste auf der Unterseite der Hand, stark gekörnelt. Dagegen Zähne auf den Schneiden der Scheere.
- 2. Hier die Leiste nicht granuliert; dagegen keine Zähne auf den Schneiden; dieselben ungekörnelt.

Offenbar sind die abnützbaren Körnelungen kein gutes systematisches Merkmal.

3. Form der Scheere wie bei 2., hier aber wohlausgebildete Körnelung.

Einige Exemplare Essendorfer leg. atlantische Küste von Südamerika.

7) Uca acuta Stm.

Bisher nur bekannt von Macao und den Mergui-Inseln. Ceylon, Schlagintweit leg.

- 8) Uca annulipes M. Edw. Indischer Ozean. Salmin leg.
- Uca dussumieri M. Edw. Indischer Ozean. Salmin leg.
- Uca tetragonon Herbst.
 Tor, Sinaïhalbinsel. Dr. Hofer leg. 92.

Das Exemplar (5) stimmt vollkommen mit der Beschreibung von de Man überein, auch der rote Fleck auf der Palma ist deutlich zu sehen. Von den Leisten auf der Unterseite ist zu bemerken, dass sie durch Granulationen wohl angedeutet sind, aber nicht zu vergleichen mit der starken Entwickelung bei cultrimanus.

Uca amazonensis nov. sp.
 Teffé, Amazonenstrom leg. Salmin. Breitstirnig.

Die untere schräge Leiste auf der Innenseite der Hand ist gut entwickelt und granuliert; sie sitzt tief unten und fasst Sitzung der math.-phys. Classe vom 3. Juni 1899.

mit einer fein granulierten Kante auf der Aussenseite ein Feld an der Unterseite der Hand ein. Sie endet proximal unmittelbar vor der Artikulation von Hand und Karpus. Die Scheerenfinger sind bis zur Spitze gezähnelt. Jedoch besitzt der bewegliche keinen auffallenden Zahn vor der Spitze. Der unbewegliche zeigt gewöhnlich in der Mitte einen grossen prismatischen Zahn. Schwankend je nach dem Grad der Abnutzung ist das Vorhandensein einer einfachen äusseren Längsleiste am Oberrand der Hand.

Die Finger sind ziemlich lang und schmal, mässig komprimiert.

Der obere Orbitalrand ist von zwei fein granulierten Leistchen eingefasst, welche sich erst unmittelbar vor der äusseren Ecke vereinigen. Orbitalränder ziemlich schief, Körper nach hinten sich ziemlich verschmälernd.

Die Färbung der Tiere ist verschieden: bei einigen auf gelbem Grunde eine dunkel bordeauxrote Zeichnung; ein breiter Strich am Vorderrand, ein ebensolcher in der Cardialregion, beide durch einen Bogen verbunden, ferner eine breite Zeichnung am Hinterrand, mit gelben Flecken. Bei anderen Exemplaren nimmt das Rot überhand, sodass es als Grundfarbe erscheint, auf welchem einzelne gelbe Flecken sitzen. Die Zeichnung ist sehr auffallend.

Ortmann bemerkt über die Verbreitung der Gattung Uca in seinen Carcinologischen Studien (Zool. Jahrb. Abt. Syst. Bd. X), dass das Vorkommen identischer Arten auf beiden Seiten des amerikanischen Kontinents wohl darauf zurückzuführen sei, "dass zur Jetztzeit die Arten dieser Gattung imstande sind, die Landbarriere bei Panama infolge gewisser bionomischer Gewohnheiten zu überschreiten." Wie richtig diese Ansicht im Prinzip ist, beweisen einzelne der hier mitgeteilten Beobachtungen. In diesen Zeilen sind mehrere Vorkommnisse von Ucaarten aus Brack- und Süsswasser notiert, so speziell aus dem Rio Bayano bei Panama. Noch wichtiger erscheint mir aber die Thatsache, dass eine neue Art U.

F. Doftein: Amerikanische Dekapoden.

amazonensis im Amazonenstrom weit oben mehrere tausend Kilometer von der Küste als spezifischer Süsswasserbewohner vorkommt.

Diese Beobachtung zusammen mit den verschiedenen in den beiden vorhergehenden Listen mitgeteilten Fällen zeigen, wie sehr die grossen Stromsysteme Südamerikas bei dem Austausch von Arten zwischen beiden Küsten beteiligt sind. Genauere Untersuchungen von diesem Gesichtspunkte aus würden uns sicher eine Menge überraschender Aufschlüsse bringen.

Sitzung vom 8. Juli 1899.

- 1. Herr P. Groth legt eine Arbeit des Herrn Privatdozenten Dr. Ernst Weinschenk: "Geologisches aus dem bayerischen Walde" vor.
- 2. Herr H. Seeliger bringt eine Abhandlung des Herrn Privatdozenten Dr. Arthur Korn in Vorlage: "Grundlagen einer mechanischen Theorie des elastischen Stosses und der inneren Reibung in kontinuirlichen Medien."
- 3. Herr W. Dyck legt eine Abhandlung des Herrn Privatdozenten Dr. Eduard von Weber: "Bilinearformen und Differentialsysteme" vor.
- 4. Herr Alfred Pringsheim trägt: "Ueber ein Convergenzkriterium für Kettenbrüche mit positiven Gliedern" vor.
- 5. Herr Johannes Rückert hält einen längeren Vortrag: "Ueber Polyspermie." Derselbe wird an einem anderen Orte veröffentlicht werden.

Geologisches aus dem bayerischen Walde.

Von Dr. E. Weinschenk.

(Eingelaufen 8. Juli.)

Mit Tafel 11 und 111.

Die geologische Beschaffenheit des bayerischen Waldes ist im Allgemeinen wenig abwechslungsreich und in den centralen und südlichen Partien vor allem durch den Wechsel von Granit und Gneis charakterisiert. Den normalen Gneisen gegenüber, welche zum grossen Teil als Granat- resp. Cordieritgneise entwickelt sind, verhält sich der Granit als echte intrusive Bildung, welche teils in mächtigen Lagern, teils in grossen Stöcken auftritt.

Die Granite des bayerischen Waldes sind in ihrer typischen Entwicklung mittelkörnige Zweiglimmergranite von recht gleichmässiger Beschaffenheit, welche gewöhnlich eine äusserst massige Bankung aufweisen und daher an zahlreichen Punkten in mächtigen Quadern gewonnen werden.

Was den Gneis betrifft, so zeigt derselbe die schichtige Structur im Grossen wie im Kleinen aufs deutlichste entwickelt. Die ungemein intensive Faltung, welche denselben betroffen hat, lässt sich häufig schon im Handstück aufs Schönste verfolgen und steht gewissermassen in Contrast zu der äusserst kompakten Beschaffenheit der Gesteine, welche nirgends eine mechanische Lockerung ihres Gefüges erkennen lassen. Im Allgemeinen brechen die Gneisse blockig und zeigen nur untergeordnet eine gewisse Schieferung. Diese klotzigen Felsen,

Sitzung der math.-phys. Classe vom 8. Juli 1899.

welche im Gegensatz zum Granit durch die Einwirkung der Atmosphärilien eine Rundung nicht annehmen, bilden so recht das Bezeichnende für den "Wald", in welchem im Uebrigen in Folge der intensiven Bewachsung eigentliche Aufschlüsse verhältnismässig selten sind, so dass man im innern Wald oft auf stundenlanger Wanderung kein sicher anstehendes Gestein zu Gesichte bekommt. Besonders charakteristisch ist, dass namentlich als Bekrönung der Berge Haufwerke zusammengestürzter oder im Zusammensturz befindlicher Gneismassen auftreten, wie sie z. B. die Configuration des Arbergipfels schon auf weitere Entfernung hin kenntlich macht.

Ueber den Ursprung und die geologische Stellung des Gneisgebirges etwas Genaueres zu sagen, ist bei dem augenblicklichen Stande unseres Wissens nicht wohl möglich; es mag hier nur betont werden, dass in den normalen Gneisen des bayerischen Waldes echte Schichtgesteine vorliegen, welche man heute im Allgemeinen als die vielleicht typischsten Vertreter der archäischen Formation ansieht, ohne allerdings direkt bindende Beweise für diese Anschauung beibringen zu können.

Andererseits muss festgestellt werden, dass eine ganze Reihe von Gesteinen, welche in diesem Gebiete gleichfalls als Gneise aufgefasst und kartiert wurden, so z. B. ein grosser Teil der sog. "Körnelgneise", der "Winzergneise" etc. nicht als Schichtgesteine angesehen werden dürfen, sondern vielmehr die schieferigen Randzonen der Granitmassive darstellen, mit welchen sie genetisch zusammengehören.

Die Contactzonen zwischen Granit und Gneis zeigen im Allgemeinen die charakteristischen Erscheinungen, welche man an der Grenze einer intrusiven Bildung gegen Schiefer zu beobachten gewöhnt ist. Zu eingehender Schilderung der hier in Betracht kommenden Verhältnisse wird sich mehrfach Gelegenheit bieten.

Wenn man von Zwiesel aus gegen das die ganze Gegend beherrschende Rabenstein emporsteigt, so erblickt man zunächst etwas nördlich von Zwiesel unten im Thale die beE. Weinschenk: Geologisches aus dem bayerischen Walde. 199

rühmte Glashütte Theresienthal, über deren Arbeiterhäusern eine kleine, waldige Kuppe ansteigt, das Rothe Koth oder der Röthberg, welcher dadurch bemerkenswert ist, dass etwa auf halber Höhe desselben die Fortsetzung des Bodenmaiser Erzlagers aufgeschlossen ist, das hier auch eine zeitlang bergmännisch betrieben, vor einigen Jahren aber definitiv aufgelassen wurde. Die Spuren desselben lassen sich ostwärts bis zum Rachel verfolgen. Beim weiteren Anstieg gegen die Höhe von Rabenstein entwickelt sich mehr und mehr eine Fernsicht auf die gerundeten und bewaldeten Berge, welche überall eine gewisse Monotonie der Landschaft hervorbringen und so recht den Charakter einer Waldlandschaft bezeichnen.

Etwa auf der Passhöhe, welche den südlichen Ausläufer des Arbers, den Hühnerkobel oder Hennenkobel von dem Hauptmassiv trennt, befinden wir uns auf granitischem Boden, welcher in der ganzen Gegend durch eine sehr reichliche Sandentwicklung gegenüber dem Gneis ausgezeichnet ist. durchsetzt den Granit einer der zahlreichen Pegmatitgänge, welche die granitischen Bildungen im bayerischen Walde überall begleiten und von denen der vorliegende jedenfalls der berühmteste ist, da er seit Jahrzehnten zum Zweck der Gewinnung von Quarz für den Strassenbau, resp. für die Glashütten, in neuerer Zeit auch zur Gewinnung von Feldspath für die Porzellanfabrikation in ziemlich lebhaftem Betriebe steht. Der Pegmatit selbst zeigt hier die für den Wald typische Entwicklung. Zwar fehlt die für Pegmatite sonst so bezeichnende Ausbildung offener Drusen, auf welchen frei ausgebildete Krystalle aufsitzen, hier wie in den meisten Pegmatiten des Waldes so gut wie ganz und ferner ist auch die charakteristische Schriftgranitstruktur an diesem Vorkommnis nur wenig entwickelt, aber die Unregelmässigkeit in der Struktur, die riesenhafte Korngrösse des Gesteines, die Ungleichmässigkeit in der Verteilung der Mineralien und namentlich die nesterartige Anhäufung einzelner, sonst seltener und an seltenen Elementen reicher Mineralien verleihen dem Gestein so recht den Charakter eines echten Pegmatits.

Die hauptsächlichsten Mineralien dieses Vorkommnisses sind zunächst Quarz und Feldspath, ersterer etwa mit zwei Dritteln, letzterer mit nahezu einem Drittel an der Zusammensetzung des Gesteins beteiligt. Der Quarz ist fast ausschliesslich als Rosenquarz entwickelt, welcher aber seine in frischem Zustande rosenrote Färbung unter der Einwirkung des Sonnenlichtes rasch einbüsst und matt, trübe und weiss wird. Im Uebrigen ist Rosenquarz in den Pegmatiten des Waldes auch sonst weit verbreitet, und es ist sehr bezeichnend, dass überall in diesen Pegmatiten manganreiche Mineralien als Begleiter desselben auftreten, wie auch der Rosenquarz selbst geringe Mengen von Mangan enthält, auf welches wohl mit Recht seine Färbung zurückgeführt werden darf. Der Rosenquarz ist stets derb, grosskörnig und bildet die letzte Ausfüllungsmasse; nur ganz selten lässt derselbe Hohlräume frei, in welchen dann merkwürdig skelettartige Krystalle von gemeinem Quarz oder Rauchquarz zu liegen pflegen, welche gar nicht selten ringsum ausgebildet und in einer mulmigen Masse eingebettet sind.

Der Feldspath, neben Orthoklas resp. Mikroklin, ein graulichweisser Plagioklas bildet in dem Quarz krystallographisch recht gut begrenzte Individuen von mächtigen Dimensionen, die sich gerne zu Nestern zusammenhäufen. Von den übrigen Gemengteilen sind Glimmermineralien die am weitesten verbreiteten: ein echter Muskovit, stets in deutlichen Krystallen mit rhombischem Querschnitt entwickelt und ein dunkler Biotit, welcher nie in Krystallen, sondern fast nur in einer eigentümlichen schaligen Verwachsung mit dem Orthoklas auftritt. In grossen Putzen und Nestern findet man in diesem Mineralaggregat den Triphylin, meist vergesellschaftet mit Beryll, für diesen Fundort die charakteristischsten Bildungen. Der Triphylin bildet bald grobkörnige, frische, blaugraue Massen, aus welchen man hin und wieder deutliche Krystalle herausschlagen kann, bald findet er sich in einzelnen, mit Endflächen versehenen Krystallen, welche aber stets stark zersetzt und zu einem Aggregat von amorphen Manganoxyd- und Eisenoxydphosphaten geworden sind, die man als Pseudotriplit

bezeichnet, neben welchem auf ausgefressenen Höhlungen, meist schlecht krystallisirt, Bildungen von Kraurit, Kakoxen, Beraunit, Vivianit, Wawellit etc., ferner von Wad vorhanden sind. Der Beryll zeigt prismatische Krystalle, meist ohne Endausbildung, teils in Triphylin, teils in Quarz eingewachsen, die selten durchsichtig, meist stark getrübt und gelblich-weiss gefärbt sind. Hin und wieder ist auch der Beryll durch Pseudotriplit verdrängt. Ganz selten endlich beobachtet man noch

Krystalle von Columbit, etwas Turmalin, Kalkuranit,

sowie Zinkblende, Arseneisen, Speerkies etc.

Fig. 1. Silberberg bei Bodenmais.

Von dem Quarzbruche aus geht der weitere Weg bis Bodenmais bald durch Gneis bald durch Granit, ohne dass aber irgend welche bemerkenswerten Aufschlüsse dass Studium ihrer gegenseitigen Verhältnisse ermöglichen würden.

Horizontalriss der Erzlager im Silberberg.

Fig. 2.

Wenn man von Bodenmais nach Süden blickt, so fällt vor allem die kahle zweigipflige Erhebung der "Bischofshaube" ins Auge, welche nach dem in früheren Zeiten betriebenen Bergbau auf silberhaltigen Bleiglanz den Namen "Silberberg" erhalten hat. Heutzutage geht der noch immer ziemlich lebhafte Bergbau nur auf Gewinnung der Kiese, welche zur Anfertigung eines durch seine Feinheit und Schärfe in der ganzen Welt berühmten Polierroths, "Potée", sowie zur

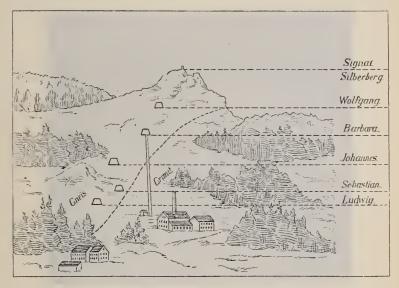


Fig. 3.
Aufriss des Silberbergs.

Gewinnung von kupferhaltigem Vitriol verarbeitet werden. Zu diesem Zwecke werden die zerkleinerten und etwas angerösteten Erze in grossen Haufen aufgeschüttet und einem mehrere Jahre in Anspruch nehmenden natürlichem Röstungsprozess unterworfen. Durch Auslaugen und Schlämmen werden dann aus diesem Röstgut die technischen Produkte in der zwischen Bodenmais und dem Silberberg im Thale liegenden Vitriolhütte gewonnen.

Ganz besonderes Interesse verdienen die geologischen Verhältnisse des Silberberges, da hier ein gut aufgeschlossenes Beispiel eines Fahlbandes vorliegt. Die Lagerstätte zieht sich, wie aus den beigegebenen Profilen hervorgeht, an der Grenze zwischen Granit und Gneis hin, ohne jemals in ersteren, dem sie sich häufig auf wenige Meter nähert, hinüberzugehen, ohne aber auch wiederum sich weiter von demselben zu entfernen.

Schon am Aufstieg gegen den Silberberg zu beobachtet man

Fig. 4.

Ausgebrannte Orte nächst dem Eingang zur Barbara.

an den im Wald herumliegenden Blöcken, dass der Granit, welcher im Thale normale körnige Beschaffenheit hat, ein porphyrartiges Gefüge annimmt. Die Grenze gegen den Gneis ist namentlich in der Nähe des Förderthurmes zunächst dem Eingange der "Barbara" aufgeschlossen und dokumentiert sich namentlich dadurch, dass die Schichten des Gneises aufgerissen erscheinen, und dass zwischen dieselben granitische Lager ver-

E. Weinschenk: Geologisches aus dem bayerischen Walde.

schiedenster Beschaffenheit, bald porphyrisch ausgebildet, bald rein körnig, bald grobkörnig, bald zientlich dicht, bald glimmerarm, bald glimmerreich sich eingedrängt haben, so dass die Grenze ein ziemlich buntes Bild gewährt. Gleichzeitig sieht man in nächster Nähe des Contactes eine ganze Reihe kleinerer "ausgebrannter" Orte, welche in Folge der alten Ausbeutungsmethode durch Feuersetzen die eigenartige Form der Erzeinlagerungen in vorzüglicher Weise vor Augen führen.

Fig. 5.

Grosse Khaue; alter ausgebrannter Ort am Silberberg.

Besonders schön zeigt diese Linsenform die alte Khaue, welche auf der andern Seite des Berges liegt und deren Abbildung beigefügt ist.

Diese linsenförmigen Partieen, deren Einfallen ein ziemlich wechselndes ist (30—70°), bilden eine Reihe von Zügen, so zwar, dass bald mehrere derselben im Streifen durch Erzspuren

verbunden sind, oder aber, dass sie nicht genau in demselben Niveau auftreten. Die regelmässige Linsenform der Einlagerungen ist häufig gestört durch die Faltungen und Umbiegungen, welche den erzführenden Gneis betroffen haben, so dass manchmal rein sattelförmige, resp. schliesslich eigentümliche keilförmige Einlagerungen hervorgehen. Hin und wieder werden sie auch von Verwerfungsklüften durchzogen, welche bald mit ziemlich reinem Erz ausgefüllt sind, bald als sog. "faule Ruscheln" auftreten. Adern von Erz, die in das Nebengestein ausschwärmen, sind nicht allzuselten, meist aber sehr wenig mächtig, doch finden sich auch grössere Erzkörper, welche unbedingt den Charakter von Gängen an sich tragen. Die Erzeinlagerungen treten besonders gerne an der Grenze zwischen einem ganz dichten, nicht geschiefertem Cordieritgneis von äusserst kompakter Beschaffenheit und eigenartigen Lagen von grobkörnigem, meist

grünem Feldspath auf, welch' letztere der Bergmann daher als "höffliches" Gestein bezeichnet, dem er beim Suchen nach Erz folgt. Ausserdem beobachtet man, dass in der Nähe der Erzlinsenzüge die Gesteine meist besonders stark erschüttert sind und in geradezu enormer Anzahl kleinere oder grössere Quarzlinsen enthalten, die in allen Erscheinungen die Art des Auftretens der Erzlinsen im Kleinen wiedergeben. Wo eine solche Erzlinse in ihrem ganzen Querschnitt frisch aufgeschossen ist, kann man hin und wieder den bilateral symmetrischen Aufbau auf's Beste studieren. Auf beiden Seiten zunächst ein dünnes, oft nur millimeterbreites Schwefelkiesband, dann eine Zone von fast reiner Blende, welche häufig einem sehr grobkörnigen Magnetkies Platz macht, auf den die Hauptfüllung der übrigen Erze folgt. Hin und wieder enthalten diese Erze auch grössere oder kleinere Brocken der umgebenden Gesteine eingeschlossen und dann beobachtet man um dieselben die gleiche Reihenfolge der Erze, so dass eigentliche Kokardenerze

entstehen.

Für die Erklärung der genetischen Verhältnisse des Erzlagers sind neben der Anordnung der Erzlinsen, dem Vorkommen gangförniger Bildungen, sowie dem bilateral sym-

metrischen Bau der Linsen und dem Auftreten der Kokardenerze folgende Beobachtungen hauptsächlich von Interesse:

- 1. Die Erze enthalten stets in grösserer Menge einzelne Individuen der Bestandteile des umgebenden Gneises: Cordierit, Orthoklas (spangrün), Oligoklas (lauchgrün), Quarz, Biotit, oft in Verwachsung mit Chlorit, Hypersthen, Andalusit, Zinkspinell etc., welche in ringsum ausgebildeten Krystallen entwickelt sind, die oberflächlich wie angeschmolzen aussehen und häufig mit einer dünnen, schwarzen, magnetkiesführenden Haut überzogen sind; namentlich tragen die Quarze alle Erscheinungen magmatisch corrodierten Porphyrquarzes an sich.
- 2. Die Erze treten häufig als Bindemittel zertrümmerter Gneispartieen oder zertrümmerter Quarzlinsen auf, deren einzelne Bruchstücke um so mehr krystallähnlich zu werden pflegen, je mehr das Erz vorherrscht.
- 3. Die den Erzen zunächst liegenden Gesteine sind sehr häufig mit Zinkspinell (Kreittonit) imprägniert, so dass alle Risse der Mineralien und die Grenzen der einzelnen Individuen etc. mit diesem Mineral ausgekleidet erscheinen, welches hin und wieder auch in grösseren Krystallen in nesterförmigen Anzeicherungen im Erzlager selbst auftritt.
- 4. Die Erze zeigen manchmal eine blasige, stellenweise eine schlackige Ausbildung, welche nicht auf Verwitterungsvorgänge zurückgeführt werden kann, da solche Bildungen gerade in den grössten Teufen beobachtet werden, in welchen den Atmosphärilien keine irgendwie geartete Wirksamkeit mehr zukommt, und auch thatsächlich keine Spur einer sonstigen Umwandlung zu bemerken ist.

Es weisen somit alle Erscheinungen auf eine mit dem Granit in Zusammenhang stehende rein eruptive Bildung des Bodenmaiser Fahlbandes hin, während bei Annahme gleichzeitiger Entstehung der Erze mit den umgebenden Gneisen die meisten und charakteristischsten Erscheinungen der Erzlagerstätte nicht erklärt werden können.

Die Erze, die man am Silberberg beobachtet, sind vorherrschend Magnetkies, welcher nickelfrei und stets derb

ausgebildet ist, und Schwefelkies, der namentlich gegen den damit zusammen vorkommenden Kupferkies deutliche Krystallform aufweist, der aber in Folge einer nicht unbedeutenden Beimengung von Speerkies äusserst leicht verwittert und auch in Sammlungen kaum längere Zeit konserviert werden kann. Er nimmt dabei eine eigenartige löcherige Beschaffenheit an. welche man treffend als "wurmstichig" bezeichnet hat. Ferner finden sich der schon erwähnte Kupferkies, Blende mit geringem Cadmiumgehalt und silberhaltiger Bleiglanz, in geringen Mengen Zinnerz, etwas Magneteisen und Titaneisen. Von weiteren Mineralieu der Erzlagerstätte sind ausser den schon angeführten zu nennen: Graphit in einzelnen Blättchen, Kalkspath, der häufig in Spatheisen und Brauneisen umgewandelt ist, eine braune, monokline Hornblende, welche früher als Anthophyllit bezeichnet wurde, öfters umgewandelt in asbestartige Aggregate, Rutil, welcher im umgebenden Gneis eine besondere Rolle spielt, spärlich Flussspath und Turmalin, sodann verschiedene Zeolithe, sowie ein eigenartiges braunes wasserhaltiges Silikat mit muschligen Bruch, das von Kobell als Jollvit bezeichnet wurde. Endlich als Verwitterungsprodukt der Erze Vivianit, Eisenvitriol, Gyps, Schwefel, Phosphoreisensinter, Brauneisen, Göthit, Rotheisen etc. Erwähnenswert ist ferner, dass in den Erzlagern hin und wieder Gänge von Pegmatit vorkommen, sowie solche auf welchen Spessartin das hauptsächlichste Mineral darstellt, und schliesslich, dass auch Apophysen des Granits in weiterer Entfernung von der Contactzone auftreten, von welchen namentlich diejenige besondere Beachtung verdient, welche nahe am Gipfel des Silberberges ansteht. Hier erweist sich nämlich der Granit als besonders reich an derben Partieen von Magneteisen, welche starken, attraktorischen Magnetismus zeigen.

E. Weinschenk: Geologisches aus dem bayerischen Walde.

Von Bodenmais bis Zwiesel sind die geologischen Verhältnisse wieder weniger gut aufgeschlossen; zu erwähnen ist vor allem, dass hier früher bei Langdorf auf Graphit gegraben wurde; wegen schlechter Beschaffenheit des Graphits aber wurde die Gewinnung aufgelassen. Nachdem man aus dem Gneisgebiet wieder in das granitische Terrain übergetreten ist, folgt der nächste gute Aufschluss eigentlich erst am Pfahl, welcher in der nachstehend abgebildeten Ruine Weissenstein einen seiner schönsten Punkte aufweist.

Fig. 6. Weissenstein bei Regen.

Der Pfahl gehört bekanntlich zu den geologisch interessantesten Bildungen; er stellt eine mächtige Quarzmasse dar, welche in gerader Linie den ganzen bayerischen Wald auf eine Entfernung von ca. 150 km durchsetzt, beginnend bei Pleistein, östlich von Passau, fast bis Schwarzenfeld, nördlich von Regensburg. Er tritt allerdings nur in einem sehr

unterbrochenem Zuge hochaufragender Quarzfelsen zu Tage, deren Typus die Quarzfelsen darstellen, auf welche die Ruine Weissenstein aufgebaut ist. Dieses Verschwinden und Wiederauftauchen der anstehenden Felsen, welches den ganzen Zug des Pfahls charakterisiert, hängt zum Teil mit den einfachen Erosionsvorgängen zusammen, zum Teil aber auch damit, dass der Pfahl durchaus nicht in seiner ganzen Erstreckung die gleiche Mächtigkeit besitzt, sondern sich oft ziemlich ausbaucht, bald aber zu geringer Mächtigkeit zusammenschmilzt.

Der Pfahl selbst besteht ausschliesslich oder jedenfalls fast ausschliesslich aus derbem Quarz, welcher hin und wieder etwas kavernöse Beschaffenheit hat und dann auf den Hohlräumen durchsichtige Krystalle von Quarz der einfachsten Combination aufweist. Die mächtigen weissen Felsen sind hin und wieder durchaus gleichmässig struiert, meist aber zeigen sie eine eigentümliche Trümmerstruktur, welche sich in einer Durchäderung einer lichtbräunlich bis graulich gefärbten Masse durch völlig weisse Quarzadern zu erkennen gibt, wie sie namentlich an verwitterten Stellen deutlich hervortritt.

In seiner ganzen Erstreckung wird der Pfahl begleitet von einer Gruppe eigenartiger Schiefergesteine, den Pfahlschiefern Gümbels, welche überall im Streifen und Fallen mit dem Pfahl selbst übereinstimmen. Das ist auch der hauptsächlichste Grund, welcher Gümbel zu der Ueberzeugung brachte, dass in dem Pfahl eine Einlagerung von Quarzit in den Schiefergesteinen vorliege, und dass derselbe eine gleichalterige Bildung mit den umgebenden Schiefergesteinen darstelle.

Das geologische Interesse, welches der Pfahl besitzt, wird durch seine Auffassung als Einlagerung nicht gemindert, im Gegenteil dürfte eine analoge Einlagerung, begleitet von so eigenartigen Schichtgesteinen, wie das die Pfahlschiefer darstellen, auf der ganzen Erde nicht mehr vertreten sein. Indess scheint doch schon bei einer eingehenden Betrachtung des Pfahlquarzes selbst die Theorie seiner sedimentären Entstehung einigermassen anfechtbar, ganz abgesehen davon, dass das

E. Weinschenk: Geologisches aus dem bayerischen Walde.

Studium der Pfahlschiefer zu durchaus abweichenden Resultaten führt.

Die dem Pfahl zunächst liegenden Gesteine sind zum Teil völlig dichte, hälleflintartige Bildungen, welche chemisch gneisartig zusammengesetzt sind, meist aber so dicht erscheinen, dass man auch unter dem Mikroskop die Mengenverhältnisse der einzelnen Mineralien nicht beurteilen kann. Zum Teil sind sie mehr schieferig ausgebildet, und es treten schliesslich an Stelle derselben eigentliche feinschieferige, weisse Sericitschiefer, wie sie in vollständig analoger Ausbildung z. B. unter den Porphyroiden des Taunus vorhanden sind. Bei weiterer Entfernung vom Pfahl tritt etwas Flaserstruktur hervor, ausgezogene Feldspathaugen liegen in einer Grundmasse mit ziemlich viel dunkelem Glimmer; der Sericit tritt mehr und mehr zurück, der dunkle Glimmer hervor, die Gesteine werden daher immer dunkeler und nur die lichten Flecken der Feldspäthe, welche sich mehr und mehr in ihrer Form Krystallen nähern, treten daraus hervor.

In nicht zu weiter Entfernung schon lassen sich die Pfahlschiefer als sehr glimmerreiche, porphyrische Randzone des Granitmassivs erkennen, dessen Umgrenzung sie bilden. Die eigentümliche Erscheinung der Ausbleichung des Gesteins, die damit verbundene Auszerrung der Feldspathkrystalle zu Augen, die Zertrümmerung der ganzen Bildung unter gleichzeitiger Neubildung von Sericit, welche diese Granitporphyre in eigentliche Sericitschiefer hinüberführt, lässt nun nach allen bisherigen Erfahrungen nur eine Erklärung als richtig erscheinen, nämlich die, dass das Auftreten des Pfahls mit seinen Pfahlschiefern die Stelle einer bedeutenden Dislokation bezeichnet, dass die Sericitschiefer nichts weiter sind als eine aus dem Granitporphyr hervorgegangene Reibungsbreccie, welche hin und wieder sandartig zertrümmert erscheint, an anderen Stellen schieferig ist oder endlich zu einem hälleflintähnlichen Gestein verfestigt erscheint, und dass schliesslich der Pfahl selbst nichts weiter ist als die Ausfüllung dieser ungewöhnlich weit zu verfolgenden Dislokationsspalte, also ein ächter Gang, der mit den umgebenden Gesteinen absolut nicht gleichalterig sein kann.

Von Regen nach Zwiesel und von da nach Grafenau sind in den Bahneinschnitten hin und wieder unbedeutende Aufschlüsse vorhanden, welche bald Granit bald Gneis anstehend zeigen, nirgends aber lässt sich der Zusammenhang beider Gesteine eingehend verfolgen. Auch auf dem Wege von Grafenau bis Freyung ist kaum irgendwo eine Stelle von grösserem geologischem Interesse vorhanden. Erwähnt mag nur werden, dass in der Gegend von Hohenau der sonst so gleichmässige Granit eine eigentümliche Beschaffenheit annimmt, indem hier grössere Blättchen von Biotit aus der weissen Grundmasse des Gesteins in ziemlicher Anzahl hervortreten und demselben ein geflecktes Ansehen verleihen; technisch ist dieses an sich schöne Gestein kaum verwendbar, da es stark zermalmt ist.

Die Contactverhältnisse des Granites mit den Schiefergesteinen trifft man in besonders schöner Ausbildung in der Buchbergerleite bei Freyung, welche auch landschaftlich die schönste Partie in der weitesten Umgebung darstellt.

Am Eingang des Thales von Freyung her trifft man eine porphyrartige Ausbildung des Granites, welche namentlich schön etwas oberhalb des Thalweges an einem Wegeinschnitt aufgeschlossen ist und hier nebeneinander alle möglichen Uebergänge zu eigentlicher Augengneisstruktur erkennen lässt. Etwas weiter thaleinwärts wird dieser Granitporphyr glimmerreich, und es gehen bald ähnliche dunkle, glimmerreiche Porphyrgesteine mit Augengneisstruktur hervor, wie sie in der Nähe des Weissensteins vorhanden sind. Doch nimmt hier die Umwandlung des Gesteins einen anderen Verlauf. An Stelle der sericitischen, weissen Schiefer, die ein so typisches dynamometamorphes Produkt darstellen, findet man hier, dass unter Erhaltung der dunklen Farbe die Grundmasse dichter und dichter wird, so dass schliesslich makroskopisch der Reichtum

E. Weinschenk: Geologisches aus dem bagerischen Walde.

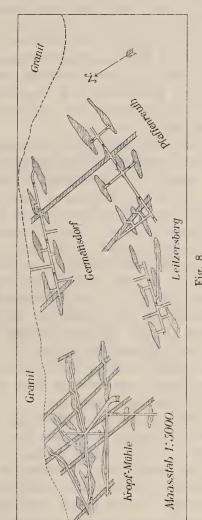
an Glimmer nicht mehr zu erkennen ist. Hin und wieder treten gleichzeitig die Einsprenglinge ganz zurück, und man hat an Stelle der Porphyre dichte, dunkle Gesteine von mattem Bruch, welche man bei flüchtiger Betrachtung leicht mit bituminösem Mergelschiefer oder ähnlichen klastischen Bildungen verwechseln könnte. Diese verschiedenen Faciesbildungen des granitischen Gesteines finden sich nun aber nicht etwa in einer bestimmten Reihenfolge, sondern vielmehr in buntem Gemenge, so dass man an den fast fortdauernden Aufschlüssen, welche die nun zur Schlucht werdende Buchbergerleite bietet, von Schritt zu Schritt einen Wechsel der Gesteine beobachtet, der noch interessanter wird dadurch, dass zwischen den einzelnen Ausbildungsformen des Eruptivgesteins sich unzweifelhafte Contactgesteine in schmäleren oder mächtigeren Lagern einschalten. Diese letzteren Gesteine haben zum Teil echten Hornsteinhabitus. bald sind sie in ihrem Aussehen von den dunklen granitischen Gesteinen kaum zu unterscheiden, und es dürfte in vielen Fällen bei makroskopischer Betrachtung die Entscheidung schwer werden, welcher Art von Bildungen ein derartiges dichtes, dunkles Gestein zuzuzählen ist.

Der Weg von Freyung nach Waldkirchen bringt keine bemerkenswerten Aufschlüsse: man überschreitet die Grenze des Granites gegen einen ziemlich mächtigen Stock dioritischer Gesteine von sehr charakteristischem Habitus, die aber nirgends in grösserer Ausdehnung entblösst sind, sondern fast nur in Findlingen studiert werden können.

An einzelnen Stellen findet dieser Diorit als Strassenmaterial Verwendung, zu welchem er sich in Folge seiner Zähigkeit im Gegensatz zu dem hier fast überall verwendeten Granit recht gut eignet.

Zwischen Waldkirchen und Hauzenberg gelangt man ebenso unmerklich wieder in das Gebiet des Granites, welcher hier seine vorzüglichste Beschaffenheit annimmt. Besonders ausgezeichnet durch gleichmässiges Korn, Festigkeit und grossbankige Absonderung ist das Gestein auf der Höhe von Hauzenberg. In dem dortigen Bruche liegen noch einige mächtige Monolithe, welche von der guten Beschaffenheit des Materials ein glänzendes Zeugnis ablegen, und die seinerzeit zum Bau der Befreiungshalle in Kelheim hier gebrochen wurden, deren Transport sich aber in Folge des schwachen Unterbaues der Strassen als unmöglich erwies, und die nun zum Teil an Ort und Stelle ihres Vorkommens lagern, zum Teil an der Strasse von Hauzenberg nach Passau liegen geblieben sind.

Fig. 7.
Graphitgrube bei Pfaffenreuth mit Haspelbetrieb.


In Hauzenberg ist man an der westlichen Grenze des berühmten Passauer Graphitgebietes angelangt, welches sich von hier ostwärts fast bis zur Landesgrenze, südlich bis zur Donau und stellenweise noch etwas darüber hinaus ausdehnt. Direkt östlich von Hauzenberg tritt eine nach E. Weinschenk: Geologisches aus dem bayerischen Walde.

allen Seiten vollständig regelmässig gebaute Kuppe hervor, von welcher südlich ein ziemlich mächtiger Stock eines

echten Hornblendegabbro mit Uebergängen in Uralitgabbro und Norit ansteht, welches Gestein ich mit dem Namen Bojit belegt habe.

Der Weg von Hauzenberg nach dem bekannten Graphitfundort Pfaffenreuth führt vor Germannsdorf zunächst über den Bojit und sodann meist ohne gute Aufschlüsse durch einen Wechsel von Granit und Gneis, welche von kleineren Bojitstöcken, sowie von Gängen eines Hornblendeporphyrits (Nadeldiorit Gümbel's) durchsetzt werden.

Kurz vor Pfaffenreuth betritt man eines der wichtigsten und reichstenGraphitlager, dessen Streichen durch eine grosse Anzahl von Bretterhütten bezeichnet wird, deren Charakter die beigefügte

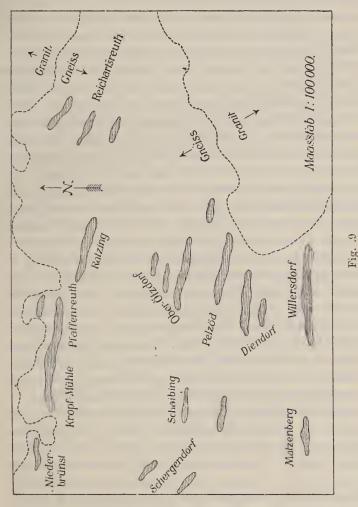

Horizontalriss des Kropfmühl-Pfaffenreuther Graphitstreichens

Abbildung gibt, welche aufs Augenfälligste die primitive Art und Weise der Ausbeutung zeigt, wie sie fast allenthalben im Graphitgebiet ausgeübt wird, und bei welcher der Haspel noch das einzige Förderungsmittel ist. Die Gewinnung des Graphits erfolgt heutzutage ausschliesslich unterirdisch, und zwar in der Weise, dass jeder Bauer auf dem eigenen Grund und Boden nach dem wertvollen Material gräbt, da der Graphit in Bayern nicht zu den muthbaren Mineralien gehört. Der Betrieb ist fast ausschliesslich Schachtbetrieb, der Abbau in Folge der mangelnden bergmännischen Schulung ein echter Raubbau, bei welchem die Kosten der Gewinnung ungewöhnlich hoch, der Prozentsatz des erbeuteten Materials unverhältnismässig gering ist.

Was die Qualität des Rohmaterials betrifft, so ist dasselbe in jeder Campagne (es wird fast nur während des Winters, in der stillen Zeit des Landmannes Graphit gegraben) und in jeder Grube eine andere, wobei sich die Wertschätzung nicht sowohl nach dem Kohlenstoffgehalt richtet als nach der Menge des in einem solchen Vorkommnis vorhandenen gröber blätterigen, "flinzigen" Graphites, da nur dieser aus dem Gestein gewonnen und zur Tiegelfabrikation verwertet werden kann. Die graphitführenden Gesteine sind teils ganz weich, geradezu erdig und werden dann als "Dachel" bezeichnet, oder sie sind hart und kompakt und mit Schwefelkies imprägniert und führen den Namen "Beos". Der Graphitgehalt ist sehr wechselnd, von 20% ca. beginnend bis zu etwa 70%, doch sind die letzteren Vorkommnisse äusserst selten; ferner besitzt der schwefelkiesfreie Graphit einen höheren Wert als derjenige, welcher mit Schwefelkies imprägniert ist.

Was die Art des Vorkommens des Graphites betrifft, so findet sich derselbe, wie das aus dem nebenstehenden Horizontalschnitte hervorgeht, ganz analog wie die Erzlager am Silberberg bei Bodenmais in linsenförmigen Anreihungen innerhalb des Gneises, welche sich zu eigenartigen Komplexen von Zügen vereinigen. Sie sind aber in sehr viel grösserer Zahl vorhanden als jene Erzlager und entfernen sich bedeutend weiter von der Contactgrenze des Granits, wie dies die Kartenskizze des Passauer Graphitgebietes erkennen lässt; doch ist der genetische Zusammenhang des Graphits mit dem Granit schon äusserlich da-

durch klargelegt, dass in der nächsten Nachbarschaft des Granites die mächtigsten und zahlreichsten Linsenkomplexe auftreten, welche gleichzeitig auch das "flinzigste" Material

Uebersichtsplan des Graphitgebietes.

führen, während die im Centrum des Gebietes auftretenden Vorkommnisse minderwertigen Graphit darbieten. Ein besonderes Interesse wecken eine Reihe von Umständen, welche die Graphiteinlagerungen fast überall begleiten. Man beobachtet zunächst, dass sie sich mit besonderer Vorliebe an Lager von körnigem Kalk anschliessen, welche an zahlreichen Stellen als Einlagerungen im ganzen Gebiete auftreten, und die durch das Vorhandensein einzelner Graphitindividuen und zahlreicher Contactmineralien ausgezeichnet sind, von welchen namentlich Forsterit, Phlogopit, Spinell, Pargasit, Chondrodit, Chlorit und Wollastonit zu nennen sind. Zwischen die Graphitlager und diese Kalkzüge haben sich häufig Lagergänge eines eigenartigen, pegmatitähnlichen Augitsyenits eingedrängt, welche durch unregelmässige und grobkörnige Struktur ausgezeichnet, namentlich durch das Vorkommen grosser Titanitkrystalle (Grothit) und langprismatischer Individuen von Skapolith (Porzellanspath, Passauit) bekannt geworden sind.

In diesen Gesteinen stellen sich in der Nachbarschaft einer Graphiteinlagerung stets eigenartige mehr oder minder weitgehende Umbildungserscheinungen ein, welche durch intensive chemische Processe hervorgebracht wurden. Im einfachsten Fall ist der Augit, der gerne in derben Putzen auftritt, in Uralit umgewandelt, und daneben der als accessorischer Gemengteil auftretende Skapolit, sowie auch der Feldspath mehr oder minder in Kaolin umgewandelt. Dann aber geht die Veränderung weiter, der Uralit wird zu losen Aggregaten von Nontronit, welches Mineral auch das übrige Gestein durchädert und Schritt für Schritt die Stelle des Orthoklases einnimmt, so dass schliesslich das ganze Alkalithonerdegestein in wasserhaltiges Eisenoxydhydrat verwandelt erscheint.

Auch die graphitführenden Gneise selbst haben die weitgehendsten Veränderungen erlitten, so dass sie an zahlreichen Stellen selbst aus den tiefsten Teufen nur als lockerer Mulm gefördert werden. Man beobachtet auch in ihnen die Umbildung zu Kaolin, häufiger aber Bildungen von Nontronit, welche oft von Opal begleitet werden, von mulmigen Mangansuperoxydsilikaten (Mog) mit kleinen perlmutterglänzenden Blättchen von Batavit. Kurzum die ganze Erscheinung weist auf äusserst intensive chemische Prozesse hin, welche an das

Auftreten des Graphits gebunden erscheinen, und die daher unzweifelhaft auch genetisch mit demselben in Zusammenhang stehen, zumal ganz analoge Umbildungen sich auch in Begleitung des Graphites im nahegelegenen böhmischen Gebiete finden und auch das berühmte Ceyloner Graphitvorkommen von ähnlichen Umwandlungsprodukten begleitet wird.

Im allgemeinen findet sich der Graphit in diesen zersetzten Gesteinen als gleichmässige Imprägnation von schuppiger Beschaffenheit, wobei die Art des Auftretens des Minerals im Gesteine gleichfalls für seine sekundäre Entstehung spricht. Die Graphitblättchen liegen stets auf den Grenzen der einzelnen Gesteinsgemengteile, auf den Spaltrissen der ursprünglichen Mineralien, namentlich der Glimmer, soweit diese erhalten geblieben sind, wobei sie sich den eckigen Contouren der einzelnen Mineralkörner aufs Innigste anschliessen. Endlich aber beobachtet man auch gar nicht selten gangförmige Bildungen von Graphit, allerdings meist von geringen Dimensionen, welche die zersetzten Gneise durchziehen.

Ausserdem treten als Begleitgesteine der Graphiteinlagerungen nicht selten Plagioklasgesteine vom Charakter der schon erwähnten Hornblendegabbro (Bojite) und Hornblendeporphyrite, welche teils als Lager die Linsenzüge begleiten, teils auf Verwerfungsspalten durch die Graphitlinsen hindurchsetzen, wie solche namentlich das Kropfmühle-Pfaffenreuther Lager (Fig. 8) in grosser Anzahl aufweist. Schon dadurch sind sie als jüngere Bildungen kenntlich, was aber auch daraus hervorgeht, dass diese Gesteine die Umwandlungsvorgänge nicht mitgemacht haben, sondern stets frisch sind, dass sie dagegen die Graphitlager chemisch dadurch beeinflussen, dass sie dieselben stets mit Schwefelkies imprägnieren, so dass alle jene Lager kiesführend sind, welche von solchen Plagioklasgesteinen begleitet werden.

Das ganze abwechslungsreiche Bild, welches uns die Passauer Graphitlagerstätte darbietet, macht die sekundäre Zuführung des Graphites zweifellos, eine Zuführung, welche von chemischen Prozessen begleitet war, die mit höchster Intensität wirkend, Umsetzungen hervorbrachten, wie wir sie sonst selten und nur im Zusammenhang mit vulkanischen Prozessen zu beobachten gewöhnt sind; bei welchen ferner eine massenhafte Zuführung höherer Oxyde von Eisen und Mangan stattgefunden hat, so dass kaum eine andere Hypothese Wahrscheinlichkeit für sich hat, als diejenige, dass der Graphit der Exhalation gasförmiger Carbonyle dieser Metalle seine Entstehung verdankt, einer Gruppe leicht zerstörbarer Verbindungen, welche beim geringsten Anstoss zu Kohlenstoff einesteils, zu Metalloxyd andernteils zerfallen.

Von den im Graphitgebiet zu beobachtenden Verhältnissen sind nun noch einige Worte den am südlichen Rande des Gebietes hoch über der Donau liegenden Kalkbruch am Steinhag bei Obernzell zu widmen, welcher in der Geologie eine gewisse Berühmtheit erlangt hat durch das Vorkommen von Ophicalciten, welche Gümbel mit den seinerzeit aus Canada beschriebenen scheinbaren organischen Resten identificierte und als Eozoon bayaricum abschied. Die hier auftretenden Bildungen sind durchschnittlich etwas gröber struiert als die canadischen, zeigen aber in ihrer petrographischen Ausbildung wie in ihrem geologischen Auftreten die grösste Aehnlichkeit mit diesen. Es sind eigentümlich schlierige, in ihrer Form mit kleinen Korallenstücken vergleichbare Einlagerungen im reinen, schneeweissen Marmor, welche die Ophicalcitbildung aufweisen. Was die Entstehung der Ophicalcite selbst betrifft, so liegen in denselben nichts weiter vor als Umwandlungsprodukte besonders Forsterit-reicher, contactmetamorphischer Kalke, welch' letztere schon in frischem Zustand eine der "Eozoon"struktur nicht unähnliche Bildung aufweisen, wobei die feinere Struktur aber erst durch die Umbildung des Forsterits in Serpentin entsteht, indem dadurch erst die verschiedenen "Röhren" und "Kanäle" zur Entstehung kommen, welche zur Verwechslung mit organischen Ueberresten geführt hat. In den ursprünglichen Forsteritkalken wird trotz der Aehnlichkeit der Verteilung des Forsterits im Gesteine mit derjenigen des späteren Serpentins niemand eine organische Struktur vermuten. Die

eigenartige Form, welche diese Silikatanreicherungen im Kalk besitzen, dürfte am ehesten mit den bedeutenden Faltungsprozessen in Zusammenhang gebracht werden, welche die Gneise in so hohem Masse erkennen lassen, die die linsenförmige Kalkeinlagerung umschliessen. Solchen Kräften gegenüber pflegt sich reiner Kalk als durchaus plastische Masse zu verhalten, während die silikatreicheren Partieen spröder und weniger umbiegungsfähig sind. Sie wurden daher zerrissen, und wir haben in den schlierigen Ophicalcitpartieen wohl nichts anderes als die auseinandergezogenen Reste einer ursprünglich Forsteritreichen Gesteinsschicht vor uns.

Im übrigen ist zu erwähnen, dass in dem Kalkbruch die Linsenform der Kalkeinlagerung prachtvoll zu verfolgen ist, und dass im Hangenden derselben früher ein Lager von Syenit aufgeschlossen war, welches sich als besonders reich an grossen Passauitindividuen erwies.

Beim Abstieg vom Steinhag gegen Oberzell hat man am Wege, der sich am Steilabhange über der Donau hinzieht, ein prachtvolles Profil des Systems der Gneise vor sich, an welchem man namentlich die Schichtenverbiegungen in grossartiger Weise beobachten kann und hin und wieder auch kleinere Einlagerungen von körnigem Kalk sieht. In Obernzell selbst wird seit Jahrhunderten der grösste

In Obernzell selbst wird seit Jahrhunderten der grösste Teil des im Gebiete gewonnenen Graphites zur Anfertigung von Schmelztiegeln (Passauer Tiegeln) verarbeitet, zu welchem Zwecke das Rohmaterial zunächst gepocht und gemahlen und durch Absieben oder Ausblasen von dem dabei entstehenden feineren Material gereinigt wird. Der in dem Gneis vorhandene blätterige, "flinzige" Graphit widersteht in Folge seiner Geschmeidigkeit der Zertrümmerung, während die steinigen Gemengteile zu Staub zerkleinert werden, und man kann auf diesem einfachen Wege aus verhältnismässig geringhaltigem Rohmaterial ein Produkt mit einem Reingehalt von 92—94% Kohlenstoff erzielen, in dem auch von dem ursprünglich vorhandenen Schwefelkies nichts mehr vorhanden ist, so dass der gereinigte Passauer Graphit zum Zwecke der Tiegelfabrikation

guten Ceylonsorten völlig ebenbürtig ist. Der so gewonnene "Flinz", welcher eine äusserst milde und schlüpfrige Beschaffenheit hat, wird in grossen Knetmaschinen gleichmässig mit feinem Thon gemengt und das so gewonnene Produkt dann auf der Töpferscheibe zu Tiegeln geformt und gebrannt. Der Hauptvorzug der aus diesen blätterigen Graphiten hergestellten Tiegel besteht vor allem in der guten Wärmeleitungsfähigkeit des Materials, in ihrer Widerstandsfähigkeit gegen das Zerreissen bei raschem Temperaturwechsel, sowie in der Eigenschaft, dass eine Legirung mit den Metallen, welche in solchen Tiegeln geschmolzen werden, nicht eintritt. Für viele wichtige Zwecke der Technik sind sie somit völlig unersetzlich.

Die Steilwände der Donau zwischen Obernzell und Passau zeigen im ersten Teil den Gneis in seiner typischsten Entwicklung. Später treten einzelne granitische Lager in demselben auf und schliesslich ist der Wechsel zwischen den Lagern von Granit und Gneis ein so bunter geworden, dass sich der Gesteinscharakter fast von Schritt zu Schritt ändert. Es macht dann den Eindruck als ob die Gneisscholle an ihrem Rande geradezu aufgeblättert wäre, wobei zwischen die einzelnen Lagen das schmelzflüssige, granitische Magma sich eingedrängt hätte.

Grundlagen einer mechanischen Theorie des elastischen Stosses und der inneren Reibung in kontinuirlichen Medien.

Von Arthur Korn.

(Kingelaufen 8. Juli.)

Man darf wohl sagen, dass sich in der Mechanik zwei Principien über jeden Zweifel bewährt haben:

- 1) das Princip von D'Alembert,
- 2) das Princip der Erhaltung der lebendigen Kraft;

das erste ist insofern allgemeiner, als es uns jeden mechanischen Vorgang in allen seinen Einzelnheiten ergiebt, während wir aus dem zweiten immer nur eine specielle Seite dieses Vorganges gewinnen können.

Zur Versöhnung der gegenwürtigen Theorieenbildungen in der Physik würe es nun von Wichtigkeit, wenn man das Princip der lebendigen Kraft immer gradezu aus dem Princip von D'Alembert ableiten könnte; das ist nun bei allen reinmechanischen Problemen stets möglich gewesen mit einigen speciellen Ausnahmen, bei denen wohl die Schuld in der Stellung der betreffenden Aufgabe zu suchen ist. Ein Beispiel hierfür liefert das Problem des Stosses zwischen zwei materiellen Teilchen:

Wenn zwei materielle Teilchen m_1 m_2 in der Richtung der x Axe mit den Geschwindigkeiten V_1 V_2 fortfliegen, so werden sie, falls V_1 grösser als V_2 (und zu irgend einer Anfangszeit die x Koordinate von m_2 grösser ist, als die von m_1), in einem

bestimmten Momente zusammenstossen; es ergiebt sich aus dem D'Alembert'schen Princip — es ist dies eine von D'Alembert selbst gegebene Anwendung seines Princips — dass die beiden Teilchen nach dem Stoss mit der gemeinsamen Geschwindigkeit:

$$V_{1}^{\prime} = V_{2}^{\prime} = \frac{m_{1}}{m_{1}} \frac{V_{1} + m_{2}}{m_{1} + m_{2}} \frac{V_{2}}{m_{2}}$$

weiterfliegen, und das Princip der lebendigen Kraft

$${\textstyle\frac{1}{2}}\;m_{_1}\;V_{_1}^2+{\textstyle\frac{1}{2}}\;m_{_2}\;V_{_2}^2={\textstyle\frac{1}{2}}\;m_{_1}\;V_{_1}^{\prime 2}+{\textstyle\frac{1}{2}}\;m_{_2}\;V_{_2}^{\prime 2}$$

wird im allgemeinen nicht erfüllt sein.

Der Grund dieser Nichtübereinstimmung ist — das hebt bereits D'Alembert in seiner Dynamik selbst hervor — in den Unstetigkeiten im Augenblicke des Stosses zu suchen, und man darf diese Aussage ganz allgemein machen:

Ueberall, wo bei mechanischen Problemen das D'Alembert'sche Princip zu Verstössen gegen das Princip der lebendigen Kraft führt, sind Verstösse gegen das Princip der Stetigkeit in den Voraussetzungen des betreffenden Problems die Ursache.

Wenn wir den sogenannten elastischen Stoss, der mit dem Princip der lebendigen Kraft in Einklang ist, aus dem D'Alembert'schen Princip herleiten wollen, müssen wir uns von allen Unstetigkeiten frei machen, und wir stellen uns das Problem in folgender Weise:

Der ganze Raum ist erfüllt durch ein inkompressibles Kontinuum, wir betrachten in demselben zwei materielle Teilchen m_1 und m_2 , d. h. zwei die kleinen Volumina τ_1 und τ_2 erfüllende kontinuierliche Medien, die — allerdings nur sehr grossen Drucken gegenüber — einer geringen Kompression resp. Dilatation fähig sind; die Geschwindigkeitskomponenten u v w sind im ganzen Raum, also auch an den Oberflächen von τ_1 und τ_2 stetig.

Aussen wie innen bestehen Gleichungen von der Form:

Arthur Korn: Grundlagen einer mechanischen Theorie.

1)
$$\begin{cases} \mu \frac{du}{dt} = -\frac{\partial p}{\partial x}, \\ \mu \frac{dv}{dt} = -\frac{\partial p}{\partial y}, \\ \mu \frac{dw}{dt} = -\frac{\partial p}{\partial z}, \end{cases}$$

wo p eine stetige Funktion der Zeit und der Stelle, den Druck des Kontinuums vorstellt. Ferner ist aussen:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0,$$

infolge der Inkompressibilität des Aussenmediums, innen besteht ausser der Kontinuitätsgleichung

$$\frac{du}{dt} = -\mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right)$$

noch eine Relation:

$$F\left(\mu,\,p\right)=0,$$

die wir hier nicht als bekannt vorauszusetzen brauchen, abgesehen von der Kenntnis, dass die Dichtigkeit μ nur durch ausserordentlich grosse Druckschwankungen geringe Veränderungen erleiden kann.

Wir suchen die Bedingungen auf, unter welchen die Geschwindigkeitskomponenten im ganzen Raume von der Form sein können:

4)
$$\begin{cases} u = u_0 + L \sin \frac{t}{T} 2\pi, \\ v = v_0 + M \sin \frac{t}{T} 2\pi, \\ w = w_0 + N \sin \frac{t}{T} 2\pi, \end{cases}$$

wo T eine gegen die Zeiteinheit sehr kleine Schwingungsdauer vorstellt und, wie immer, über u_0 v_0 w_0 L M N die Voraussetzung gemacht wird, dass:

226 Sitzung der math.-phys. Classe vom 8. Juli 1899.

5a)
$$\begin{cases} u_0 & v_0 & w_0 \\ E & M & N \end{cases}$$
 nicht gegen die Geschwindigkeitseinheit,

von der Ordnung $\frac{ ext{Zeiteinheit}}{T}$ gross sein sollen.

Die aus 1) bis 5) folgenden Bedingungen sind: Es besteht eine Funktion φ von der Beschaffenheit, dass bis auf kleine Grössen:

6)
$$\begin{cases} L = \frac{\partial \varphi}{\partial x}, \\ M = \frac{\partial \varphi}{\partial y}, \\ N = \frac{\partial \varphi}{\partial z}, \end{cases}$$
 im ganzen Raume,

7)
$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0, \text{ im Aussenraume}$$

und:

8)
$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = k \cdot \varphi, \text{ innerhalb } \tau_1 \text{ und } \tau_2,$$

wo k eine Konstante ist, die von der Kompressibilität der Teilchen m_1 und m_2 abhängt und hier zur Vereinfachung für beide Teilchen von derselben Grösse vorausgesetzt werden möge. Zur Ableitung von 8) aus 3^a) und 3^b) brauchen wir, wie leicht zu übersehen ist, die Relation 3^b) selbst nicht zu kennen, abgesehen von der Kenntnis, dass die Dichtigkeit μ nur durch ausserordentlich grosse Druckschwankungen geringe Veränderungen erleiden kann.

Schliesslich müssen die Ableitungen von φ im ganzen Raume, also auch bei dem Durchgange durch die Oberflächen

Arthur Korn: Grundlagen einer mechanischen Theorie.

 ω_1 und ω_2 von τ_1 und τ_2 stetig sein und im Unendlichen¹) die Bedingungen der Ableitungen von Potentialfunktionen erfüllen.

Die Gleichungen 6) bis 8) stellen ein ganz bestimmtes Problem der Potentialtheorie dar, wenn an der grossen Kugelfläche (P) ein gegebener periodischer Druck vorausgesetzt wird, durch den die Konstante:

9)
$$c = -\frac{\int \frac{\partial}{\partial r} q \, d \, \omega^2}{\tau}, \ (\tau_1 = \tau_2 = \tau \ \text{vorausgesetzt}),$$

die "mittlere Kompression" der Teilchen $m_1 \ m_2$ gegeben ist.

Das Problem ist durch folgende kombinatorische Methode lösbar:

Man bilde successive die folgenden Gleichungen:

$$10_0) q_0 = c,$$

10₁)
$$\varphi_1 = -\frac{k}{4\pi} \int_{\tau_1} \frac{c}{r} d\tau - \frac{k}{4\pi} \int_{\tau_2} \frac{c}{r} d\tau ,$$

10₃)
$$\varphi_3 = -\frac{k}{4\pi} \int_{\tau_1}^{\tau_2} \frac{\varphi_2}{r} d\tau - \frac{k}{4\pi} \int_{\tau_2}^{\tau_2} \frac{\varphi_2}{r} d\tau ,$$

dann folgt:

$$\Delta \left(\varphi_0 + \varphi_1 + \varphi_2 + \varphi_3 + \ldots \right) = 0, \text{ im Aussenraume,}$$

$$\Delta \left(\varphi_0 + \varphi_1 + \varphi_2 + \varphi_3 + \ldots \right) = k \left(\varphi_0 + \varphi_1 + \varphi_2 + \varphi_3 + \ldots \right),$$
innerhalb τ_1 und τ_2 ,

es ist also:

$$(11) \varphi = \varphi_0 + \varphi_1 + \varphi_2 + \varphi_3 + \dots$$

¹⁾ An einer grossen Kugelfläche (P).

²) Wir setzen ω , τ , wenn man dafür sowohl ω_1 τ_1 , als auch ω_2 τ_2 schreiben kann; ν bezeichnet die innere Normale.

die gesuchte Funktion φ , falls diese Reihe konvergiert, was jedenfalls eintritt, wenn k einen gewissen endlichen Wert nicht überschreitet.

Betrachten wir nun die Funktionen φ_1 φ_2 φ_3 . . . etwas genauer; die Funktion φ_1 ist dem Newton'schen Potential der Teilchen m_1 und m_2 proportional; diesem Gliede entspricht eine scheinbare Anziehungskraft der beiden Teilchen von der Grösse

12₁)
$$R_1 = \frac{k}{\rho^2} (a_0 + D_1),$$

wo ϱ die Entfernung der beiden Teilchen, D_1 eine Grösse vorstellt, die gegen die Konstante a_0 von der Ordnung des Verhältnisses der Dimensionen von τ_1 τ_2 gegen die Entfernung der beiden Teilchen klein ist. 1)

Nimmt man nun zur Berechnung der scheinbaren Wechselwirkung noch das zweite Glied φ_2 der Reihe 11) hinzu, so ergiebt die Rechnung, dass zu der Anziehungskraft 12₁) infolge des Gliedes φ_2 eine Abstossungskraft von der Grösse

$$R_2 = \frac{k^2}{\varrho^5} (b_0 + D_2)$$

hinzukommt.

Man kann in dieser Weise fortgehend noch weitere Glieder für die Wechselwirkung der beiden Teilchen berechnen, und es wird das dritte Glied mit dem Faktor k^3 , das vierte mit dem Faktor k^4 u. s. w. behaftet sein.

Vernachlässigt man bereits k^2 , so erhält man nur zwischen m_1 und m_2 die Gravitationswirkung: vernachlässigt man aber erst k^3 , so wird bei genügender Annäherung von m_1 und m_2 (wobei jedoch ϱ immer noch gegen die Dimensionen der Teilchen gross bleiben möge) die Abstossungskraft R_2 über die Gravitationswirkung R_1 die Oberhand gewinnen, d. h. es werden sich dann die Teilchen m_1 und m_2 umgekehrt proportional der fünften Potenz von ϱ abstossen. Damit gelangen wir zu dem

¹⁾ Wir nehmen die Entfernung der beiden Teilchen gegen ihre Dimensionen ausserordentlich gross an.

Arthur Korn: Grundlagen einer mechanischen Theorie.

von Maxwell untersuchten Fall der Wechselwirkung zweier Teilchen m_1 und m_2 . 1)

Die Teile m_1 und m_2 können in diesem Falle überhaupt nicht zusammenstossen, sie werden sich vielmehr nach einer bestimmten Annäherung wieder von einander entfernen, und zwar so, als ob sie einen elastischen Stoss auf einander ausgeübt hätten; das Princip der lebendigen Kraft bleibt gewahrt.

Wir gelangen so, ohne über die Art der Kompressibilität der Teilchen m_1 und m_2 mehr zu wissen, als dass ihre Dichtigkeiten nur durch ausserordentlich grosse Druckschwankungen geringe Veränderungen erleiden können, zu einer mechanischen Theorie des elastischen Stosses zwischen m_1 und m_2 .

Wir gelangen mit unserem Wechselwirkungsgesetze aber auch zu gleicher Zeit in bekannter Weise zu einer mechanischen Theorie der inneren Reibung in kontinuierlichen Medien, und es dürften die eben auseinandergesetzten Anschauungen auch ein neues Licht auf den Zusammenhang der beiden grossen kinetischen Reibungstheorieen von Maxwell und O. E. Meyer werfen.

¹) Maxwell, Phil. Mag. 35, 1868; Kirchhoff, Wärmetheorie, p. 156; Boltzmann, Gastheorie, 1. T., p. 153.

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.a

Bilinearformen und Differentialsysteme.

Von E. von Weber.

(Eingelaufen 8. Juli.)

Die algebraischen Thatsachen, die den bisher entwickelten allgemeinen Integrationstheorien partieller Differentialprobleme zu Grunde liegen, fliessen fast ausnahmslos aus derselben Quelle; es ist dies die Theorie der Schaaren von Bilinearformen. Der hiermit berührte Zusammenhang soll in der vorliegenden Note für den Fall der Differentialsysteme mit zwei unabhängigen Veränderlichen des näheren dargelegt werden.

§ I. Passive Differentialsysteme.

1. In diesem § werden die für das Folgende nötigen Sätze aus der Theorie der Differentialsysteme beliebiger Ordnung zusammengestellt.¹)

Es seien x, y unabhängige Veränderliche, $z_1 z_2 \dots z_n$ unbekannte Funktionen dieser Variabeln, und es werde gesetzt:

$$z_{\alpha\beta}^{i} = \frac{\partial^{\alpha+\beta} z_{i}}{\partial x^{\alpha}}; \ z_{i0}^{i} = z_{i} \ (\alpha, \beta = 1, 2, \ldots)$$

Unter einem Differentialsystem versteht man dann ein beliebiges Gleichungensystem in x y z_1 .. z_n und einer endlichen Zahl der Ableitungen $z_{\alpha\beta}^i$; die Ordnung des Differentialsystems ist die Ordnung der höchsten darin auftretenden Ableitungen.

Vgl. C. Méray und C. Riquier, Ec. Norm. 1890, p. 23; Riquier
 Ec. Norm. 1893, p. 65, 123, 167; Sav. Étr. 32; C. Bourlet, Ec. Norm.
 1891 Supplém.; A. Tresse Acta Math. 18 p. 1 (1894).

2. Wir wollen die z_i und ihre Ableitungen bis zur μ^{ten} Ordnung einschliesslich folgendermassen in eine Reihe schreiben:

$$(1) \quad z_{\mu 0}^{1}, \quad z_{\mu - 1, 1}^{1}, \dots \quad z_{0\mu}^{1}, \quad z_{\mu 0}^{2}, \dots \quad z_{0\mu}^{n}, \dots \quad z_{\mu 0}^{n}, \dots \quad z_{0\mu}^{n}, \quad z_{\mu - 1, 0}^{1}, \dots \\ \dots \quad z_{0, \mu - 1}^{n}, \dots \quad z_{10}^{1}, \quad z_{01}^{1}, \quad z_{10}^{2}, \dots \quad z_{01}^{n}, \quad z_{00}^{1}, \dots \quad z_{00}^{n}.$$

In dieser Reihe, die sich nach links hin auf Grund desselben Anordnungsprincips unbegrenzt fortsetzen lässt, steht demnach die Ableitung

$$z_{\gamma\delta}^{k}$$
 rechts von $z_{\alpha\beta}^{i}$,

wenn entweder

1)
$$\gamma + \delta < \alpha + \beta$$
:

oder

2)
$$\gamma + \delta = a + \beta$$
; $k > i$;

oder

3)
$$\gamma + \delta = \alpha + \beta$$
; $k = i$; $\gamma < \alpha$.

Eine Relation

(2)
$$z_{\alpha\beta}^{i} = \varphi\left(x \, y \, z_{1} \dots z_{n} \dots z_{\gamma\delta}^{k} \dots\right)$$

heisst **canonisch**, wenn alle in der Funktion q vorkommenden Grössen z_i , $z_{j\delta}^k$ in der Reihe (1) rechts von $z_{\alpha\beta}^i$ stehen.

Ein Differentialsystem S heisst **canonisch**¹), wenn 1) jede einzelne Gleichung von S canonisch ist; 2) keine der Grössen $z_{\alpha\beta}^i$, die auf den linken Seiten von S auftritt, in einer der rechten Seiten von S vorkommt.

3. Ist die Gleichung

$$z_{yb}^k = \psi(xy, \dots z_i \dots z_{\varepsilon_i}^l \dots)$$

canonisch, und substituiert man für $\varepsilon_{\gamma\delta}^k$ die Funktion ψ in die rechte Seite der canonischen Gleichung (2), so erhält man wieder eine canonische Gleichung. Daraus folgt sofort, dass jedes beliebige Differentialsystem durch geeignete Auflösung auf die canonische Form gebracht werden kann.

4. Ist f eine Funktion der Grössen

(3)
$$x, y, z_{\alpha\beta}^{i} \ (a, \beta = 0, 1, 2...)$$

¹⁾ Tresse a. a. O.

E. v. Weber: Bilinearformen und Differentialsysteme, so verstehen wir unter $D_x f$, $D_y f$ die folgenden Ausdrücke:

$$\begin{split} D_x f &\equiv \frac{\partial f}{\partial x} + \Sigma \frac{\partial f}{\partial z_i} z_{10}^i + \Sigma \Sigma \Sigma \frac{\partial f}{\partial z_{\alpha\beta}^i} z_{\alpha+1,\beta}^i \\ D_y f &\equiv \frac{\partial f}{\partial y} + \Sigma \frac{\partial f}{\partial z_i} z_{01}^i + \Sigma \Sigma \Sigma \frac{\partial f}{\partial z_{\alpha\beta}^i} z_{\alpha,\beta+1}^i. \end{split}$$

Die Operationen D_x , D_y bezeichnen wir als Derivationen nach x bezw. y, die Gleichungen

$$D_x f = 0, \quad D_y f = 0$$

als die ersten Derivirten der Gleichung f = 0, ferner die Gleichungen

$$D_x(D_x f) = 0$$
, $D_x(D_y f) \equiv D_y(D_x f) = 0$, $D_y(D_y f) = 0$ als die zweiten Derivirten etc.

Genügen 4 Zahlen ϱ , ϱ' , σ , σ' den Bedingungen

$$\varrho' < \varrho, \ \sigma' < \sigma$$

und steht die Ableitung $z_{\gamma\delta}^k$ in der Reihe (1) rechts von $z_{\alpha\beta}^i$, so stellt auch die Ableitung

$$z_{\gamma+\varrho',\,\delta+\sigma'}^{k}$$
 rechts von $z_{\alpha+\varrho,\,\beta+\sigma}^{i}$;

daraus folgt sofort, dass die unbegrenzt vielen Derivirten einer canonischen Gleichung wieder canonisch sind.

5. Tritt die Ableitung $z_{a\beta}^{i}$ in einer der Gleichungen des canonischen Differentialsystems S auf der linken Seite auf, so bezeichnen wir sie selbst und alle Ableitungen der Form

$$z_{a+s,\beta+t}^{i}$$
 (s, $t = 0, 1, 2, ...$ in inf.)

als principale Grössen des Systems S, alle übrigen Variabeln (3) als parametrische Grössen von S. Die Anzahl der principalen Grössen ist also stets unbegrenzt, aber nicht notwendig die der parametrischen.

Enthält S zwei principale Grössen mit demselben obern Index:

$$z_{\alpha\beta}^{i}, \quad z_{\alpha'\beta}^{i},$$

und ist α'' die grössere der Zahlen α , α' , ferner β'' die grössere der Zahlen β . β' , so heisst die (gleichfalls principale) Ableitung $z^i_{\alpha''\beta'}$ eine cardinale Ableitung des canonischen Systems S.

6. Es sei μ die Ordnung des canonischen Systems S; dam ist μ auch die Ordnung der höchsten principalen Ableitungen, die in den Gleichungen S vorkommen. Ist dann ν eine Zahl $> \mu$, so denken wir uns jede Gleichung in S nach x und y wiederholt derivirt, und zwar so lange, bis die derivirten Gleichungen die Ordnung ν erreichen. Indem wir alle so erhaltenen Gleichungen dem System S hinzufügen, erhalten wir ein Differentialsystem S_{ν} .

Dieses System ist nun zwar im Allgemeinen nicht canonisch; aber es besteht nach Nr. 4 aus lauter canonischen Gleichungen, und da die Anzahl der Grössen $z_{\gamma\delta}^k$, die in der Reihe (1) rechts von einer bestimmten Ableitung $z_{\alpha\beta}^i$ stehen, begrenzt ist, so schliesst man nach Nr. 3 leicht, dass mittels des Systems S_r jede principale Ableitung bis zur r^{ten} Ordnung einschliesslich vermöge einfacher Substitutionen durch die parametrischen Grössen allein dargestellt werden kann.

Enthält aber S zwei principale Ableitungen (4) mit demselben obern Index und wählt man

$$\nu > a'' + \beta''.$$

wobei $z_{a''\beta'}^i$ die zugehörige cardinale Ableitung bedeutet, so tritt die letztere auf den linken Seiten mindestens zweier verschiedener Gleichungen des Systems S_r auf, lässt sich also mit Hülfe von S_r auf mindestens zwei verschiedene Arten durch die parametrischen Grössen allein darstellen. Diese beiden Darstellungen sind natürlich im allgemeinen verschieden, und ihre Vergleichung führt dann zu einer Relation zwischen den parametrischen Grössen allein.

7. Ein canonisches System S heisst **passiv**, wenn sich mittels der Gleichungen S und ihrer Derivirten jede principale Ableitung auf nur eine Art durch die parametrischen Grössen allein darstellen lässt, wenn also aus dem System S_r , wie gross

auch der Index v gewählt sein mag, keine Relation zwischen den parametrischen Grössen bervorgeht.

Ist ω die Ordnung der höchsten cardinalen Ableitung von S und ergeben sich aus S_{ω} (bezw. aus S_{μ} im Falle $\omega \leq \mu$) keine Relationen zwischen den parametrischen Grössen, so gilt dasselbe a fortiori für alle Systeme S_{ν} ($\nu > \omega$). Die notwendigen und hinreichenden Bedingungen für die Passivität des canonischen Systems S der Ordnung μ finden also ihren Ausdruck in einem gewissen System partieller Differentialgleichungen, in dem die Variabeln $x, y, z_1 \dots z_n$ und die parametrischen Ableitungen bis zur μ^{ten} Ordnung einschliesslich als Independente figuriren, und dem die rechten Seiten der Gleichungen S identisch zu genügen haben.

8. Das canonische System S sei von der Ordnung μ und nicht passiv. Bildet man dann das Differentialsystem $S_{\mu+1}$, bringt dasselbe auf die canonische Form und verfährt mit letzterer wie mit S etc., so gelangt man nach einer endlichen Zahl von Schritten 1) entweder zu Widersprüchen, eventuell zu Relationen in x y allein, und das vorgelegte System S besitzt dann kein Integral, oder zu einem passiven System, auf dessen Integration die von S hinauskommt.

Die Aufsuchung der etwaigen Integrale eines beliebigen Differentialsystems kommt also stets auf die Integration eines canonischen, passiven Systems hinaus.

9. Es sei S ein canonisches, passives System der Ordnung μ ; ferner sollen die Grössen

$$(5) x_0 y_0 \dots \overline{z_i} \dots \overline{z_{\gamma\delta}^k} \dots$$

constante Anfangswerte der parametrischen Grössen von S bedeuten und folgenden Bedingungen genügen:

- 1) Die rechten Seiten von S sind in der Umgebung der Stelle x_0 y_0 z_i $z_{v\delta}^k$ regulär.
- 2) Falls die Zahl der parametrischen Grössen, also auch die der Constanten (5) unbegrenzt ist, so sollen die Potenzreihen

¹⁾ Riquier, Éc. Norm. 1893; Tresse a. a. O.

Sitzung der math.-phys. Classe vom 8, Juli 1899.

$$\sum_{\gamma} \sum_{\delta} \frac{\overline{z}_{\gamma\delta}^k}{\gamma! \, \delta!} (x - x_0)^{\gamma} (y - y_0)^{\delta} \quad (k = 1, 2, \dots n)$$

in denen die Summe über alle parametrischen Grössen mit dem obern Index k zu erstrecken ist, einen gemeinsamen Konvergenzbezirk besitzen.

Unter diesen Annahmen gibt es ein und nur ein System von Funktionen $z_1 cdots z_n$, die sich an der Stelle $x_0 cdot y_0$ regulär verhalten, dem System S identisch genügen, und die Eigenschaft besitzen, dass die parametrischen $z_{\gamma\delta}^k$ an der Stelle $x_0 cdot y_0$ bezw. die vorgeschriebenen Werte $z_{\gamma\delta}^k$ annehmen.

10. Im Folgenden werden ausschliesslich passive Systeme erster Ordnung betrachtet. Die canonische Form eines solchen Systems besteht aus Gleichungen der Form

(K)
$$\begin{cases} \frac{\partial z_{a}}{\partial x} = \varphi_{a}\left(x, y, z_{1} \dots z_{n}, \frac{\partial z_{a}}{\partial y}, \frac{\partial z_{b}}{\partial x}, \frac{\partial z_{b}}{\partial y}, \frac{\partial z_{b'}}{\partial x}, \frac{\partial z_{b'}}{\partial y}, \dots\right) \\ \frac{\partial z_{c}}{\partial y} = \psi_{c}\left(x, y, z_{1}, \dots z_{n}, \frac{\partial z_{d}}{\partial x}, \frac{\partial z_{d}}{\partial y}, \frac{\partial z_{d'}}{\partial x}, \frac{\partial z_{d'}}{\partial y}, \dots\right) \\ (b, b' \dots > a; d, d' \dots > c). \end{cases}$$

Bezeichnet man mit z_e , $z_{e'}$, $z_{e''}$... diejenigen unter den z_i , deren erste Ableitungen beide auf den rechten Seiten von (K) vorkommen, so sind die cardinalen Ableitungen des Systems (K) die folgenden:

$$\frac{\partial^2 z_e}{\partial x \partial y}, \quad \frac{\partial^2 z_{e'}}{\partial x \partial y}, \quad \frac{\partial^2 z_{e''}}{\partial x \partial y} \dots$$

und die notwendigen und hinreichenden Bedingungen für die Passivität von (K) bestehen dann nach Nr. 7 darin, dass sich jede der genannten Ableitungen mit Hülfe der ersten Derivirten von (K) auf eine und nur eine Weise durch $x, y, z_1 \dots z_n$ und die ersten und zweiten parametrischen Ableitungen ausdrücken lässt.

§ II. Zur Theorie der Schaaren von Bilinearformen.

11. Es seien $x_1 x_2
ldots x_m$, bezw. $y_1 y_2
ldots y_n$ zwei Variabelngruppen, u und v willkürliche Parameter, endlich P_{ik} , Q_{ik} Constante. Dann wird das volle Invariantensystem, das die Schaar von Bilinearformen

$$W = u \sum_{i=1}^{m} \sum_{k=1}^{n} P_{ik} x_i y_k + v \sum_{i=1}^{m} \sum_{k=1}^{n} Q_{ik} x_i y_k$$

gegenüber beliebigen linearen homogenen Transformationen der beiden Variabelngruppen x und y besitzt, nach Kronecker¹) folgendermassen gebildet:

Der Rang der Matrix

(A)
$$\begin{array}{c} u P_{11} + v Q_{11}, & u P_{12} + v Q_{12} \dots & u P_{1n} + v Q_{1n} \\ u P_{21} + v Q_{21}, & u P_{22} + v Q_{22} \dots & u P_{2n} + v Q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u P_{m1} + v Q_{m1}, & u P_{m2} + v Q_{m2}, \dots & u P_{mn} + v Q_{mn} \end{array}$$

sei gleich τ , d. h. es mögen in diesem Schema alle $\tau+1$ -reihigen, nicht aber alle τ -reihigen Determinanten für beliebige u, v verschwinden. Dann gibt es $m-\tau$ Systeme von je m ganzrationalen homogenen Funktionen der Variabeln u v mit constanten Coefficienten:

(6)
$$a_{1s} \ a_{2s} \dots a_{ms} \ (s = 1, 2, \dots m - \tau)$$

derart, dass die Identitäten

$$a_{1s} \frac{\partial W}{\partial x_1} + a_{2s} \frac{\partial W}{\partial x_2} + \ldots + a_{ms} \frac{\partial W}{\partial x_m} = 0$$

für jedes beliebige Wertsystem $u, v, y_1 \dots y_n$ befriedigt sind und dass in der Matrix, die aus den $m - \tau$ Zeilen (6) besteht, nicht alle $m - \tau$ -reihigen Determinanten für beliebige u v verschwinden. Dann ist jedes andere Formensystem $a_1 \dots a_m$, das die Identität

¹⁾ Sitzungsber. der Berl. Ak. 1890, p. 1225.

238 Sitzung der math.-phys. Classe vom 8. Juli 1899.

(7)
$$a_1 \frac{\partial W}{\partial x_1} + \ldots + a_m \frac{\partial W}{\partial x_m} = 0$$

erfüllt, eine lineare Combination der Systeme (6), mit Coefficienten, die in den u v rational sind. Wir denken uns die $m-\tau$ Formensysteme (6) so ausgewählt, dass ihre Grade in u, v möglichst klein sind, und es sei M_s der Grad des s^{ten} dieser Formensysteme.

Ebenso bezeichnen wir mit

$$b_{1s} \ b_{2s} \dots b_{ns} \ (s = 1, 2, \dots n - \tau)$$

 $n-\tau$ Formensysteme, in deren Matrix nicht alle $n-\tau$ -reihigen Determinanten für beliebige u,v verschwinden, und die der Identität

$$b_1 \frac{\partial W}{\partial y_1} + b_2 \frac{\partial W}{\partial y_2} + \ldots + b_n \frac{\partial W}{\partial y_n} = 0$$

für beliebige Werte $u, v, x_1 \dots x_m$ genügen. Diese Formensysteme seien so ausgewählt, dass ihre Gradzahlen $N_1, N_2, \dots N_{n-\tau}$ möglichst klein werden.

Wir dürfen ohne die Allgemeinheit zu beschränken annehmen, dass die τ -reihigen Determinanten der Matrix A für v = 0 nicht alle verschwinden. Es sei dann

$$(w-w_1)^{\lambda_{11}} (w-w_2)^{\lambda_{12}} \dots (w-w_s)^{\lambda_{1N}},$$

von einem constanten Faktor abgesehen, der grösste gemeinschaftliche Divisor aller τ-reihigen Determinanten der Matrix

(A')
$$Q_{ik} - w P_{ik}$$
 $(i = 1, ...m; k = 1...n)$

wobei die Constanten $w_1, w_2, \dots w_n$ alle verschieden sind.

Allgemein sei

$$(w-w_1)^{\lambda_{i1}}(w-w_2)^{\lambda_{i2}}\dots(w-w_s)^{\lambda_{is}}$$

der grösste gemeinsame Divisor aller $\tau-i+1$ -reihigen Determinanten obiger Matrix. Setzt man dann:

$$\lambda_{1h} - \lambda_{2h} = e_{1h}$$
; $\lambda_{2h} - \lambda_{3h} = e_{2h}$; $\lambda_{\tau-1,h} - \lambda_{\tau h} = e_{\tau-1,h}$; $\lambda_{\tau h} = e_{\tau h}$, so bilden die Zahlen

E. v. Weber: Bilinearformen und Differentialsysteme.

$$M_1, M_2, \dots M_{m-\tau}, N_1, N_2, \dots N_{n-\tau};$$

 $w_1, w_2, \dots w_{\varkappa}; e_{\alpha\beta} (a = 1, 2, \dots \tau; \beta = 1, 2, \dots \varkappa)$

das vollständige Invariantensystem der Schaar W, und man hat

(8)
$$\tau = \sum \sum e_{\alpha\beta} + \sum M_i + \sum N_k.$$

12. Für das Folgende ist eine genauere Bestimmung der Zahlen M_i nötig. Es sei allgemein μ_h die Anzahl derjenigen der Zahlen M_i , die gleich h sind; ebenso seien ν_h von den Zahlen N_k gleich h. Da die Zahlen M_i , N_k offenbar nicht grösser als τ sein können, so hat man

$$\mu_{\tau+1} = \nu_{\tau+1} = \mu_{\tau+2} = \nu_{\tau+2} = \ldots = 0.$$

Ferner gelten die Beziehungen:

(9)
$$\mu_0 + \mu_1 + ... + \mu_{\tau} = m - \tau$$
; $\nu_0 + \nu_1 + ... + \nu_{\tau} = n - \tau$.

Die beiden Matrices

$$\left| \begin{array}{c|c} P_{11} & P_{12} & \dots & P_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{m1} & P_{m2} & \dots & P_{mn} \end{array} \right|; \qquad \left| \begin{array}{c|c} Q_{11} & Q_{12} & \dots & Q_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{m1} & Q_{m2} & \dots & Q_{mn} \end{array} \right|;$$

mögen mit P bezw. Q bezeichnet werden, ferner mit B_1 die Matrix

Allgemein bezeichne B_h die aus (h+1) n Colonnen und aus h m Zeilen bestehende Matrix, die dadurch gebildet wird, dass man das Schema B_1 h-mal in staffelförmiger Anordnung hinschreibt, also in leicht verständlicher, abgekürzter Schreibweise folgende Form hat:

endlich sei ϱ_h der Rang der Matrix B_h .

Werden dann diejenigen unter den Formensystemen (6), deren Grad h ist, mit

(10)
$$a_{1s}^{(h)}, a_{2s}^{(h)} \dots a_{ms}^{(h)} \quad (s = 1, 2, \dots \mu_h)$$

bezeichnet, so bestehen folgende Sätze:

- 1) Genügt ein System $a_1 ... a_m$ von ganzrationalen homogenen Functionen h^{ten} Grads der Variabeln u v der Identität (7), so ist es eine lineare Combination der den obern Indices 0,1,...h-1,h entsprechenden Formensysteme (10), und zwar sind die Coefficienten dieser Linearcombination ganze rationale homogene Funktionen in u, v.
 - 2) Es gilt die Gleichung:

$$\mu_h = (h+1) m - \varrho_{h+1} - 2 \mu_{h-1} - 3 \mu_{h-2} \dots - (h+1) \mu_0$$

Beide Behauptungen sind für h = 0 evident; wir wollen annehmen, dass sie für h = 0, 1, ..., l - 1 bewiesen seien, und zeigen, dass sie unter dieser Annahme auch für h = l zutreffen.

13. Zu diesem Zwecke sestzen wir

$$a_i \equiv a_i^{(0)} u^l + a_i^{(1)} u^{l-1} v + \ldots + a_i^{(l-1)} u v^{l-1} + a_i^{(l)} v^l$$

worin die $a_i^{(k)}$ Constante bedeuten, und drücken aus, dass die linke Seite von (7) für beliebige $u, v, y_1 \dots y_n$ verschwindet.

Dadurch erhalten wir:

$$\begin{cases} \sum_{1}^{m} i \ \alpha_{i}^{(0)} \ P_{ik} = 0 \\ \sum_{1}^{m} i \ (\alpha_{i}^{(0)} \ Q_{ik} + \alpha_{i}^{(1)} \ P_{ik}) = 0 \\ \sum_{1}^{m} i \ (\alpha_{i}^{(1)} \ Q_{ik} + \alpha_{i}^{(2)} \ P_{ik}) = 0 \ (k = 1, 2, \dots n) \end{cases}$$

$$\vdots$$

$$\sum_{1}^{m} i \ (\alpha_{i}^{(l-1)} \ Q_{ik} + \alpha_{i}^{(l)} \ P_{ik}) = 0$$

$$\sum_{1}^{m} i \ \alpha_{i}^{(l-1)} \ Q_{ik} = 0$$

Es ist dies ein lineares homogenes Gleichungssystem mit den $(l+1)\,m$ Unbekannten

(12)
$$a_1^{(0)} \ a_1^{(1)} \dots a_1^{(l)}, \ a_2^{(0)} \dots a_2^{(l)} \dots a_m^{(l)} \dots a_m^{(l)}$$

und die Matrix dieses Gleichungssystemes ist B_{i+1} ; also besitzen die Gleichungen (11) genau

$$q = (l+1) m - \varrho_{l+1}$$

linear unabhängige Lösungensysteme:

$$a_{1s}^{(0)} \ldots a_{1s}^{(l)} \ a_{2s}^{(0)} \ldots a_{2s}^{(l)} \ldots a_{ms}^{(0)} \ldots a_{ms}^{(l)} \ (s = 1, 2, \ldots q).$$

Wir multiplizieren nun das Formensystem (10) der Reihe nach mit den Produkten

$$u^{l-h}$$
; $u^{l-h-1} \cdot v$; ... $u \cdot v^{l-h-1}$; v^{l-h} .

Indem wir diese Produkte für h = 0, 1...l - 1 bilden, erhalten wir Formensysteme l^{ten} Grades, die alle der Identität (7) genügen, und deren Anzahl gleich:

(13)
$$(l+1) \mu_0 + l \mu_1 + (l-1) \mu_2 + \ldots + 2 \mu_{l-1}$$

ist. Diesen Formensystemen entsprechen ebensoviele Wertsysteme (12), die den Gleichungen (11) genügen, und diese Lösungensysteme. deren Inbegriff wir der bequemeren Ausdrucksweise halber mit L bezeichnen wollen, sind linear unabhängig. Andernfalls wäre nämlich eines der obigen Formensysteme $l^{\rm ten}$ Grads mittels constanter Coefficienten aus den übrigen linear zusammensetzbar; also wäre eines der Formensysteme

(14)
$$a_{1s}^{(h)} \ a_{2s}^{(h)} \dots a_{ms}^{(h)}$$

$$(s = 1, 2, \dots u_h; h = 0, 1, \dots l - 1)$$

eine lineare Combination der andern, was der Definition dieser Formensysteme widerspricht.

Ausser den Lösungensystemen L, deren Anzahl durch (13) gegeben ist, besitzen nun die Gleichungen (11) noch ω weitere Auflösungen:

$$a_{1s}^{(0)} \ldots a_{1s}^{(l)}, \ a_{2s}^{(0)} \ldots a_{2s}^{(l)} \ldots a_{ms}^{(0)} \ldots a_{ms}^{(l)} \ (s = 1, 2, \ldots \omega)$$

Sitzung der math.-phys. Classe vom 8. Juli 1899.

die mit den Systemen L zusammen q linear unabhängige Lösungensysteme darstellen; dabei ist gesetzt:

$$\omega = (l+1) m - \varrho_{l+1} - 2 \mu_{l-1} - 3 \mu_{l-2} - \ldots - (l+1) \mu_0.$$

Bilden wir jetzt die nachstehenden Formen lten Grads:

$$a_{is}^{(l)} = a_{is}^{(0)} u^l + a_{is}^{(1)} u^{l-1} v + \ldots + a_{is}^{(l)} v^l$$
 (s = 1 \ldots \omega)

so verschwinden in der Matrix, die aus den ω Zeilen

(15)
$$a_{1s}^{(l)} \ a_{2s}^{(l)} \dots \ a_{ms}^{(l)} \ (s = 1, 2 \dots \omega)$$

und aus den $\mu_0 + \ldots + \mu_{l-1}$ Zeilen (14) besteht, nicht alle Determinanten der Ordnung

$$\mu_0 + \mu_1 + \ldots + \mu_{l-1} + \omega$$

für beliebige u, v. Andernfalls verschwänden nämlich diese Determinanten insbesondere auch für u=1, v=0. Dann gäbe es offenbar ein Constantensystem $\lambda_s^{(h)}$ von der Beschaffenheit, dass nicht alle Constanten $\lambda_1^{(l)}$ $\lambda_2^{(l)}$... $\lambda_{\infty}^{(l)}$ verschwänden, und dass die m Formen l^{ten} Grads:

$$\sum_{1}^{\omega} \lambda_{s}^{(l)} \alpha_{is}^{(l)} + \sum_{0}^{l-1} h \sum_{1}^{\mu_{h}} \lambda_{s}^{(h)} \alpha_{is}^{(h)} u^{l-h} \quad (i = 1, 2, \dots m)$$

durch v teilbar, also in der Form v B_i darstellbar wären; die B_i wären dann Formen l — 1 ten Grads in u v, die der Identität

$$B_1 \frac{\partial W}{\partial x_1} + \ldots + B_m \frac{\partial W}{\partial x_m} = 0$$

genügen. Da nun die Behauptung 1) des vor. Art. für den Fall h=l-1 bereits bewiesen sein sollte, so wäre das Formensystem $B_1 \dots B_m$ als lineare Combination mit ganz rationalen, in u v homogenen Coefficienten aus dem Formensystem (14) zusammensetzbar; also wäre eines der ω Grössensysteme (15) in derselben Weise durch die übrigen Systeme (15) und die Systeme (14) darstellbar, was der Definition der Systeme (15) widerspricht.

Aus dieser Definition folgt ferner, dass jedes Formensystem $a_1 \dots a_m$ vom Grade l in den u v, das die Identität (7) befriedigt, sich als lineare Combination mit ganz rationalen Coefficienten

E. v. Weber: Bilinearformen und Differentialsysteme.

in uv aus den Formensystemen (14) (15) zusammensetzen lässt; also hat man $\omega = \mu_l$, und die beiden Behauptungen der Nr. 12 sind sonach auch für den Fall h = l als richtig erkannt.

Man hat infolgedessen die Recursionsformeln

$$(16) \begin{cases} \mu_0 &= m - \varrho_1; \\ \mu_1 &= 2m - \varrho_2 - 2\mu_0; \\ \mu_2 &= 3m - \varrho_3 - 2\mu_1 - 3\mu_0; \\ \vdots &\vdots &\vdots \\ \mu_t &= (t+1)m - \varrho_{t+1} - 2\mu_{t-1} - 3\mu_{t-2} - \dots - (t+1)\mu_0 \\ \mu_{t+1} &= 0, \ \mu_{t+2} &= 0 \dots \end{cases}$$

und es lassen sich mittels dieser Formeln die ϱ_i durch die μ_i ausdrücken, und umgekehrt.

Genau ebenso erhält man natürlich auch die Gleichungen:

$$v_h = (h+1) m - \sigma_{h+1} - 2 v_{h-1} - 3 v_{h-2} - \dots - (h+1) v_0$$

$$(h=0, 1, \dots \tau),$$

wenn σ_h den Rang der aus (h+1)m Colonnen und hn Zeilen bestehenden Matrix bedeutet, die aus dem Schema

genau ebenso gebildet wird, wie die Matrix B_h aus B_1 .

§ III. Involutionssysteme erster Ordnung.

14. Es werde unter J ein beliebiges Differentialsystem erster Ordnung

(J)
$$f_i(x, y, z_1, \dots z_n, p_1 \dots p_n, q_1 \dots q_n) = 0$$
 $(i = 1, 2, \dots m)$ mit n unbekannten Funktionen $z_1 \dots z_n$ verstanden; dabei ist gesetzt:

$$p_i = \frac{\partial z_i}{\partial x}; \ q_i = \frac{\partial z_i}{\partial y}.$$

Wir dürfen, ohne die Allgemeinheit zu beschränken, annehmen, dass die Gleichungen J hinsichtlich der 2n Variabeln p_i q_i unabhängig sind, also nach m derselben aufgelöst werden können; dann ist $m \leq 2n$ und die Matrix B_1 des vorigen \S , in der

(17)
$$P_{ik} \equiv \frac{\partial f_i}{\partial p_k}; \quad Q_{ik} \equiv \frac{\partial f_i}{\partial q_k}$$

gesetzt wird, besitzt vermöge des gegebenen Gleichungssystems J den Rang

$$\varrho_1 = m$$

d. h. es verschwinden vermöge J nicht alle m reihigen Determinanten.

Wir nehmen jetzt an, dass die canonische Form des Systems J passiv sei, und wollen untersuchen, welche Bedingungen sich hieraus für die unaufgelöste Form des Systems J ableiten lassen.

15. Die Matrix A des vorigen \S , in der die P_{ik} Q_{ik} wieder durch (17) definiert seien, besitze den Rang τ , d. h. also es mögen in A alle τ + 1-reihigen, aber nicht alle τ -reihigen Determinanten für beliebige u, v vermöge der Gleichungen J verschwinden; wir bezeichnen A als die charakteristische Matrix des Differentialsystems J. Ferner möge die canonische Auflösung K dieses Differentialsystems aus Gleichungen der Form:

$$p_{a} = \varphi_{a} (x, y, z_{1} ... z_{n}, q_{a}, p_{b}, q_{b}, p_{b'}, q_{b'}, ...)$$

$$q_{c} = \psi_{c} (x, y, z_{1} ... z_{n}, p_{d}, q_{d}, p_{d'}, q_{d})$$

$$(b, b' ... > a : d, d' ... > c)$$

bestehen, und es sei σ die Anzahl derjenigen unter den Zahlen e, die auch unter den Zahlen a vorkommen, m. a. W.: Die Anzahl der Unbekannten z_a , deren erste Ableitungen p_a , q_a alle beide auf den linken Seiten des canonischen Systems K' auftreten.

Indem wir jede der Gleichungen K je einmal nach x und y deriviren, und die zweiten Ableitungen

$$\frac{\partial^2 z_i}{\partial x^2}, \quad \frac{\partial^2 z_i}{\partial x \partial y}, \quad \frac{\partial^2 z_i}{\partial y^2}$$

bezw. mit r_i , s_i , t_i bezeichnen, erhalten wir 2 m Gleichungen K' der zweiten Ordnung, und unter ihnen befinden sich σ Paare der Eigenschaft, dass die linken Seiten der beiden Relationen eines Paares die gleiche Ableitung s_a enthalten. Eliminirt man aus den rechten Seiten eines solchen Gleichungenpaars die etwaigen principalen Ableitungen 2. 0. mit Hülfe der übrigen Gleichungen K', so müssen, falls K passiv sein soll, die genannten rechten Seiten identisch verschwinden, m. a. W.: Betrachtet man K' als ein System linearer Gleichungen in den 3 n Unbekannten r_i s_i t_i , so reduciren sie sich vermöge K auf genau 2 m — σ linear unabhängige Gleichungen (vgl. Nr. 10).

Da nun K die Auflösung von J ist, so gilt die letztere Thatsache auch von dem linearen Gleichungensystem, das aus J durch je einmalige Derivation nach x und y entsteht:

(18)
$$\begin{cases} M_{i} + \sum_{1}^{n} k P_{ik} r_{k} + \sum_{1}^{n} k Q_{ik} s_{k} = 0 \\ N_{i} + \sum_{1}^{n} k P_{ik} s_{k} + \sum_{1}^{n} k Q_{ik} t_{k} = 0 \end{cases}$$

$$(i = 1 ..m)$$
$$\left(M_{i} = \frac{\partial f_{i}}{\partial x} + \sum_{1}^{n} \frac{\partial f_{i}}{\partial z_{k}} p_{k}; N_{i} = \frac{\partial f_{i}}{\partial y} + \sum_{1}^{n} \frac{\partial f_{i}}{\partial z_{k}} q_{k} \right);$$

es muss also der Rang der Matrix:

vermöge der Relationen J gleich $2m-\sigma$ sein, d. h. es müssen in B alle $2m-\sigma+1$ -reihigen, nicht aber alle $2m-\sigma$ -reihigen Determinanten vermöge J verschwinden. Offenbar muss jetzt auch die im vorigen \S definirte Matrix B_2 , die aus

B durch Streichung der ersten Spalte entsteht, vermöge J den Rang $2m-\sigma$ besitzen. Denn wäre dieser Rang kleiner, so ergäbe sich aus den Gleichungen (18) eine von den r_i s_i t_i freie Relation, die keine Consequenz von J wäre.

Genau ebenso erkennt man allgemein: Betrachtet man die h m Gleichungen h^{ter} Ordnung, die sich durch h-1-malige Derivation nach x und y aus dem System K ergeben, als ein System linearer Gleichungen mit den (h+1) n Unbekannten:

$$z_{h-a,a}^{i}$$
 $(i = 1, ...n; a = 0, 1...h), 1)$

so müssen sie sich, falls K passiv sein soll, vermöge K und der derivirten Gleichungen bis zur h— $1^{\rm ten}$ Ordnung einschliesslich, auf genau

$$h m - (h - 1) \sigma$$

linear unabhängige Gleichungen reduciren. Letzteres gilt dann offenbar auch von den h m Derivirten h^{ter} Ordnung des Systems J:

(19)
$$M_{ia}^{h} + \sum_{1}^{n} k P_{ik} z_{h-a,a}^{k} + \sum_{1}^{n} k Q_{ik} z_{h-a-1,a+1}^{k} = 0$$
$$(i = 1, 2, \dots m; \ a = 0, 1 \dots h - 1).$$

worin die M_{in}^h gewisse Funktionen von $x, y, z_1 \dots z_n$ und von den Ableitungen der z_i bis zur $h-1^{\text{ten}}$ Ordnung bedeuten. Die Matrix dieses Gleichungssystems muss al o vermöge J und der Derivirten bis zur $h-1^{\text{ten}}$ Ordnung einschliesslich den Rang $hm-(h-1)\sigma$ besitzen. Diese Matrix besteht aus hm Zeilen und (h+1)n+1 Spalten, und wird aus der im vorigen \S definirten Matrix B_h erhalten, wenn man die hm Elemente

$$M_{10}^h \dots M_{m0}^h, M_{11}^h \dots M_{m1}^h \dots M_{1,h-1}^h \dots M_{m,h-1}^h$$

als neue Colonne hinzufügt. Der Rang, den die Matrix vermöge der Gleichungen J besitzt, kann wicht kleiner als $h m - (h - 1) \sigma$ sein, da andernfalls aus den Relationen (19) eine Gleichung folgen würde, die die Ableitungen der z_i nur

 $z_{h-a,a}^{i} = \frac{\partial_{\cdot}^{h} z_{i}}{\partial x^{h-a} \partial y^{a}}$

E. v. Weber: Bilinearformen und Differentialsysteme.

bis zur h— 1^{ten} Ordnung enthielte, und doch keine Folge des Systems J und seiner Derivirten bis zur h— 1^{ten} Ordnung wäre, was mit der Passivität von K in Widerspruch stände. Die im vorigen \S definirten Zahlen $\varrho_1, \varrho_2, \varrho_3, \ldots$ haben daher bezw. die Werte:

$$m, 2m - \sigma, 3m - 2\sigma, 4m - 3\sigma...$$

und aus dem Formelsystem (16) der Nr. 13 schliessen wir jetzt:

$$\mu_0 = 0$$
; $\mu_1 = \sigma$; $\mu_2 = 0$, $\mu_3 = 0$, ..., $\mu_\tau = 0$.

Da aber nach Art. 12 andererseits:

$$\mu_0 + \mu_1 + \ldots + \mu_\tau = m - \tau,$$

so folgt:

$$\sigma = m - \tau$$
.

Als eine notwendige Bedingung für die Passivität der canonischen Auflösung von *J* haben wir demnach die erhalten, dass die Matrix *B* vermöge *J* den Rang

$$2m - \sigma = m + \tau$$

besitze, wenn unter \u03c4 der Rang der charakteristischen Matrix verstanden wird.

16. Ein Differentialsystem J, das die eben genannte Bedingung erfüllt, soll fortan ein **Involutionssystem** erster Ordnung heissen. Durch eine Transformation der unabhängigen Variabeln gelingt es nun in allen Fällen, das gegebene Involutionssystem J auf eine besonders einfache Normalform zu reduciren.

Es seien wieder τ und $m + \tau$ die Rangzahlen, die den beiden Matrices A und B vermöge der gegebenen Gleichungen J zukommen. Wir können dann die Gleichungen J und die Unbekannten z_i von vorneherein so numeriren, dass insbesondere die Determinante:

vermöge J nicht für jedes beliebige Wertsystem u, v Null ist. Es seien α, β und γ, δ zwei Constantensysteme, die dieser Bedingung genügen und deren Determinante $\alpha \delta - \beta \gamma$ nicht Null ist. Führen wir dann mittels der Formeln:

(21)
$$x' = \alpha x + \beta y; \ y' = \gamma x + \delta y$$

die neuen Independenten x', y' ein, und schreiben wir:

$$p'_i = \frac{\partial z_i}{\partial x'}; \quad q'_i = \frac{\partial z_i}{\partial y'}; \quad r'_i = \frac{\partial^2 z_i}{\partial x'^2} \text{ etc.}$$

so hat man:

(22)
$$p_i = a p'_i + \gamma q'_i; \ q_i = \beta p'_i + \delta q'_i,$$
$$r_i = a^2 r'_i + 2 a \gamma s'_i + \gamma^2 t'_i \text{ etc.}$$

Verwandelt sich vermöge der Transformation (21) (22) die Funktion f_i in:

$$f_i'(x'y'z_1...z_np_1'...q_n')$$

so hat man:

(23)
$$P'_{ik} = \frac{\partial f'_i}{\partial p'_k} = \alpha P_{ik} + \beta Q_{ik}; \ Q'_{ik} = \gamma P_{ik} + \delta Q_{ik}.$$
$$M_i = \alpha M'_i + \gamma N'_i; \ N_i = \beta M'_i + \delta N'_i^{-1}.$$

Bezeichnet man ferner mit A_i , B_i die linken Seiten der beiden ersten Derivirten der Gleichung $f_i = 0$, mit A'_i B'_i die linken Seiten der ersten Derivirten von

(J')
$$f'_i = 0 \quad (i = 1, 2 \dots m),$$

so folgt leicht:

$$A_i \equiv \alpha A_i' + \gamma B_i'; B_i = \beta A_i' + \delta B_i'.$$

Da sich nun unter den 2 m Gleichungen $A_i = 0$, $B_i = 0$ genau $m + \tau$ linear unabhängige befinden, so gilt dasselbe von den Gleichungen $A'_i = 0$, $B'_i = 0$, d. h. die Matrix B', die der Matrix B analog aus den Elementen M'_i , N'_i , P'_{ik} , Q'_{ik} gebildet wird, besitzt vermöge der Gleichungen J' wieder den Rang $m + \tau$.

 $M'_{i} \equiv \frac{\partial f'_{i}}{\partial x'} + \Sigma \frac{\partial f'_{i}}{\partial z_{k}} p'_{k} \text{ etc.}$

Ebenso erkennt man ohne weiteres, dass der Rang der zu \mathcal{F} gehörigen charakteristischen Matrix ebenfalls τ ist.

Das transformirte System \mathcal{J} ist also ein Involutionssystem und hat überdies die Eigenschaft, dass die beiden Determinanten

$$|P'_{ik}| |Q'_{ik}|$$
 $(i, k = 1, 2, ... \tau)$

vermöge \mathcal{F} nicht verschwinden. Wir dürfen daher, indem wir die Accente jetzt wieder weglassen, ohne Beschränkung der Allgemeinheit von vorneherein annehmen, dass die beiden Determinanten

(24)
$$P_{ik} | Q_{ik} | (i, k = 1, 2, ... \tau)$$

vermöge des gegebenen Differentialsystems J nicht Null sind. Dann verschwinden in der Matrix:

(D)
$$P_{11} P_{12} \dots P_{1r} Q_{11} Q_{12} \dots Q_{1r}$$

$$\dots \dots \dots \dots \dots$$

$$P_{m1} P_{m2} \dots P_{mr} Q_{m1} Q_{m2} \dots Q_{mr}$$

vermöge J nicht alle m-reihigen Determinanten. Um dies zu zeigen, bemerken wir vorab, dass:

$$2 \tau \geq m$$
; 1) $\tau \leq m$.

Ist $\tau = m$, so ist unsere Behauptung evident. Ist aber $\tau < m$, und nehmen wir an, dass in dem Schema D alle m-reihigen Determinanten vermöge J Null sind, so verschwinden in der Matrix D, die aus D durch Hinzufügung der Colonne

$$P_{1,\tau+1}, P_{2,\tau+1} \dots P_{m,\tau+1}$$

entsteht, alle diejenigen m-reihigen Determinanten, welche die erste der Determinanten (24) als Unterdeterminante enthalten. In der That ist ja jede Determinante, die mehr als τ Colonnen der Form $P_{1s} \dots P_{ms}$ enthält, vermöge J Null; der Rang von D ist also vermöge J nach einem bekannten Determinantensatz

¹) Denn unter der Annahme $\tau < \frac{m}{2}$ verschwinden in der Matrix B_1 des vorigen § alle m-reihigen Determinanten.

< m. Aus analogen Gründen gilt nunmehr dasselbe von der Matrix D'', die aus D' durch Hinzufügung einer Colonne

$$Q_{1, \tau+1}, Q_{2, \tau+1}, \ldots Q_{m, \tau+1}$$

hervorgeht etc. Durch Wiederholung dieser Schlussweise gelangt man zu dem Resultat, dass in der Matrix B_1 des vorigen \S alle m-reihigen Determinanten vermöge J Null sind, was unsern Annahmen widerspricht.

17. Unter den nichtverschwindenden Determinanten von D befindet sich mindestens eine, welche die τ ersten Colonnen enthält: darnach kann das System J nach $p_1 \dots p_{\tau}$ und nach σ von den Variabeln $q_1 \dots q_{\tau}$) anfgelöst werden, und wir dürfen daher ohne Beschränkung der Allgemeinheit annehmen, dass das System J auf die Normalform:

(N)
$$\begin{cases} p_{1} = \varphi_{1}(x, y, z_{1} \dots z_{n}, p_{\tau+1} \dots p_{n}, q_{\sigma+1} \dots q_{n}) \\ \vdots & \vdots \\ p_{\tau} = \varphi_{\tau}(x, y, z_{1} \dots z_{n}, p_{\tau+1} \dots p_{n}, q_{\sigma+1} \dots q_{n}) \\ q_{1} = \psi_{1}(x, y, z_{1} \dots z_{n}, q_{\sigma+1} \dots q_{n}) \\ \vdots & \vdots & \vdots \\ q_{\sigma} = \psi_{\sigma}(x, y, z_{1} \dots z_{n}, q_{\sigma+1} \dots q_{n}) \end{cases}$$

gebracht werden kann. Wir bemerken ausdrücklich, dass die ψ_i keine der Grössen $p_{\tau+1} \dots p_n$ enthalten können, da andernfalls die Gleichungen J nach $\tau+1$ von den Variabeln $p_1 \dots p_n$ auflösbar wären, was wegen des Verschwindens aller $\tau+1$ -reihigen Determinanten der Matrix P_{tk} nicht der Fall ist.

18. Zwischen den 2 m Derivirten zweiter Ordnung der Gleichungen N bestehen nun, wenn sie als lineare Gleichungen in den Variabeln r_i s_i t_i betrachtet werden, genau σ verschiedene lineare Identitäten. Derivirt man nun die ersten τ Gleichungen N nach y und die letzten σ Gleichungen nach x, so erhält man:

(25)
$$s_{i} = \frac{\partial \varphi_{i}}{\partial y} + \sum_{1}^{n} \frac{\partial \varphi_{i}}{\partial z_{n}} q_{n} + \sum_{\tau+1}^{n} \left(\frac{\partial \varphi_{i}}{\partial p_{\beta}} s_{\beta} + \frac{\partial \varphi_{i}}{\partial q_{\beta}} t_{\beta} \right) + \sum_{\tau+1}^{\tau} \frac{\partial \varphi_{i}}{\partial q_{\gamma}} t_{\gamma};$$

¹⁾ Wegen $2\tau \ge m$; $\sigma = m - \tau$ ist $\sigma \le \tau$.

(26)
$$s_{k} = \frac{\partial \psi_{k}}{\partial x} + \sum_{k=1}^{n} \frac{\partial \psi_{k}}{\partial z_{\alpha}} p_{\alpha} + \sum_{r=1}^{n} \frac{\partial \psi_{k}}{\partial q_{\beta}} s_{\beta} + \sum_{\alpha=1}^{r} \frac{\partial \psi_{k}}{\partial q_{\gamma}} s_{\gamma},$$

$$(i=1\ldots\tau;\ k=1\ldots\sigma)$$

und die vorhin genannten σ linearen Identitäten bestehen offenbar darin, dass die Gleichungen (26) bezw. mit den σ ersten Gleichungen (25) identisch werden, wenn man vorher auf den rechten Seiten von (26) die Grössen $s_{\sigma+1} \dots s_{\tau}$ durch ihre Werte aus den letzten $\tau - \sigma$ Gleichungen (25) ersetzt hat. Man erhält so die nachstehenden Beziehungen:

aus den letzten
$$\tau - \sigma$$
 Gleichungen (25) ersetzt hat. Man erhält so die nachstehenden Beziehungen:
$$\begin{pmatrix}
\frac{\partial \psi_{i}}{\partial x} + \sum_{1}^{n} \frac{\partial \psi_{i}}{\partial z_{a}} p_{a} + \sum_{\sigma+1}^{\tau} \frac{\partial \psi_{i}}{\partial q_{\gamma}} \begin{pmatrix} \frac{\partial \varphi_{\gamma}}{\partial y} + \sum_{1}^{n} \frac{\partial \varphi_{\gamma}}{\partial z_{a}} q_{a} \end{pmatrix} = \frac{\partial \varphi_{i}}{\partial y} + \sum_{1}^{n} \frac{\partial \varphi_{i}}{\partial z_{a}} q_{a}$$

$$\frac{\partial \psi_{i}}{\partial q_{k}} + \sum_{\sigma+1}^{\tau} \frac{\partial \psi_{i}}{\partial q_{\gamma}} \frac{\partial \varphi_{\gamma}}{\partial p_{k}} = \frac{\partial \varphi_{i}}{\partial p_{k}};$$

$$\sum_{\sigma+1}^{\tau} \frac{\partial \psi_{i}}{\partial q_{\gamma}} \frac{\partial \varphi_{\gamma}}{\partial q_{\gamma}} = \frac{\partial \varphi_{i}}{\partial q_{i}};$$

$$(i = 1, 2... \sigma; k = \tau + 1... n; l = \sigma + 1... n).$$

Diese Beziehungen werden von den Funktionen φ , ψ identisch erfüllt; in den Relationen der ersten Zeile sind die Grössen $p_1 \dots p_\tau q_1 \dots q_\sigma$ durch ihre Werte φ , ψ zu ersetzen.

Umgekehrt, sind diese Bedingungen erfüllt, so ist das Differentialsystem J offenbar ein Involutionssystem, d. h. der Rang der charakteristischen Matrix ist τ , und derjenige der Matrix B ist gleich $m + \tau$.

19. Das Differentialsystem N ist nicht canonisch; es besitzt aber vermöge der Bedingungen (27) die charakteristische Eigenschaft der passiven Systeme. Vermöge des Systems N und seiner Derivirten kann man nämlich alle (principalen) Ableitungen

$$\frac{\partial^{\alpha+\beta} z_i}{\partial x^{\alpha}} \frac{\partial^{\alpha+\beta+1} z_k}{\partial x^{\alpha+1}} (i = 1, \dots \sigma; \ k = \sigma + 1 \dots \tau; \ a, \beta = 0, 1, 2, \dots)$$

durch $x, y, z_1 \dots z_n$ und die parametrischen Ableitungen:

$$\frac{\partial^{\gamma} z_k}{\partial y^{\gamma}}$$
, $\frac{\partial^{\gamma+\delta} z_l}{\partial x^{\gamma} \partial y^{\delta}}$ $(\gamma, \delta = 0, 1 \dots; k = \sigma + 1 \dots \tau; l = \tau + 1 \dots n)$

Sitzung der math.-phys. Classe vom 8. Juli 1899.

ausdrücken, und es ergeben sich aus den Derivirten des Systems N keine Relationen zwischen den parametrischen Grössen allein.

Das System N gehört sonach dem von C. Bourlet (a. a. O.) studirten Typus "unbeschräukt integrabler" Differentialsysteme an, und es gilt daher hinsichtlich der Existenz der Integrale von N folgender Satz:

Es seien

$$\omega_{\tau+1}(x,y), \ \omega_{\tau+2}(x,y) \dots \omega_n(x,y)$$

beliebige, an der Stelle x^0 , y^0 reguläre Funktionen der Variabeln x, y, ferner:

$$\chi_{\sigma+1}(y), \chi_{\sigma+2}(y)...\chi_{\tau}(y)$$

beliebige. an der Stelle y^0 reguläre Funktionen von y, und $z_1^0 \dots z_n^0$ beliebige Constante. Setzt man dann

$$z_{\gamma}^{0} = \omega_{\gamma}^{0}; \ p_{\gamma}^{0} = \frac{\partial \omega_{\gamma}^{0}}{\partial x^{0}}; \ q_{\gamma}^{0} = \frac{\partial \omega_{\gamma}^{0}}{\partial y^{0}} \quad (\gamma = \tau + 1 \dots n);$$
$$z_{\beta}^{0} = \chi_{\beta}^{0}; \ q_{\beta}^{0} = \frac{\partial \chi_{\beta}^{0}}{\partial y^{0}} \quad (\beta = \sigma + 1 \dots \tau),$$

und sind sämtliche Funktionen φ , ψ an der Stelle

$$x^{0} y^{0} z_{1}^{0} \dots z_{n}^{0}, p_{r+1}^{0} \dots p_{n}^{0}, q_{\sigma+1}^{0} \dots q_{n}^{0}$$

regulär, so besitzt das Differentialsystem N ein und nur ein System von Integralfunktionen $z_1 \dots z_n$ mit folgenden Eigenschaften:

- 1) alle z_i sind an der Stelle x^0 y^0 regulär;
- 2) die $z_{r+1} \dots z_n$ sind mit den willkürlichen Funktionen $\omega_{r+1} \dots \omega_n$ identisch.
- 3) die Funktionen $z_{\sigma+1} \dots z_{\tau}$ reduciren sich vermöge $x = x^0$ auf die Funktionen $\chi_{\sigma+1} \dots \chi_{\tau}$ resp.
- 4) die Funktionen $z_1 \dots z_\sigma$ nehmen an der Stelle x^0 y^0 bez. die Werte $z_1^0 \dots z_\sigma^0$ an.

E. v. Weber: Bilinearformen und Differentialsysteme.

20. Besonders einfach ist der Fall $\sigma = \tau$. Die Gleichungen (27) lehren dann, dass die Funktionen φ_i die Variabeln q nicht enthalten. Ferner hat man vermöge (27):

$$\frac{\partial \psi_i}{\partial q_k} \equiv \frac{\partial \varphi_i}{\partial p_k} \ (k = \tau + 1, \dots n).$$

Darnach sind die φ_i lineare Funktionen von $p_{r+1} \dots p_n$, und die ψ_i lineare Funktionen von $q_{r+1} \dots q_n$, d. h. das System N hat die Gestalt:

(28)
$$\begin{cases} p_{i} = \pi_{i} (x y z_{1} \dots z_{n}) + \sum_{\tau=1}^{n} a_{ih} p_{h} \\ q_{i} = \varkappa_{i} (x y z_{1} \dots z_{n}) + \sum_{\tau=1}^{n} a_{ih} q_{h} \end{cases} (a_{ih} \text{ Funktionen von} \\ x y z_{1} \dots z_{n}; \ i = 1 \dots \tau)$$

und die Relationen (27) lehren, dass die totalen Differentialgleichungen

(29)
$$dz_i = \pi_i dx + \varkappa_i dy + \sum_{\tau+1}^n a_{ih} dz_h \quad (i = 1, 2, ... \tau)$$

unbeschränkt integrabel sind. Man erhält also das allgemeinste System von Integralfunktionen $z_1 \dots z_n$ des Differentialsystems (28), indem man $z_{\tau+1} \dots z_n$ beliebig wählt, und sodann die $z_1 \dots z_{\tau}$ aus den allgemeinen Integralgleichungen

$$\Omega_{i}(x \, y \, z_{1} \dots z_{n}) = \Omega_{i}(x^{0} \, y^{0} \, z_{1}^{0} \dots z_{n}^{0}) \quad (i = 1, 2, \dots \tau)$$

des unbeschränkt integrabeln Systems (29) berechnet.

21. Ersetzt man in den Gleichungen N die Grössen $z_{\tau+1}...z_n$ durch irgend welche Funktionen der Variabeln x, y, so bildet das so entstehende Differentialsystem N' mit den τ Unbekannten $z_1...z_\tau$ wieder ein Involutionssystem.

In der That, die zu N' gehörige charakteristische Matrix entsteht aus A durch Weglassung der letzten τ Colonnen. Ferner erhält man die Matrix B', die zu N' in derselben Beziehung steht wie B zu N, indem man in B die $\tau + 2^{\text{te}}$. $\tau + 3^{\text{te}} \dots n + 1^{\text{to}}$ Colonne bez. mit $\frac{\partial z_{\tau+1}}{\partial x}, \dots \frac{\partial z_n}{\partial x}$, ferner die

letzten $n-\tau$ Colonnen von B bezw. mit $\frac{\partial z_{\tau+1}}{\partial y} \cdot \cdot \frac{\partial z_n}{\partial y}$ multiplicirt und zu der ersten addirt, schliesslich die soeben erwähnten $2n-2\tau$ Colonnen fortlässt. Also ist der Rang von B' höchstens gleich $m+\tau$. Er kann aber auch nicht kleiner sein, denn unter den $m+\tau$ -reihigen Determinanten von B' befinden sich alle Produkte aus je einer m-reihigen Determinante von D (s. Nr. 16) in eine der beiden Determinanten (24).

§ IV. Die Elementarteiler der charakteristischen Matrix.

- 22. Nach der Schlussbemerkung des vorigen § können wir uns in der Theorie der Involutionssysteme erster Ordnung auf die Annahme beschränken, dass der Rang der charakteristischen Matrix der Anzahl n der unbekannten Funktionen gleich ist. In einer früheren Abhandlung 1) habe ich, allerdings unter specieller Annahme über die Beschaffenheit der Elementarteiler der charakteristischen Matrix, die Theorie dieser Art von Involutionssystemen ausführlich entwickelt. In diesem § soll nun dargelegt werden, welcher Zusammenhang zwischen den sogenannten Charakteristiken des betrachteten Involutionssystems und den Elementarteilern jener Matrix stattfindet, wenn die letzteren keinen beschränkenden Bedingungen unterliegen.
- 23. Unter der Voraussetzung $\tau = n$ hat man $m \ge n$; wir können daher setzen

$$m = n + p \quad (p \ge 0).$$

Die Gleichung (18) des § II wird hier:

$$n-p=\Sigma\Sigma \, e_{\alpha\beta}$$

m. a. W. die *n*-reihigen Determinanten der charakteristischen Matrix:

(A')
$$Q_{ik} - w P_{ik}$$
 $(i = 1, ... n + p; k = 1... n)$

besitzen vermöge des gegebenen Involutionssystems

¹) Grundzüge einer Integrationstheorie etc., Journal f. Mathem. Bd. 118, p. 123-157.

E. v. Weber: Bilinearformen und Differentialsysteme.

(J)
$$f_i(x, y, z_1 \dots z_n, p_1 \dots q_n) = 0 \quad (i = 1, \dots n + p)$$

ein ganzrationales Polynom $n-p^{\rm ten}$ Grads in w als grössten gemeinschaftlichen Divisor. Dieser Satz, den ich in der eitirten Arbeit durch ziemlich weitläufige Determinantenrechnungen bewiesen habe, erweist sich sonach als eine einfache Consequenz der Theorie der Bilinearformen.

Es sei w_r einer der \varkappa verschiedenen Werte von w, für die alle n-reihigen Determinanten der Matrix A' verschwinden, ferner e_{1r} , e_{2r} ,... die Exponenten der zugehörigen Elementarteiler; ϱ_r derselben (und zwar natürlich die ϱ_r ersten) seien von Null verschieden. Die Zahl

$$e_{1\nu} + e_{2\nu} + \ldots + e_{\varrho_{\nu},\nu}$$

bezeichnet dann die Vielfachheit, mit der der Faktor $w-w_r$ in allen n-reihigen Determinanten von A' auftritt, und es verschwinden in A' vermöge des gegebenen Gleichungssystems J alle $n-\varrho_r+1$ -reihigen, nicht aber alle $n-\varrho_r$ -reihigen Determinanten für $w=w_r$ identisch. Die w_r sind Funktionen der Variabeln x y $z_1 \dots z_n$ und von n-p unter den Variabeln p_i q_i , die vermöge J willkürlich bleiben.

24. Dies vorausgeschickt, fragen wir nun nach den Bedingungen dafür, dass die Relationen:

(30)
$$d p_i = r_i dx + s_i dy; d q_i = s_i dx + t_i dy$$

zusammen mit den ersten Derivirten des Systems J:

(31)
$$\begin{cases} A_{i} \equiv M_{i} + \sum_{1}^{n} k \left(P_{ik} \ r_{k} + Q_{ik} \ s_{k} \right) = 0 \\ B_{i} \equiv N_{i} + \sum_{1}^{n} k \left(P_{ik} \ s_{k} + Q_{ik} \ t_{k} \right) = 0 \end{cases}$$
 $(i = 1 ... n + p)$

die Grössen r_i , s_i , t_i nicht bestimmen.

Indem wir die r_i s_i mittels (30) berechnen und in (31) einsetzen, erhalten wir die Relationen:

256 Sitzung der math.-phys. Classe vom 8, Juli 1899.

$$(32) M_i + \sum_{1}^{n} {}^{k} P_{ik} \left(\frac{d p_k}{dx} - \frac{d q_k}{dx} \frac{d y}{dx} \right) + \sum_{1}^{n} {}^{k} Q_{ik} \frac{d q_k}{dx} - \frac{d y}{dx} \sum_{1}^{n} {}^{k} t_k \left(Q_{ik} - P_{ik} \frac{d y}{dx} \right) = 0$$

(33)
$$N_i + \sum_{1}^{n} P_{ik} \frac{dq_h}{dx} + \sum_{1}^{n} t_k \left(Q_{ik} - P_{ik} \frac{dy}{dx} \right) = 0 (i = 1, ... n + p)$$

Damit diese Gleichungen die Grössen $t_1 cdots t_n$ unbestimmt lassen, ist zunächst notwendig, dass

$$(34) dy = w_{\nu} dx,$$

wo w, eine der oben definirten z Funktionen bedeutet.

Substituirt man diesen Wert von dy in (32) (33), multiplicirt man ferner die Gleichung (33) mit w_r und addirt sie zu (32), so entstehen Relationen, die unter Hinzunahme der Gleichungen

(35)
$$dz_i = (p_i + w, q_i) dx \qquad (i = 1 ... n)$$

folgende Form annehmen;

(36)
$$df_1 = 0, df_2 = 0, \dots df_{n+p} = 0;$$

das Differentiationssymbol df_i bezieht sich dabei auf alle 3 n + 2 Variabeln $x, y, \dots q_n$.

Die n linearen Gleichungen mit den Unbekannten $\mu_1 \dots \mu_{n+p}$: (37) $\mu_1(Q_{ik}-w_rP_{ik})+\dots+\mu_{n+p}(Q_{n+p,k}-w_rP_{n+p,k})=0 (k=1..n)$ besitzen nach dem Obigen ϱ_r+p linear unabhängige Lösungensysteme

(38)
$$\mu_1^{(s)} \dots \mu_{n+p}^{(s)} \quad (s = 1, 2, \dots \varrho_r + p).$$

Indem man die Gleichungen (33) bezw. mit $\mu_i^{(s)}$ multiplicirt und nach i summirt, erhält man die noch übrigen der Bedingungen, die ausdrücken, dass die Relationen (32) (33) die t_k unbestimmt lassen. Nun gibt es aber, da der Annahme nach 2n+p der Rang der Matrix B_2 (§ II) ist, genau p linear unabhhängige Funktionensysteme

$$a_1^{(s)} \dots a_{n+p}^{(s)}, \ \beta_1^{(s)} \dots \beta_{n+p}^{(s)} \qquad (s=1,2...p)$$

die vermöge J den Gleichungen

E. v. Weber: Bilinearformen und Differentialsysteme.

(39)
$$\sum_{1}^{n+p} a_{i}^{(s)} P_{ik} = 0$$

$$\sum_{1}^{n+p} (a_{i}^{(s)} Q_{ik} + \beta_{i}^{(s)} P_{ik}) = 0$$

$$\sum_{1}^{n+p} \beta_{i}^{(s)} Q_{ik} = 0$$

$$(k = 1, ...n)$$

genügen. Daraus folgt, dass die Funktionensysteme

(40)
$$\beta_1^{(s)} - w_{\nu} \alpha_1^{(s)} \dots \beta_{n+p}^{(s)} - w_{\nu} \alpha_{n+p}^{(s)} (s = 1, 2, \dots p)$$

Lösungensysteme der linearen Gleichungen (37) darstellen. Diese p Lösungensysteme sind linear unabhängig; denn andernfalls beständen Beziehungen der Form

$$\sum_{1}^{p} \lambda_{s} \; eta_{i}^{(s)} \equiv w_{
u} \sum_{1}^{p} \lambda_{s} \; lpha_{i}^{(s)};$$

setzt man also

$$\sigma_i \equiv \sum \lambda_s \ \alpha_i^{(s)}$$

so erhielte man mit Rücksicht auf (39):

$$\sum_{i=1}^{n+p} \sigma_i P_{ik} \equiv 0, \quad \sum_{i=1}^{n+p} \sigma_i Q_{ik} = 0 \quad (k=1 \dots n)$$

was nicht möglich ist, da der Annahme nach n+p der Rang der Matrix B_1 (§ II) ist, und die σ_i nicht alle identisch verschwinden können. Ausser den Systemen (40) besitzen also die linearen Gleichungen (37) noch ϱ_{ν} weitere Lösungensysteme, die wir mit den ϱ_{ν} ersten Funktionensystemen (38) identificieren. Die notwendigen und hinreichenden Bedingungen dafür, dass die Gleichungen (30) (31) die r_i s_i t_i nicht bestimmen, schreiben sich daher schliesslich, unter Hinzunahme der Gleichungen (35), folgendermassen;

$$(41) \begin{cases} dy = w_{\nu} dx; \ dz_{i} = p_{i} dx + q_{i} dy \ (i = 1 \dots n), \\ df_{1} = 0, \ df_{2} = 0, \dots \ df_{n+p} = 0; \\ \sum_{1}^{n} k \left(\sum_{i}^{n+p} \mu_{i}^{(s)} P_{ik} \right) dq_{k} + \sum_{1}^{n+p} \mu_{i}^{(s)} N_{i} dx = 0 \ (s = 1, 2, \dots \varrho_{\nu}), \end{cases}$$

und man erkennt leicht, dass diese Pfaff'schen Gleichungen hinsichtlich der Differentiale dx, dy, dz_i , dp_i , dq_i linear unabhängig sind. Die Funktionen $\mu_i^{(s)}$ sind natürlich von der Wahl der Wurzel w_r abhängig.

Den Wurzeln $w_1 \dots w_n$ entsprechend erhält man sonach n verschiedene Systeme Pfaff'scher Gleichungen, die ich im Anschluss an meine oben citirte Abhandlung die dem gegebenen Involutionssystem J beigeordneten Pfaff'schen Systeme erster Stufe nennen will.

Bezeichnet man, in Verallgemeinerung einer bekannten von Lie herrührenden Ausdrucksweise, ein Wertsystem

$$x y z_1 \dots z_n p_1 q_1 \dots p_n q_n$$

als ein Flächenelement erster Ordnung, ferner jede Schaar von ∞ ¹ Flächenelemente 1. O., die den totalen Differentialgleichungen

$$(42) dz_i = p_i dx + q_i dy (i = 1 \dots n)$$

genügt, als einen Streifen erster Ordnung, so kann man einen Streifen 1. O., der einem der Pfaff'schen Systeme (56) genügt, als einen charakteristischen Streifen oder eine Charakteristik 1. O. des gegebenen Involutionssystems bezeichnen. Es gibt also \varkappa verschiedene Systeme charakteristischer Streifen, und man erkennt leicht, dass jedes Integral von J, d. h. jedes System von ∞^2 Flächenelementen 1. O., das dem System J und den totalen Differentialgleichungen (42) genügt, von je ∞^1 charakteristischen Streifen eines jeden der \varkappa verschiedenen Systeme erzeugt wird.

25. In ganz analoger Weise lassen sich \varkappa Charakteristikensysteme jeder beliebigen Ordnung $h (\ge 1)$ definiren. Man hat zu diesem Zwecke auszudrücken, dass die Relationen:

$$dz_{a\beta}^{(i)} = z_{a+1,\beta}^{(i)} dx + z_{a,\beta+1}^{(i)} dy \quad (\alpha + \beta = h, \ \alpha = 0, 1, ...h)$$

zusammen mit den Derivirten $h+1^{\rm ter}$ Ordnung des gegebenen Involutionssystems die Ableitungen $h+1^{\rm ter}$ Ordnung nicht bestimmen. Man erhält solcher Weise \varkappa verschiedene "bei-

E. v. Weber: Bilinearformen und Differentialsysteme.

geordnete Pfaff'sche Systeme h^{ter} Stufe"; das einzelne dieser Systeme besteht aus den Relationen

$$dy = w_r dx; \ dz^i_{\alpha\beta} = z^i_{\alpha+1,\beta} \ dx + z^i_{\alpha,\beta+1} \ dy$$
$$(i = 1 \dots n; \ \alpha + \beta \le h - 1)$$

ferner aus den Gleichungen, die durch totale Differentiation der Gleichungen J und ihrer Derivirten bis zur h^{ten} Ordnung einschliesslich entstehen, und aus ϱ_{ν} weiteren Pfaft'schen Gleichungen in den Variabeln

$$(43) x, y, z_1 \dots z_n, \dots z_{\alpha,\beta}^i \quad (\alpha + \beta < h).$$

Als "charakteristischen Streifen h^{ter} Ordnung" bezeichnet man dann jede Schar von ∞^1 Wertsysteme (43), die eines der beigeordneten Pfaff'schen Systeme h^{ter} Stufe, und alle Derivirten von J bis zur h^{ten} Ordnung befriedigt.

- 26. Wenn das vorgelegte Involutionssystem J hinsichtlich der 2n Variabeln p_i , q_i linear ist, lassen sich auch \varkappa verschiedene beigeordnete Pfaff'sche Systeme "nullter Stufe" definiren, indem man ausdrückt, dass die Gleichungen (42) zusammen mit den Relationen J die 2n Variabeln p_i q_i nicht bestimmen.¹)
- 27. Auf die Integrationstheorien, die mit dem Begriff der beigeordneten Pfaft'schen Systeme in Zusammenhang stehen und die ich a. a. O. unter der speciellen Voraussetzung z=n-p ausführlich entwickelt habe, soll an dieser Stelle nicht näher eingegangen werden. Wir wollen hier nur noch den Fall hervorheben, dass nur eine einzige Funktion w_1 vorhanden ist, und die Exponenten der zugehörigen Elementarteiler alle gleich 1 sind.²) Dann hat man $\varrho_1=n-p$, und es gibt nur ein einziges beigeordnetes System erster Stufe, bestehend aus 3n+1 gewöhnlichen Differentialgleichungen in den 3n+2 Variabeln

$$(44) x y z_1 \dots z_n p_1 p_2 \dots p_n q_1 \dots q_n.$$

¹⁾ Vgl. den § 5 meiner oben citirten Arbeit.

²) Dieser Fall wird unter der speciellen Annahme p=0 von M. Hamburger (Journ. f. Math. 93) gelegentlich betrachtet.

Die Schar der charakteristischen Streifen 1. O. hängt also jetzt nur von einer endlichen Parameterzahl ab, derart, dass jedes Flächenelement 1. Ord., dessen Coordinaten (44) den gegebenen Gleichungen J genügen, auf einer und nur einer Charakteristik 1. Ordn. enthalten ist.

Bestimmt man einen beliebigen Streifen 1. Ordnung, dessen Flächenelemente das System J befriedigen,¹) so erzeugen die bezw. von diesen Flächenelementen ausgehenden ∞^1 Charakteristiken die allgemeinste Integralmannigfaltigkeit des gegebenen Involutionssystems.²)

¹) Diese Bestimmung erfordert im Allg. noch die Integration eines Systems gewöhnlicher Differentialgleichungen, vgl. den Schluss des § 1 meiner oben eitirten Arbeit.

²) Es sei zum Schluss hervorgehoben, dass nach Riquier (Éc. Norm. 1893), wenn man den Begriff des "canonischen Systems" etwas erweitert, jedes beliebige Differentialsystem auf ein canonisches passives System erster Ordnung reducirt werden kann, dass also die Entwickelungen dieser Note auf beliebige Differentialsysteme mit 2 Independenten anwendbar sind. Insbesondere kann also jedes Differentialproblem in zwei Independenten auf die passive Normalform (N) des § III zurückgeführt werden.

Ueber ein Convergenz-Kriterium für Kettenbrüche mit positiven Gliedern.

Von Alfred Pringsheim.

(Eingelaufen 8. Juli.)

Im folgenden sollen a_r , b_r , p_r , q_r , r_r (r = 1, 2, 3, ...) allemal unbegrenzte Folgen positiver Zahlen bedeuten.

Als notwendige und hinreichende Bedingung für die Convergenz des unendlichen Kettenbruches:

(1)
$$\left[\frac{1}{q_{\nu}}\right]_{1}^{\infty} \equiv \frac{1}{|q_{1}|} + \frac{1}{|q_{2}|} + \dots + \frac{1}{|q_{\nu}|} + \dots$$

ergiebt sich alsdann:1)

(A₁) die Divergenz der Reihe
$$\sum q_{\nu}$$
;

ebenso für die Convergenz des Kettenbruches:

(2)
$$\left[\frac{a_{\nu}}{b_{\nu}} \right]_{1}^{\infty} = \frac{a_{1}}{b_{1}} + \frac{a_{2}}{|b_{2}|} + \dots + \frac{a_{\nu}}{|b_{\nu}|} + \dots = \left[\frac{1}{r_{\nu}} \right]_{1}^{\infty}$$

$$(A_2)$$
 die Divergenz der Reihe $\sum r_{\nu}$,

wo:
$$r_1 = \frac{b_1}{a_1}$$
, im übrigen:

(3)
$$r_{2\nu} = \frac{a_1 \, a_3 \dots a_{2\nu-1}}{a_2 \, a_4 \dots a_{2\nu}} \cdot b_{2\nu}, \ r_{2\nu+1} = \frac{a_2 \, a_4 \dots a_{2\nu}}{a_1 \, a_3 \dots a_{2\nu-1}} \cdot \frac{b_{2\nu+1}}{a_{2\nu+1}}.$$

Da sodann die Divergenz der Reihe $\sum q_r q_{r+1}$ stets die-

¹) Vgl. Bd. 28 (1898) dieser Berichte p. 311. — Encyklop. der Math. Wissensch. Bd. 1, p. 128. — Stolz, Vorl. über Allg. Arithm. Bd. 2, p. 282.

jenige der Reihe $\sum q_r$ nach sich zieht, aber nicht umgekehrt,¹) so resultirt als eine hinreichende, aber nicht nothwendige Bedingung für die Convergenz des Kettenbruches (1):

(B₁) die Divergenz der Reihe $\sum q_{\nu} q_{\nu+1}$;

und daraus entsprechend für die Convergenz des Kettenbruches (2):

(B₂) die Divergenz der Reihe
$$\sum \frac{b_{\nu} b_{\nu+1}}{a_{\nu+1}}$$
.

In zwei kürzlich publicirten Arbeiten²) über die Convergenz gewisser Kettenbrüche hat nun Herr Saalschütz zunächst ohne Beweis den Satz mitgetheilt, dass

(C) die Divergenz der Reihe
$$\sum \sqrt{\frac{\overline{b_r}\,\overline{b_{r+1}}}{a_{r+1}}}$$

als nothwendige³) und hinreichende Bedingung für die Convergenz des Kettenbruches (1) zu gelten habe, und er erblickt gerade in der Auffindung dieses Kriteriums ein deutliches Kennzeichen für die grössere Tragweite seiner Untersuchungs-Methode⁴) gegenüber der bei früherer Gelegenheit⁵)

²) Journ. f. Math. Bd. 120 (1899), p. 138, Fussnote. — Mitth. der Königsberger phys.-ökon. Ges. vom 9. Februar 1899, p. 6.

3) An der zuletzt citirten Stelle heisst es noch ausführlicher, dass der Kettenbruch allemal oscillirt, wenn jene Reihe convergirt. Dies ist indessen unrichtig, wie weiter unten gezeigt werden wird.

4) Der Kern der von Herrn Saalschütz befolgten Methode besteht darin, dass er der bekannten Recensionsformel für den n^{ten} Näherungsbruch-Nenner B_n des Kettenbruches $\left[\frac{a_{\nu}}{b_{\nu}}\right]_{\nu}^{\infty}$, nämlich:

(a)
$$B_n = b_n B_{n-1} + a_n B_{n-2}$$

die Form giebt:

(b)
$$C_{n-1}(C_n - b_n) - a_n = 0$$
, wo: $C_v = \frac{B_v}{B_{v-1}}$,

und sodann diese Quotienten C_{ν} als Unbekannte betrachtet.

5) S. das erste Citat in Fussnote 1) p. 261.

¹⁾ Wenn nämlich $\sum q_{\nu}$ convergirt, so muss auch $\sum q_{\nu} q_{\nu+1}$ a fortiori convergiren; wenn dagegen $\sum q_{\nu}$ divergirt, so kann immerhin $\sum q_{\nu} q_{\nu+1}$ noch convergiren (Beispiel: $q_{\nu} = \frac{1}{\nu}$).

von mir benützten. Da ich die ziemlich schwer zu übersehenden Resultate jener umfangreichen Arbeiten (74 Quartseiten) noch nicht genügend studirt habe, so bin ich weit entfernt, die Richtigkeit jener Bemerkung im allgemeinen bestreiten zu wollen.1) In Beziehung auf das eben erwähnte Convergenz-Kriterium möchte ich sie jedoch aus zwei Gründen als unzutreffend bezeichnen: erstens weil dasselbe nur zur Hälfte richtig ist, insofern die fragliche Bedingung zwar als hinreichend, keineswegs aber als nothwendig erscheint; zweitens aber, weil sich das so berichtigte Kriterium ohne die, wie ich glauben möchte, wohl etwas umständlichere Methode des Herrn Saalschütz unmittelbar aus dem Fundamental-Kriterium (A_1) , (A_2) ableiten lässt, nämlich analog wie die ebenfalls lediglich hinreichenden Convergenz-Bedingungen (B_1) , (B_2) durch eine ganz elementare Ueberlegung über die gegenseitigen Convergenz - Beziehungen der Reihen $\sum q_{r}$ $\sum V_{q_{\nu},q_{\nu+1}}$.

1. Um die beiden zuletzt ausgesprochenen Behauptungen näher zu begründen, schicke ich zunächst den folgenden Hülfssatz voran:

Sind die beiden Reihen $\sum q_r$, $\sum r_r$ convergent, so convergirt auch die Reihe $\sum Vq_r r_r$: die Divergenz der Reihe $\sum Vq_r r_r$ bildet also eine hinreichende Bedingung dafür, dass mindestens eine der beiden Reihen $\sum q_r$, $\sum r_r$ divergirt. Diese Bedingung ist aber keine nothwendige, und zwar können trotz der Convergenz von $\sum Vq_r r_r$ sogar beide Reihen $\sum q_r$, $\sum r_r$ divergiren.

¹⁾ Immerhin will mir nicht einleuchten, warum gerade, wie Herr Saalschütz bemerkt (Journ. f. Math. a. a. O.), die in Fussnote 4), p. 262 mit (b) bezeichnete Gleichung die "wahre Quelle" eines von mir a. a. O. aufgestellten Convergenz-Kriteriums sein soll, da ich dasselbe doch direkt aus der eigentlichen Fundamentalgleichung (a) abgeleitet habe, ohne den Umweg über (b) zu nehmen.

264 Sitzung der math.-phys. Classe vom 8. Juli 1899.

Beweis. Aus der Beziehung:

(4)
$$(\sqrt{q_{\nu}} - \sqrt{r_{\nu}})^{2} = q_{\nu} + r_{\nu} - 2\sqrt{q_{\nu} r_{\nu}} > 0$$

folgt unmittelbar (der bekannte Satz, dass das geometrische Mittel niemals das arithmetische übersteigt):

$$(5) \qquad \qquad \sqrt{q_{\nu} r_{\nu}} \leq \frac{1}{2} (q_{\nu} + r_{\nu}).$$

Da nun gleichzeitig mit den beiden Reihen $\sum q_r$, $\sum r_r$ stets auch $\sum \frac{1}{2} (q_r + r_r)$ convergirt, so ergiebt sich in diesem Falle, dass auch $\sum V_{q_y} r_y$ convergirt.

Zugleich lehrt die Ungleichung (5), dass es zunächst nicht erlaubt ist, umgekehrt aus der Convergenz von $\sum \sqrt{q_r r_r}$ auf diejenige von $\sum q_{\nu}$, $\sum r_{\nu}$ zu schliessen. Dass aber dieser Schluss nicht nur logisch unzulässig, sondern sachlich falsch wäre, erkennt man leicht aus den folgenden Beispielen.

Es bezeichne zunächst d_r , wo $0 < d_r < G$, das allgemeine Glied einer divergenten, $c_r > 0$ dasjenige einer convergenten Reilie. Setzt man sodann:

$$(6) q_{\nu} = d_{\nu}, \quad r_{\nu} = c_{\nu}^{\circ}$$

so wird:

(7)
$$\sqrt{q_{\nu} r_{\nu}} = \sqrt{d_{\nu}} \cdot c_{\nu} < G \cdot c_{\nu},$$

sodass $\sum \sqrt{q_r} r_r$ convergirt, obschon $\sum q_r \equiv \sum d_r$ divergirt.

Bezeichnet ferner $d_{\nu} > 0$ das allgemeine Glied einer divergenten Reihe von der Beschaffenheit, dass $\sum d^{1+p}$ für ein hinlänglich grosses p > 0 convergirt (z. B. $d_r = \frac{1}{p^2}$, wo:

 $0 < \varrho \le 1$, also: $\sum d_{\nu}^{1+p} = \sum \frac{1}{\nu^{\varrho(1+p)}}$ convergent, wenn: $\varrho(1+p)>1$, d. h. wenn: $p>\frac{1-\varrho}{\varrho}$, so setze man:

(8)
$$\begin{cases} q_{\nu} = d_{\nu}^{1+p(1+(-1)^{\nu})}, \text{ d. h. } q_{2\nu} = d_{\nu}^{1+2p}, \ q_{2\nu+1} = d_{\nu}, \\ r_{\nu} = d_{\nu}^{1+p(1-(-1)^{\nu})}, \text{ d. h. } r_{2\nu} = d_{\nu}, \quad r_{2\nu+1} = d_{\nu}^{1+2p}. \end{cases}$$

A. Pringsheim: Ueber ein Convergenz-Kriterium etc. 265

Alsdann wird:

$$(9) V\overline{q_{\nu}}\overline{r_{\nu}} = d_{\nu}^{1+p},$$

also $\sum \sqrt{q_{\nu}r_{\nu}}$ convergent, während die Reihen $\sum q_{2\nu+1}$, $\sum r_{2\nu}$ und somit auch die beiden Reihen $\sum q_{\nu}$, $\sum r_{\nu}$ divergiren.

3. Setzt man jetzt speciell $r_r = q_{r+1}$, so bleibt zunächst der erste Theil des vorigen Satzes unverändert bestehen, da die zum Beweise dienende Ungleichung (5) durch jene besondere Festsetzung nicht alterirt wird. Somit folgt:

Ist die Reihe $\sum q_r$ convergent, so convergirt auch die Reihe $\sum \sqrt{q_r}q_{r+1}$: die Divergenz der Reihe $\sum \sqrt{q_r}q_{r+1}$ bildet also eine hinreichende Bedingung für diejenige der Reihe $\sum q_r$.

Dass aber auch hier diese Bedingung keine nothwendige ist, dass also $\sum q_{\nu}$ divergiren kann, auch wenn $\sum \sqrt{q_{\nu}q_{\nu+1}}$ convergirt, zeigt eine einfache Modification des zuletzt angegebenen Beispiels. Man setze (wieder unter der Voraussetzung, dass $\sum d_{\nu}$ divergirt, $\sum d_{\nu}^{l+p}$ convergirt):

(10)
$$\begin{cases} q_{\nu} = d_{\nu}^{1+(p+\frac{1}{2})(1+(-1)^{\nu})} \\ \text{also:} \quad q_{2\nu+1} = d_{2\nu+1}, \quad q_{2\nu} = d_{2\nu}^{2+2p}. \end{cases}$$

und daher:

(11)
$$\sqrt{q_{2\nu+1} \, q_{2\nu}} = \sqrt{d_{2\nu+1}} \cdot d_{2\nu}^{1+p}.$$

Daraus folgt, dass $\sum V_{q_{2r+1} \cdot q_{2r}} \equiv \sum V_{q_r \cdot q_{r+1}}$ wiederum convergirt, während $\sum q_{2r+1}$, also auch $\sum q_r$ divergirt.

4. Wie ein Blick auf das vorige Beispiel lehrt, rührt die Convergenz der Reihe $\sum Vq_{\nu}q_{\nu+1}$ bei gleichzeitiger Divergenz von $\sum q_{\nu}$ wesentlich davon her, dass $\sum q_{2\nu}$ convergirt, dagegen $\sum q_{2\nu+1}$ divergirt. Daraus folgt, dass in dem vorliegenden Falle die q_{ν} sicherlich keine von irgend einem Index $\nu > n$ ab monoton bleibende Folge bilden können. Es gilt aber auch umgekehrt, dass die Monotonie der Folge q_{ν} (für

Sitzung der math.-phys. Classe vom 8. Juli 1899.

r > n) das Zusammentreffen der Convergenz von $\sum \sqrt{q_r q_{r+1}}$ und der Divergenz von $\sum q_r$ definitiv ausschliesst; d. h. es besteht der folgende Satz:

Sind die q_{ν} zum mindesten für $\nu > n$ monoton, so sind die Reihen $\sum q_r$ und $\sum \sqrt{q_r q_{r+1}}$ stets gleichzeitig convergent oder gleichzeitig divergent. Insbesondere bildet dann also die Divergenz der Reihe $\sum \sqrt{q_r q_{r+1}}$ eine nothwendige und hinreichende Bedingung für diejenige der Reihe $\sum q_{\nu}$.

Beweis. Sind für v > n die $q_v > 0$ und niemals abnehmend, so erkennt man ohne weiteres, dass die beiden Reihen $\sum q_r$, $\sum \sqrt{q_r q_{r+1}}$ stets divergiren müssen. Sind sie dagegen niemals zunehmend, so hat man:

$$(12) q_{\nu} \ge q_{\nu+1} \text{ für } \nu \ge n,$$

(13) also:
$$q_{\nu}^{2} \ge q_{\nu} q_{\nu+1} \ge q_{\nu+1}^{2}$$

(14) und: $q_{\nu} \ge \sqrt{q_{\nu} q_{\nu+1}} \ge q_{\nu+1}$ $\{ \nu > n \}$

(14) und:
$$q_r \ge \sqrt{q_r q_{r+1}} > q_{r+1}$$

schliesslich:

(15)
$$\sum_{n=1}^{\infty} q_{\nu} \geq \sum_{n=1}^{\infty} \sqrt{q_{\nu} q_{\nu+1}} \geq \sum_{n=1}^{\infty} q_{\nu},$$

woraus die Richtigkeit des oben ausgesprochenen Satzes unmittelbar hervorgeht.

- 5. Wendet man diese Resultate zunächst auf das Kettenbruch-Kriterium (A1) an, so ergiebt sich:
 - (C₁) Die Divergenz der Reihe $\sum \sqrt{q_r q_{r+1}}$ bildet eine hinreichende Bedingung für die Convergenz des Kettenbruches $\left[\frac{1}{a_n}\right]^{\infty}$; diese Bedingung ist zugleich eine nothwendige, wenn die q, zum mindesten von einem bestimmten Index r = n ab monoton bleiben.

In dieser Form erscheint das gewonnene Kriterium zunächst ohne besonderen Werth (ebenso wie das Kriterium (B,)), da generell, wenn der Kettenbruch von vornherein in der Form $\left[\frac{1}{q_r}\right]$ vorgelegt ist, die Anwendung des Haupt-Kriteriums (A₁), d. h. die Untersuchung der Reihe $\sum q_r$ einfacher erscheint, als diejenige der Reihe $\sum \sqrt{q_r q_{r+1}}$. Seine Bedeutung tritt erst hervor, wenn die q_r speciell so beschaffen sind, dass $q_r q_{r+1}$ merklich einfacher ausfällt als q_r selbst, und dies ist namentlich dann der Fall, wenn $q_r = r_r$ und die r_r durch Gl. (3) definirt sind. Man findet auf diese Weise:

(C₂) Die *Divergenz* der Reihe $\sum \sqrt{\frac{\overline{b_{\nu}} \, b_{\nu+1}}{a_{\nu+1}}}$ bildet eine für die *Convergenz* des Kettenbruches $\left[\frac{a_{\nu}}{\overline{b_{\nu}}}\right]_{1}^{\infty}$ hinreichende Bedingung, die aber im allgemeinen keine nothwendige ist. Das letztere ist jedoch der Fall, wenn die mit r_{ν} bezeichneten Ausdrücke (Gl. (3)) zum mindesten für $\nu > n$ monoton bleiben.²)

Da die Feststellung des monotonen Verhaltens der r_{ν} im allgemeinen verhältnissmässig complicirt ausfällt, so kommt das obige Kriterium wesentlich nur als hinreichen de Bedingung in Betracht und stellt in diesem Sinne thatsächlich eine merkliche Verbesserung der ebenfalls nur hinreichen den Convergenz-Bedingung (B₂) dar: die letztere versagt, wenn $\sum \frac{b_{\nu}b_{\nu+1}}{a_{\nu+1}} \text{ convergirt.} \quad \text{Man hat in diesem Falle (zum mindesten ten seine den Sinne den Falle (zum mindesten seine den s$

für $v \ge n$): $\frac{b_v b_{v+1}}{a_{v+1}} < 1$, und daher: $\sqrt{\frac{b_v b_{v+1}}{a_{v+1}}} > \frac{b_v b_{v+1}}{a_{v+1}}$, sodass $\sum \sqrt{\frac{b_v b_{v+1}}{a_{v+1}}}$ eventuell divergiren kann und sodann auf Grund des Kriteriums (C₂) eine Entscheidung liefert.

¹) Dieses Verhältniss ist ein ganz analoges, wie bei den Kriterien erster und zweiter Art für unendliche Reihen — vgl. meine Bemerkungen; Math. Ann. Bd. 35 (1890), p. 308-311.

²) Es genügt etwa nicht, dass die $\frac{b_{\nu}b_{\nu+1}}{a_{\nu+1}}$ monoton ausfallen (s. das Beispiel in Nr. 3).

Eine besonders einfache Gestalt nimmt die fragliche Convergenz-Bedingung für Kettenbrüche von der häufig vorkommenden Form $\left[\frac{p_{\nu}}{1}\right]_{1}^{\infty}$ an: sie reducirt sich in diesem Falle auf die Divergenz der Reihe $\sum \frac{1}{\sqrt{p_{\nu}}}$. Mit Hülfe dieses Kriteriums erkennt man z. B. ohne alle Rechnung, dass der Kettenbruch $\left[\frac{p^{p}}{1}\right]_{1}^{\infty}$ für $0 \le p \le 2$ convergirt, während das Kriterium (B₂) die Convergenz des Kettenbruches nur für $0 \le p \le 1$ erkennen lässt.

Bleiben ferner die $\frac{b_{r+1}}{a_{r+1}}$ d. h. die $\frac{b_r}{a_r}$ über, also die $\frac{a_r}{b_r}$ unter einer endlichen Schranke, so genügt auch die Divergenz der einfacheren Reihe $\sum \sqrt{b_r}$ für die Convergenz des Kettenbruches.

Nachtrag zu dem Aufsatze:

Zur Theorie des Doppel-Integrals etc.

(p. 39-62 dieses Bandes).

Bei der Abfassung dieses Aufsatzes war mir eine Arbeit über Doppel-Integrale entgangen, welche Herr C. Arzelà in den Abhandlungen der Bologneser Akademie vom Jahre 1892 veröffentlicht hat. Herr Arzelà untersucht daselbst 2) zunächst, in wieweit die Existenz des eigentlichen Doppel-Integrals $\int_{(x_0,y_0)}^{(x_0,y_0)} f(x,y) \, dx \, dy$ diejenigen der beiden einfachen Integrale $\int_{x_0}^{(x_0,y_0)} f(x,y) \cdot dx$, $\int_{y_0}^{r} f(x,y) \cdot dy$ nach sich zicht und gelangt hier-

¹) "Sugli integrali doppi." Mem. Accad. Bologna, Serie V, T. II, p. 133—147.

²⁾ A. a. O. Nr. 4-6.

bei zu ähnlichen Resultaten, wie sie in dem Satze meines § 1 zusammengefasst sind. Immerhin dürfte gerade die Vergleichung beider Darstellungen die grössere Prägnanz und Uchersichtlichkeit der von mir gewählten Bezeichnungsweise deutlich hervortreten lassen.

Sodann¹) giebt Herr Arzelà eine hinreichende Bedingung für die Existenz der Beziehung:

ohne vorausgesetzte Existenz des entsprechenden Doppel-Integrals, die ich etwa in möglichster Kürze als "im allgemeinen gleichmässige, horizontale und vertikale Integrabilität von f(x,y)" bezeichnen will. Im Anschlusse hieran möchte ich zur Vervollständigung der auf p. 60 meines Aufsatzes gemachten Bemerkung,

"dass die Existenz des betreffenden Doppel-Integrals zur Zeit als die weitaus allgemeinste Form einer hinreichenden Bedingung für das Zustandekommen der Beziehung (A) gelten dürfe"

noch folgendes hinzufügen. Es wäre möglich, dass die Bedingung des Herrn Arzelà für allgemeiner zu gelten hat, als die oben genannte. Hierzu müsste aber zuvor zweierlei bewiesen werden, nämlich: erstens, dass es wirklich Functionen f(x,y) giebt, für welche jene Bedingung erfüllt ist, während andererseits das entsprechende Doppel-Integral nicht existirt; zweitens, dass alle f(x,y), für welche das Doppel-Integral existirt, auch eo ipso der fraglichen Bedingung genügen. Aber selbst wenn dieser Beweis geführt werden kann, so wäre die auf diese Weise erzielte Verallgemeinerung der Bedingungen für die Existenz der Beziehung (Λ) eine verhältnissmässig unerhebliche. Zu der ausserordentlich weit reichenden, durch präcise Umgrenzung der eventuell zulässigen Unstetigkeiten kurz und scharf zu charakteri-

¹⁾ A. a. O. Nr. 8.

sirenden Klasse von Functionen f(x, y), für welche das Doppel-Integral existirt, würde dann auf Grund der Arzelaschen Bedingung eine sehr specielle, allenfalls durch künstliche Constructionen mit Beispielen zu belegende Gattung von solchen f(x, y) hinzutreten, denen lediglich die relativ complicirte Eigenschaft der gleichmässigen horizontalen und vertikalen Integrabilität ohne Existenz des Doppel-Integrals zukommt. Keinesfalls werden dann aber etwa alle möglichen f(x, y) umfasst, für welche die Beziehung (A) besteht. Denn, wie auch Herr Arzelà selbst hervorliebt.1) die fragliche Bedingung ist zwar eine hinreichende, aber durchaus keine nothwendige. Als Illustration zu dieser Bemerkung können gerade diejenigen Functions-Beispiele dienen, welche ich in § 2 meines Aufsatzes angegeben habe: für diese besteht in der That die Beziehung (A), obschon dieselben, wie leicht zu sehen, der Arzela'schen Bedingung nicht genügen. Ich möchte darnach sagen, dass man auch im günstigsten Falle den wahren Grundlagen der Beziehung (A) mit Hülfe jener letzteren Bedingung nicht wesentlich näher kommt. -

Schliesslich hätte ich im Interesse der historischen Gerechtigkeit noch folgende zwei Bemerkungen nachzutragen:

In der Fussnote 1) p. 42 ist hervorgehoben, dass Harnack in seinen Elementen der Diff.- und Integr.-Rechnung fälschlich behauptet, dass bei Existenz des Doppel-Integrals $\int_{(x_0,y_0)}^{(x,y)} f(x,y) \cdot dx \cdot dy$ die Nicht-Existenz der einfachen Integrale $\int_{x_0}^{x} f(x,y) \, dx$ bezw. $\int_{y_0}^{y} f(x,y) \, dy$ auf eine unausgedelnte Menge y bezw. x beschränkt sein müsse.

Dem ist hinzuzufügen, dass Harnack selbst späterlin²) den fraglichen Irrthum lediglich als Ansfluss einer incorrecten Ausdrucksweise erklärt und eine vollkommen

¹⁾ A. a. O. Nr. 7 am Schlusse.

²⁾ Math. Ann. Bd. 26 (1886) p. 567.

A. Pringsheim: Zur Theorie des Doppel-Integrals etc.

richtige Fassung der betreffenden Behauptung angegeben hat.

Ferner ist der von mir benützte und auf p. 56, 57 kurz bewiesene Hülfs-Satz:

$$\int_{x_0}^X f'(x) \cdot dx \le f(X) - f(x_0) \le \int_{x_0}^X f'(x) dx,$$

wie ich nachträglich bemerkt habe, in einem von Herrn Pasch¹) aufgestellten, etwas allgemeineren Satze als specieller Fall enthalten.

¹) Math. Ann. Bd. 30 (1887) p. 153.

@ Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Oeffentliche Sitzung

zur Feier des 140. Stiftungstages am 11. März 1899.

Die Sitzung eröffnet der Präsident der Akademie Dr. von Pettenkofer Exc. mit folgender Ansprache:

Der heutige Tag, der 11. März 1899, ist ein Festtag für das Königreich Bayern. Es sind eben 100 Jahre verflossen, seit die bayerischen Lande wieder unter dem dermalen regierenden Zweige des Hauses Wittelsbach vereinigt worden sind. In allen öffentlichen Unterrichtsanstalten wird dieser Tag feierlich begangen und schliesst sich den zahlreichen Huldigungen im ganzen Königreich Bayern auch die Akademie der Wissenschaften geziemend an.

Die bayerische Akademie der Wissenschaften feiert heute auch ihren 140. Stiftungstag. Die Gründung derselben durch den Kurfürsten Maximilian Josef III. ist eine hervorragende Thatsache in der Geschichte Bayerns, auf welche schon eines der historischen Wandgemälde in den Arkaden des Hofgartens dahier Einheimische und Fremde, hinweist. In dem neuen Nationalmuseum in der Prinzregenten-Strasse, welches nach den grossen und zweckmässigen Plänen von Gabriel Seidl gebaut und wahrscheinlich noch in diesem Jahre eröffnet wird, wird noch mehr daran erinnert werden: da werden einzelne Säle eingerichtet, in welchen Gegenstände gesammelt stehen, welche sich auf die Geschichte einzelner bayerischer Herrscher beziehen. In dem Saale Max Josef III. wird manches zu sehen sein, was sich auf die Gründung der Bayerischen Akademie der Wissenschaften bezieht.

Wir blicken auf unseren Stifter und seine Nachfolger aus dem Hause Wittelsbach dankbar zurück: sie alle wollten unsere Protektoren nicht nur geheissen werden, sondern sind es auch wirklich gewesen. Unser derzeitiger Protektor Seine Königliche Hoheit Prinz-Regent Luitpold, dessen Geburtstag morgen gefeiert wird, hat auch im abgelaufenen Jahre uns wieder Beweise seiner Huld und Gnade gegeben.

Die durch Herrn Kommerzienrath Theodor Stützel dem paläontologischen Museum geschenkten Ausgrabungen aus Samos sind nun soweit präparirt, dass ein Urtheil über deren Werth und Bedeutung gewonnen werden konnte. Die Präparation des mit grosser Umsicht gesammelten Rohmaterials hat ein sehr günstiges Resultat ergeben, so dass nach Vollendung der Präparation und nach wissenschaftlicher Sichtung der gesammelten Ausbeute unser Museum wohl die beste, überhaupt existirende Sammlung von fossilen samiotischen Säugethieren besitzen wird. Herr Dr. Forsyth Major, welcher durch eine Bemerkung bei Plutarch angeregt im Jahre 1887 die Fundstellen auf Samos entdeckt und daselbst die ersten Ausgrabungen ausgeführt hat, besichtigte im Laufe des vorigen Sommers einen Theil der Stützel'schen Ausbeute und äusserte sich sehr günstig über deren Werth. Was Geheimrath von Zittel, Konservator der paläontologischen Sammlung, im Brittischen Museum in London und in der Stuttgarter Sammlung von Fossilen aus Samos gesehen hat, kann sich nach seinem Urtheil mit unserer Sammlung nicht messen.

Seine Königliche Hoheit Prinz-Regent Luitpold hatte die Gnade, am 12. Dezember vorigen Jahres diese Sammlung eingehend zu besichtigen und bei dieser Gelegenheit Herrn Theodor Stützel den Verdienstorden vom heiligen Michael IV. Klasse allergnädigst persönlich zu verleihen.

Bei diesen Ausgrabungen wurde Herr Kommerzienrath Stützel von den Herren Senator Dr. Fletoridis, Staatskanzler Dr. Stamatiades und Kaufmann Ruek auf Samos unterstützt. Den drei genannten Herren wurde von der Vorstandschaft der Akademie und des Generalkonservatoriums der wissenschaftv. Pettenkofer: Ansprache.

lichen Sammlungen des Staates für ihre uneigennützigen und eifrigen Bemühungen die silberne Medaille Bene merenti verliehen.

Welch grosser Theilnahme unsere paläontologische Staatssammlung unter Herrn von Zittels Leitung auch in Münchener Bürgerkreisen sich erfreut, davon ist folgende Thatsache ein glänzender Beweis. Angeregt durch Herrn Kommerzienrath Stützel hat sich Herr Anton Sedlmayr, Grossbrauereibesitzer, bemüht, zur Ergänzung der paläontologischen Staatssammlung einen Fond zu stiften, welcher die Möglichkeit gewährt, gewisse von Herrn von Zittel schon seit längerer Zeit ins Auge gefasste Erwerbungen durchzuführen. Es ist Herrn Anton Sedlmayr gelungen, in kurzer Zeit die Summe von 30 000 Mark zusammenzubringen und haben sich folgende Herren und Firmen an dem Fond mit verschiedenen Beiträgen betheiligt:

Bullinger Max, Kommerzienrath und Handelsrichter, Fink Wilhelm, Kommerzienrath und Bankier, Kathreiners Malzkaffee-Fabriken. Kustermanns Eisen- und Kohlenhandlung, Oberhummer Hugo, Kommerzienrath und Handelsrichter,

Pschorr August,

Georg, Brauereibesitzer,

Josef.

Pschorr Mathias, Rentner,

Rathgeber Josef, Kommerzienrath und Fabrikbesitzer.

Röckl Heinrich, Fabrikbesitzer,

Sedlmayr Johann, Kommerzienrath, Karl, Kommerzienrath, Spatenbrauerei,

Sedlmayr Gabriel, Kommerzienrath und Besitzer der Brauerei zum Franziskanerkeller.

Weinmann Louis, Kommerzienrath und Handelsrichter.

Es wurde beantragt, diese hochherzige Schenkung als donatio sub modo annehmen, von dem Kassier der Akademie und des Generalkonservatoriums der wissenschaftlichen Sammlungen des Staates separat verwalten lassen und über Verwendung der Mittel den Konservator der paläontologischen Staatssammlung unter Zustimmung des Präsidenten der Akademie der Wissenschaften verfügen lassen zu dürfen. Vom kgl. Staatsministerium des Innern für Kirchen- und Schulangelegenheiten wurden diese Anträge gnädigst genehmiget und der Auftrag ertheilt, Herrn Anton Sedlmayr und den übrigen Donatoren sowohl von dem Präsidium der Akademie der Wissenschaften als auch vom kgl. Staatsministerium den Dank abzustatten.

Die Namen der Genannten werden auf der Marmortafel der Münchener Bürgerstiftung eingegraben werden.

Aus den Renten der Münchener Bürgerstiftung und der freiherrlichen Cramer-Klett-Stiftung wurden folgende Summen genehmiget: 1) 800 Mark auf Antrag des Herrn Konservators Groth dem Privatdozenten Dr. Ernst Weinschenk, um eine Forschungsreise in die französischen und piemontesischen Alpen zu machen, 2) 2000 Mark auf Antrag des Herrn Konservators Hertwig für den Privatdozenten der Zoologie Herrn Dr. Otto Maas, um in Cypern eine Untersuchung über die Entwicklungsgeschichte und die Organisation der Spongien zu unternehmen, 3) 500 Mark auf Antrag des Herrn Konservators von Bacver für den Privatdozenten der Chemie Herrn Dr. Wilhelm Willstätter zur Förderung seiner Untersuchung über die wichtigen Arzneimittel Atropin und Cocain, und schliesslich 300 Mark an Herrn Kollegen Lindemann zur Fortführung seiner interessanten Erhebungen über die geographische Verbreitung altägyptischer Steingewichte.

Aus den Renten des Thereianos-Fonds konnten Preise vertheilt und wissenschaftliche Unternehmungen gefördert werden. Einen Doppelpreis von 1600 Mark erhielt Herr Dr. Papadopulos Kerameus, Privatdozent der mittel- und neugriechischen Philologie an der Universität in St. Petersburg, für die zwei zusammenhängenden Werke: Katalog der Bibliothek des Patriarchats in Jerusalem, 3 Bände (Petersburg 1891—97) und Analekta aus jener Bibliothek, 5 Bände (Petersburg 1891—1898).

Zur Unterstützung wissenschaftlicher Unternehmungen wurden genehmiget: 1500 Mark zur Herausgabe von Krumbachers byzantinischer Zeitschrift, 2900 Mark an Herrn Professor Furtwängler für ein von ihm und Herrn Reallehrer Reichhold herauszugebendes Werk über bemalte griechische Vasen, 1200 Mark an Herrn Gymnasialprofessor Dr. Helmreich in Augsburg für eine mit kritischem Apparat zu versehende Ausgabe von Galens Büchern über den Gebrauch der Körpertheile, 400 Mark an Herrn Gymnasiallehrer Dr. Fritz in Ansbach für Vergleichung von Handschriften behufs kritischer Ausgabe der Briefe des Synesios, 200 Mark an Herrn Lehramtskandidaten Bitterauf in München für Vergleichung des Codex Vaticanus 253 (L) und Ergänzung des kritischen Apparates der Parva Naturalia des Aristoteles, 700 Mark an Herrn Gymnasiallehrer Dr. Bürchner in München für topographische und historisch-sprachliche Untersuchung der Ortsnamen von Samos und der umliegenden Inseln. Nach § 10 der Statuten des Thereianos-Fonds haben diejenigen, welche Unterstützungen für wissenschaftliche Untersuchungen aus demselben erhalten haben, an die kgl. bayer. Akademie der Wissenschaften über die Ausführung des Unternehmens Bericht zu erstatten.

Man ersieht, welch reiche Früchte das hochherzige Geschenk des edlen Thereianos zu bringen geeignet ist.

Ueber Mittel aus der Savigny-Stiftung verfügen statutengemäss jährlich abwechselnd die Akademien in Berlin, Wien und München. Im verflossenen Jahre war München an der Reihe. Die von der Akademie eingesetzte Kommission hat über die eingelaufenen Arbeiten folgendes Urtheil gefällt:

"Die von der k. Akademie am 28. März 1895 wiederholt gestellte Preisaufgabe der Savigny-Stiftung

"Revision der gemeinrechtlichen Lehre vom Gewohnheitsrechte"

hat vier Bearbeitungen gefunden.

Diejenige mit dem Motto:

. Von Ehe und Gewohnheit kommen alle Rechte" (Deutsches Rechtssprüchwort),

ist, wie der Verfasser selbst anerkennt, eine rechts- und dogmengeschichtliche Vorarbeit und geht nicht über die Periode der deutschen Rechtsbücher hinaus. Dieselbe erfüllt daher die formellen Voraussetzungen einer Concurrenz-Arbeit nicht. Die k. Akademie will aber nicht unterlassen, dem vorliegenden Bruchstücke als einer durch Gelehrsamkeit, Gründlichkeit und Umsicht ausgezeichneten Leistung ihre volle Anerkennung auszusprechen.

Die drei anderen Arbeiten sind versehen mit den Mottos: "Alles schon da gewesen,"

ferner

"Dies Recht hab ich nicht erdacht Es habens von Alters auf uns gebracht Unsere guten Vorfahren,"

endlich

"Durch die historische Schule hindurch, Ueber die historische Schule hinaus."

Keine dieser Arbeiten kann als eine gelungene und förderliche Untersuchung betrachtet werden. Sie leiden gemeinsam an dem Mangel einer genügenden geschichtlichen und psychologischen Grundlage; in der Hauptsache stellen sie sich dar als Deductionen aus unzureichenden und anfechtbaren Ausgangspunkten und sind nicht frei von manchen zum Theil auffallenden Widersprüchen. Die an letzter Stelle genannte Arbeit insbesondere ist bereits unter dem nämlichen Motto aus Veranlassung des erstmaligen Preisausschreibens von 1891 vorgelegt worden; aber auch in ihrer gegenwärtigen theilweise erweiterten und soviel sich noch ermitteln lässt, auch verbesserten Gestalt kann über sie in der Hauptsache kein günstigeres Urtheil ausgesprochen werden als früher."

In der letzten Festsitzung im November des abgelaufenen Jahres erwähnte ich, dass unser Mitglied Herr Göbel, Kon-

v. Pettenkofer: Ansprache.

servator des pflanzenphysiologischen Instituts, den kühnen Entschluss gefasst habe, auf eigene Kosten für wissenschaftliche Zwecke nach Australien und Ceylon zu reisen und dass er die Reise im August 1898 angetreten habe. Heute bin ich in der glücklichen Lage zu verkünden, dass Göbel vor wenigen Tagen wieder glücklich hier angekommen ist und reiche botanische Schätze mitgebracht hat, zu deren Erwerb das General-Konservatorium Mittel gewährt. Wir alle begrüssen herzlich seine Heimkehr.

Die Festsitzung zum Stiftungstage der Akademie dient jährlich auch dazu, verstorbener Mitglieder zu gedenken, was die Herren Klassensekretäre auch heute thun werden. Ich möchte nur ganz kurz meines Vorgängers im Präsidium, Ignaz von Döllinger, gedenken, dessen hundertsten Geburtstag man am jüngsten 28. Februar in allen gebildeten Kreisen des Inund Auslandes gefeiert hat. Der Magistrat der Stadt München hat das Grab Döllingers schmücken lassen und beschlossen. eine Strasse Münchens mit Döllingers Namen zu bezeichnen. Die vielen Huldigungen, welche dem Dahingeschiedenen dargebracht wurden, gereichen auch unserer Akademie zur Ehre, die seinen Werth schon viel früher erkannt hat. Döllinger war seit 1835 Mitglied, lange Zeit Sekretär der historischen Klasse und von 1873 bis 1890 Präsident der Akademie und Generalkonservator der wissenschaftlichen Sammlungen des Staates. Seine grosse Bedeutung wurde bereits nach seinem Tode von Herrn von Cornelius in einer Gedächtnissrede hervorgehoben und der derzeitige Sekretär der historischen Klasse Herr Professor Friedrich veröffentlicht eben eine grosse Biographie Döllingers auf quellenreicher Unterlage. Es wäre überflüssig, hier weiter einzugehen, ich möchte in der heutigen Sitzung nur den 100. Geburtstag des Gefeierten nicht unerwähnt lassen und das Original eines alten Studienzeugnisses von Döllinger mittheilen, welches schenkungsweise durch Herrn Albert Nussbaum, Candidatus juris dahier, in meine Hände gelangt ist.

Es ist ein Akademisches Zeugniss der Universität Würzburg für den Kandidaten der Theologie Ignaz Döllinger aus Bamberg, von Professor Dr. Blümm, z. Z. Dekan der philosophischen Fakultät, am 7. April 1818 ausgestellt. Das Zeugniss führt 9 Fächer an, aus welchen Döllinger damals geprüft wurde, und die Befähigungsnoten, deren es damals 6 gab (Ausgezeichnet. Vorzüglich. Sehr gut, Gut, Hinlänglich, Gering). In der theoretischen Philosophie erhielt der junge Döllinger die Note Vorzüglich, in der praktischen Philosophie wurde er zweimal examinirt und erhielt beidemal Vorzüglich. In der Elementarmathematik bestand er auch zwei Examina und erhielt einmal Vorzüglich und das anderemal Ausgezeichnet. Philologie Ausgezeichnet und Vorzüglich, allgemeine Weltgeschichte Ausgezeichnet, Physik Ausgezeichnet, Mineralogie Ausgezeichnet, Botanik Ausgezeichnet, Zoologie Ausgezeichnet. mithin 4 mal Vorzüglich und 6 mal Ausgezeichnet, nicht ein einzigmal Hinlänglich oder gar Gering. Zum Zeichen, dass wir den Hundertjährigen auch nur mit Vorzüglich und Ausgezeichnet qualifiziren können, bitte ich sämmtliche Herren Kollegen sich von den Sitzen zu erheben.

Ich ersuche nun die Herren Klassensekretäre, die Nekrologe vorzutragen.

Der Classensekretär der math.-physikalischen Classe, Herr C. v. Voit theilte mit, dass die mathematisch-physikalische Classe im vergangenen Jahre fünf Mitglieder durch den Tod verloren hat; drei auswärtige und zwei einheimische.

Von auswärtigen Mitgliedern sind gestorben:

- 1) der Geologe Fridolin v. Sandberger in Würzburg,
- 2) der Physiker Wilhelm Hankel in Leipzig
- 3) und der Mathematiker Sophus Lie in Christiania. Von einheimischen Mitgliedern:
- 1) der Geologe Wilhelm v. Gümbel
- 2) und der Chemiker Wilhelm v. Miller.

Der Letztere ist erst vor wenigen Tagen, mitten aus vollem Schaffen und in voller Kraft, als einer der jüngsten unseres Kreises, dahin gegangen; es wird ihm später eine seine Verdienste um die Wissenschaft würdigende Gedächtnissrede gehalten werden.

Wilhelm Gümbel.1)

Die mathematisch-physikalische Classe hat am 18. Juni des vergangenen Jahres eines ihrer hervorragendsten und verdientesten Mitglieder, den Geologen Karl Wilhelm v. Gümbel, durch den Tod verloren. Ein wahrhaft köstliches Leben liegt in dem seinigen vor uns, ein Leben voller Mühe und rastloser Arbeit, aber auch voll fruchtbringenden glücklichen Erfolges. Ihm verdankt die Geologie in fast allen ihren Zweigen und in ihren schwierigsten Gebieten eine grosse Anzahl neuer Thatsachen, welche zu den wichtigsten Aufschlüssen über die Beschaffenheit und Entwicklung der Erdrinde geführt haben; namentlich hat er durch seine geognostische Beschreibung Bayerns für die Wissenschaft ein getreues Bild der durch Jahrtausende sich hinziehenden Urgeschichte des Landes entworfen, er hat sich aber auch durch seine Kenntnisse von der Beschaffenheit des Bodens, auf dem wir wohnen und leben, um das Gemeinwohl grosse Verdienste erworben.

Der Lebensgang dieses Mannes, obwohl es nur der einfache und stille eines Gelehrten war, erscheint von besonderem Interesse. weil man daraus deutlich zu erkennen vermag, wie

¹⁾ Mit Benützung der Nekrologe von K. v. Zittel (Münchener Neuest. Nachrichten, 1898 Nr. 316, Morgenblatt), L. v. Ammon (Bericht über die k. technische Hochschule zu München für das Studienjahr 1897—98); Edmund Naumann, zum 70. Geburtstage C. W. v. Gümbel's (Beilage zur Allgemeinen Zeitung 1893 Nr. 42, 11. Februar); Rede von Gümbel in d. öffentl. Sitzung der k. Akad. d. Wiss. am 28. März 1877; des Nekrologs von Dr. Otto Reis (in Vereins-Mittheilungen, Beilage zur Oesterreich. Zeitschrift für Berg- und Hüttenwesen, 1898 Nr. 7, 23. Juli); des Nekrologs von Leppla (Zeitschrift für praktische Geologie von Krahmann, 1898 Heft 10, S. 375) und der Lebensbeschreibung Gümbel's in dem Alpen-Freund von Amthor, Bd. II, Heft 3, S. 176.

ein angeborenes Talent durch günstige äussere Umstände zur herrlichsten Entfaltung gelangen kann.

Wilhelm Gümbel wurde am 11. Februar 1823 in dem am östlichen Abhange des Donnersberges in der Rheinpfalz gelegenen kleinen Pfarrdorfe Dannenfels als Sohn eines Revierförsters geboren. Seit der Mitte des vorigen Jahrhunderts waren die Vorfahren daselbst als Förster ansässig, der Urgrossvater, der Grossvater und der Vater. Aus des letzteren Ehe mit der Tochter des Pfarrers Johannes Boos entsprossten 11 Knaben, von denen Wilhelm Gümbel der neunte war. Dass es den Eltern unter diesen Umständen öfters recht schwer fiel die Söhne zu ernähren und in dem abgelegenen Orte zu erziehen, lässt sich denken; die Kinder mussten sich mancherlei Entbehrungen auferlegen, aber daraus entsprang auch die Genügsamkeit und die Gabe sich am Einfachsten zu erfreuen sowie der auf die idealen Güter gerichtete Sinn. Es muss ein guter Geist, Zucht und Ordnung in der zahlreichen Familie geherrscht haben, denn aus allen den Söhnen wurden brauchbare und tüchtige Männer. Die Meisten folgten dem Berufe des Vaters, aber zwei der älteren Brüder unseres Gümbel hatten eine ausgesprochene Neigung zu der Naturwissenschaft: der eine, der Rentmeister Ludwig Christian Gümbel, war Doktor der Rechtswissenschaft und der Philosophie und beschäftigte sich gerne in seinen Mussestunden mit der Beobachtung von Naturobjekten; der Andere, Dr. Theodor Gümbel, später Rektor der Gewerbeschule in Landau, war ein ganz ausgezeichneter Botaniker und namentlich als Kenner der Moosflora bekannt; er war Mitglied vieler naturwissenschaftlicher Gesellschaften, lieferte in zahlreichen Abhandlungen werthvolle Beiträge zur systematischen Botanik und gab mit Wilhelm Philipp Schimper, dem Professor der Mineralogie und Geologie in Strassburg, die Bryologia europaea heraus; er hätte wohl noch Grösseres geleistet, wenn er sich von seiner Stellung als Schulmann hätte losmachen und frei entfalten können.

Auch unser Wilhelm Gümbel zeigte schon in früher Jugend die lebhafteste Wissbegierde für die umgebende Natur, für die Gesteine wie für die Pflanzen- und Thierwelt, und eine seltene Begabung für die Beobachtung derselben. Diese Freude des besonders talentvollen Knaben an der Natur war durch das ungebundene Leben im Freien, sowie durch die landschaftliche Schönheit von Dannenfels, am Fusse des mit rothen Porphyr gekrönten Donnersberges, mit seinen dichten Buchenund Kastanienwäldern und den mannigfaltigen bunten Gesteinen geweckt worden. Auch von den älteren Brüdern, welche Pflanzen, Insekten und Steine sammelten, bekam er früh vielerlei Anregungen; er fing ebenfalls an Sammlungen von Naturobjekten anzulegen; eine kleine Sammlung von Gebirgsarten aus dem Spessart, welche die Brüder aus der Forstschule in Aschaffenburg mit nach Hause gebracht hatten, erregte seine höchste Bewunderung.

Den ersten Unterricht erhielt er wie mehrere seiner Brüder in der Dorfschule in Dannenfels und dann von dem Pfarrer Hahn daselbst; auch der Bruder der Mutter, der Pfarrer Ludwig Christian Boos in Landau, nahm sich der Knaben liebevoll an.

Wilhelm kam wegen der beschränkten Vermögensverhältnisse der Eltern erst im 13. Lebensjahre an das Gymnasium zu Zweibrücken. Obwohl er durch seinen Fleiss, seine Intelligenz und sein hoch entwickeltes Pflichtgefühl in allen Classen den ersten Platz errang, gehörte die Gymnasialzeit für seinen an Freiheit gewöhnten Sinn nicht zu den liebsten Erinnerungen; er schrieb später darüber, dass der pedantisch quälende Zwang ihm immer wie ein Alp auf der Seele gelegen und das Botanisiren mit dem Bruder Theodor seine einzige Lust, sein einziges Vergnügen in Zweibrücken gewesen sei. Es fehlte ihm dorten bei seinen Anlagen das selbständige Erkennen durch die Beobachtung von Dingen und Erscheinungen. Von einer solchen einseitigen Ausbildung des Geistes rührt es auch her, dass wir an der studirenden Jugend so oft keinen Sinn für die Beobachtung, ja sogar eine förmliche Abneigung gegen dieselbe wahrnehmen. In der Volksschule wird jetzt, wie ich mit Freuden ersehe, dieser für das Leben so wichtige Sinn in sehr richtiger Weise zu wecken gesucht.

Es war ein günstiges Geschick, dass sein um 11 Jahre älterer Bruder Theodor nach Zweibrücken kam; derselbe, ein ganz vorzüglicher Lehrer, führte ihn in ein geregeltes Studium der Naturwissenschaften ein, indem er ihn selbst unterrichtete und ihm Bücher über Botanik, Physik und Chemie gab und Exkursionen mit ihm machte. Der in Zweibrücken lebende treffliche Bryologe Bruch lenkte die Aufmerksamkeit von Theodor auf die Mooswelt und dadurch auch die von Wilhelm. Auch war ihm damals eine geognostische Karte der Pfalz in die Hand gekommen, die er eifrig mit der Natur verglich. Da kam (1842) ein Gast in das Bruch'sche Haus nach Zweibrücken, der Naturforscher Karl Schimper, welcher einen bestimmenden Einfluss auf Gümbel ausübte. Schimper war von München, wo er seit der Mitte der dreissiger Jahre lebte, nach der Pfalz übergesiedelt. Der damalige Präsident der Akademie Schelling schätzte den geistvollen, von der Naturphilosophie angehauchten Gelehrten sehr hoch und verschaffte ihm einen kleinen Jahresgehalt von dem Kronprinzen Max. Schimper hatte zu dieser Zeit die mathematischen Grundverhältnisse des Pflanzenwuchses. das Gesetz der Blattstellung, der Verzweigung und der Blüthenordnung, entdeckt und dadurch auf die Morphologie der Pflanzen einen umgestaltenden Einfluss ausgeübt; es war ferner von ihm aus den in der Umgegend von München, besonders in Percha bei Starnberg, gefundenen erratischen Blöcken, von anderer Zusammensetzung als die Gesteine der Alpen und Voralpen, zum ersten Male auf eine Eiszeit und ausgedehnte Gletscher in früheren Perioden der Entwicklung der Erde geschlossen Ein Kreis wissbegieriger Schüler war damals in München um ihn versammelt, zu denen auch der später mit Gümbel eng befreundete geistesfrische Botaniker Otto Sendtner gehörte. Schimper's Mittheilungen über geognostische Verhältnisse machten auf Gümbel einen solchen Eindruck, dass er beschloss, sich der Geognosie und dem Bergwesen zu widmen, während er früher unter dem Einfluss seines Bruders geneigt war sich der Botanik zuzuwenden, in der er schon die eingehendsten Kenntnisse besass.

Nachdem (1843) das Gymnasium mit der Note "vorzüglich würdig" absolvirt worden war, bezog Gümbel zunächst die Universität München, um Naturwissenschaften und Bergbaukunde zu studiren. Ein Empfehlungsschreiben seines Bruders führte ihn bei Martius ein, der ihn weiter empfahl und ihm allzeit ein wohlwollender Gönner blieb. Er hörte Vorlesungen über Botanik (bei Martius und Zuccarini), über Chemie (bei Buchner und Kaiser), über Mineralogie (bei Fuchs und Kobell), über Zoologie (bei Wagner) und über Geognosie, Bergbaukunst und Hüttenwesen (bei Schafhäutl). Er war jedoch in diesen Wissenschaften schon so weit voraus, dass die herkömmlichen Vorlesungen nicht von sehr grossem Gewinn für ihn waren. Mehr lernte er durch das Studium der Natur; eine von Schimper geognostisch illustrirte Meyer'sche Alpenkarte, die er als Viaticum mit nach München erhalten, wies ihm bald den Weg in die Alpen, wo er werthvolles Material sammelte. Mit Sendtner machte er gemeinschaftliche Moosstudien und Exkursiouen. Noch als Student (1845) stellte er eine noch jetzt werthvolle geognostische Karte von Bayern her, indem er in die hydrographische Karte des Generalquartiermeisterstabs von 1834 die geognostischen Formationen, so weit sie bis zu diesem Zeitraum bekannt waren, mit dem grössten Fleisse und mit Be-

Das Wintersemester 1847—48 brachte er an der Universität Heidelberg zu, woselbst die drei berühmten Forscher, Leonhard, Blum und Bronn, seine Lehrer in der Mineralogie, Geologie und Paläontologie waren, zu denen er in nähere Beziehungen trat.

nützung aller nur aufzutreibenden Hilfsmittel, malte.

Die Ferien, welche er im elterlichen Hause verlebte, benützte er zu geognostischen Studien, wobei im Jahre 1846 die erste wissenschaftliche Abhandlung des 23 jährigen Studenten: "geognostische Bemerkungen über den Donnersberg" entstand. Durch dieselbe erregte er die Aufmerksamkeit des Oberberghauptmanns von Dechen in Bonn, des damaligen besten Kenners der geologischen Verhältnisse des rheinischen Gebietes, der den jungen vielversprechenden Gelehrten, wo er nur konnte, in

seinen Bestrebungen unterstützte; in einem regen Briefwechsel berichtete der Jüngere stets über den Fortgang seiner Arbeiten.

Nachdem Gümbel (1848) das bergmännische Staatsexamen mit Auszeichnung bestanden hatte, trat er in die Praxis des Bergwesens als Berg- und Salinen-Praktikant in dem pfälzischen Steinkohlenbergwerke zu St. Ingbert ein, woselbst er manche neue Anregungen empfing und namentlich praktische Erfahrungen sammelte. Zwei Jahre darauf erhielt er die Funktion als Markscheider am k. Bergamt zu St. Ingbert.

An unserer Akademie war im Jahre 1849 auf Anregung des Königs Max II. eine grosse Kommission zur naturwissenschaftlichen Untersuchung Baverns, in welcher den Herren Schafhäutl, Kobell und Wagner die geognostischen Arbeiten übertragen waren, eingesetzt worden. Zu diesen Arbeiten kam nun Gümbel in Beziehung. Die Regierung der Pfalz stellte, vermuthlich auf Dechen's Betreiben, bei dem Ministerium den Antrag, den Praktikanten Gümbel eine geognostische Untersuchung der Pfalz machen zu lassen, und das General-Conservatorium bezeichnete auf eine Anfrage des Ministeriums Gümbel als vorzüglich geeignet dazu. Die Empfehlung ging von Schafhäutl aus, der ihn auch noch später (1851) in der Vorrede zu seinen geognostischen Untersuchungen des südbayerischen Alpengebirges als sehr talentvoll bezeichnete. So genehmigte (1849) das Ministerium laut einem Schreiben des General-Conservatoriums an den Praktikanten Gümbel, dass er, im Anschlusse an die naturwissenschaftliche Untersuchung Bayerns, eine Reise durch die Pfalz zum Zweck geognostischer Untersuchungen unternehme; er habe ein Tagebuch vorzulegen sowie eine geognostische Suite der in der Pfalz vorkommenden Gebirgsarten zu sammeln und diese der Staatssammlung zu übergeben, auch sich mit Herrn Schafhäutl in brieflichen Verkehr zu setzen. Die Mittel (150 fl.) wurden auf den Etat der Akademie angewiesen. Es findet sich noch sein damaliger Bericht über die von ihm in den Jahren 1850-1851 unternommenen Reisen in den Akten der Akademie vor: derselbe verrieth so ungewöhnliche theoretische und praktische Kenntnisse,

dass das besondere Talent und der Werth des Praktikanten nicht verborgen bleiben konnte. Er hatte ausserdem im Jahre 1850 eine bemerkenswerthe Abhandlung über die Quecksilbererze in dem Steinkohlengebirge der Pfalz geschrieben: die damals noch in regem Betriebe befindlichen Gruben zu Mörsfeld, Wolfstein. Stahlberg und Moschellandsberg waren berühmte Fundstätten des rothen Zinnobers mit den glänzenden Kügelchen des regulinischen Quecksilbers sowie der zu den herrlichsten Bildungen des Mineralreichs gehörigen flächenreichen Krystalle des Silberamalgams.

Mittlerweile hatte sich die Unzulänglichkeit der akademischen geognostischen Kommission für die Lösung ihrer Aufgabe ergeben: es mangelte an einer einheitlichen Leitung und auch an Mitteln. Da stellte (1850) der Abgeordnete v. Hermann, unser Mitglied und späterer Staatsrath, der mit scharfem Blick die Bedeutung einer genauen Kenntniss der geognostischen Beschaffenheit des Landes für die Finanzen erkannt hatte. in der Kammer der Abgeordneten den Antrag, eine geognostische Durchforschung Bayerns in grösserem Stile und mit grösseren Mitteln durch eigens dafür bestellte Organe vorzunehmen; die Kammer bewilligte dafür die Summe von 10000 fl. jährlich, welche aber die Kammer der Reichsräthe auf 5000 fl. reduzirte. In Folge davon erhielt (1851) die damalige General-Bergwerkund Salinen-Administration den Auftrag, durch besondere Hilfsarbeiter die geognostische Detailaufnahme des Landes vornehmen zu lassen.

Zur Lösung der wichtigen Aufgabe konnte man keinen besseren finden als Gümbel, welcher alsbald als Praktikant an die Administration einberufen wurde, um als leitender Geognost mit 6 Gehilfen die Aufnahmen zu machen.

Die geognostische Untersuchung Bayerns bietet ungemein viel des Interessanten, aber auch grosse Schwierigkeiten, abgesehen von den zu den mühevollsten Leistungen gehörigen Detailaufnahmen, denn es finden sich in diesem Lande auf kleinem Flächenraum sämmtliche Formationen, welche am Aufbau der Erdrinde betheiligt sind.

Als erstes Feld der Untersuchung wurde die nördliche Oberpfalz und der Rand des bayerischen Waldes, das östliche Grenzgebirge gegen Böhmen, in Angriff genommen. In vier Sommern (1851—54) waren über 2500 Steuerkataster-Blätter dieses Gebietes aufgenommen. Die Resultate der Aufnahme wurden erst im Jahre 1868 veröffentlicht, worauf wir noch zurückkommen werden.

Der leitende Geognost blieb jedoch zunächst der einer Aufsichts-Kommission untergeordnete Praktikant, welche aus dem Vorstand der Administration, einem Oberbergrathe und den drei Akademikern, Schafhäutl, Kobell und Wagner. als Beirath und zur Mitwirkung, bestand. Die Leitung der Untersuchung, die Bearbeitung und Veröffentlichung der Resultate war dieser Kommission übertragen, deren Mitglieder die Arbeiten Gümbel's zwar revidiren sollten, sich aber wenig darum kümmerten. Die Organisation war wohl keine glückliche zu nennen, wenigstens wusste keines der Mitglieder der Kommission, wo es seine Kraft am wirksamsten anzuwenden habe, und Gümbel war in der freien Bewegung vielfach gehindert.

In dieser untergeordneten Stellung blieb Gümbel 5 Jahre laug, obwohl er das ganze Unternehmen in Gang hielt. Er hatte zwar mittlerweile (1853) die erste pragmatische Anstellung als k. Bergmeister erhalten, aber noch im Jahre 1855 belehrte ihn die Administration, dass er als besoldeter Beamter die auf ärarische Kosten gemachten Arbeiten nicht als die seinigen zur Geltung bringen, sondern von dem Material nur zu dienstlichen Zwecken Gebrauch machen dürfe; und noch im Jahre 1856 sandte die Administration die Zusammenstellung der von Gümbel im Allgäu gemachten Beobachtungen zur Einsicht und allenfallsigen Erinnerungsabgabe an Schafhäutl.

Erst mit dem Eintritt des Staatsraths v. Hermann als Vorstand der Administration (1855), der den Fortgang des grossen Unternehmens mit dem regsten Interesse verfolgte und Gümbel förderte, so viel er vermochte, änderte sich die Sache. Im Jahre 1856 wurde die Aufsichts-Kommission aufgehoben und Gümbel die ganze Aufnahme mit der Bearbeitung der Ver-

öffentlichungen, allerdings noch unter Respicienz seiner Behörde, selbständig übergeben und seine Sparte als geognostisches Bureau der obersten Bergbehörde angegliedert. Vorher (1855) war schon die geognostische Untersuchung an der Akademie dem Conservator Schafhäutl entzogen worden, um nicht das Gleiche durch zwei Stellen bearbeiten zu lassen.

Jetzt erst vermochte Gümbel seine ganze Kraft zu entfalten und es war ihm nun seine eigentliche Lebensaufgabe. die geognostische Untersuchung Bayerns, geworden, welche er von da an wie ein heiliges Vermächtniss durch 44 Jahre bis zu seinem letzten Athemzuge mit aller Kraft durchführte; er blieb stets die Seele der Untersuchung und gab ihr die Richtung und die Ideen. Es war ihm zwar nicht vergönnt, das gewaltige Werk zum völligen Abschluss zu bringen, jedoch ist der weitaus grösste und schwierigste Theil vollendet und für die noch fehlenden Gebiete, für Unterfranken, für die von Anderen schon vielfach untersuchte Rheinpfalz und für einen schmalen Streifen der südbayerischen Hochebene, sind die Vorarbeiten so weit vorgeschritten, dass die Aufnahmen und die Einzeichnungen in die Karten in einigen Jahren zum Abschluss gelangen werden.

Sobald Gümbel mit der Aufnahme in der Oberpfalz fertig war, erhielt er (1854) durch das Ministerium, offenbar auf sein Betreiben, den Auftrag, die geognostische Untersuchung der bayerischen Alpen in Angriff zu nehmen, welche unstreitig den schwierigsten Theil seiner Aufgabe bildete. Es ist charakteristisch für den jungen wissensdurstigen Forscher, dass er durch die entgegenstehenden Schwierigkeiten nicht abgeschreckt, sondern im Gefühle seines Könnens angelockt wurde, die höchst interessanten und verwickelten Verhältnisse der Alpen aufzuklären.

Die Geologie der Alpen war, als sie Gümbel Anfangs der fünfziger Jahre in Angriff nahm, nur wenig untersucht und nur wenig bekannt. Man bezeichnete alle kalkigen und dolomitischen Gesteine der Nordalpen als Alpenkalk und wusste nichts von der Mannigfaltigkeit der Gliederung und Zusammensetzung derselben.

Es hatten zwar schon Leopold v. Buch und Schafhäutl Untersuchungen der bayerischen Kalkalpen angestellt und in denselben charakteristische Versteinerungen gefunden und auch daraus auf die Anwesenheit verschiedener Formationen in denselben geschlossen, aber sie waren nicht zu einer uäheren Keuntniss der Verbreitung dieser Formationen und des Aufbaues des Alpengebirges gelangt.

Namentlich hatte sich der talentvolle und originelle Schafhäutl bemüht eine Einsicht zu erhalten; aber da er in der Geognosie Autodidakt war und das, was von Anderen gelehrt wurde, nicht genügend kannte und schätzte, so war die Deutung seiner Beobachtungen häufig verfehlt; unbekümmert um die harte Kritik von allen Seiten setzte er seine Untersuchungen fort und war nicht abzubringen von dem einseitigen theoretischen Standpunkt der damals hauptsächlich durch Fuchs vertretenen neptunistischen Theorie; er wollte die geognostischen Phänomene auf chemische Vorgänge zurückführen und die Geologie auf chemische Experimente stützen. Er hat sich jedoch durch seine an wichtigen Resultaten reichen Untersuchungen der bayerischen Alpen unbestreitbare Verdienste erworben, namentlich durch die Entdeckung der zahlreichen merkwürdigen Versteinerungen, der sogenannten Nummuliten, in denselben und durch die Auffindung besserer Hilfsmittel zur Unterscheidung der einzelnen Arten. Aber er war in der Unterscheidung der Arten wenig glücklich, da er sie nur nach oberflächlicher Formähnlichkeit beurtheilte; er kam so zu dem von den Wahrnehmungen Anderer abweichenden Ergebnisse. dass in den Schichten der Alpengesteine die soust verschiedenen Formationen zugeschriebenen Spezies von Versteinerungen mit einander vermengt vorkämen und desshalb nicht zur genauen Gliederung und Altersbestimmung benützt werden dürften. In Folge dieser irrigen Artenbestimmung und zu weit gehender Berücksichtigung der physikalisch-chemischen Gesteinsbeschaffenheit wurde das Verschiedenartigste in eine Reihe zusammenC. Voit: Nekrolog auf Wilhelm Gümbel.

geworfen und dann wieder unmittelbar Zusammengehöriges weit auseinander gerissen.

Man ersieht daraus, dass Gümbel in den bayerischen Alpen alles noch unaufgeklärt fand und zunächst beginnen musste, zur orientirenden Voruntersuchung für die spätere Detailaufnahme selbst zu beobachten; in den österreichischen Alpen waren vorher von F. v. Hauer und in den schweizerischen Alpen von Escher von der Linth Forschungen gemacht worden.

Dies geschalt nun mit einem Fleisse, einer Energie, einer Feinheit der Beobachtung und einer Sachkenntniss, die wahrlich unübertroffen dastehen. Nur die Begeisterung für die Wissenschaft und der Drang nach Erkenntniss vermochten den Anforderungen an die körperliche und geistige Leistungsfähigkeit zu genügen und die Schwierigkeiten zu überwinden, welche der enorm verwickelte Aufbau der Alpen und die mannigfaltigen Versteinerungen der Sedimentärgesteine der Erklärung entgegeustellen. Die gewöhnlichen Wege der Touristen und Führer boten zumeist nicht das zur Beobachtung nöthige blossgelegte Gestein; er musste sich selbst die Pfade in den entlegensten Schluchten, den gefährlichsten Abhängen und Rinnsalen suchen. Von früh bis spät kletternd, unbekümmert um die Unbilden der Witterung und zufrieden mit der dürftigsten Unterkunft und Nahrung, häufig allein oder nur von einem halbwüchsigen Burschen als Träger begleitet, zeigte der nicht besonders kräftig gebaute, später häufig an Katarrhen und Verdauungsbeschwerden leidende Forscher eine Ausdauer in Ertragung von Strapazen und eine Kühnheit in Ueberwindung schwer zugänglicher Stellen, dass es öfter unmöglich war, Begleiter zu finden, welche solchen Anstrengungen auf die Dauer gewachsen waren. Dabei hat er tausende von Höhenmessungen selbst ausgeführt, später zur ersten Orientirung über die Lage der Gesteinsschichten sich der Photographie bedient und die in nächster Beziehung zu der geognostischen Unterlage stehenden Steinflechten beobachtet, von denen er neue Fundorte und neue Arten feststellte. Ich habe noch im Jahre 1893 den Siebenzigjährigen im Wettersteingebirge gesehen, wo er zur Revision seiner älteren Beobachtungen am frühesten Morgen aufbrach und Abends schwer bepackt mit Gesteinen von der Wanderung zurückkehrte. Es war keine Uebertreibung, wenn er behauptete, wo eine Gemse hin käme, da komme er auch hin. Trotz viel beschwerlicherer Besteigungen war er niemals auf dem Gipfel der Zugspitze, da es dorten für ihn geologisch nichts zu suchen gab und er mit seiner Zeit sparsam sein musste. Eine Wanderung in diesen Gegenden mit dem kenntnissreichen Manne bot einen hohen Genuss: diejenigen, welche die Berge nur ersteigen, um die Schönheit der Natur zu bewundern oder ihre Kräfte zu stählen, ahnen zumeist nicht, welche Fülle von Beobachtungen hier über die Entstehung der grotesken Formen der Alpen zu machen sind und was die Steine für den Kundigen von den vergangenen Jahrtausenden predigen, aber auch nicht, welche unsägliche Mühe und welcher Scharfblick dazu gehören, diese Entwicklungsgeschichte zu entwirren. Ich erinnere mich, wie er mir bei einem Spaziergange am Fusse des Kramerberges nächst Garmisch in einem Gerölle, das eine Seitenmoräne eines chemaligen Gletschers bildete, Urgebirgsgesteine zeigte, welche nur aus dem entfernten Oberinnthal im Engadin stammen konnten und durch einen Seitenzweig aus dem mächtigen Innthalgletscher hergetragen worden waren.

Gümbel fing im Herbst 1854 im Westen mit dem Allgäu seine Beobachtungen der bayerischen Alpen an und durchforschte dieselben in den Sommermonaten in der Richtung nach Osten, unter Berücksichtigung der angrenzenden Gebiete von Vorarlberg. Tirol und Salzburg; im Winter wurde dann das grosse Material gesichtet, ausgearbeitet und in die Karten eingetragen.

Das Hochgebirge stellte sich als ein schwer entwirrbarer Knäuel durcheinander geworfener, ganz fremdartiger Gebilde, mit einer von den anderen Gebirgen sehr abweichenden Folge der Gesteine, dar. Die ursprünglich horizontal im Meere abgelagerten Sedimentgesteine sind durch enorme Kräfte, in Folge von inneren Spannungen bei der säkulären Abkühlung der

Erde, bis zu den beträchtlichen Höhen der Alpen emporgehoben und dabei die Schichten vielfach zusammengebogen, gefaltet und geknickt worden. Es war die schwierigste und wichtigste Aufgabe diese gehobenen Gesteine der Kalkalpen in die ausserhalb derselben in der tiefen Lage jenseits der Donau im Jura und Kreideland unterscheidbaren Formationen von gleichem Alter zuzutheilen und einzureihen. Dies geschieht, indem man aus den Schichtenstellungen, aus der Aufeinanderfolge mannigfacher Gesteinslagen, aus dem gleichen oder ungleichen Verhalten innerhalb bestimmter Grenzen ihrer Ausbildung bei gleichem Alter der Entstehung und aus den darin eingeschlossenen successiven Generationen von Organismen die Geschichte dieser Erdrevolutionen abliest. In den Alpen sind nun die Schichten, wie sie im Frankenjura und an der Donau vorkommen, durch ganz abweichende Gesteinsbildungen ersetzt, als ob beide Gebiete von jeher von einander geschieden gewesen wären; es finden sich darin in den gleichaltrigen Bildungen wesentlich andere Thiere eingeschlossen als in den ausseralpinen Gebieten, so dass in den einstigen Meeren, aus welchen sich die Formationen der Kalkalpen ablagerten, eine andere Thierwelt gehaust haben muss als in den ausseralpinen Meeren. Eben durch diese durchgreifenden geognostischen Verschiedenheiten der alpinen und ausseralpinen Gebilde war es so schwierig ihre Beziehungen aufzuklären; die Differenz ist dadurch bedingt, dass zur Sekundärzeit ein trennender Urgebirgsrücken zwischen den Alpen und dem nördlichen Gebirge, da wo jetzt die bayerische Hochebene liegt, eingeschoben war, der sich von dem ostbayerischen Urgebirgsstocke bei Passau abzweigt und quer durch die Hochebene gegen den Tödi in der Schweiz ging, aber jetzt unter dem verdeckenden Alluvialschutt verstürzt liegt.

Der Hauptgewinn der Untersuchung der Alpen war also der, dass genauer und schärfer, als es bis dahin möglich war, die Parallele zwischen alpinen und ausseralpinen gleichzeitigen Bildungen gezogen wurde und auf der einen Seite die Analogien, auf der anderen die Differenzen erkannt wurden. In einem Briefe an den berühmten Wiener Geologen Franz v. Hauer berichtete Gümbel damals im Gefühle seiner Leistung und in der Begeisterung über die erhaltenen neuen Erkenntnisse: es wäre ihm gelungen, die einzelnen geognostischen Gebirgsglieder durch den ganzen Zug der Alpen zwischen dem Bodensee und Salzburg Berg für Berg verfolgend nachzuweisen und zu zeigen, wie diese in ihrem Fortstreichen abändern; indem sich die an einem Punkte ganz schwachen Schichten an anderen Orten mächtig entwickeln oder ganz neue Zwischenschichten sich einschieben, anderntheils die in den Alpen höchst trügerische Gesteinsbeschaffenheit nach und nach sich umgestaltet, entständen jene schwierigen Verhältnisse, welche in den Alpen so oft Hindernisse waren, sich zu orientiren.

Schon nach der verhältnissmässig kurzen Zeit der Aufnahmen während sechs Sommern war er (1861) im Stande die erste Abtheilung der geognostischen Beschreibung des Königreichs seine "geognostische Beschreibung des bayerischen Alpengebirges und seines Vorlandes" (mit fünf grossen colorirten Kartenblättern) in einem starken Bande herauszugeben.

Dieses erste grössere und umfassende Werk über die nördlichen Kalkalpen, bis ins kleinste Detail geognostisch beschrieben, bildet die wichtigste Grundlage für die geologischen Verhältnisse derselben. Es enthält eine Fülle neuer Beobachtungen und Feststellungen und hat das Verständniss des Aufbaues dieses Gebirges gebracht. Es ist der grösste Fortschritt in der Auffassung des so verwickelten Gebirgsbaues der Alpen und wird für alle Zeiten eine Norm für die Art der Behandlung einer geognostischen Uebersichtsbeschreibung bilden.

Gümbel hatte die grosse Genugthuung, dass die im Jahre 1857 in dem Gebirge von Nordtirol Aufnahmsarbeiten vornehmende österreichische Kommission von Geologen, unter denen v. Hauer, Richthofen. Pichler, Escher von der Linth, Andriani, Bernhard Cotta waren, alle wesentlichen Ergebnisse seiner Forschungen bestätigen konnte. Dieselben machten zum Theil mit ihm gemeinschaftliche Begehungen behufs Feststellung der geognostischen Horizontale, und an der östlichen Grenze

hatte er sich mit Hochstetter zu gemeinschaftlicher Untersuchung vereiniget.

Das Werk machte unter den Geologen das grösste Aufsehen und ist von den Führern in diesem Fache glänzend beurtheilt worden, z. B. von Dechen, Hauer, Naumann, Bronn und Anderen, so dass Gümbel dadurch mit einem Schlage in die vorderste Reihe der Geologen gerückt war.

Hauer bezeichnete in einer Besprechung das Alpenwerk von 1861 als die wichtigste und ausführlichste Monographie, welche bisher überhaupt über einen Theil der Kalkalpen erschienen ist, als die Frucht der mit unermüdlicher Ausdauer und begeisterter Hingebung durchgeführten geologischen Landesaufnahme und als ein wahres Grundwerk. Auch Karl Naumann hat das Werk ein wahres Meisterstück genannt und gesagt, dass ihm eine so kolossale Arbeitskraft wie die des Verfassers noch nicht vorgekommen sei.

Seit 37 Jahren hat das Alpen-Werk nur in unwesentlichen Punkten und im Detail Berichtigungen erfahren. Es ist ja selbstverständlich, dass die vielen späteren Detailbearbeitungen einzelner Gebiete der Alpen noch eine weitere Klärung und Vermehrung der Kenntnisse über die stratigraphischen Verhältnisse bringen mussten; aber Gümbel hat durch seine Kraft und seinen Geist den Bau errichtet, den Andere nun ausbauen und sich wohnlich darin einrichten können.

Er wusste besser als irgend Jemand, dass noch Vieles in der Alpengeologie zu erforschen ist; er verschloss sich auch niemals gegen die von Anderen gebrachten Wahrheiten, nur wehrte er sich, wenn die Verdienste seiner Arbeiten zu sehr in den Schatten gerückt wurden. Durch seine in 7 Abtheilungen in den Sitzungsberichten unserer Akademie erschienenen geognostischen Mittheilungen aus den Alpen hat er neue Beobachtungen und Verbesserungen der früheren gebracht. —

Im Jahre 1868 konnte Gümbel den zweiten Theil der geognostischen Beschreibung des Königreichs mit der in den Jahren 1851—54 ausgeführten Untersuchung des ostbayerischen Grenzgebirges (mit 5 Karten) herausgeben. Dasselbe umfasst im Wesentlichen die Urgebirgsdistrikte der Oberpfalz und von Niederbayern, dazu westwärts Theile der hier dem Urgebirge in meist schmalen Streifen angelagerten jüngeren Sedimentärgesteine in erstaunlicher Mannigfaltigkeit. Hier lagen die Verhältnisse ganz anders wie in den Alpen; denn gegenüber den versteinerungsführenden Sedimentärgesteinen und der so ungemein verwickelten Tektonik der letzteren fand er im baverischen und oberpfälzer Wald krystallinisches Urgebirge mit Gneiss, Granit, Glimmerschiefer und Urthonschiefer. Bis dahin war noch kein grösserer Urgebirgsdistrikt mit gleicher Ausführlichkeit und Gründlichkeit untersucht worden und es gehören die Ergebnisse ebenfalls zu den gewinnbringendsten für die Wissenschaft. Er musste sich hier zuerst über die schwierige Frage klar werden, in welcher Weise der Gneiss und die krystallinischen Schiefer entstehen, wie sie sich zu den alten Massengesteinen des Granits, Svenits, Diorits etc. verhalten, ehe er untersuchen konnte, in welcher Weise sich diese krystallinischen Gesteine aufgebaut haben. Er kam dabei zu der von dem französischen Geologen Daubrée zuerst ausgesprochenen Ansicht, dass alle diese Gesteine durch den mächtigen Einfluss überhitzten Wasserdampfes entstanden sind. Darnach soll sich aus der in breiartigem Zustande befindlichen und von überhitztem Wasser durchtränkten Rinde der Erde der Gneiss als erstes und ältestes Sedimentgestein krystallinisch ausgeschieden haben. Indem sich so im Laufe der Zeit die Lösung der Gesteinsmaterialien mannigfach verändert, kommt, ähnlich wie der Gneiss, der Wechsel und die Aufeinanderfolge der Schichten von Glimmerschiefer, Thonschiefer, Chloritschiefer etc. zu Stande. Darnach stellen sich die Urgebirgsmassen ebenso streng geordnet und reich gegliedert dar wie die später gebildeten Sedimentschichten; es gelang zum ersten Male eine genaue Gliederung der Schichtencomplexe eines ausgedehnten Urgebirgsterritoriums mit einer bestimmten Ordnung in der Reihenfolge und in der Zusammengehörigkeit darzuthun. Die granitischen Gesteine sind nach ihm nichts Anderes als Massen von Gneiss in Form von Stöcken, Lagern und Gängen, welche

C. Voit: Nekrolog auf Wilhelm Gümbel.

in breiartigem Zustande emporgestiegen sind und sich zwischen und in die Schiefersedimente eingedrängt haben. Diese Theorie Gümbel's von der diagenetischen Entstehung der ältesten Schiefergesteine hat allgemeine Geltung erlangt. Er ist hier mit seiner Aufgabe gewachsen, und er steht unübertroffen da in der Genauigkeit der Untersuchung und der Nüchternheit und Bedeutung der Schlussfolgerungen. —

Der dritte im Jahre 1879 erschienene Band seines grossen Werkes enthält die Beschreibung des Fichtelgebirges (1860—64). Der Gebirgsstock des Fichtelgebirges ist ein Knotenpunkt der Gebirgsverschlingung im innersten Theile Europas: zwei mächtige Gebirgssysteme begegnen und durchkreuzen sich hier. Die Untersuchung gestaltete sich wiederum äusserst schwierig und mühevoll durch die verwickelten, vielfach gestörten Lagerungsverhältnisse, die Mannigfaltigkeit der im Urgebirge auftretenden Eruptivgesteine und den eigenartigen Charakter der älteren Sedimentbildungen mit ihren charakteristischen, wenn auch spärlichen, organischen Einschlüssen. Es finden sich darin zahlreiche Lagerstätten nutzbarer Mineralien sowie alte Erzlagerstätten als Erbschaft des benachbarten Erzgebirges. —

Daran schloss sich endlich als vierte Abtheilung die im Jahre 1891 veröffentlichte Beschreibung des Frankenjura an. Der Frankenjura und das fränkische Triasgebiet gehören grossen Theils einer Tiefseeablagerung an, die in ihrer Lagerung nur wenig gestört ist. Die mit den Alpengesteinen gleichaltrigen Bildungen breiten sich wie im Hochgebirge aus, aber wie schon vorher gesagt, in ganz anderer Gesteinsbeschaffenheit und zum Theil mit ganz anderen organischen Einschlüssen. Das Triasgebirge, namentlich das Keupergebiet, war ursprünglich am Beckenrande höher aufragend, aber durch die Auswaschungen und Zerstörungen der Jahrtausende hat sich das ältere Triasgebirge erniedriget, während der widerstandsfähige Jurakalk sich als festes Felsgerippe besser erhielt und jetzt hoch über den Keuper aufragt. Von besonderem Interesse ist auch der erloschene grosse Vulkan im Ries. Ferner die Steinbrüche in Solnhofen, welche nicht allein werthvolles Material

für bauliche Zwecke und für die Lithographie liefern, sondern auch für die Wissenschaft von grösster Bedeutung geworden sind durch die Fülle der in ihnen eingeschlossenen wundervollen Reste merkwürdiger Thiere und Pflanzen aus alter Zeit. Hierher gehört auch die Darstellung der fränkischen Schweiz mit ihren grotesken Höhlen und Dolomitfelsen. Auch dieser vierte Theil brachte für die Wissenschaft wichtiges Material und vielfache Aufklärung über das süddeutsche Jura- und Keuper-Gebiet.

Durch dieses sein Lebenswerk der geognostischen Beschreibung Bayerns, gleich ausgezeichnet durch die darin enthaltenen Thatsachen wie durch die Form und Klarheit der Darstellung, hat sich Gümbel ein unvergleichliches Denkmal errichtet. Dasselbe wird für alle Zeiten die Grundlage der geognostischen Darstellung Bayerns bleiben und überhaupt ein Quellenwerk ersten Ranges für die geologische Forschung bilden. Obwohl er dabei von tüchtigen und getreuen Hilfskräften unterstützt wurde, so gab er doch in seiner Gewissenhaftigkeit nichts hinaus, was er nicht selbst gesehen und geprüft hatte, so dass die geognostische Untersuchung von Bayern den Vorzug besitzt von einem Mann und aus einem Gusse geschaffen zu sein. Kein Land besitzt eine so consequent durchgeführte und einheitliche Darstellung seiner geognostischen Verhältnisse. Die Detail- und Original-Aufnahmen wurden in die Blätter der bayerischen Steuer-Kataster-Vermessung, welche im Maassstab von 1:5000 hergestellt sind und sich zu geognostischen Aufnahmen nirgends passender finden, eingetragen; hierin, in dem grossen Karten-Maassstab für die erste Aufnahme, liegt der Schwerpunkt der geognostischen Landesuntersuchung in Bayern; diese Blätter, von denen über 6600 ausgearbeitet vorliegen, stellen die eigentliche geognostische Grundkarte dar. Nach ihr wurden die Karten für die geognostische Beschreibung im Maassstabe von 1:100000 angefertigt. Letzterer Maassstab ist für die heutigen Anforderungen allerdings zu klein und es fehlen auch in den Karten die Berg-Zeichnungen und Kurven, aber es können aus der Grundkarte

grössere, auch für praktische Zwecke, z. B. für die Landwirthschaft verwendbare Spezialkarten, im Maassstabe von 1:25 000 wie in den übrigen deutschen Staaten hergestellt werden.

Es ist von mehreren Seiten tadelnd geäussert worden, die Arbeiten Gümbel's hätten nach Methode und Inhalt sowie wegen ungenügendem Auseinanderhalten der thatsächlichen Beobachtung und der daran geknüpften Folgerungen in sehr vielen Einzelheiten Berichtigungen erfahren und würden sie noch weiter erfahren; auch bliebe der Einzelforschung noch ein reiches Feld zum Ausbau des Wissens im Sinne der fortschreitenden Wissenschaft. Aber ist dies nicht für Jeden, der den Gang und die Geschichte der Wissenschaft kennt, etwas Selbstverständliches: denn wo ist der Göttliche, der bei seinem hohen Streben niemals geirrt und das Wissen in irgend einem Gebiete zum völligen Abschluss gebracht hat? Niemand hat mehr seine meuschliche Unzulänglichkeit gefühlt als Gümbel selbst. Gerade jenes Hervorheben der Irrung nur in Einzelheiten ist das grösste Lob für Gümbel's Verdienste und zeigt, wie weit er im Grossen bahnbrechend gewirkt hat.

Ehe ich auf die weiteren wissenschaftlichen Arbeiten Gümbel's eingehe, muss noch erwähnt werden, wie sich seine äussere Stellung in Folge seiner Wirksamkeit entwickelte. Von Anfang an trieb ihn seine Neigung zu wissenschaftlicher Thätigkeit, er wollte ein Gelehrter und ein Forscher in der Wissenschaft werden, und nicht nur als ein Praktiker, der die Lehren der Wissenschaft anwendet, gelten. Er hat sich diesen Ehrentitel mit Anstrengung aller seiner Kraft erobert und sich bald durch seine wissenschaftlichen Arbeiten zu einem der angesehensten Geologen emporgeschwungen.

Nach dem Erscheinen der geognostischen Beschreibung des bayerischen Alpengebirges wurde er im Jahre 1862 von der Universität Jena in Anerkennung seiner Verdienste um die Geologie honoris causa zum Doktor der Philosophie promovirt.

Gerne hätte er sich ausschliesslich der Wissenschaft, der Forschung und dem Lehramte, gewidmet, aber die Professur für Geologie an der Universität war besetzt und in späteren Jahren wollte und konnte er seine Stellung im Staatsdienste nicht mehr aufgeben. Im Jahre 1862 wählte unsere Akademie den verdienten Mann zum ausserordentlichen Mitgliede; er fühlte sich dadurch hoch geehrt und thatsächlich als Mann der Wissenschaft anerkannt. Als er auf einer Forschungstour die Nachricht davon erhielt, bricht er in einen wahren Jubel aus und schreibt darüber an seine Frau: -unter dem überwältigenden Eindruck, welche Deine mir noch gestern Abend zugekommene Nachricht auf mich gemacht hat, ergreife ich heute freudigst die Feder, um Dir mitzutheilen, wie sehr mich dies Ereigniss bis ins Innerste meiner Seele ergriffen hat, und es fehlt mir nur Jemand, dem ich, an dieser Freude theilnehmend, aussprechen könnte, was ich empfinde. Ich gestehe, nicht ganz die Eitelkeit überwinden zu können, durch diese Wahl mich für manches Herbe entschädiget zu fühlen, was ich von anderer Seite in letzter Zeit hinnehmen musste. Es ist ein wahrer Anfang und Grundlage eines neuen Lebens, das für mich aufblüht, und ich bin der Zuversicht, dass es mir nicht misslingen wird, das Begonnene richtig weiter zu fiilven."

Im Jahre darauf wurde Gümbel zum Ehrenprofessor für Geologie und Markscheidekunst an der Universität ernannt, wodurch er das Recht erhielt Vorlesungen zu halten und als Lehrer seine Kenntnisse zu verwerthen; zugleich bekam er den Titel eines k. Bergrathes. Bei Errichtung der technischen Hochschule dahier (1868) wurde ihm der Lehrauftrag ertheilt, an dieser Anstalt Vorträge über Geologie und Geognosie zu halten sowie eine Lehrsammlung anzulegen. Er hat gerne die Lehrthätigkeit ausgeübt, da er erkannte, dass er durch die Vorlesung genöthiget werde sein Fach ganz zu übersehen und seinen Blick zu erweitern. Seine begeisterten Vorträge waren für solche, denen es ernst mit der Sache war, in höchstem Grade belehrend und anregend; seine Kenntnisse waren so gross, dass er in dem Bestreben sein Bestes zu geben, bei dem Unterricht für solche, welche nur einen Ueberblick über die

Geologie thun wollten, vielleicht zu viel brachte; aber er hat zahlreiche dankbare Schüler in die Wissenschaft eingeführt. 1869 wurde er bei der neuen Organisation der Bergbehörden Oberbergrath und Vorstand des Bureaus für die geologische Landesaufnahme, 1879 Oberbergdirektor und Vorstand der

obersten Bergbehörde.

Gümbel entwickelte, neben seiner grossen Aufgabe der geognostischen Untersuchung Bayerns, fast auf allen Gebieten der Geologie und Paläontologie eine ungemein vielseitige, fruchtbare wissenschaftliche und schriftstellerische Thätigkeit. Er war einer der Ersten, der das Mikroscop zur Unter-

suchung des Gefüges der Gesteine benützte. Mit diesem Hülfsmittel that er an gebogenen und gequetschten Schichten die Wirkungen des Gebirgsdruckes dar, indem er die Plasticität der Gesteine bei der Gebirgsbildung auf eine vollständige Zertrümmerung zurückführte, während man früher eine bruchlose Biegung und Umformung derselben angenommen hatte. Er untersuchte ferner mit dem Mikroscope die in den

Schichten der verschiedensten Zeitalter eingeschlossenen kleinsten versteinerten Skelette der einstigen thierischen Bewohner tiefer Meere und auch die darin befindlichen pflanzlichen Ueberreste. Vor Allem beschäftigte er sich mit den in den Ablagerungen früherer Erdperioden, besonders in dem südbayerischen Nummulitenkalk abgedrückten Wurzelfüssern oder Foraminiferen, diesen einfachsten Thieren mit ihrem nicht selten complizirten Kalkgehäuse, deren lebende Arten den Tiefseeschlamm und den Grund der Meere bewohnen, sowie mit der damit zusammenhängenden Frage nach dem sogenannten Eozoon, welches man als den ältesten bis jetzt bekannten Rest von Organisation betrachtete. Erst in einer der letzten Sitzungen der math.-physikal. Classe der Akademie wurde eine von Gümbel veranlasste, äusserst sorgfältige und werthvolle Untersuchung seines Freundes, des Obermedizinalrathes Dr. Egger über diese niederen Thiere vorgelegt. Zum Vergleiche prüfte er auch eifrig den Tiefseeschlamm, welcher entsprechend ähnliche kleinste Organismen enthält wie die älteren geognostischen Ablagerungen.

Er studirte ferner die von der Challenger-Expedition auf dem Grunde des Meeres gesammelten Manganknollen und verglich damit die Mangan-Ausscheidungen aus Wasser abgesetzter Gesteine. Auch beschäftigte er sich mit den tertiären Diatomeenlagern in der Oberpfalz, den Muschelkrebsen oder Ostracoden, und den sogenannten Milleporen, von denen er nachwies, dass viele derselben nicht Thiere, sondern kalkabsondernde Algen sind.

Indem er durch Einwirkung chemischer Reagentien die durch die Verkohlung undeutlich gewordene feinere Struktur der Pflanzen wieder sichtbar machte, gelang es ihm mit dem Mikroscope die Texturverhältnisse der Steinkohlen zu erkennen und darzuthun, dass die ältesten Steinkohlenflötze aus kryptogamischen Land- und Süsswasserpflanzen bestehen und nicht, wie man geglaubt hatte, aus Meeresalgen.

Ausserdem finden wir von ihm viele wichtige Mittheilungen über nutzbare Mineralien und Gesteine und deren Vorkommen, über Meteoriten, Vulkane, Erdbeben, die warmen Quellen von Bormio, Gastein und Brennerbad.

Seine Freundschaft mit dem leider zu früh verstorbenen Botaniker Sendtner, welcher mit dem gleichen Eifer wie Gümbel die Vegetations-Verhältnisse Bayerns. die Standorte und die geographische Verbreitung der Pflanzen untersuchte. zeitigte manche werthvolle Bereicherungen unseres Wissens; es wurde die Abhängigkeit der Pflanze vom Boden erkannt und so der Botanik und Geognosie genützt, z. B. wurde gezeigt, dass die rostfarbene Alpenrose nur auf Urgestein, die rauhhaarige jedoch auf Kalk vorkömmt.

Auf die Bitten seiner Freunde gab er (1888) seine Vorlesungen, stark erweitert, in einem Lehrbuch der Geologie heraus, worin allgemein die Grundzüge der Geologie dargelegt sind; später (1894) hat er in einem zweiten ungemein werthvollen speziellen Theil seine Erfahrungen über die geologischen Verhältnisse Bayerns zusammengefasst.

Gerne suchte er sein Wissen weiteren Kreisen nutzbar zu machen und allgemeineres Verständniss für die Bedeutung der Geologie zu erwecken. Er lieferte zu diesem Zweck eine Anleitung zu geologischen Beobachtungen in den Alpen für die Alpenvereine, und ausserordentlich klar geschriebene Aufsätze in die Allgemeine Zeitung, das Ausland und in Westermann's Monatshefte; sehr beachtenswerth sind seine Beiträge zu dem von König Max II. veranlassten Werke "Bavaria", worin er eine instruktive übersichtliche Schilderung der geognostischen Verhältnisse Bayerns in sechs Abhandlungen gab.

Bei seinen Studien widmete er seine Aufmerksamkeit nicht nur dem Aufbau und der Entwicklungsgeschichte der Erdrinde; er knüpfte auch daran Betrachtungen an über den Zusammenhang des geologischen Baues des Landes mit seiner Oberflächengestaltung sowie mit der Pflanzendecke, der Thierwelt und den darauf lebenden Menschen, ihrer ökonomischen und industriellen Entwicklung und ihren psychischen Eigenthümlichkeiten. Recht scharf konnte er sich äussern über solche, welche ohne eingehende Kenntniss der Natur auf ihren Wanderungen sich Gedanken über Land und Leute machen, die der Wirklichkeit häufig nicht entsprächen.

Durch seine Ausbildung in der Technik und seine praktischen Kenntnisse war er wie Wenige befähigt, die Praxis mit der Wissenschaft zu verbinden und auf die Anwendung im Leben aufmerksam zu machen; so finden sich in seinen Werken wichtige Rathschläge und Belehrungen für den Bergmann, den Land- und Forstwirth, den Industriellen, den Ingenieur, Gewerbetreibenden und Hygieniker. Dieses sein technisches Geschick machte sich auch geltend bei der Leitung des Bergwesens, wobei er viele erspriessliche Gutachten über bergmännische Unternehmungen oder über Wasserversorgung abgab. Hierher gehören seine beiden Gutachten über die Kohlenbesitze des Fürsten Thurn und Taxis in der Pilsener Mulde und über die k. württembergischen Salzwerke und Schachtanlagen. Ein besonderes Verdienst erwarb er sich durch seine Betheiligung an den Arbeiten über die verschiedenen Erd- und Gesteinsschichten sowie über die Grundwasserbewegung und die Wasserversorgung Münchens; er war es, der auf die ausgiebigen Mangfallquellen hinwies und dadurch unserer Stadt das beste

Oeffentliche Sitzung vom 11. März 1899.

und reichlichste Wasser unter allen europäischen Grossstädten zuführte. In dankbarer Anerkennung für diese seine Verdienste verlieh ihm die Stadt im Jahre 1889 das Ehrenbürgerrecht. Der Bürgermeister v. Borscht widmete in einer Magistratssitzung Gümbel einen tief empfundenen, ehrenden Nachruf, in welchem er sagte: Sein Tod bedeutet einen schweren Verlust insbesondere für unsere liebe Stadt München, die ihn zu ihren treuesten Freunden, zu den thatkräftigsten Förderern ihrer socialen Wohlfahrt rechnen durfte. Fast 25 Jahre hindurch hat der Verlebte seine Kraft und sein reiches Wissen unserem Gemeinwesen unermüdlich zur Durchführung einer ihrer wichtigsten Unternehmungen, der städtischen Wasserversorgung, zur Verfügung gestellt. Er war es insbesondere, der unserem unvergesslichen Herrn Bürgermeister Dr. v. Ehrhardt in den schwierigen Vorbereitungen zu diesem gewaltigen Werke nachdrücklichst unterstützte, und durch seine, auf genauesten Messungen und Prüfungen beruhenden Gutachten die mannigfaltigen gegen die Verwendung der Quellen des Mangfallthales geltend gemachten Bedenken entkräftete. Wenn heute die Wasserversorgung Münchens als eine der besten der Welt anerkannt ist, so verdankt die Stadt diesen Ruhm nicht zum Wenigsten der Mitwirkung des Verlebten, der bis zuletzt darauf bedacht war, dieses so unendlich bedeutungsvolle Werk in gedeihlichem Sinne zu fördern und auszubauen. Die Verleihung des Ehrenbürgerrechtes an Herrn v. Gümbel, die im Jahre 1889 anlässlich der Vollendung der städtischen Wasserversorgung auf Grund einstimmiger Beschlüsse der beiden Gemeindekollegien erfolgte, war daher nur der selbstverständliche Ausdruck all des Dankes, den ihm die Stadt für seine unvergänglichen Verdienste um ihr Blühen und Gedeihen für alle Zeiten schuldet. Denn was er für München gethan, das ist mit goldenen Lettern in dessen Geschichte eingetragen. Sein Name wird daher fortleben für immer, auf das Innigste verbunden mit der grossartigen Schöpfung, die er begründen half. Um indessen die Bedeutung dieses durch seinen aufopfernden Bürgersinn, wie durch seine segensreiche Thätigkeit als Gelehrter gleich ausgezeichneten Mannes der Bürgerschaft stets lebendig zu erhalten, beantrage ich, eine hervorragende Strasse nach ihm zu benennen und sein Oelbild in dem Ehrenkabinet des städtischen Museums zur Aufstellung zu bringen."

Das, was Gümbel vor Allem auszeichnete, war eine wunderbar scharfe Beobachtungsgabe, welche ihn im Grossen nur selten irren liess; er sah das Kleinste, verlor aber über dem Einzelnen nicht den Ueberblick über das Ganze und den Zusammenhang der Erscheinungen. Ferner war für ihn charakteristisch seine ungewöhnliche Energie in der Arbeit und sein unermüdlicher Fleiss, der ihn nie unthätig sein liess; selbst die Zeit der Erholung auf dem Lande benützte er zu geognostischen Studien. Er erwarb sich dadurch ein enormes Wissen und durch eigene Beobachtung gewonnenes Können in allen Gebieten der Geologie und ihren Hilfswissenschaften, in der Physik, Chemie, Botanik, Zoologie, Mineralogie etc., welche Jeder bewunderte, der mit ihm umging; er verfolgte mit dem regsten Interesse die Fortschritte in allen Zweigen der Naturwissenschaft. Durch diese Eigenschaften ist er zu dem vielseitigsten, kenntnissreichsten, und verdientesten deutschen Geologen unserer Zeit geworden.

Die Begeisterung für die Wissenschaft und der Drang nach Erkenutniss traten an ihm besonders hervor; er suchte und fand darum in der Arbeit seinen Genuss und sein Glück; für die Vergnügungen und Zerstreuungen der grossen Welt hatte er keine Zeit und keine Lust. Er blieb stets der einfache und genügsame, nur seiner Wissenschaft lebende Gelehrte; allerdings war er sich seines Werthes sehr wohl bewusst.

Solche, die seinen edlen Sinn nicht erkannten, haben ihm einen unersättlichen Gelehrtenehrgeiz vorgeworfen, gegenüber welchem alle anderen menschlichen Regungen und Eigenschaften zurückgetreten seien; sie haben die hinter einer manchmal etwas rauhen Aussenseite verborgene Lauterkeit des Charakters nicht gesehen. Wer so viele Freunde besass und denselben mit so treuer Liebe anhing, wer Jeden, der es mit der Wissenschaft ehrlich meinte, so neidlos anerkannte, wer es so unver-

brüchlich mit der Wahrheit hielt und jeden falschen Schein hasste, wer bei einer seltenen allgemeinen Bildung in der Kunst Genuss fand und wer wie er seiner Familie ein sorgsamer Vater war, der hat wahrlich noch andere menschliche Regungen gehabt, nur hat er sie nicht Jedem preisgegeben. Es ist richtig, er stellte, sowie an sich selbst, so auch an Andere die höchsten Anforderungen und äusserte offen und ohne Rückhalt lebhaft seine Meinung: man hätte aber fühlen können, dass der so hoch stehende Mann allezeit die redlichsten Absichten hatte.

Diese seine Gesinnungen gehen deutlich aus Briefen hervor, in denen er sich offener äussert und welche die Tiefe seines Gemüthes und sein reiches inneres Leben erkennen lassen. So berichtete er z. B. seiner Braut in freudiger Aufregung über seine Arbeiten in den Alpen, wie sich nach und nach das Gebirge in seiner innersten Gestaltung klar vor seinen Sinnen auseinanderlegte, als könnte er in seine tiefsten Tiefen hineinblicken; das sind freilich, so schreibt er, glückliche Genüsse, die jede unsägliche Mühe und Beschwerde als Kleinigkeiten erscheinen lassen. Und in seiner akademischen Festrede resümirt er das Resultat seines Lebens mit den Worten: "Nicmand kann es tiefer als ich selbst empfinden, wie Vieles noch fehlt, wie Vieles jetzt noch mangelhaft, wie Manches noch in Zukunft besser zu machen sein wird. Aber das ist ja das Menschliche und zugleich auch Tröstliche in unserem Wirken, dessen Schwäche wir bescheiden zugestehen, ohne dabei jedoch den Muth zu verlieren in unseren Versuchen und Bestrebungen, trotz unserer geringen Kräfte und lückenhaften Leistungen fortzuarbeiten und das Gewonnene zeitweilig zu einem gewissen Abschlusse zu bringen, dass die ewig sich verjüngende Wissenschaft unaufhaltsam über die Leistungen des Einzelnen hinweg zu immer höheren Zielen fortschreitet."

Am Ende des Jahres 1896 verchlimmerte sich ein schon seit längerer Zeit bestandenes Magenleiden, dem er nach 1½ Jahren erlag. Der todtkranke, auf das Aeusserste geschwächte Mann suchte sich jedoch mit einer geistigen Thatkraft ohne Gleichen aufrecht zu erhalten; er führte die Geschäfte des Oberbergamts fort und beschäftigte sich mit wissenschaftlichen Arbeiten; in der Januarsitzung des Jahres 1898 unserer Classe sandte er noch eine Abhandlung: "Ueber die in den letzten Jahren in Bayern wahrgenommenen Erdbeben" ein, und arbeitete ferner eine Spezialkarte des Wettersteingebirges, welches er in den letzten Jahren während der Herbstmonate aufgenommen hatte, aus. So starb er mit wahrem Heldenmuth in dem Bewusstsein, seine Kraft zum Wohle der Wissenschaft und der Menschheit angewendet zu haben. Mehrmals ersuchte er mich, in der Meinung mich zum letzten Male gesehen zu haben, die Freunde zu grüssen mit der Bitte ihn in gutem Andenken zu behalten. Aber wenn wir schon längst dahingegangen sind, wird sein Name als eines mächtigen Förderers der Geologie fortleben.

Fridolin v. Sandberger. 1)

Nach einer ausserordentlich erfolgreichen Wirksamkeit ist am 11. April 1898, wenige Monate vor seinem besten Freunde und Fachgenossen Wilhelm v. Gümbel, der emeritirte Professor der Mineralogie und Geologie an der Universität Würzburg Fridolin v. Sandberger nach längerem Leiden im 72. Lebensjahre gestorben. Er gehörte seit dem Jahre 1870 als auswärtiges Mitglied unserer Akademie an.

Derjenige Zweig der Naturwissenschaft, den man in früherer Zeit unter der allgemeinen Bezeichnung "Mineralogie" zusammenzufassen pflegte, hat sich in neuerer Zeit in drei selbstständige Glieder vertheilt. Man bezeichnet diese jetzt nur mehr lose mit einander verknüpften Wissenszweige bekanntlich als Mineralogie im engeren Sinne, als Geologie und als Paläontologie. Je mehr sich diese Wissenschaften ausdehnten und vertieften, um so mehr waren ihre Vertreter gezwungen, sich

¹) Mit Benützung der Gedächtnissrede von Prof. Dr. J. Beckenkamp in Würzburg in der Festsitzung der physikal.-mediz. Gesellschaft am 24. November 1898.

bei ihren Forschungen auf eines dieser Fächer zu beschränken; sie haben aber dabei nothwendiger Weise das Allgemeine und das Gemeinsame mehr aus dem Gesichte verloren.

Es gehört daher zu den Seltenheiten noch älteren Gelehrten zu begegnen, welche die bezeichnete Trias der mineralogischen Wissenschaft in ihrer früheren Vereinigung mit ihrem Wissen und Arbeiten ganz umfassten. Zu diesen wenigen Gelehrten der alten Schule im besten Sinne des Wortes, welche, ohne in etwas an Tiefe, Schärfe und Gründlichkeit in ihren Forschungen den jüngeren Spezialisten nachzustehen, die drei Zweige der Mineralogie, Geologie und Paläontologie noch vereinigt auf ihrem Arbeitsfelde bebaut und ganz Hervorragendes geleistet haben, gehört Sandberger. Er war unter seinen Fachgenossen wohl der einzige, welcher auf allen den drei Gebieten fast gleichmässig Bedeutendes und Grundlegendes geschaffen hat.

Sandberger wurde am 22. November 1826 zu Dillenburg in Nassau geboren, woselbst sein Vater Johann Philipp Sandberger Rektor des Pädagogiums war. Bald darauf wurde der letztere als Professor an das Landesgymnasium zu Weilburg an der Lahn berufen; dorten erhielt Fridolin Sandherger seine Ausbildung bis zur Universität. Frühzeitig zeigte der Knabe Neigung und Talent zu der Naturwissenschaft. Diese Neigung wurde geweckt durch den Vater, der sich eingehende Kenntnisse hierin erworben und eine beachtenswerthe naturhistorische Sammlung, namentlich an Mineralien und Versteinerungen, angelegt hatte; diese Sammlung benützte im Jahre 1837 der Geologe Beyrich zu seinen Untersuchungen der nassauischen Auch der ältere Bruder Guido Sandberger, welcher Lehrer an der Realschule in Wiesbaden war und sich besonders für die Geologie interessirte, brachte ihm vielfache Anregung; er machte mit ihm Studien und Exkursionen, so dass er bei seinem Uebertritt an die Universität schon gediegene naturwissenschaftliche Kenntnisse besass. An den Universitäten Bonn, Heidelberg, Giessen und Marburg bildete er sich noch weiter in der Mineralogie, Geologie und Paläontologie, sowie in der Botanik und der Zoologie, aus, so dass er bald beginnen

konnte, selbständig in der Natur zu beobachten und wissenschaftlich thätig zu sein.

Schon in seinem 17. Lebensjahre gab er mit seinem Bruder Guido eine Abhandlung über das Vorkommen von Versteinerungen im Rotheisenstein von Weilburg an der Lahn heraus. Es folgten noch während seiner Studienjahre Abhandlungen über das Vorkommen von Mineralien und Versteinerungen sowie über geologische Verhältnisse, wofür sein Heimathland Nassau mit seinen reichen Erzlagern und die Gegend um Bonn so viel Gelegenheit darbot. Als daher der junge Sandberger im Jahre 1846 in Giessen, wo damals Liebig in vollster Thätigkeit war, den Doktorgrad erwarb, hatte er bereits eine Anzahl von wissenschaftlichen Arbeiten veröffentlicht und Zeugniss von seinem ungewöhnlichen Wissen in jenen Disciplinen gegeben.

Dies veranlasste die herzoglich nassauische Regierung, den 23 jährigen Jüngling zum Inspektor des naturhistorischen Museums zu ernennen, welches Amt derselbe während 6 Jahren in emsiger und fürsorglicher Thätigkeit verwaltete. Im Jahre 1855 erhielt er einen Ruf als Professor der Mineralogie und Geologie an das unter tüchtigen Männern aufblühende Polytechnikum in Karlsruhe, woselbst er als Lehrer eine bedeutende Wirksamkeit entfaltete; auch leitete er die erste geologische Aufnahme Badens und lieferte vortreffliche geologische Beschreibungen sowie geologische Karten des badischen Schwarzwaldes und des Breisgaus. Als nach dem im Jahre 1863 erfolgten Tode von Rumpf die Professur für Mineralogie und Geologie an der Universität Würzburg zu besetzen war, konnte wohl keinem Besseren die Stelle übertragen werden als Sandberger. Er blieb dieser Hochschule getreu; er übte daselbst eine fruchtbare Thätigkeit als Lehrer und Forscher aus und stellte eine mustergiltige Sammlung, namentlich von unterfränkischen Mineralien, Gesteinen und Versteinerungen, her. Nach der von dankbaren Schülern und Collegen festlich begangenen Feier seines 50 jährigen Doktorjubiläums zwang ihn zunehmende Kränklichkeit sein Amt aufzugeben. Er zog in die hiesige Stadt und trat damit in unsere Akademie als ordentliches Mitglied ein, war aber, an das Zimmer gefesselt, nicht im Stande einer Sitzung der Classe beizuwohnen. Er hat jedoch stets unsere Sitzungsberichte durch bedeutsame Arbeiten bereichert und rege Antheilnahme an den Zwecken unserer Akademie bewiesen. Nach einem Jahre verliess er München wegen Verschlimmerung seines Leidens wieder, um in Würzburg seine letzten Tage zu verbringen.

Sandberger hat eine ungemein fruchtbare wissenschaftliche Thätigkeit entwickelt und eine ausserordentlich grosse Anzahl von Schriften veröffentlicht. Mir obliegt es in einem Ueberblick über seine Werke zu schildern, was er für die Entwicklung seiner Wissenschaft gethan hat und welche Stellung er in derselben einnahm.

Seine erste grössere Publikation war die mit seinem Bruder (1847) verfasste Uebersicht der geologischen Verhältnisse des Herzogthums Nassau. Die Eintheilung der Nassauischen Schichten oder des rheinischen Schiefergebirges konnte früher, bevor man genügende Kenntnisse in der Paläontologie besass, nur petrographisch und nach den Lagerungsverhältnissen gemacht werden. Man bezeichnete diese mächtigen Schichten im paläozoischen Gebiet zwischen dem Urgebirge und der Kohleformation als Uebergangs- oder Grauwackengebirge; man erkannte bald eine Gliederung desselben und schied, auf dem Continent und namentlich auch in England einzelne Stufen aus, aber man war noch nicht ins Klare darüber gekommen, welche Schichten in Nassau den in England aufgestellten Stufen des Cambrium, des Silur und des Devon entsprechen. Die beiden Sandberger untersuchten nun die durch Faltung und Verwerfung sehr gestörten und schwierig zu bestimmenden Schichten der Grauwacke in Nassau genau und mit der grössten Sachkenntniss und bezeichneten die untere sandige Stufe als Spiriferensandstein, die mittlere kalkige als Stringocephalenkalk mit dem Cypridinenschiefer und die obere kohlige als Posidonomyenschiefer. Diese ausserordentlich verdienstvolle Untersuchung, welche durch spätere neue Aufschlüsse nur geringe Veränderungen erfahren hat, erregte in Fachkreisen

grosses Aufsehen und wurde allgemein anerkannt; die geologische Gesellschaft in London stellte 1856 den beiden deutschen Forschern die Wollaston-Medaille und den Ertrag der Wollaston-Stiftung zur Unterstützung ihrer Arbeit zur Verfügung.

Am hervorragendsten sind die Leistungen Sandberger's auf dem Gebiete der Paläontologie, auf welchem drei grosse Veröffentlichungen in den Vordergrund treten.

Bei der geologischen Untersuchung des rheinischen Schiefergebirges stellte sich die Wichtigkeit der darin eingeschlossenen Thierreste für die sichere Bestimmung der einzelnen Schichten besonders dringend heraus, wesshalb die beiden Sandberger zugleich das Studium dieser Thierreste begannen; die erhaltenen Resultate sind in einem Werke: "Systematische Beschreibung und Abbildung der Versteinerungen des rheinischen Schichtensystems in Nassau" niedergelegt. Dieses mit seltener Gründlichkeit durchgeführte Werk, welches eine der ersten Stellen in der paläontologischen Wissenschaft einnimmt und die Grundlage zur Vergleichung der genannten Schichten für ganz Centraleuropa bildet, widmeten sie dem damaligen Nestor der deutschen Naturforscher, Alexander v. Humboldt.

An die grosse Monographie über die rheinischen Schiefergebirge oder die Devon'schen Schichten schloss sich alsbald eine Untersuchung im kainozoischen Gebiete über die tertiären und diluvialen Ablagerungen Nassau's an, zu deren Erkenntniss er die geologischen Verhältnisse in den anstossenden mittelrheinischen Ländern, von der Haardt und den Vogesen bis zu dem Spessart, Odenwald und Schwarzwald, nöthig hatte. Diese als Schichten des Mainzer Beckens bezeichneten ausgedehnten und mächtigen Ablagerungen enthalten eine beträchtliche Anzahl der merkwürdigsten Fossilien: Einschlüsse von Conchylien, aber auch grosse Wirbelthiere. In seinen "Untersuchungen über das Mainzer Tertiärbecken und dessen Stellung im geologischen Systeme" giebt er neben einer geologischen Beschreibung der einzelnen Schichten des Mainzer Beckens die genaue Beschreibung der Thierreste in denselben, so dass man dadurch eine Vorstellung über die klimatischen und anderen Verhältnisse des Mainzer Beckens zur Tertiärzeit erhielt. Auch diese Arbeit war eine mustergiltige und in Vollständigkeit der Untersuchung dieser Schichte bis dahin unerreicht; sie bildete die Basis für die späteren geologischen Forschungen in dem oberrheinischen Gebiete.

Durch seine Uebersiedelung nach Würzburg kam er in eine mesozoische Formation. Er richtete sogleich seine Thätigkeit auf die Erforschung der als fränkische Trias bezeichneten drei Gruppen des Keuper, Muschelkalkes und Buntsandsteins, welche damals noch nicht näher untersucht worden waren. Er hat diese Triasgebilde Unterfrankens in scharfsinniger Weise gegliedert und nach ihren organischen Einschlüssen charakterisirt: insbesondere ist seine Darstellung des Muschelkalkes und der Lettenkohlenstufe durch ihre Gründlichkeit und kritische Behandlung besonders hervorragend. Durch letztere Arbeit hat er auch höchst wichtige Vergleichspunkte für die Alpengeognosie festgestellt.

Auch die geognostischen Verhältnisse der vulkanischen Rhön zog er in den Kreis seiner Untersuchungen und gab über den geologischen Aufbau derselben einen nicht im Buchhandel erschienenen ausgezeichneten Bericht an die k. Regierung von Unterfranken.

Sandberger hatte schon 1863 eine Beschreibung der Conchylien des Mainzer Tertiärbeckens herausgegeben. Es ist dies ein umfangreiches Werk, welches für das rheinische Tertiärgebiet dieselbe Bedeutung beanspruchen darf, wie Deshayes berühmtes Werk über die Tertiärversteinerungen des Pariser Beckens. Gleichmässig ausgezeichnet durch gründliche Kritik, sorgfältige Vergleiche mit noch lebenden Thierformen und genaue Beachtung der jeder Art zukommenden geognostischen Lage in den Gesteinsschichten ist es ein Muster für alle ähnlichen Arbeiten.

Daraus erwuchs nun seine dritte umfassendste Monographie: "Die Land- und Süsswasser-Conchylien der Vorwelt", die Frucht zwanzigjährigen eisernen Fleisses. Er wollte dadurch die Entwicklung dieser Thiere durch alle geologischen Perioden in Europa verfolgen und die Beziehungen der einzelnen Faunen

zu einander und zu den lebenden der verschiedenen Erdtheile klarstellen. Durch sorgfältige Studien der jetzt lebenden Landund Süsswasser-Conchylien hat er die grossen Schwierigkeiten zu überwinden verstanden, und ein Meisterwerk geschaffen, durch welches wir eine genaue Kenntniss von dem in einem wesentlichen Theile der Thierwelt ausgedrückten jeweiligen Charakter der verschiedenen Zeitabschnitte in der Entwicklungsgeschichte der Erdoberfläche erhalten haben. Er gab durch dasselbe den Beweis, dass er über die schwierigsten Aufgaben der Paläontologie Herr geworden ist. Der grossartigen Arbeit wurde überall volle Anerkennung und Bewunderung zu Theil; die grosse goldene Cothenius-Medaille der Leopoldino-Carolinischen deutschen Akademie der Naturforscher vom Jahre 1876 war ihr äusserlicher Lohn.

Als Mineraloge hat sich Sandberger durch genaue Untersuchung zahlreicher Mineralien, durch Feststellung ihrer chemischen und physikalischen Eigenschaften sowie durch die Bestimmung ihrer Charakteristik bedeutende Verdienste erworben. Dies gilt namentlich in Bezug auf die Schwefelverbindungen der Metalle, so dass er allgemein als einer der besten Kenner dieser Mineralgruppe galt. Ausserdem hat er durch Erforschung der Entstehung, Bildung und Vergesellschaftung vieler Mineralien tief gehende Studien angestellt, durch welche er auch zu der Annahme der Lateralsekretion geführt wurde.

Die Untersuchung der Frage nach der Entstehung der eigenthümlichen Erzgänge führten Sandberger auch auf das geognostisch-mineralogische Gebiet. Man hat sich zur Erklärung der von Erzen ausgefüllten Gänge und Spalten mancherlei Vorstellungen gemacht. Nach der neptunistischen Ansicht Werner's oder der Descensionstheorie geschieht die Ausfüllung durch von oben herabströmende Flüssigkeit, welche in den Gängen die Erze absetzt. Die plutonische Anschauung oder die Ascensionstheorie lässt die Erze aus der Tiefe stammen und durch aufsteigende Mineralquellen oder durch Sublimation von Metalldämpfen in die Spalten gelangen. Eine dritte Theorie, die von der sogenannten Lateralsecretion, nimmt an,

die Erze kämen von dem die Gänge direkt umgebenden Gestein her. Als Sandberger in den Mineralien der umgebenden krystallinen Massen- und Schiefergesteine kleine Mengen von Kupfer, Blei, Nickel, Kobalt, Wismuth, Zinn, Silber und andere Metalle als Silikate nachgewiesen hatte, griff er die Theorie von der Lateralsecretion lebhaft auf und vertrat sie hartnäckig in sehr geschickter Weise. Es erwuchsen ihm aber hierin manche gewichtige Gegner, namentlich Stelzner; man kann wohl sagen, dass die meisten Geologen jetzt der Meinung zuneigen, die Erze der Mehrzahl der Gänge mit grossem Erzreichthum auf engem Gebiete wären durch Mineralquellen aus grösserer Tiefe und Entfernung hergebracht worden. Wie die Sache aber auch schliesslich entschieden werden mag, so hat Sandberger durch seine genauen Beobachtungen und Untersuchungen der Erzgänge eine grosse Anregung gegeben und

Sandberger war auch ein vortrefflicher Lehrer, der seine ganze Kraft seinen Schülern widmete und höchst auregend auf sie wirkte.

die Erkenntniss sehr gefördert; man wird stets seiner Lager-

stättenlehre alle Beachtung schenken müssen.

Ein so völlig in die Wissenschaft aufgehender Mann war für die Vergnügungen der grossen Welt nur wenig geeignet; aber doch nahm er an dem wahrhaft Schönen Theil und hatte sich treue Freunde erworben. Es mag hier zu seiner Charakteristik bemerkt werden, dass in seiner Junggesellenbehausung der erste Theil des Ekkehard von Victor Scheffel zuerst vorgelesen und Scheffel's Ichthyosaurus "es rauscht in den Schachtelhalmen" für ihn gedichtet wurde.

So stellt sich uns Sandberger als ein Gelehrter von eminenter Vielseitigkeit des Wissens und einem seltenen Reichthum der Kenntnisse sowie als ein Forscher von grösster Gründlichkeit und Gewissenhaftigkeit dar. Von strenger Redlichkeit und unbeugsamer Prinzipientreue war es ihm nur um die Wahrheit zu thun.

Möchten der Wissenschaft auch fernerhin solche reine und selbstlose Vertreter erstehen.

Verzeichniss der eingelaufenen Druckschriften

Januar bis Juni 1899.

Die verehrlichen Gesellschaften und Institute, mit welchen unsere Akademie in Tauschverkehr steht, werden gebeten, nachstehendes Verzeichniss zugleich als Empfangsbestätigung zu betrachten.

Von folgenden Gesellschaften und Instituten:

Geschichtsverein in Aachen:

Zeitschrift. Band XX. 1898. 80.

Historische Gesellschaft des Kantons Aargau in Aarau:

Argovia. Band 27, 1898, 80,

Royal Society of South-Australia in Adelaide:

Transactions. Vol. XXII, part 2. 1898. 80.

Südslavische Akademie der Wissenschaften in Agram:

Zbornik. Band III, 2. 1898. 8°. Rad. Band 136. 137. 1898. 8°.

Monumenta historico-juridica Slav. merid. Vol. VI. 1898. 80.

Starine. Band XXIX. 1898. 80.

Kgl. kroat.-slavon.-dalmatin.-landwirthschaftliches Archiv in Agram: Vjestnik. Band I, Heft 1, 2. 1899. gr. 80.

Kroatische archäologische Gesellschaft in Agram:

Vjestnik. N. Serie, Band III. 1898/99. 40.

Académie des sciences in Aix:

Mémoires. Tom. 17. 1898. 80.

Séance publique de l'Académie 1898. 80.

Geschichts- und Alterthumsforschende Gesellschaft des Osterlandes in Altenburg:

Mittheilungen. Band XI, Heft 2. 1899. 80.

Naturforschende Gesellschaft des Osterlandcs in Altenburg:

Mittheilungen aus dem Osterlande. N. F. Band VIII. 1898. 80. Société des Antiquaires de Picardie in Amiens:

Album archéologique. Fasc. 13. 1898. Fol.

Observatoire national d'Athènes:

Annales. Tom. J. 1898. 40.

Historischer Verein für Sehwaben und Neuburg in Augsburg: Zeitschrift. Jahrgang 25. 1898. 80.

Verzeichniss der eingelaufenen Druckschriften.

Naturwissenschaftlicher Verein in Augsburg:

33. Bericht. 1898. 8°.

Johns Hopkins University in Baltimore:

Memoirs from the Biological Laboratory. Vol. IV, 1, 2. 1898. 4°. Circulars. Vol. XVIII, No. 139, 140. 1899. 4°.

Bulletin of the Johns Hopkins Hospital. Vol. IX, No. 92. 1898. 40.

Maryland Geological Survey in Baltimore:

Maryland geological Survey. Vol. II. 1898. 80.

R. Academia de ciencias in Barcelona:

Nómina del personal academico. Año 1898-99. 80.

Historisch-antiquarische Gesellschaft in Basel:

Beiträge zur vaterländischen Geschichte. N. F. Band V, Heft 2. 1899. 80.

Batariaasch Genootschap van Kunsten en Wetenschappen in Bataria:

Tijdschrift. Deel 40, afl. 3-6. 1898. 80.

Notulen. Deel 35, afl. 3, 4; Deel 36, afl. 1, 2. 1897-98. 8°.

Verhandelingen. Deel 51, stuk 1. 1898. 40.

Dagh-Register gehouden int Casteel Batavia. Anno 1670—1671. 1898. 4°. Observatory in Batavia:

Observations. Vol. XX, 1897. 1898. Fol.

Regenwaarnemingen. 19. Jahrg. 1897. 1898. 40.

Historischer Verein in Bayreuth:

Archiv. Band XX, 3. 1898. 80.

K. Serbische Akademie in Belgrad:

Glas. LV, LVI. 1898. 80.

Spomenik. No. XXXIII. 1898. 40.

Godischnijak. XI, 1897. 1899. 80.

Autobiographie des Protosyncellus Kirilo Cvjetković und sein Kampf für die Orthodoxie, herausg. von Demetrius Ruvarac. 1898. 80.

Museum in Bergen (Norwegen):

Aarbog für 1898. 1899. 80.

University of California in Berkeley:

Schriften aus dem Jahre 1898.

K. preussische Akademie der Wissenschaften in Berlin:

Inscriptiones graecae insularum maris Aegaei. Fasc. II. 1899. Fol. Corpus inscriptionum latinarum. Vol. XIII, pars 1, fasc. 1; Vol. XV, pars posterior, fasc. 1. 1899. Fol.

Abhandlungen aus dem Jahre 1898. 40.

Sitzungsberichte. 1898, No. XL-LIV; 1899, No. I-XXII. gr. So.

Central-Bureau der internationalen Erdmessung in Berlin:

Resultate aus den Polhöhenbestimmungen in Berlin von H. Battermann. 1899. 4°.

Bericht über den Stand der Erforschung der Breitenvariationen von Th. Albrecht. 1899. 4°.

Commission für die wissenschaftl, Sendungen aus den deutschen Schutzgebieten in Berlin:

Viertes Verzeichniss der abgegebenen Doubletten. 1899. Fol.

Commission für die Beobachtung des Venusdurchgangs in Berlin: Die Venusdurchgänge 1874 und 1882, herausg. v. A. Auwers. Bd. I. 1898. 40. the state of the s

Deutsche chemische Gesellschaft in Berlin:

Berichte. 31. Jahrg., No. 18-19; 32. Jahrg., 1-10. 1899. 80.

Deutsche geologische Gesellschaft in Berlin:

Zeitschrift. Band 50, Heft 3, 4, 1899. 80.

Physikalische Gesellschaft in Berlin:

Verhandlungen. 17. Jahrg., No. 12, 13; 1. Jahrg., No. 1—8. 1898—99. 8°.

Physiologische Gesellschaft in Berlin:

Centralblatt für Physiologie. Band XII, No. 20—26; Band XIII, No. 1--7. 1898—99. 8°.

Verhandlungen. Band XIII, No. 1-7. 1899/1900. 80.

K, technische Hochschule in Berlin:

A. Goering, Ueber die verschiedenen Formen und Zwecke des Eisenbahuwesens. Rede. 1899. 40.

Otto N. Witt, Rede bei der Gedenkfeier für den Fürsten von Bismarck 9. März 1899.

Kaiserlich deutsches archäologisches Institut in Berlin:

Jahrbuch. Band XIII, Heft 4; Band XIV. 1899. 40.

Mittheilungen. Band XIII, 4. Rom 1898. 80.

K. preuss, meteorologisches Institut in Berlin:

Regenkarte der Provinz Schlesien von G. Hellmann. Berlin 1899. 80. Veröffentlichungen 1894 Heft 3, 1897 Heft 2, 1898 Heft 1. Berlin 1898. 40. Bericht über die internationale meteorolog. Conferenz in Paris 1896. 1899. 40.

Ergebnisse der meteorolog. Beobachtungen in Potsdam im Jahre 1897.

Ergebnisse der Beobachtungen an den Stationen II. und III. Ordnung im Jahre 1898. 1899. 40.

Jahrbuch über die Fortschritte der Mathematik in Berlin:

Jahrbuch. Band 27 (1896), Heft 3. 1899. 80.

K. Sternwarte in Berlin:

Beobachtungsergebnisse. Heft No. 8. 1899. 40.

Verein zur Beförderung des Gartenbaues in den preuss, Staaten in Berlin:

Gartenflora. Jahrg. 48, Heft 1—13; 1899, Heft 8—11. 1899. 8°. Programm der grossen deutschen Winterblumen-Ausstellung. 1899. 8°. Verein für Geschichte der Mark Brandenburg in Berlin:

Forschungen zur Brandenburgischen und Preussischen Geschichte. Band 12, 1. Hälfte. Leipzig 1899. 8°.

Naturwissenschaftliche Wochenschrift in Berlin:

Wochenschrift. Band XIV, Heft 1-6. 1899. Fol.

Zeitschrift für Instrumentenkunde in Berlin:

Zeitschrift. 19. Jahrg. 1899, No. 1—6, Januar—Juni. 40.
Société d'Émulation du Doubs in Besancon:

Mémoires. VII. Série, Vol. 2, 1897. 1898. 80.

Niederrheinische Gesellschaft für Natur- und Heilkunde in Bonn:

Sitzungsberichte 1898, 1. und 2. Hälfte. 1898. 80.

Naturhistorischer Verein der preussischen Rheinlande in Bonn:

Verhandlungen. 55. Jahrg., 1. und 2. Hälfte. 1898. 80.

Société des sciences physiques et naturelles in Bordeaux;

Procès verbaux des séances. Année 1897-98. Paris 1898. 8°. Mémoires. V° Série, tome 4. Paris 1898. 8°.

Observations pluviométriques 1897-98, 1898, 80,

Société de géographie commerciale in Bordeaux:

1898, No. 23 und 24: 1899, No. 1-12, 80,

American Academy of Arts and Sciences in Boston:

Proceedings. Vol. XXXIV, No. 6-14. 1898. 80.

American Philological Association in Boston:

Transactions and Proceedings, Vol. 29, 1898, 80,

Ortsverein für Geschichte und Alterthumskunde zu Braunschweig und Wolfenbüttel in Braunschweig:

Braunschweigisches Magazin, Band 4. 1898. 40.

Naturwissenschaftlicher Verein in Bremen:

Abhandlungen. Band XVI, 1. 1898. 80.

Verein für die Geschichte Mährens und Schlesiens in Brünn;

Zeitschrift. 3. Jahrg., Heft 1, 2. 1899. 80.

Naturforschender Verein in Brünn:

36. Band 1897. 1898. 80. Verhandlungen.

XVI. Bericht der meteorol. Commission 1896. 1898. 80.

Académie Royale de médecine in Brüssel:

Bulletin. IV. Série, Tome 12, No. 10, 11, 1898; Tome 13, No. 1-5, 1899. 8°. Académie Royale des sciences in Brüssel:

3. Série, Tome 36, No. 11, 12, 1898; Tome 37, partie 1, No. 1, Bulletin. 1899. 8°.

Annuaire 1899. 80.

Tables générales du Recueil des Bulletins. 3. Série, Tome 1-30 (1881 bis 1895). 1898. 8º.

Bulletin. a) Classe des Lettres 1899, No. 1-5; b) Classe des Sciences 1899, No. 1-5. 8º.

Bibliothèque Royale in Brüssel:

Rapport sur l'année 1896-97. 1898. 80.

Société des Bollandistes in Brüssel:

Analecta Bollandiana. Tome 18, 1, 2. 1899. 8°.

Société entomologique de Belgique in Brüssel:

Tome 42. 1898. 80. Annales.

Société belge de géologie in Brüssel:

Tome 24, 3; 25, 2; 26, 1. Liége. 1897—99. 8°. Tome 12, Fasc. 1. 1899. 8°. Annales.

Bulletin.

Société Royale malacologique de Belgique in Brüssel:

Bulletins. Tome 34, p. 1—32. 1899. 8°. Mémoires. Tome 34, p. 1—16 und 2 Tafeln. 1899. 8°. Procès-verbaux, 1898, p. 73—100. 8°.

K. ungarische geologische Anstalt in Budapest:

Jahresbericht für 1897. 1899. 40.

Földtani Közlöny. Vol. 28, füzet 7-12. 1898. 40.

Geologische Karte von Ungarn. Blatt Umgebung von Nagy-Bánya. 1898. Fol. Desgl. von J. Böckh und S. Gesell. 2 Blatt. 1898.

Die im Betrieb stehenden Lagerstätten von Edelmetallen, Erzen etc. von Joh. Böckh und Alex. Gesell. 1898. 40.

A Magyar Kir. Földtani Intézet Évkönyve. Band XII, 4. 5.

Erläuterungen zur geologischen Specialkarte. Blatt Zone 15, Col. 29. 1899. 4°.

Museo nacional in Buenos Aires:

Comunicaciones. Tomo I, No. 2. 1898. 80.

Botanischer Garten in Buitenzorg (Java):

Catalogus plantarum phanerogam. etc., Fasc. 1. Batavia 1899. 80. Conspectus Hepaticarum Archipelagi Indici. Von Victor Schiffner. Batavia 1898. 8°.

Mededeelingen, No. 27, 30 und 32. Batavia 1898-99. 40.

Mededeelingen van de Laboratoria der Governements Kinaonderneming 1 mit Atlas von 20 Tafeln. Batavia. 1898. 40.

Rumänisches meteorologisches Institut in Bukarest:

Analele. Tome XIII, 1897. 1899. 40.

Meteorological Department of the Government of India in Calcutta: Monthly Weather Review 1898. August-Dezember 1898, Januar 1899. 1899. Fol.

Indian Meteorological Memoirs. Vol. VI, part 4; Vol. X, part 2. Simla 1899. Fol.

Rainfall Data of India. 1896 und 1897. Fol.

Asiatic Society of Bengal in Calcutta:

Bibliotheca Indica. New Ser., No. 922—930. 1898. 8°. Journal. No. 275, 276. 1898—99. 8°. Proceedings. 1898, No. 9—11; 1899, No. 1—3. 1898—99. 8°.

Içvara-Kaula, A Kāçmīrī Gramar, ed. by G. A. Grierson. Part II. 1898. 4°.

Geological Survey of India in Calcutta:

A Manual of the Geology of India. Economic Geology by V. Ball. Part I. 1898. 4°.

Paläontologica Indica. Ser. XV, Vol. I, part 3. 1897. Fol.

Astronomical Observatory of Harvard College in Cambridge, Mass.: 53th Report for the year ending Sept. 30. 1898. 80.

Annals. Vol. 39, part I. 1899. 40.

Philosophical Society in Cambridge:

Proceedings. Vol. 10, 1, 2, 1899, 80. Transactions. Vol. 17, part 2, 3, 1899, 40.

Museum of comparative Zoology at Harvard College in Cambridge, Mass.:

Bulletin. Vol. 32, No. 9. 1899. 80. Annual Report for 1897-98. 1898. 80.

Departement of Agriculture in Cape Town:

Annual Report 1897. 1898. 40.

Accademia Gioenia di scienze naturali in Catania:

Bullettino mensile. Nuova Ser., Fasc. 55-58 (Nov. 1898-Febr. 1899). 80. Redaktion des "Astrophysikalischen Journals" in Chicago:

Astrophysikalisches Journal. Vol. 9, No. 4, 1899, 80,

John Crerar Library in Chicago:

4th annual Report for the year 1898. 1899. 80.

Field Columbian Museum in Chicago:

Publications. No. 29, 1898, 80,

Zeitsehrift "The Monist" in Chicago:

The Monist. Vol. 9, No. 3, 4, 1899, 80,

Zeitschrift "The Open Court" in Chicago:

The Open Court. Vol. 13, No. 1-6, 1899, 40.

Norsk Folkemuseum in Christiania:

Foreningen. Aarsberetning IV, 1898. 1899. 40.

Gesellschaft der Wissenschaften in Christiania:

Forhandlinger 1898, No. 1-5, 80,

Skrifter. I. Mathem.-naturwiss, Klasse 1898, No. 1-10. II. Histor.-filos. Klasse 1898, No. 2-5. 40.

Historisch-antiquarische Gesellschaft für Graubünden in Chur:

27. Jahresbericht. Jahrg. 1897. 1898. 80.

Archaeological Institute of America in Cleveland, Ohio.

American Journal of Archaeology. II. Séries, Vol. 2, No. 1-4, 6; Vol. 3. No. 1. Norwood, Mass. 1898. 80.

Naturhistorische Gesellschaft in Colmar:

Mittheilungen. N. F., Band 4, 1897 und 1898. 1898. So.

Franz-Josephs-Universität in Czernowitz:

Verzeichniss der Vorlesungen. Sommer-Semester 1899. 80. Die feierliche Inauguration des Rektors für das Jahr 1898/99. 1898. 80. Naturforschende Gesellschaft in Danzig:

Schriften. N. F., Band IX, 3 und 4. 1898. 40.

Westpreussischer Geschichtsverein in Danzia:

Heft 39 und 40. 1899. 80.

Hans Maercker, Geschichte der ländlichen Ortschaften des Kreises Thorn. Liefg. 1. 1899. 80.

Historischer Verein für das Grossherzogthum Hessen in Darmstadt:

Quartalblätter. N. F., Jahrg. 1898, Vierteljahrsheft 1-4. 80.

Historischer Verein in Dillingen:

Jahrbuch. 9. Jahrg. 1898. 8°.

Académie des Sciences in Dijon:

Mémoires. IV. Série, Tome 6. Années 1897-98. 1898. 80.

Verein für Geschichte und Naturgeschichte in Donaueschingen:

Karl Aloys Fürst zu Fürstenberg 1760-1799. Von Georg Tumbült. Tübingen 1899. 80.

Union géographique du Nord de la France in Donai:

Bulletin, Tom. XIX, 4, 1898; Tom. XX, 1, 1899, 80,

Royal Irish Academy in Dublin:

Proceedings. Ser. III. Vol. 5, No. 2, 1899, 80, Transactions. Vol. 31, part 7. 1899. 40.

Observatory at Trinity College in Dublin:

Astronomical Observations. VIII. Part. 1899. 40.

Royal Dublin Society in Dublin:

Proceedings. Vol. 8, part 6. 1898. 80.

Transactions. Vol. 6, part 14-15; Vol. 7, part 1. 1898. 80.

American Chemical Society in Easton, Pa.:

The Journal. Vol. 20, No. 12, 1898; Vol. 21, No. 1-6. 1899. 80. Royal Society in Edinburgh:

Vol. 22, No. 3-4, p. 249-400. 1898/99. 80. Proceedings.

Transactions. Vol. 39, 3. 1899. 40.

Scottish Microscopical Society in Edinburgh:

Vol. 2, No. 3. 1898. 80. Proceedings.

Royal Physical Society in Edinburgh:

Session 1897-98. 1899. 80. Proceedings.

Stiftsbibliothek in Einsiedeln:

Catalogus codicum manu scriptorum bibliothecae monasterii Einsidlensis, descripsit Gabriel Meier. Tome 1. 1899. gr. 80.

Karl Friedrichs-Gymnasium zu Eisenach:

Otto Apelt, Ueber Ranke's Geschichtsphilosophie. Beigabe zum Jahresbericht für 1898-99. 1899. 40.

Naturforschende Gesellschaft in Emden:

Kleine Schriften. XIX. 1899. 80.

Reale Accademia dei Georgofili in Florenz:

Atti. IV. Serie, Vol. 21, disp. 3, 4, 1899. 8°.

Senekenbergische naturforschende Gesellschaft in Frankfurt a|M.:

Abhandlungen. Band 21, 3; 24, 4. 1898. 40.

Verein für Geschichte und Alterthumskunde in Frankfurt a/M .:

Archiv für Frankfurts Geschichte. III. Folge, 6. Band. 1899. gr. 80.

Naturforschende Gesellschaft in Freiburg i. Br.:

Berichte. Band 11, 1. 1899. 8°.

Breisgau-Verein Schau-ins-Land in Freiburg i. Br.:

Satzungen und Bücherverzeichniss des Vereins. 1898. 80. "Schau-ins-Land". Jahrgang 25. 1898. Fol.

Universität Freiburg in der Schweiz:

Verzeichniss der Vorlesungen. Sommer-Semester 1899. 80.

Rede beim Antritt des Rektorats von J. P. Kirsch. 1898. 8°. Behörden, Lehrer und Studirende. Sommer-Semester 1899. 8°. Programm des Cours 1899—1900. 1899. 8°.

Société d'histoire et d'archéologie in Genf:

Bulletin. Tome II, livr. 2. 1899. 80.

Kruidkundig Genootschap Dodonaea in Gent:

Botanisch Jaarboek. 9. und 10. Jahrg. 1897 und 1898. 80.

Oberhessische Gesellschaft für Natur- und Heilkunde in Giessen:

Mittheilungen. N. Folge, Band 8. 1899. 80.

Oberlausitzische Gesellschaft der Wissenschaften in Görlitz:

Neues Lausitzisches Magazin. 74. Band, 2. Heft, 1898; 75. Band, 1. Heft. 1899. 8°.

Codex diplomaticus Lusatiae superioris II, Heft 4. 1899. 80.

K. Gesellschaft der Wissenschaften in Göttingen:

Göttingische gelehrte Anzeigen. 1898, No. 11, 12; 1899, 1-5. Berlin $1898 - 99. \quad 4^{\circ}.$

Nachrichten. a) Philol.-hist. Classe. 1898, No. 4; 1899, No. 1. 40. b) Mathem.-phys. Classe. 1898, No. 4; 1899, No. 1, 40, Geschäftliche Mittheilungen 1898, Heft 2. 1899. 40.

Abhandlungen. N. F., Band I, No. 8. Berlin 1899. 40.

Universität in Gothenburg:

Göteborgs Högskolas Arsskrift. Tome 4, 1898. 80

The Journal of Comparative Neurology in Granville (U. St. A.):

The Journal. Vol. 8, No. 4, 1898; Vol. 9, No. 1, 1899. 80.

Scientific Laboratories of Denison University in Granville, Ohio:

Bulletin, Vol. 11, 12, 1-3, 1897-98, 80,

Naturwissenschaftlicher Verein für Steiermark in Graz:

Mittheilungen. Heft 34, 1897. 1898. 80.

Naturwissenschaftlicher Verein für Neu-Vorpommern in Greifswald:

Mittheilungen. 30. Jahrg. 1898. Berlin 1899. 80.

Fürsten- und Landesschule in Grimma:

Jahresbericht von 1898-99. 1899. 40.

K. Instituut voor de Taal-, Land- en Volkenkunde van Nederlandsch-Indië im Haaa:

Bijdragen. VI. Reeks, Deel 6, aflev. 1, 2. 1899. 80.

Naamlyst der leden op 1. April 1899. 80.

Société Hollandaise des Sciences in Haarlem:

Archives Néerlandaises. Sér. II, Tom. 2, livr. 2-5. La Haye 1899. 80. Nova Scotian Institute of Science in Halifax:

The Proceedings and Transactions. Vol. 9, 4. 1898. 40.

Kaiserl. Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher in Halle:

Leopoldina. Heft 34, No. 12; Heft 35, No. 1—5. 1899. 4°. Nova Acta. Band 70. 71. 1898. 4°.

Katalog der Bibliothek. Lief. IX. 1899. 80.

Deutsche morgenländische Gesellschaft in Halle:

Zeitschrift. Band 52, Heft 4; Band 53, Heft 1. Leipzig 1898/99. 80. Universität in Halle:

Verzeichniss der Vorlesungen. Sommer-Semester 1899. 80.

Naturwissenschaftlicher Verein für Sachsen und Thüringen in Halle:

Zeitschrift für Naturwissenschaften. Bd. 71, Heft 4-6. Stuttgart 1899. 80.

Verein für Hamburgische Geschichte in Hamburg:

Zeitschrift, Band 10, 3, 1899, 80.

Naturwissenschaftlicher Verein in Hamburg:

Mittheilungen der mathemat. Gesellschaft in Hamburg. Band 3, Heft 9. Leipzig 1899. 8°.

Verhandlungen 1898. 3. Folge, VI. 1899. 80.

Historisch-philosophischer Verein in Heidelberg:

Neue Heidelberger Jahrbücher. Jahrg. 8, Heft 2. 1898. 80.

Naturhistorisch-medicinischer Verein zu Heidelberg:

Verhandlungen. N. F., Band 6, Heft 1. 1898. 80.

Verein für siebenbürgische Landeskunde in Hermannstadt:

Archiv. N. F., Band 28, Heft 3. 1898. 80.

Journal of Physical Chemistry in Ithaca, N.Y.:

The Journal. Vol. 2, No. 9, 1898; Vol. 3, No. 1-4. 1899. gr. 80.

Medieinisch-naturwissenschaftliche Gesellschaft in Jena:

Jenaische Zeitschrift für Naturwissenschaft. Band 32, Heft 3, 4, 1898; Band 33, Heft 1, 2. 1899. 80.

Gelchrte Estnische Gesellschaft in Jurjew (Dorpat):

Archäologische Karte von Liv-, Est- und Kurland. Nebst Text von J. Sitzka. 1896. 8°.

Verhandlungen. Band 9. 1898. 80.

Naturforschende Gesellschaft bei der Universität Jurjew (Dorpat): Sitzungsberichte. Band 12, 1. 1899. 80.

Pfälzisches Museum in Kaiserslautern:

Pfülzisches Museum. 16. Jahrg., No. 1-3. 1899. 80.

Société physico-mathématique in Kasan:

Bulletin. IIº Série, Tom. VIII, 2—4; Tom. IX, 1, 2. 1898/99. 8º.

Universität Kasan:

Schriften aus dem Jahre 1898/99 in 80.

Utschenia Sapiski. Band 65, No. 12, 1898; Band 66, No. 1—4. 1899. 8°. Société de médecine in Kharkow:

25e Anniversaire. 8 février 1898. 1899. 80.

Travaux 1897. 1899. 8°.

Université Impériale in Kharkow:

Grundlagen der Erdkunde. Band 4, Heft 1. 1899. 80.

Eine medicin. Dissertation von Abraham Nožnikov. 1899. 8°. Annales 1898, Heft 1. 8°.

Gesellschaft für Schleswig-Holstein-Lanenburgische Geschichte in Kiel: Zeitschrift. Band 28. 1899. 8.

Universität in Kiew:

Iswestija. Band 38, No. 11, 12, 1898; Band 39, No. 1—2. 1899. 8°.

Naturhistorisches Landesmuseum in Klagenfurt:

Jahrbuch. 25. Heft. 1899. 80.

Diagramme der magnet, und meteorologischen Beobachtung von Ferd. Seeland Dez. 1897 bis Nov. 1898. 1899. Fol.

Physikalisch-ökonomische Gesellschaft in Königsberg:

Schriften. 39. Jahrg. 1898. 40.

Universität in Königsberg:

Verzeichniss der Vorlesungen. Sommer-Halbjahr 1899. 40.

K. Akademie der Wissenschaften in Kopenhagen:

Oversigt. 1898, No. 6; 1899, No. 1. 80.

Gesellschaft für nordische Alterthumskunde in Kopenhagen:

Aarböger. H. Raekke, 13. Band, 4. Heft, 1898; 14. Band, 1. Heft 1899. 40.

Genealogisk Institut in Kopenhagen:

Sofus Elvius, Bryllupper og dödsfeld i Danmark 1897. 1898. 8°.

Akademic der Wissenschaften in Krakau:

Sprawozdania komisyi histor. Tom. 4, 2-3, 1898, fol.; fizyograf tom. 33. 1898. 80.

Anzeiger. Dez. 1898 - Mai 1899. 80.

Rozprawy mathem. Tom. 34. 1899. 80.

Rocznik. Rok 1897/98. 1898. 80.

Atlas geologiczny. Zeszyt 9 (mit Text); Z. 10, 1. 1898. Fol.

Société Vaudoise des sciences naturelles in Lausanne:

Bulletin. IV. Série, Vol. 34, No. 130, 131. 1898/99. 80.

Société d'histoire de la Suisse romande in Lausanne:

Mémoires et Documents. Tom. 39. 1899. 80.

Kansas University in Lawrence, Kansas:

The Kansas University Quarterly. Vol. 7, 4; 8, 1. 1898/99. 80.

Maatschappij van Nederlandsche Letterkunde in Leiden:

Tijdschrift. N. Serie, Deel 18, aflev. 1. 1899. 80.

K. Gesellschaft der Wissenschaften in Leipzig:

Abhandlungen der philol.-hist. Classe. Band 18, No. 4. 1899. 4°.
Abhandlungen der math.-phys. Classe. Band 24, No. 6; Band 25, No. 1, 2. 1899. 4°.

Berichte der philol.-hist. Classe. Band 50, No. 5, 1898; Band 51, No. 1. 1899. 80.

Berichte der mathem.-physik. Classe. Band 50, 1898, naturwiss. Theil; Band 51, 1899, math. Teil I—III. 80.

Fürstlich Jablonowski'sche Gesellschaft in Leipzig:

Jahresbericht. März 1899. 80.

Journal für praktische Chemie in Leipzig:

Journal. N. F., Band 58, Heft 11, 12, 1898; Band 59, Heft 1—12. 1899. 80.

Geschichts- und Alterthumsverein in Leisnig:

Mittheilungen. Heft 1898. 1899. 80.

Wissenschaftliche Veröffentlichungen. Band 3, Heft 3. 1899. 80.

Faculté in Lille:

Travaux et Mémoires. No. 15-21 in 80 und Atlas No. 1, 2 in Fol. 1894-98.

Sociedade de geographia in Lissabon:

Boletin. 16. Serie, No. 10. 1897. 80.

Université Catholique in Locwen:

Paulin Ladeuze, Étude sur le cénobitisme Pakhomien 1898. 80.

Programme des cours 1898—99. 1898. 80.

63e année 1899. 80.

Zeitschrift "La Cellulc" in Loewen:

La Cellule. Tome XV, 2; XVI, 1. 1898/99. 40.

The English Historical Review in London:

Historical Review. Vol. 14, No. 53, 54. 1899. 80.

Royal Society in London:

Proceedings. Vol. 64, No. 406-412; Vol. 65, No. 413-415. 1899. 80.

R. Astronomical Society in London:

Monthly Notices. Vol. 59, No. 2-8. 1899. 80.

Chemical Society in London:

Journal No. 434-440 (January-July) Supplementary Number. 1899. 8°. Proceedings. No. 201, 203-212. 1899. 8°.

Geological Society in London:

The quarterly Journal. Vol. 54, No. 1-4. 1898. 80.

R. Microscopical Society in London:

Journal 1899, part I-III. 80.

Zoological Society in London:

Proceedings. 1898, part IV; 1899, part I. 1899. 80.

Zeitschrift "Nature" in London:

Nature. No. 1523-1548. 40.

Museums-Verein für das Fürstenthum Lüneburg in Lüneburg: Jahresberichte 1896/98. 1899. 80.

Société géologique de Belgique in Lüttich:

Annales. Tome 26, livr. 2. 1899. 80.

Universität in Lund:

Acta Universitatis Lundensis. Tom. 34, 1, 2. 1898. 4°.

Académie des sciences in Lyon:

Mémoires, Sciences et lettres. 3º Série, Tom. 5. Paris 1898. 4º. Société d'agriculture, science et industrie in Lyon:

Annales. VII. Sér., Tom. 5, 1897. 1898. 4°.

Société Linnéenne in Lyon:

Année 1898, Tome 45. 1899. 40. Annales.

Université in Lyon:

Annales. No. 33, 37-40, 1897-98, 8°.

Wisconsin Geological and Natural History Society in Madison:

Bulletin. No. 1 und 2. 1898. 80.

Government Museum in Madras:

Bulletin. Vol. 2, No. 3. 1899. 80.

R. Academia de ciencias exactas in Madrid:

Memorias. Anuario 1899. 80.

R. Academia de la historia in Madrid:

Boletin. Tomo 34, cuad. 1-7 und Reg. 1899. 80.

R. Istituto Lombardo di scienze in Mailand:

Ser. Il, Vol. 31. 1898. 80. Rendiconti.

Memorie. a) Classe di lettere. Vol. 20, 7, 8.
b) Classe di scienze. Vol. 18, 6. 1898. 4°.
Atti della fondazione scientifica Cagnola. Vol. 15, 16. 1898. 8°.

Società Italiana di scienze naturali in Mailand:

Atti. Vol. 37, Fasc. 4; Vol. 38, Fasc. 1 und 2. 1899. 80.

Società Storica Lombarda in Mailand:

Archivio Storico Lombardo. Serie III, Fasc. 19-21. 1898. 80.

Literary and philosophical Society in Manchester:

Memoirs and Proceedings. Vol. 43, part 1, 2, 1899. 8°.

Faculté des sciences in Marseille:

Annales. Tomo IX, Fasc. 1-5. 1899. 40.

Annales de l'Institut colonial de Marseille 6e année. Vol. 5, Fasc. 1. Paris 1898. 8º.

Hennebergischer alterthumsforschender Verein in Meiningen:

Neue Beiträge. 14. Lieferung. 1899. 80.

Fürsten- und Landesschule St. Afra in Meissen:

Jahresbericht für das Jahr 1898-99. 1899. 40.

Royal Society of Victoria in Melbourne:

New. Ser., Vol. 11, part 1. 1898. 80. Proceedings.

Rivista di Storia Antica in Messina:

Rivista. Anno 4, Fasc. 1, 2. Gonnaio - Aprile 1899. 40.

Instituto geológico in Mexico:

Las aguas del desierto por José G. Aguilera y Ezequiel Ordoñez. 1895. 80. Expedición científica al Popocatepetl por José G. Aguilera y Ezequiel Ordoñez. 1895. 80.

Boletin, No. 1-11, 1895-98, 4°.

Observatorio meteorológico-magnético central in México:

Boletin mensual. Septiembre-Diciembre 1898, Enero 1899. 40.

Obscrvatorio astronómico nacional de Tachbaya in Mexico:

Observaciones meteorológicas. 1897. 4º. Anuario para 1899. Año XIX. 1898. 8º.

Sociedad cientifica "Antonio Alzate" in Mexico:

Memorias v Revista. Tomo 12, No. 1-3, 1898. 80.

Observatoire meteorologique du Mont Blanc:

Annales. Tom. 3. Paris 1898. 40.

Museo nacional in Montcvideo:

Annales. Tom. 2, Fasc. 11. 1899. 40.

Numismatic and Antiquarian Society of Montreal:

The Canadian Antiquarian Journal. III. Serie, Vol. I, No. 4. 1898. So. Oeffentliches Rumiantzoff'sches Museum in Moskau:

Ottschet, Jahrg. 1898. 1899. 80.

Observatoire météorologique et magnétique de l'Université Imp. in Moskan:

Observations, Juillet 1896 - Novembre 1898. 40.

Ernst Leyst, Ueber den Einfluss der Planeten auf die beobachteten Erscheinungen des Erdmagnetismus (in russ. Sprache). 1897. 80.

Ueber die geographische Vertheilung des normalen und anormalen Erdmagnetismus (in russ. Sprache). 1899.

Société Impériale des Naturalistes in Moskan:

Bulletin. Année 1898, No. 2-4. 8°. Nouveaux Mémoires. Tom. 15, 7; 16, 1. 1898. 4°.

Statistisches Amt der Stadt München:

Gewerbezählung vom 14. Juni 1895. 1898. 40.

Deutsche Gesellschaft für Anthropologie in Berlin und München:

Correspondenzblatt. 1898, No. 11, 12; 1899, No. 1-6. 40.

Generaldirektion der k. b. Posten und Telegraphen in München: Nachträge zu den Zeitungspreisverzeichnissen. 40.

Görres-Gesellschaft in München:

Nuntiaturberichte aus Deutschland, I. Abtheilung, 1. und 2. Hälfte. Paderborn 1895/99. 80.

K. bayer. technische Hochschule in München:

Personalstand. Sommer-Semester 1899. 80.

Metropolitan-Kapitel München-Freising in München:

Schematismus der Geistlichkeit für das Jahr 1899. 80.

Amtsblatt der Erzdiözese München und Freising. 1899, No. 1-16. 80. Universität in München:

Schriften aus dem Jahre 1898 in 40 und 80.

Amtliches Verzeichniss des Personals. Sommer-Semester 1899. 80. Verzeichniss der Vorlesungen. Sommer-Semester 1899. 40.

Historischer Verein in München:

Monatsschrift. 1898, No. 9-12. 80.

Altbayerische Monatsschrift. 1899, Heft 1, 2. 4°. Oberbayerisches Archiv. Band 50 (Ergänzungsheft).

Altbayerische Forschungen, I. 1899. 80.

K. Oberbergamt in München:

Geognostische Jahreshefte. 10. Jahrg. 1897. 1898. 40.

Verlag der Hochschul-Nachrichten in München:

Hochschul-Nachrichten. 1898/99, No. 98-105. 40.

K. Versicherungskammer in München:

Die bayerischen öffentlichen Landesanstalten für Brand-, Hagel- und Viehversicherung. 1899. 40.

K. bayer, meteorologische Zentralstation in München:

Beobachtungen der meteorologischen Stationen des Königreichs Bayern.

19. Jahrg., Heft 4, 1897; 20. Jahrg., Heft 1. 1898. 4°.
Uebersicht über die Witterungsverhältnisse. Nov. 1898 bis April 1899. Fol.

Verein für Geschichte und Alterthumskunde Westfalens in Münster: Zeitschrift. Band 56, 1898, 80,

Accademia delle scienze fisiche e matematiche in Neapel:

Rendiconto. Serie 3, Vol. 4, Fasc. 12, 1898; Vol. 5, Fasc. 1—5. 1899. 4°. Atti. Serie II, Vol. 9. 1899. 4°.

Zoologische Station in Neapel:

Mittheilungen. Band 13, 4. Berlin 1899. 80.

Geschlschaft Philomathie in Neisse:

29. Berieht 1896-98. 1898. 80.

Société des sciences naturelles in Neuchatel:

Bulletin, Tom. 21-25, 1893-97, 8°.

North of England Institute of Engineers in New-Castle (upon-Tyne):

Transactions. Vol. 48, part 2-4, 1899, 80.

The American Journal of Science in New-Haven:

IV. Serie, Vol. 7, No. 37-42. 1899. 80. Journal.

American Oriental Society in New-Haven:

Vol. 20, part I. 1899. 80.

American Museum of Natural History in New-York:

Vol. 10. 1898. 80. Bulletin.

American Geographical Society in New-York:

Bulletin. Vol. 30, No. 5, 1898; Vol. 31, 1, 2. 1899. 8°.

State Museum in New-York:

Bulletin. Vol. 4, No. 16-18. Albany 1897. 80.

University of the State of New-York in New-York:

State Library Report 78-80 (1895-97). 1897-99. 80.

", Bulletin. Bibliography No. 2—8; 12—14. Albany 1897 bis 1898. 80.

", Library School No. 2. Albany 1897. 8°.
State Museum Report 49, Vol. 1; 50, Vol. 1 (1895—96). Albany 1897—98.

Archaeological Institute of America in Norwood, Mass.:

American Journal of Archaeology. Vol. 2, No. 5. 1898. 80.

Germanisches Nationalmuseum in Nürnberg:

Anzeiger. 1898. 80.

Mittheilungen. Jahrg. 1898. 80.

Katalog der im germanischen Museum befindlichen Glasgemälde. II. Aufl. 1898. 8°.

Verein für Geschichte und Landeskunde in Osnabrück:

Mittheilungen. Band 23, 1898. 1899. 80.

R. Accademia di scienze in Padua:

Atti e Memorie. Nuova Serie, Vol. 14. 1898. 80.

Società Veneto-Trentina di scienze naturali in Padua:

Atti. Serie 2, Vol. 3, Fasc. 2. 1899. 80.

Circolo matematico in Palermo:

Rendiconti. Tomo 13, Fasc. 1-4. 1899. 40.

Académie de médecine in Paris:

Bulletin. 1899, No. 1-26. 80.

Académie des sciences in Paris:

Comptes rendus. Tome 128, No. 1-20, 22-26. 1899. 40.

Oeuvres complètes d'Augustin Cauchy. 1899. 40.

École polytechnique in Paris:

Journal. IIe Série, 4e cahier. 1898. 40.

Moniteur Scientifique in Paris:

Moniteur. Livr. 685 (Janvier 1899) bis 691 (Juillet 1899). 40.

Musée Guimet in Paris:

Annales. Tom. 28, 29. 1896. 40.

Revue de l'histoire des réligions. Tome 37, No. 2, 3; Tome 38, No. 1-3. 1898. 8^{0} .

Muséum d'histoire naturelle in Paris:

Bulletin. Année 1898, No. 6-8; 1899, No. 1, 2. 80.

Nouvelles Archives. Tome 10, Fasc. 1, 2. 1898. 40.

Société d'anthropologic in Paris:

Bulletins. Tome 9, Fasc. 2-5. 1898. 80.

Mémoires. III. Série, Tom. 2, Fasc. 2. 1898. 80.

Société des études historiques in Paris:

Revue. Nouv. Sér., Tom. I, No. 1-4. 1899. 80.

Société de géographie in Paris:

Comptes rendus. 1898, No. 9; 1899, No. 1-4. 80.

Bulletin. VII. Série, Tom. 19, 3° trimestre, 4° trimestre, 1898; Tom. 20, 1° trimestre. 1899. 8°.

Société mathématique de France in Paris: Tome 26, No. 10, 1898; Tome 27, No. 1. 1899. 80. Bulletin.

Société zoologique de France in Paris:

Tome 28. 1898. 80. Bulletin. Mémoires. Tome 11. 1898. 80.

Académie Impériale des sciences in St. Petersburg:

Annuaire du Musée zoologique 1898, No. 2—4. 8°. Byzantina Chronika. Tom. 5, Heft 3, 4. 1898. 4°. Mémoires. VIII. Série. a) Classe historico-philol. Vol. 3, No. 2. b) Classe physico-mathematique. Vol. 6, No. 11-13; Vol. 7, No. 1-3, 1898. 40.

Comité géologique in St. Petersburg:

Bulletins. Vol. 17, No. 6-10; 18, 1-2. 1898-99. 8°. Vol. 8, No. 4; 10, 3. 1898-99. 4°.

Commission Impériale Archéologique in St. Petersburg:

Materialy No. 21. 1897. Fol. Ottschet 1895. 1897. Fol.

Russische astronomische Gesellschaft in St. Petersburg: Éphémerides des étoiles (W. Döllen) pour 1899. 1898. 80.

Kaiserl. mineralogische Gesellschaft in St. Petersburg:

Verhandlungen. II. Serie, Band 36, Lfg. 1. 1899. 80.

Physikalisch-chemische Gesellschaft an der kaiserl, Universität in St. Petersburg:

Schurnal. Tom. 30, 8, 9, 1898, 31, 1-4, 1899, 8°.

Physikalisches Central-Observatorium in St. Petersburg:

Publications. Sér. II, Vol. V et XI. 1898. 40.

Ascensions droites moyennes des ètoiles principales pour l'époque 1885, déduites par A. Sokolow. 1898. 40.

Annalen. Année 1897, partie I, II. 1898. 40.

Kaiserliche Universität in St. Petersburg:

Goditschny Akt 8. Febr. 1899. 80.

American pharmaceutical Association in Philadelphia:

Proceedings 1898. 8°.

Alumni Association of the College of Pharmacy in Philadelphia: Alumni Report. Vol. 34, No. 12; Vol. 35, No. 1-6. 1898/99. 80.

American Philosophical Society in Philadelphia:

Proceedings. Vol. 37, No. 158. 1898. 80.

R. Scuola normale superiore di Pisa:

Annali, Vol. 20, 1899, 80,

Società Toscana di scienze naturali in Pisa:

Atti. Memorie. Vol. 16. 1898. 8°.

Atti. Processi verbali. Vol. 11, p. 57-158. 1898/99. 40.

Società Italiana di fisica in Pisa:

Il Nuovo Cimento. Serie IV, Tom. 8, Settembre - Dicembre 1898; Tom. 9, Gennajo-Maggio 1899. 80.

K. Gymnasium in Plauen:

Jahresbericht für 1898/99. 1899. 40.

Hydrographisches Amt der k. und k. Kriegsmarine in Pola: Veröffentlichungen, Gruppe III. Relative Schwerbestimmungen, II. Heft. 1898. Fol.

K. geodätisches Institut in Potsdam:

Bestimmung der Intensität der Schwerkraft auf 55 Stationen von Hadersleben bis Koburg, von L. Haasemann. Berlin 1899. 40.

Astrophysikalisches Observatorium in Potsdam:

Publikationen. 13. Band. 1899. 40.

Photographische Himmelskarte. Band I. 1899. 40.

Böhmische Kaiser Franz-Joseph-Akademie in Prag:

Starožitnosti země České. Díl I. 1899. 40.

Památky. Díl 18, Heft 3-5. 1898-99. 40.

Gesellschaft zur Förderung deutscher Wissenschaft, Kunst und Literatur in Prag:

Rechenschaftsbericht für 1898. 1899. 80.

Mittheilung No. 9. 1899. 80.

Bibliothek deutscher Schriftsteller aus Böhmen. Band 8, 9. 1898. Julius Lippert, Socialgeschichte Böhmens. Band II. 1898. 80. 80.

Forschungen zur Kunstgeschichte Böhmens. III. Die Wandgemälde im Kreuzgange des Emausklosters in Prag, v. Jos. Neuwirth. 1898. Fol. Beiträge zur deutsch-böhmischen Volkskunde. Band II, Heft 2. 1899. 80. Geologische Karte des böhmischen Mittelgebirges. Blatt II. 1898. Beiträge zur paläontologischen Kenntniss des böhmischen Mittelgebirges.

1898. 4º.

A. Nestler, Die Blasenzellen v. Antithamnion Plumula (Ellis). Kiel 1898. 40.

K. Böhmische Gesellschaft der Wissenschaften in Prag:

Norbert Heermanns Rosenberg'sche Chronik, herausg. v. M. Klimesch. 1898. 8º.

Jahresbericht für das Jahr 1898. 1899. 80.

Sitzungsberichte 1898. a) Classe für Philosophie 1898. b) Mathem.-naturw. Classe 1898. 1899. 8°.

Spisův poctěných jubilejné Král C. Společnosti Náuk. Číslo X. 1898. 80.

Mathematisch-physikalische Gesellschaft in Prag:

Casopis. Band 28, Heft 2-5. 1898-99. 80.

Lese- und Redehalle der deutschen Studenten in Prag:

Bericht über das Jahr 1898. 1899. 80.

Museum des Königreichs Böhmen in Prag:

Zprawa jednatelská společnosti Musea Královstvi Českého. 1899. 80. Casopis. Band 62, Heft 1-6; Band 63, Heft 1. 1898-99. 80.

K. K. Stermvarte in Prag:

Magnetische und meteorologische Beobachtungen. 59. Jahrgang 1898. 1899. 40.

Deutsche Carl-Ferdinands-Universität in Prag:

Die feierliche Installation des Rektors für das Jahr 1898/99. 1899. 40. Ordnung der Vorlesungen. Sommer-Semester 1899. 80.

Zeitschrift "Krok" in Prag:

Krok. Band 13, Heft 1-5. 1899. 80.

K. botanische Gescllschaft in Regensburg:

Denkschriften. 7. Band. Neue Folge, 1. Band. 1898. 80.

Historischer Verein in Regensburg:

Verhandlungen. 50. Band. 1898. 80.

Naturforscher-Verein in Riga:

G. Schweder, Die Bodentemperaturen bei Riga. 1899. 40.

Geological Society of America in Rochester:

Bulletin. Vol. 9. 1898. 80.

Augustana Library in Rock Island:

Publications No. 1. 1898. 40.

R. Accademia dei Lincei in Rom:

Atti. Serie V. Classe di scienze morali. Vol. VI, Parte 1. Memorie. 1899. 4°.

Atti. Serie V. Classe di scienze fisiche, Rendiconti. Vol. 7, Fasc. 12; Vol. 8, Fasc. 1—11. 1898/99. 40.

Atti. Serie V. Classe di scienze morali. Vol. VI, Parte 2. Notizie degli scavi. Agosto 1898 — Genuaio 1899. 1898/99. 40.
Rendiconti. Classe di scienze morali. Serie V, Vol. VII, Fasc. 7—12;
Vol. VIII, Fasc. 1—4. 1898/99. 80.

Annuario 1899. 80.

Accademia Pontificia de' Nuovi Lincei in Rom:

Atti. Anno 52, Sessione 1-4. 1899. 40.

R. Comitato geologico d'Italia in Rom:

Bollettino. Anno 1898, No. 3, 1898, 80,

Società Italiana delle scienze in Rom:

Memorie di matematica e di fisica. Serie III, Tomo 10. 1896. 40.

Ufficio centrale meteorologico italiano in Rom:

Annali. Serie II, Vol. 16, parte 2. 1894. Vol. 17, parte 1. 1895. Vol. 18, parte 2. 1897—98. Fol.

R. Società Romana di storia patria in Rom:

Archivio. Vol. 21, Fasc. 3, 4. 1898. 80.

R. Accademia degli Agiati in Rovcreto:

Atti. Serie III, Vol. 4, Fasc. 3, 4. 1898. Vol. 5, Fasc. 1. 1899. Serie IV, Vol. 22, disp. 1. Firenze 1899. 80.

The American Association for the advancement of science in Salem: Proceedings for the 47th Meeting at Boston. August 1898. 80.

Naturwissenschaftliche Gesellschaft in St. Gallen:

Bericht über die Thätigkeit der Gesellschaft 1896-97. 1898. 80.

Instituto y Observatorio de marina de San Fernando (Cadiz): Anales. Seccion 2ª. Año 1897. 1898. Fol.

Californio Academy of Sciences in San Francisco:

Proceedings. a) Zoology. Vol. 1, No. 6-10. b) Botany. Vol. 1, No. 3-5. c) Geology. Vol. 1, No. 4. d) Math. Pyis. Vol. 1, No. 1-4. 1898. 40.

Commissão geographica e geologica in São Paulo:

Secção meteorologica. Dados climatologicos do anno de 1893 - 97. 1895—98. 8°.

Museu Paulista in S. Paulo:

Revista. Vol. III. 1898. 80.

Verein für mecklenburgische Geschichte in Schwerin:

Jahrbücher und Jahresberichte. 63. Jahrg. 1898. 80.

K. K. archäologisches Museum in Spalato:

Bullettino di Archeologia. Anno XXI, No. 12. 1898. Anno XXII, No. 1-4. 1899. 8º.

Historischer Verein der Pfalz in Speyer:

Mittheilungen. XXIII. 1899. 80.

Jahresbericht des historischen Museums der Pfalz für 1897 und 1898. 1899. 8°.

K. Akademie der Wissenschaften in Stockholm:

Årgång 55 (1898). 1899. 80.

K. Vitterhets Historie och Antiquitets Akademie in Stockholm: Månadsblad. 24. Årgång 1895. 1898. 80.

Geologiska Förening in Stockholm:

Förhandlingar. Band 20, Heft 1; Band 21, Heft 1-4, 1899, 80.

Nordiska Museet in Stockholm:

Meddelanden 1897. 1898. 80. Samfund 1897. 1898. 80.

Gesellschaft zur Förderung der Wissenschaften in Strassburg: Monatsbericht. 1898, No. 9, 10; 1899, No. 1 - 5. 80.

K. öffentliche Bibliothek in Stuttgart:

Otto v. Alberti, Württembergisches Adels- und Wappenbuch, Liefg. 1-8. 1889—98. 4°.

Württembergische Geschichtsquellen. Band IV. 1899. 80.

Department of Mines and Agriculture of N.-South-Wales in Sydney: Records of the geological Survey of New-South-Wales. Vol. VI, part 1. Records. Vol. VII, part 2. 1898. 40.

Memoirs of the geological Survey of N.-S.-Wales. Ethnological Series, No. 1. 1899. 40.

Mineral Resources, No. 5, 1899. 80.

Deutsche Gesellschaft für Natur- und Völkerkunde Ostasiens in Tokyo: Mittheilungen. Band VII, Th. 1 und Supplement (die Sprichwörter Th. V). 1898. 8°.

Kaiserliche Universität Tokyo (Japan):

The Journal of the College of Science. Vol. IX, 3; X, 3; XI, 1-3; XII, 1-3. 1898/99. 4º.

Mittheilungen aus der medicinischen Facultät. Bd. IV, No. 3-5. 1898. 40. Calendar 1897-98. 1898. 80.

Alterthumsverein in Torgau:

Veröffentlichungen. XII. 1898. 80.

Canadian Institute in Toronto:

Proceedings. New. Series, No. 2, 3. 1897. gr. 80. Vol. II, part 1. 1899. 8º.

The Canadian Journal 1856—1878 (einzelne Hefte fehlen). 80.

R. Accademia delle scienze in Turin:

Atti. Vol. 34, disp. 1—10. 1898—99. 8⁰. Memorie. Serie II, Tom. 48. 1899. 4⁰.

Mcteorologisches Observatorium der Universität Upsala: Bulletin mensuel de l'observatoire météorologique. Vol. 30. Année 1898. 1898-99. Fol.

K. Universität in Upsala:

Schriften der Universität aus den Jahren 1897/98 in 40 und 80.

Historisch Genootschap in Utrecht:

Werken. III. Serie, No. 12. Diarium. 's Gravenhage 1898. 80. Bijdragen en Mededeelingen. Deel XIX. 's Gravenhage 1898. 80.

Provincial Utrechtsch Genootschap in Utrecht:

Aanteekeningen 1898. 80.

Verslag 1898. 8°. Stratz, Der Säugethier-Eierstock. Haag 1898. 4°.

L. M. Rollin Couquerque, Het Aasdoms- en Schependomsrecht. 's Gravenhage 1898. 8°.

Physiologisch Laboratorium der Hoogeschool in Utrecht:

Onderzoekingen. V. Reeks, Deel I, afl. 1. 1899. 80.

Accademia in Verona:

Memorie. Vol. 72-74 (1896-98). 80.

American Academy of Arts and Sciences in Washington:

Proceedings. Vol. 34, No. 2-5. 1898. 80.

National Academy of Sciences in Washington:

Memoirs. Vol VIII. 1898. 40. Vol. VIII, 3d. Memoir. 1899. 40.

Bureau of Education in Washington:

Annual Report of the Commissioner of Education for 1896-97. Vol. 2. 1898. 8°.

U. S. Department of Agriculture in Washington:

North American Fauna, No. 14. 1899. 80.

Yearbook 1898. 1899. 80.

Smithsonian Institution in Washington:

Annual Report of the U.S. National-Museum 1896. 1898. 80.

Annual Report 1895—96. July 1897. 1898. 8°. Smithsonian Miscellaneous Collections, No. 1170. 1899. 8°.

U. S. Naval Observatory in Washington:

Report for the year ending June 30, 1898. 80.

Surgeon General's Office, U. S. Army in Washington:

Index-Catalogue. II. Series, Vol. 3. 1898. 40.

United States Geological Survey in Washington:

18th annual Report. Part II, Va, b. 1897. 40.

Grossherzogliche Bibliothek in Weimar:

Zuwachs in den Jahren 1896-98, 1899, 8°.

Harzverein für Geschichte in Wernigerode:

Register über die Jahrgänge 13-24 (1880-91) der Zeitschrift. 1898. 40.

Kaiserliche Akademie der Wissenschaften in Wien:

Philos.-histor. Classe, 35. Jahrg. 1898, No. 1-27. Anzeiger.

Mathem.-naturw. Classe, 35. Jahrg. 1898, No. 1-27. 1898. 80.

K. K. gcologische Reichsanstalt in Wien:

Jahrbuch. Jahrg. 1898, Band 48. 1898. 40.

Verhandlungen. 1898, No. 1-18; 1899, No. 1-8. 40.

Geographische Gesellschaft in Wien:

Mittheilungen. Band 41. 1898. 80.

K. K. Gcsellschaft der Aerzte in Wien:

Wiener klinische Wochenschrift. 1898, No. 52; 1899, No. 1-27. 40.

Anthropologische Gesellschaft in Wien:

Mittheilungen. Band 28, Heft 5, 6; Band 29, Heft 1, 2. 1898/99. 40

Zoologisch-botanische Gesellschaft in Wien:

Verhandlungen. Band 48, Heft 10; Band 49, Heft 1-5. 1899. 80.

K. K. naturhistorisches Hofmuseum in Wien:

Annalen. Band 13, No. 2-3. 1898. 40.

Oriental Nobility Institute in Woking:

Vidyodaya. Band 27, No. 11, 12, 1898; Band 28, No. 1, 2. 1899. 80.

Physikalisch-medicinische Gesellschaft in Würzburg:

Verhandlungen. N. F., 32. Band, No. 4—6; 33. Band, No. 1. 1899 8°. Sitzungsberichte. Jahrg. 1898, No. 4—8; 1899, No. 1—5. 8°.

Historischer Verein von Unterfranken in Würzburg:

Archiv. 40. Jahrg. 1898. 80.

Schweizerische meteorologiscse Centralanstalt in Zürich:

Annalen. Jahrg. 1896. 1898. 40.

Schweizerische geodätische Kommission in Zürich:

Beiträge zur geologischen Karte der Schweiz. Liefg. 28 und neue Folge, Liefg. 8. Bern 1898. 40.

Antiquarische Gesellschaft in Zürich:

Mittheilungen. Band 24, 6. 1899. 40.

Naturforschende Geschlschaft in Zürich:

Neujahrsblatt. 101 Stück. 1899. 40.

Vierteljahrsschrift. 43. Jahrg. 1898, Heft 4; 44. Jahrg. 1899, Heft 1, 2. 1899. 80.

Von folgenden Privatpersonen:

Prinz Albert I. von Monaco:

Exploration océanographique aux régions polaires. Paris 1899. 80. Première Campagne scientifique de Ia "Princesse Alice II.." Paris 1899. 40.

M. Berthelot in Paris:

Chaleur animale. 2 Vols. Paris 1899. 8°. Chimie végétale et agricole. 4 Vols. Paris 1899. 8°.

Renward Brandstetter in Luzern:

Malaio-Polynesische Forschungen, II. Reihe, I. Luzern 1898. 80.

Ferdinando Colonna dei Principi di Stigliano in Neapel: Scoperte di Antichità in Napoli 1876—1897. 1898. 4°.

Arthur Mac Donald in Washington:

Experimental Study of Children. 1899. 8°. Colored Children: A Psychophysical Study. Chicago 1899. 8°.

H. Fresenius in Wiesbaden:

Geschichte des chemischen Laboratoriums in Wiesbaden. 1898. 4°.

H. Fritsche in St. Petersburg:

Die Elemente des Erdmagnetismus und ihre säcularen Aenderungen. 1899. 80.

Antonio de Gordon y de Acosta in Habana:

Indicaciones terapeuticas de la musica. Habana 1899. 80.

Ernst Häckel in Jena:

Kunstformen der Natur, Liefg. I, II. Leipzig 1899. Fol.

Joseph Hartmann in Ingolstadt:

Der erste bayerische Geschichtschreiber Johannes Turmair, genannt Aventinus, und seine Beziehungen zur Geographie. Dissertation. 1898. 80.

Emil Hensen in Frankenthal:

Frankenthaler Gruppen und Figuren der Porzellanfabrik Frankenthal. Speier 1899. 8^o.

J. Hirschberg in Berlin:

Geschichte der Augenheilkunde im Alterthum. Leipzig 1899. 80.

F. Jousscaume in Paris:

La philosophie aux prises avec la mer rouge, le Darwinisme et les 3 règnes des corps organisés. 1899. 80.

Wilhelm Klinckert in St. Petersburg:

Das Licht, sein Ursprung und seine Funktion. Leipzig 1899. 80.

Joseph Kriechbaumer in München:

Beitrag zu einer Monographie der Joppinen. Berlin 1899. 80.

Karl Krumbacher in München:

Byzantinische Zeitschrift. Band 8, Heft 1-3. Leipzig 1899. 80.

J Lair in Paris:

Conjectures sur les chapitres XVIII et XIX du livre II de l'historia ecclesiastica de Grégoire de Tours. 1899. 80.

Joseph Levy in Lorenzen (Unter-Elsass):

Geschichte der Stadt Saarunion. Vorbruck-Schirmeck 1898. 80.

G. van der Mensbrugghe in Gent:

7 kleine Schriften physikalischen Inhalts (Sep.-Abdrücke). 1898. 80.

Lady Meux in Theobaldspark (England):

The Lives of Maba' Seyon and Gabra Krestos, the ethiopic Texts edited by E. E. Wallis Budge. With 92 colowred plates. London 1898. 40.

Oskar Emil Meyer in Breslau:

Die kinetische Theorie der Gase. 1899. 80.

Gabriel Monod in Versailles:

Revue historique. Tom. 69, No. 1, 2; Tom. 70, No. 1, 2. 1899. 80.

G. J. Petersen in Gleiwitz:

Ueber die Harmonie im Weltenraum. Band I. 1899. 80.

E. Piette in Rumigny (Ardennes):

Études d'éthnographie préhistorique V. Paris 1899. 80.

W. Radloff in St. Petersburg:

Die alttürkischen Inschriften der Mongolei. II. Folge. 1899. 40.

Dietrich Reimers Verlagshandlung in Berlin:

Zeitschrift für afrikanische und oceanische Sprachen. Jahrg. IV, Heft 3. 1898. 4º.

Adolf Römer in Erlangen:

Aristotelis ars rhetorica. Lipsiae 1899. 80.

Ferdinand Rüss in München:

Geschichte des Gabelsberger Stenographen-Centralvereins in München von 1849-1898. 1899. 8°.

Verlag von Seitz und Schauer in München:

Medizinische Neuigkeiten. 1898, No. 52. 4⁰. Deutsche Praxis. 1898, No. 18; 1899, No. 1—11. 8⁰.

Emil Sclenka in München:

Menschenaffen. Liefg. I. Wiesbaden 1898. 40.

M. B. Suyder in Philadelphia:

Report on the Harvard Astrophysikal Conference August 1898. Lancaster 1898. 80.

Serge Socolow in Moskau:

Corrélations régulières du système planétaire. 1899. 80.

Michele Stossich in Triest:

Filarie e spiroptere. 1897. 8°. Note parassitologiche. 1897. 8°.

Saggio di una Fauna elmintologica di Trieste. 1898. 80.

Verlagsbuchhandlung B. G. Teubner in Leipzig:

Encyklopädie der mathem. Wissenschaften. Band 1, Heft 2. 1899. 80.

A. Thienllen in Paris:

Lettre à M. Chauvet sur les veritables instruments usuels de l'âge de la pierre. 1898. 4°.

H. Ulmann in Greifswald:

Russisch-preussische Politik. Leipzig 1899. 80.

Verlagshandlung Friedrich Vieweg und Sohn in Braunschweig:

Roscoe-Schorlemmers ausführliches Lehrbuch der Chemie. Von J. W. Brühl. Band V, VI. Organische Chemie, Theil 3, 4. 1896—98. 80.

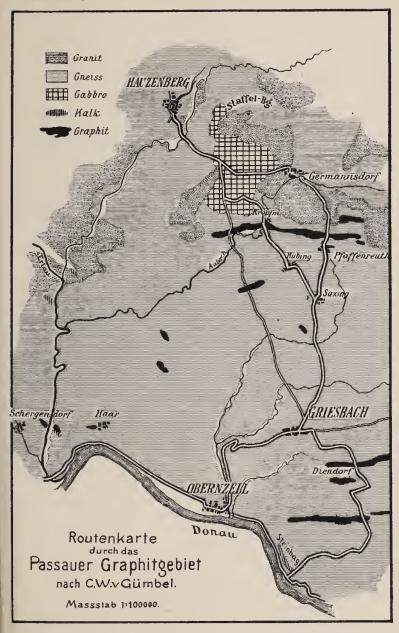
M. E. Wadsworth in Houghton, Mich .:

Ein Fascikel kleine Schriften physikalischen Inhalts (in engl. Sprache). 1896—98.

Nicolaus Wecklein in München:

Euripidis fabulae. Vol. II, pars 4-6. Lipsiae 1899. 80.

Giuseppe Wilpert in Rom:


Un Capitolo di storia del vestiario. Parte II. 1899. Fol.

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.a

Sitzungsberichte

der

königl. bayer. Akademie der Wissenschaften.

Mathematisch-physikalische Classe.

Sitzung vom 4. November 1899.

- 1. Herr C. v. Vorr macht eine Mittheilung: "Ueber eine Beobachtung an einem Hunde, welcher vorher längere Zeit gehungert hatte."
- 2. Herr K. A. v. Zittel hält einen Vortrag: "Ueber Wengener-, St. Cassianer- und Raibler-Schichten auf der Seiser Alp.

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Ueber Wengener, St. Cassianer- und Raibler-Schichten auf der Seiser Alp in Tirol.

Von Karl A. von Zittel.

(Eingelaufen 18. Dezember.)

Der Schlern mit der angrenzenden Seiser Alp und dem Fassa-Thal gehören seit nahezu einem Jahrhundert zu den geologisch berühmtesten Gebieten der Alpen. Nachdem Brocchi (1811) und Marzari Pencati (1819) die Aufmerksamkeit der Geologen auf die Umgebung von Predazzo und das Fassathal gelenkt und Leop. v. Buch seine anregenden Abhandlungen über die Dolomitberge und die Entstehung des Dolomites nebst einer geognostischen Uebersichtskarte von Süd-Tirol veröffentlicht hatte, galt das Fassathal geradezu als ein classischer Boden, den jeder Geologe kennen zu lernen wünschte. Waren es anfänglich die vulkanischen Eruptivgesteine und deren Beziehungen zu den benachbarten Sedimentärgebilden, welche das Interesse fast ausschliesslich fesselten, so bildete später die Entdeckung der reichen Fundstätte von trefflich erhaltenen Versteinerungen bei St. Cassian einen Wendepunkt in den geologischen Forschungszielen von Süd-Tirol. Der Schlüssel zur Altersbestimmung der mesozoischen Schichtgesteine war jetzt gefunden und man konnte nunmehr an die schwierige Frage der Gliederung des "Alpenkalks" und des Dolomits mit den darin befindlichen Einlagerungen anderer Gesteine denken. Obwohl die paläontologischen Monographien von Graf Münster, Wissmann und Klipstein schon frühzeitig ein ziemlich vollständiges Bild der reichen St. Cassianer Fauna gewährten, so

herrschten doch über deren Alter lange Zeit sehr abweichende

342 Sitzung der math.-phys. Classe vom 4. November 1899.

Meinungen.

Im Jahre 1844 wurde die Reihenfolge der Triasablagerungen zwischen St. Ulrich im Grödner Thal und der Seiser Alp durch H. Emmrich 1) in musterhafter Weise klar gelegt. Emmrich hatte während einer 14 tägigen Ferienreise nach Südtirol Gelegenheit bei dem Beneficiaten Clara in St. Michael eine Sammlung von Versteinerungen zu sehen, welche von der Seiser Alp herrührten und worin der scharfsinnige deutsche Geologe sofort eine erhebliche Anzahl typischer St. Cassianer Formen erkannte. Die charakteristischen Cidaris-Arten (Cid. baculifera, Buchi, decorata, flexuosa), ferner Encrinus liliiformis, varians und granuliferus, zahlreiche Brachiopoden und Muscheln (Cardita crenata, Nucula striata) und Schnecken liessen keinen Zweifel über die Deutung der sie enthaltenden Ablagerungen zu. Nur die Seltenheit von Cephalopoden war auffällig. Emmrich besuchte mit Clara die Fundstätten der Versteinerungen, welche theils von den südöstlichen Abhängen des Puflatsch aus mergeligem Gestein, theils aus schwarzem sandigem vulkanischem Tuff des Cipit- oder Tschapitbachs unter der Saldern Hütte stammten. Auch am Frombach hatte Beneficiat Clara in schwarzem Sandstein und Melaphyr-Tuff "riesig grosse Neriten". Nucula, Austern, Echinidenstacheln und einige Ammoniten gefunden.

Nach Emmrich beschäftigte sich Ferd. von Richthofen eingehend mit den Ablagerungen der Seiser Alp. Seine berühmte Monographie²) bildet noch heute die beste Grundlage für die Geologie Süd-Tirols und enthält namentlich für die Seiser Alp die eingehendsten und genauesten Beobachtungen. Richthofen schlägt für die unter dem Melaphyr (Augitporphyr) des Puflatsch vorkommenden Halobienschichten, welche Em-

¹) Emmrich H. Ueber die Schichtenfolge der Flötzgebirge des Gaderthals, der Seiser Alp und St. Cassians. Neues Jahrb. für Mineralogie etc. 1844, S. 791—803.

²) Richthofen Ferd. von, Geognostische Beschreibung der Umgegend von Predazzo, Sanct Cassian und der Seiser Alp. Gotha 1860.

mrich als untere Wengener Schichten bezeichnet hatte, den Namen Buchensteiner Schichten vor und beschränkt die eigentlichen Wengener Schichten auf die sandigen und tuffigen, zuweilen auch kalkigen, dunkelgefärbten Schiefer mit Halobia Lommeli, welche am Südgehänge des Puflatsch, am Frombach, Pitzbach, Frötschenbach und Tschapitbach überall den Melaphyr bedecken.

Ueber den Wengener Schichten folgen nach Richthofen vulkanische Tuffe, mit denen fast das ganze Plateau der Seiser Alp überschüttet ist. Sie erreichen eine Mächtigkeit von mehreren hundert Fuss und enthalten in ihrer unteren Abtheilung Einlagerungen von Korallenkalk (Cipitkalk) und mergelig kalkigen Schichten. Geologisch und paläontologisch bilden die Wengener Schichten und die Tuffe mit den eingelagerten kalkigen und mergeligen Bildungen nach v. Richthofen ein zusammengehöriges Ganzes von verschiedenartiger Facies. Enthalten die Cipitkalke fast nur Korallen und Encriniten, so finden sich in den mergelig-kalkigen Einlagerungen, welche namentlich in der tieferen Abtheilung der Tuffe am Südabhang des Puflatsch (Pflegerleite), am Pitzberg und bei der Tschapit-Alpe entwickelt sind, eine Anzahl charakteristischer Versteinerungen aus den St. Cassianer Schichten. Richthofen betont die Armuth an Gastropoden, Bivalven, Brachiopoden und Ammoniten und erwähnt hauptsächlich Crinoideen, Cidariten, Korallen und Spongien. In den Tuffen selbst finden sich nach v. Richthofen nur ganz vereinzelte mit St. Cassian übereinstimmende Versteinerungen.

Als "regenerirte Tuffe" bezeichnet v. Richthofen gewisse am Frombach vorkommende Ablagerungen, die bereits von Emmrich beschrieben wurden und durch das ungemein häufige Vorkommen von Pachycardia rugosa ausgezeichnet sind. Ausser diesen Pachycardien erwähnt v. Richthofen nur noch eine grosse Natica¹) und eine kleine thurmförmige Schnecke. Diese "regenerirten Tuffe" werden mit den Pachycardien führenden

¹⁾ Ist Naticopsis neritea gemeint.

rothen sandig mergeligen Ablagerungen des Schlernplateau's verglichen und als Raibler-Schichten bestimmt. Dass v. Richthofen in dem Schlerndolomit nur eine abweichende Facies der St. Cassianer- und Raibler-Schichten erblickte und das mehrfache Eingreifen und Wechsellagern des Tuffs mit dem Dolomit nachwies, gehört zu den fruchtbarsten Anregungen für die Entwickelung der südtiroler Geologie.

Das genaueste Profil der Pufler Schlucht verdankt man W. v. Gümbel.1) Seine Beobachtungen decken sich im Wesentlichen mit denen seiner beiden Vorgänger; doch weicht er in der Auffassung der Wengener Schichten sowohl von Emmrich als auch v. Richthofen ab. Während ersterer unter dieser Bezeichnung sowohl die unter als über dem Augitporphyr vorkommenden Halobien-Schichten zusammenfasst, v. Richthofen dagegen die unteren Halobien-Bänke zu den Buchensteiner Schichten rechnet und die Wengener Schichten erst über dem Augitporphyr beginnen lässt, beschränkt v. Gümbel den Namen Wengener-Schichten auf die Buchensteiner Schichten und die damit wechsellagernden Halobien-Schiefer und vereinigt die oberen Halobien-Schichten auf dem Plateau der Seiser Alp mit den darüber liegenden mergeligen, oblithischen und tuffigen Ablagerungen unter der gemeinsamen Bezeichnung St. Cassianer Schichten. Gümbel glaubte die ächte Halobia Lommeli liege in dem unteren Horizont und hielt die grossen feingestreiften Exemplare aus den oberen tuffigen und sandigen Schiefern für eine abweichende Species. Ueber die Entwickelung der als St. Cassianer Schichten zusammengefassten Mergel, Oolithe, Tuffe und Cipitkalke gibt v. Gümbel werthvolle Aufschlüsse. Er kannte auch die Fundstellen von Versteinerungen in den vulkanischen Tuffen des Tschapitbaches. Dagegen gelang es ihm nicht, die Pachycardien am Frombach wieder zu finden. Den Schlerndolomit erklärt Gümbel für eine abweichende Facies der St. Cassianer Schichten, bestreitet mit Schärfe dessen Ent-

¹⁾ Sitzgsber. der k. bayer. Akad. d. Wissenschaften. Mathem.-physik. Classe 1873. S. 14-88.

K. A. v. Zittel: Ueber Wengener, St. Cassianer-Schiehten etc. 345

stehung als Korallenriff und erklärt schliesslich die rothen, sandig-thonigen, versteinerungsreichen Ablagerungen mit Myo-phoria Kefersteini auf dem Schlernplateau als typische Raibler-Schichten.

Im Gegensatz zu v. Gümbel vereinigt Edm. v. Mojsisovics1) in seinem schönen Werk über die Dolomitriffe von Süd-Tirol (1879) die von dem bayerischen Geologen als Wengener-Schichten bezeichneten Ablagerungen (Knollenkalke, Pietraverde, Schiefer mit Daonella Taramellii, tyrolensis etc.) mit den Buchensteiner Schichten und lässt die eigentlichen Wengener Schichten mit Halobia (Daonella) Lommeli erst über dem Augitporphyr beginnen.

Die Halobien-Schiefer auf dem Plateau der Seiser Alp werden mit den Pachycardientuffen und Cipitkalken zusammengefasst und so scharf von den St. Cassianer Schichten geschieden, dass sogar die Grenze der zwei obertriasischen Hauptgruppen (norische und karnische Stufe) zwischen beide verlegt ist. v. Mojsisovics hält die St. Cassianer Schichten für eine ganz locale Bildung, deren zeitliche Aequivalente in fossilarmen Dolomiten und Kalken zu suchen seien. Das ganze Plateau der Seiser Alp ist nach v. Mojsisovics mit Wengener Schichten und vereinzelten Dolomithügeln bedeckt, ohne eine Spur von St. Cassianer- oder Raibler-Schichten.

Seit dem Erscheinen der "Dolomitriffe" ist die Fauna der Raibler-Schichten (1889) in den Nord-Alpen durch v. Wöhrmann²) und jene des Schlernplateau's durch v. Wöhrmann und Koken3) eingehend bearbeitet worden. v. Wöhrmann betont die ausserordentlich grosse paläontologische Uebereinstimmung der unteren Abtheilung der nordalpinen Raiblermit den St. Cassian-Schichten, während sich in der oberen

¹⁾ Mojsisovics v. Mojsvar Edm. Die Dolomit-Riffe von Süd-Tirol und Venetien. Wien 1879.

²⁾ Jahrbuch d. k. k. geolog. Reichsanstalt in Wien. 1889. Bd. XXXIX.

³⁾ Zeitschrift der deutschen geolog. Gesellschaft 1892. Bd. XLIV. S. 167-223.

Abtheilung der Cardita-Schichten allmählich die Fauna der Torer Schichten einstellt. Aus den Eruptivtuffen der Seiser Alp kannte v. Wöhrmann keine Versteinerungen.

So hatte man also bis in die neueste Zeit über die Tuffund Mergelschichten der Seiser Alp dreierlei abweichende Meinungen. Emmrich und v. Richthofen erklärten sie für Repräsentanten der St. Cassianer Schichten, v. Gümbel fügt ihnen noch die oberen Halobienschichten bei, v. Mojsisovics vereinigt sie wie Gümbel mit dem oberen Halobien-Horizont, stellt sie aber in das Niveau der Wengener Schichten. v. Richthofen betrachtet ausserdem die "regenerirten Pachycardien-Tuffe" des Frombach als isolirtes Vorkommen von Raibler-Schichten.

Im Sommer 1898 besuchte ich mit einer grösseren Anzahl von Studierenden die Seiser Alp. Wir wählten den Aufstieg von Ratzes durch das Frötschen-Thal nach der Prosliner Alp, verfolgten sodann eine Strecke weit den Lauf des Tschapit-(Cipit-) Baches, um von da die Mahlknechthütte zu erreichen. Wenige Minuten vom Proslinerhaus führt eine Brücke über den Tschapitbach nach dem Touristensteig auf den Schlern. Im Bach stehen harte schwärzlich-grüne, sehr kieselreiche Kalkbänke an, die unmittelbar auf dem Augitporphyr liegen und das Niveau der Wengener Schiefer einnehmen. Unmittelbar darüber folgen graue Mergel mit Cipitkalkeinlagerungen und dunkelgrüne Eruptivtuffe. In letzteren fand Dr. Plieninger in der Nähe der Saldernhütte am Tschapitbach einen Block mit schön erhaltenen Versteinerungen, worin ich Pachycardia rugosa und einige andere Formen erkannte, die mehr Raiblerals St. Cassianer-Arten ähnelten. Da wir uns aber unzweifelhaft an der Stelle befanden, von wo ein Theil der von Emmrich und v. Richthofen erwähnten St. Cassianer Versteinerungen herrührten, so schien mir eine genauere Untersuchung dieser Ablagerungen und namentlich eine systematische Ausbeutung der Versteinerungen wünschenswerth. Dies geschah zunächst durch den geschickten Sammler Jos. Schmuck und da seine erste Sendung eine unerwartet reiche Anzahl

K. A. v. Zittel: Ueber Wengener, St. Cassianer-Schichten etc. 347

wohl erhaltener Versteinerungen aus den bis dahin für äusserst arm gehaltenen Tuffen lieferte, so begaben sich Dr. Plieninger und Dr. Broili für 14 Tage und etwas später die Herrn Fred. Loomis und Alston Read für 9 Wochen nach der Seiser Alp.

Das Ergebniss dieser Untersuchungen war einerseits die Entdeckung einer Anzahl neuer Fundplätze von Versteinerungen, sowie die Herstellung einer detailirten geologischen Karte der Seiser Alp, des Schlerns und der angrenzenden Gebiete durch die Herrn Loomis und Alston Read.

Die Wengener Schichten mit Halobia (Daonella) Lommeli lassen sich als ein schmales Band von der oben genannten Brücke am Tschapitbach nach dem Südrand des Puflatsch verfolgen; sie stehen am oberen Ende der Puflerschlucht in ansehnlicher Mächtigkeit an und ziehen von da, stets den Augitporphyr bedeckend, nach dem Pitzbach, verlaufen darauf in nach Norden convexem Bogen zum Saltrie-Bach und folgen diesem in geringer Entfernung wieder als schmales Band bis in die Nähe der Mahlknecht-Senne. Das Gestein ist fast überall schieferig, bald thonig sandig, bald aus zerriebenem vulkanischem Material zusammengesetzt. Die Halobien (Daonellen nach Mojsisovics) sind in den Schiefern theilweise sehr gross und schön erhalten, die Ammoniten dagegen (Monophyllites Wengensis Klipst. sp., Nannites sp.) vollkommen platt gedrückt. Eine überraschend reiche Sammlung von prächtig erhaltenen, vielfach mit einem feinen Ueberzug von Seladonit versehenen Versteinerungen lieferte der harte dunkle Kieselkalk des Tschapitbachs, in welchem einzelne Bänke vollständig erfüllt sind mit Halobia (Daonella) Lommeli Wissm. und Posidonomya Wengensis Wissm. Neben diesen charakteristischen Leitmuscheln der Wengener Schichten konnte Herr Dr. Pompeckj folgende Cephalopoden bestimmen:

348 Sitzung der math.-phys. Classe vom 4. November 1899.

Aulacoceras sp.

Atractites subundatus Laube.

- ¹) * Orthoceras campanile E. v. Mojs. Nautilus cf. granuloso-striatus v. Klipst. sp.
 - * Nannites fugax E. v. Mojs.
 - . callogyrus n. sp.
 - Bittneri E. v. Mojs.
 - . planus n. sp.
 - * aberrans E. v. Mojs. sp.
 - * Monophyllites Wengensis v. Klipst. sp.
 - * Megaphyllites obolus E. v. Mojs. Gymnites (cf. Buddhaites Dien.) n. sp. ? Lecanites sp. sp.
 - Lobites n. sp.
 - * Joannites tridentinus E. v. Mojs.
 - , cf. diffissus v. Hau. sp.
 - * Trachyceras (Protrachyceras) Archelaus Laube.
 - * . (,) Steinmanni E. v. Mojs.
 - * (Anolcites) julium E. v. Mojs.
 - , (,) cf. doleriticum E. v. Mojs.
 - (Sirenites) rutoranum E. v. Mojs.
 - * . (.) regoledanum E. v. Mojs.
 - ? Arpadites cf. Stracheyi E. v. Mojs.

Ferner verschiedene neue Formen z. Th. von alterthümlichem Gepräge.

Ueber den Wengener Schichten folgen, paläontologisch und petrographisch scharf geschieden, thonig-mergelige, von unreinen Kalkbänken unterbrochene und zuweilen oolithische Ablagerungen, die namentlich am Südrand des Puflatsch (an der Pflegerleite) und des Pitzberges entblösst sind und auch im Tschapitbach und am Schlernfuss beim Touristensteig anstehen. Sie enthalten ausschliesslich St. Cassianer Versteine-

¹) Die mit * bezeichneten Arten giebt E. v. Mojsisovics aus seiner Zone des Trachyceras Archelaus an.

rungen, namentlich Stielglieder von Encrinus, Cidaritenstacheln, Brachiopoden und vereinzelte Lamellibranchiaten, Gastropoden, Korallen und Spongien. Der Erhaltungszustand stimmt in überraschender Weise mit den Fossilien von Stuores und Prelongei bei St. Cassian überein. Nach oben gehen diese Schichten ganz allmählich in die meist dunkelgrünen, zuweilen aber auch rostfarbigen und braunen Tuffe über, in welchen Bänke und isolirte Blöcke von Cipitkalk eingebettet liegen. Die namentlich im Tschapit- und Frombach aufgeschlossenen Tuffe enthalten an mehreren Stellen eine erstaunliche Fülle von prächtig erhaltenen, durchwegs beschalten, zuweilen noch mit Farben versehenen Versteinerungen, unter denen Gastropoden und Muscheln weitans vorherrschen. In ausserordentlicher Häufigkeit findet sich überall Pachycardia rugosa. Obwohl die Fossilien in einem zuweilen ziemlich grobkörnigen Tuff liegen, der offenbar submarinen Eruptionen seinen Ursprung verdankt, so zeigen die Schalen der Mollusken doch selten Spuren von Abrollung. Die Lamellibranchiatenschalen sind allerdings meist getrennt, aber in der Regel unverletzt und die Schlösser tadellos erhalten. Bei den Gastropoden findet man weit mehr vollständige, mit Spitze und Mundsaum versehene Exemplare, als sogar an den berühmten Fundstätten bei St. Cassian. Im Ganzen dürfte sich die bis jetzt aus den Pachycardientuffen stammende Fauna auf circa 300 Arten belaufen, von denen durch die Herrn Dr. Plieninger, Dr. Broili, Dr. Loomis

Encrinus granulosus Mstr.

, Cassianus Laube

und Dr. Pompeckj folgende Species bestimmt wurden:1)

varians Mstr.

Cidaris subcoronata Mstr.

" alata Ag.

¹) Die mit Fettschrift gedruckten Arten sind aus Raibler-, fast alle übrigen aus St. Cassianer Schichten bekannt. Eine monographische Beschreibung der Fauna aus den Pachycardien-Tuffen ist in Vorbereitung.

350 Sitzung der math.-phys. Classe vom 4. November 1899.

Cidaris Buchi Mstr.

- trigona Mstr.

Terebratula tenella Bittner.

Waldheimia carinthiaca Rothpletz.

- bipartita Mstr.
- , porrecta Bittn.
- subangusta Mstr.

Rhynchonella cynodon Laube.

- , Cornaliana Bittn.
- , laurinea Bittn.
- sellaris Laube.
- . semiplecta Mstr.
- semicostata Mstr.
- semicostata var. discrepans Bittn.
- subacuta Mstr.
 - trinodosi Bittn.

Cyrtina Zitteli, Bittn.

Spiriferina Klipsteini Bittn.

badiotica Bittn.

Spirigera indistincta Beyr.

- , quadriplecta Mstr.
- , quinquecostata Mstr.
- , Wissmanni Bittn.
 - trigonella Schloth.

Ostrea sp.

Avicula Kokeni v. Wöhrm.

- cfr. caudata Stopp.
- " arcuata var. bifrons Bittn.
- Tofanae Bittn.

Cassianella planidorsata Mstr.

- " decussata Mstr.
- Beyrichi Bittn.

Hoernesia bipartata Merian.

Gervillia cfr. Bouéi v. Hauer.

Hoferia duplicata Mstr. sp.

Pecten Zitteli v. Wöhrm.

K. A. v. Zittel: Ueber Wengener, St. Cassianer-Schichten etc.

Pecten tubulifer Mstr.

subalternans d'Orb.

Mysidioptera cfr. intertexta Bittn.

incurvostriata v. Wöhrm.

Myoconcha parvula v. Wöhrm.

Mytilus (mehrere Arten).

" Maximiliani-Leuchtenbergensis Klipst.

Pinna Tommasii v. Wöhrm.

Macrodon cfr. strigillatum Mstr.

Nucula strigillata Goldf.

Trigonodus costatus v. Wöhrm.

" Rablensis Gredler.

Pachycardia rugosa v. Hauer.

Haueri v. Mojs.

Myophoria Kefersteini Mstr.

- fissidentata v. Wöhrm.
- , Whatleyae v. Buch.
- " Wöhrmanni Bittner.
- " aff. ornata Mstr.
 - Kokeni Bittn.

Myophoriopsis Richthofeni Stur.

Cardita crenata Goldf.

Gonodon astartiformis Mstr.

" rostratus Mstr.

Dentalium undulatum Mstr.

Patella Joh. Boehmi v. Wöhrm.

Patella sp. nov. (grosse, radial gefaltete Form).

Acmaea campanaeformis v. Klipst.

Worthenia canalifera v. Klipst.

- , coronata Mstr.
- " Münsteri Klipst.
- " subgranulata Mstr.
 - turriculata Kittl.

Kokenella Laubei Kittl.

Clanculus Cassianus Wissm. sp.

Pachypoma insolitum Klipst. sp.

352 Sitzung der math.-phys. Classe vom 4. November 1899.

Pachypoma cfr. Haueri Kittl. Delphinulopsis binodosa Mstr. sp. Platychilina Wöhrmanni Koken.

Neritopsis ornata Mstr.

Naticella striatocostata Mstr.

Amauropsis Tirolensis Laube sp.

Naticopsis neritacea Mstr. var. (mit Farben, häufig im Frombach und Tschapitbach).

Naticopsis cfr. ladina Bittn.

sp. div.

Hologyra alpina Koken. Neritaria similis Koken. Palaeonarica concentrica Mstr. sp. Telleria umbilicata Kittl.

Macrochilina aff. Sandbergeri Laube.

Chemnitzia solida Koken.

div. sp.

Coelostylina Stotteri v. Klipst. sp. Eustylus Konincki Mstr. sp.

Euchrysalis fusiformis Mstr. sp. Katosira fragilis Koken.

Loxonema Lommeli Mstr. sp.

- obliquecostata Bronn sp.

supraplecta Mstr. sp.

Undularia subpunctata Mstr. sp. Pustularia Alpina Eichw. sp. Scalaria triadica Kittl.

Tretospira multispirata v. Wöhrm.

Joannites Klipsteini E. v. Mojs.

Trachyceras cfr. Hofmanni Boeckli.

Arpadites cfr. segmentatus E. v. Mojs.

Celtites laevidorsatus v. Hau. sp.

Pleuronautilus sp. (aus der Verwandtschaft des N. Pichleri v. Hau.).

Orthoceras sp.

K. A. v. Zittel: Ueber Wengener, St. Cassianer-Schichten etc.

Aus dieser Liste geht hervor, dass die Pachycardien-Tuffe der Seiser Alp eine höchst bemerkenswerthe Mischfauna enthalten, zusammengesetzt aus typischen St. Cassianer- und Raibler-Arten. Wenn die Zahl der ersteren auch bedeutend überwiegt, so erklärt sich dies leicht aus dem Umstand, dass eben die St. Cassianer Fauna unendlich viel reicher als die Raibler ist und darum auch weit mehr Vergleichspunkte bietet. Enthält die Liste auch nur 39 Raibler-Arten, so bilden diese reichlich die Hälfte aller bis jetzt aus den rothen Schichten des Schlernplateaus bekannten Formen und voraussichtlich dürfte sich ihre Zahl bei genauerer Untersuchung unseres reichen Materials noch etwas vermehren. Bedenkt man ferner, dass sich gerade einzelne bis jetzt nur aus Raibler-Schichten bekannte Formen, wie Myophoria Kefersteini, M. fissidentata, M. Whatleyae, Pachycardia Haueri, Trigonodus Rablensis und costatus, Tretospira multispirata, Platychilina Wöhrmanni, Katosira fragilis u. a. durch Häufigkeit auszeichnen, so macht sich der Charakter unserer Fauna als eine Mischung aus St. Cassianer- und Raibler-Elementen ganz besonders bemerkbar.

Schon v. Wöhrmann hatte in seiner Monographie der nordalpinen Raibler-Fauna (1889) die grosse Uebereinstimmung mit St. Cassian betont und aus dem paläontologischen Befund gefolgert, dass die nordalpinen Cardita-Schichten zum grössten Theil den St. Cassianer, die Schichten mit Ostrea montis caprilis aber den Torer Schichten bei Raibl entsprechen.

Nach Bearbeitung der Versteinerungen aus den rothen Schichten des Schlernplateau's (1892) kamen v. Wöhrmann und Koken zum Resultat, dass dieselben nicht, wie bis dahin angenommen wurde, den Torer-Schichten gleichzustellen seien, sondern einen tieferen Horizont einnehmen, welcher dem oberen Theil der Cardita-Schichten in den Nord-Alpen und den Lagern mit Myophoria Kefersteini bei Raibl äquivalent seien.

Die Zusammensetzung der Pachycardientuff-Fauna beweist, dass eine scharfe paläontologische Trennung zwischen St. Cassianerund Raibler-Schichten nicht möglich ist. Wir haben es hier mit der Fauna einer einzigen geologischen Stufe zu thun, in welcher allerdings die rein St. Cassianer Typen zuerst erscheinen, sich aber bald mit solchen aus dem Myophorien-Horizont der Raibler-Schichten vermischen, die alte schon von Merian und Stur vertretene Meinung, dass St. Cassianer- und Raibler-Schichten identisch seien, gewinnt wieder festen Boden.

An den wenigen Stellen, namentlich im Enneberger- und Gaderthal, wo die St. Cassianer Fauna typisch entwickelt erscheint, ist sie allerdings von den Myophorien-Schichten fast überall durch zwischengelagerte Dolomite oder Kalkmassen getrennt. Die zahlreichen genauen Profile von Miss Ogilvie bestätigen diese Thatsache an vielen Stellen. In der Lombardei und Venetien folgen auf die Wengener- (Halobien)-Schichten vielfach fossil-arme Dolomite und Kalksteine, die wieder von Raibler-Schichten bedeckt werden.

Auch bei Raibl liegt zwischen den schwarzen Fischschiefern mit Pflanzenresten, die vielfach als Vertreter der Wengener Schichten gelten, und den Myophoria Kefersteini-Schichten ein 3-400 Meter mächtiger Complex von Kalkstein und dunkeln Schiefern, worin vereinzelte St. Cassianer Versteinerungen vorkommen. Eine so innige Verknüpfung der St. Cassianer und Raibler Fauna wie in den Pachycardien-Tuffen der Seiser Alp ist aber bis jetzt noch nie beobachtet worden. Sie ist für die ganze Gliederung der alpinen Trias von höchster Wichtigkeit, denn wie bereits Benecke1) mit vollem Recht bemerkt, bilden die Cardita- oder Raibler Schichten den festen Horizont, um welchen sich alle Schwankungen in der Classification der oberen Trias in den letzten Dezennien bewegten. Heute wird dieses "Pivot" durch Hinzufügung der St. Cassianer Schichten noch bedeutend verstärkt, damit aber zugleich auch die ganze Trias-Gliederung der Alpen vereinfacht.

Hält man an der alten Dreitheilung der Trias in Buntsandstein, Muschelkalk und Keuper fest und es scheint mir kein triftiger Grund vorzuliegen, sie entweder durch eine Anzahl paläontologischer Zonen zu ersetzen, die dann wieder in

¹⁾ Sitzgsber, der k. Akad, d. Wissenschaften in Wien CI. 1892. S. 221.

eine Menge mit neuen Namen ausgestatteten Unterstufen, Stufen und Serien gruppirt werden oder an ihre Stelle eine auf petrographische Merkmale und namentlich auf den Reichthum oder Mangel an Kalkstein basirte Eintheilung treten zu lassen, so liefern die oberen Buchensteiner Schichten (Subnodosus-Zone) nach den übereinstimmenden Untersuchungen von v. Mojsisovics, Bittner, v. Gümbel, Rothpletz, Benecke und Tornquist¹) als Aequivalente des oberen Muschelkalks einen festen Orientirungshorizont. Zwischen den Buchensteiner Schichten und St. Cassian-Raibl liegen in den Süd-Alpen überall entweder die Wengener Schichten oder die Esino- und Mormolata-Kalke, resp. die diese ersetzenden Dolomite.

In den bayerischen und nordtiroler Alpen repräsentiren nach v. Gümbel²) die Partnach-Schichten sowohl Buchensteiner und Wengener als auch einen Theil der St. Cassianer Schichten und werden von Wettersteinkalk bedeckt, welchem die Cardita (Raibler)-Schichten aufruhen. Paläontologisch stimmen die Cardita-Schichten in ihrem unteren und mittleren Theil entschieden mit den Pachycardien-Tuffen der Seiser Alp überein, die richtige Bestimmung der Aequivalente der Partnachschichten bedarf noch weiterer Aufklärung.

Vielumstritten ist die Frage nach der Eintheilung der Wengener Schichten. Gehören sie zum Muschelkalk oder Keuper? Stratigraphisch nehmen sie unzweifelhaft die Stelle der Lettenkohlengruppe oder der darunter liegenden Trigonodus-Dolomite der germanischen Triasprovinz oder auch beider zusammen ein. Vielleicht repräsentiren sie auch nur einen Theil und zwar den unteren der Lettenkohlengruppe. Paläontologisch lässt sich die Frage nicht lösen, da die typischen Wengener Schichten vorzugsweise marine Fossilien und nur sehr indifferente Reste von Landpflanzen beherbergen.

Vergleicht man die Cephalopoden aus solchen Localitäten, wo die Wengener Schichten in ihrer typischen Entwickelung auftreten, wie bei Wengen, Corfara, auf der Seiser Alp und bei

¹⁾ Zeitschrift d. deutschen geolog. Gesellschaft 1898. L. S. 637-694.

²⁾ Geologie von Bayern II. S. 58.

Prezzo in Iudicarien, so zeigt sich eine sehr geringe Uebereinstimmung mit den Formen aus den oberen Buchensteiner
Schichten, aber auch keine sonderlich grosse mit jenen aus
St. Cassian. Immerhin spricht die reichliche Entwickelung
von Trachyceras und Nannites, das Vorhandensein von Lobites
und Joannites, der Mangel an Ceratiten und die Seltenheit von
Ptychites mehr für eine Verwandtschaft mit der St. Cassianer
als mit der Buchensteiner Fauna. Auch stratigraphisch sind die
Wengener und St. Cassianer Schichten in den Süd-Alpen meist
innig miteinander verbunden.

Für die Altersbestimmung der Wengener Schichten gewähren die Verhältnisse in Nieder-Oesterreich den erwünschtesten Aufschluss. Nachdem schon 1863 und 1864 die Aufnahmen in der Gegend von Lunz und Lilienfeld unter Lipold und Stur zur Aufstellung der kohlenführenden Lunzer Schichten, der diese bedeckenden Opponitzer Schichten und der an ihrer Basis befindlichen Reingrabener und Gösslinger Schichten geführt hatte und nachdem in den zwei letzteren Versteinerungen der Wengener Schichten nachgewiesen waren, schien das Alter der Wengener Schichten gesichert, indem nach Stur die Lunzer Schichten die Flora der Lettenkohle und die Opponitzer Schichten die Fauna der oberen Cardita und Raibler Schichten enthalten. Unter den Aonschiefern liegt theils ächter Muschelkalk, theils mergeliger Kalkstein mit Spiriferina Köveskalliensis, Rhynchonella trinodosi, Aulacothyris angusta Schloth. sp. und Koninckina Leonhardi Wissm.1) Letzterer entspricht offenbar den Partnach-Schichten der bayerischen Alpen.

Bittner²) betrachtet in Uebereinstimmung mit Stur die Lunzer Schichten als Aequivalente der ausseralpinen Lettenkohle und der unteren und mittleren Cardita-Schichten in den bayerischen und nordtiroler Alpen. Die Opponitzer Schichten werden den oberen Raibler (resp. Torer) und Cardita-Schichten

¹) Vgl. Bittner Jahrb. d. k. geolog. Reichsanstalt 1893. Verhandl. S. 81, 82.

²) Jahrb. k. k. geolog. Reichs-Anstalt 1894. S. 266 etc. 1897. S. 429.

gleichgestellt. Was unter den Lunzer Schichten liegt (Partnach-Schichten, Wettersteinkalk, Wengener-, St. Cassianer-, Buchensteiner-Schichten, sammt Esinokalk, Schlerndolomit und Marmolatakalk) gehört nach Bittner zum oberen Muschelkalk oder zur "ladinischen" Stufe.

Benecke1) hat sich neuerdings gegen diese Auffassung ausgesprochen und die Begrenzung der Lettenkohlengruppe nebst deren Beziehungen zum Muschelkalk und Keuper festzustellen versucht. Ausgehend von dem Gesichtspunkt, dass die marinen Versteinerungen für die Altersbestimmung der sedimentären Bildungen in erster Linie ausschlaggebend sind, zeigt Benecke, dass sowohl der Trigonodusdolomit an der Basis, als auch der Grenzdolomit im Hangenden der Lettenkohle im Wesentlichen eine Muschelkalkfauna enthalten und dass darum der ganze Complex zwischen diesen beiden Dolomiten besser zum Muschelkalk, als zum Keuper gestellt werde. Erst über dem Grenzdolomit mit dem Gypskeuper, welcher Myophoria Kefersteini und Myophoriopsis (Corbula) Rosthorni enthält, beginnt nach Benecke der eigentliche Keuper. über dessen marine Fauna freilich, wenn wir von der obersten Abtheilung, dem Rhät, absehen, fast nichts bekannt ist. Philippi²) weicht bezüglich des Gypskeupers und der Bleiglanzbank von Benecke ab, indem er beide noch zur Lettenkohle rechnet. Auch meiner Ansicht nach kann man den Gypskeuper und die Bleiglanzbank ebenso gut zur Lettenkohle stellen, als zum Keuper und die Lettenkohle sogar noch ausdehnen bis zum Schilfstein; denn zwischen der Flora der Lettenkohle und des Schilfsandsteins ist der Unterschied so geringfügig, dass beständig Verwechselungen dieser Horizonte vorkommen. Dehnt man aber den Begriff der Lettenkohle nach oben soweit aus, so bleibt freilich für den eigentlichen Keuper nur die Region der Stein-

¹⁾ Benecke W. Lettenkohlengruppe und Lunzer Schichten, Berichte d. naturforschenden Gesellschaft zu Freiburg i/B. Bd. X. Heft 2.

²) Die Fauna des unteren Trigonodus-Dolomits etc. Jahreshefte d. Ver. f. vaterl. Naturkunde in Würtemberg. 1898. S. 216.

mergel des Stubensandsteins, der Zanclodonmergel und des Rhät übrig. Dass die Wengener Schichten vielfach durch eine Kalkund Dolomit-Facies (Wettersteinkalk, Schlerndolomit, Esinound Marmolatakalk) ersetzt sind, wird jetzt wohl von allen Kennern der Alpen-Geologie anerkannt. Wichtige Belege für diese Ansicht liefern die neuesten Monographien des Marmolataund Elinokalkes von Joh. Böhm, Salomon und Kittl.

Nach der Zusammensetzung der Fauna des Pachycardientuffs wird man wohl in Zukunft auf eine scharfe Scheidung von St. Cassianer- und Raibler-Schichten verzichten müssen; jedenfalls ist es unstatthaft, zwischen diese beiden Horizonte die Grenzlinie zweier grösserer Stufen laufen zu lassen.

Die Ablagerungen von den Wengener Schichten an bis herauf zu den Torer Schichten bilden eine natürliche Einheit, welche etwa dem ausseralpinen Complex zwischen Trigonodus-Dolomit und Horizont Beaumont, also im Wesentlichen der Lettenkohlengruppe und dem unteren Keuper bis herauf zum Schilfsandstein entspricht.

Auf diese Gruppe passt weder die Bezeichnung karnisch, noch norisch, noch ladinisch.

Berücksichtigt man mit Benecke zur Parallelisirung hauptsächlich die ausseralpine Trias, so müsste der Muschelkalk demnach bis zum Schilfsandstein erweitert werden, was freilich dem historischen Begriff Muschelkalk wenig entspräche. In den Alpen, wo reiche marine Faunen die verschiedenen Stufen der oberen Trias charakterisiren, beginnt mit den Wengener Schichten offenbar eine bemerkenswerthe faunistische Umgestaltung, welche namentlich bei den Ammoniten in die Augen fällt. Ich würde es darum für zweckmässiger halten den Keuper mit den Wengener Schichten und den damit gleichaltrigen ausseralpinen Bildungen zu beginnen, als dem Muschelkalk eine bis zum Schilfsandstein reichende Ausdehnung zu gestatten.

Für den mittleren Keuper würden Hauptdolomit und Hallstaetter Kalk das zeitliche Aequivalent bilden und dass es sich hier in der That um das Erscheinen einer neuen marinen K. A. v. Zittel: Ueber Wengener, St. Cassianer-Schiehten etc. 359

Fauna handelt, das beweist ein Blick auf die prächtigen Monographien von v. Mojsisovics über die Cephalopoden und von Koken über die Gastropoden der Hallstaetter Schichten. Die Beziehungen zu den reichen Faunen der Raibler, St. Cassianer und Wengener Schichten, sowie zu deren Kalkfacies von Esino und der Marmolata sind in der That so geringfügig, dass zwischen Hauptdolomit nebst Hallstaetter Kalk und Raibler Schichten füglich eine Grenzlinie von grösserer Bedeutung gelegt werden darf.

Oeffentliche Sitzung

zu Ehren Seiner Majestät des Königs und Seiner Königlichen Hoheit des Prinz-Regenten

am 15. November 1899.

Der Präsident der Akademie, Herr K. A. v. Zittel, eröffnet die Sitzung mit einer Rede: Rückblick auf die Gründung und die Entwickelung der k. bayerischen Akademie der Wissenschaften im 19. Jahrhundert, welche in den Schriften der Akademie erscheinen wird.

Dann verkündigten die Classensekretäre die Wahlen und zwar der Sekretär der II. Classe, Herr C. v. Voit, die der math.-physikal. Classe.

Von der mathematisch-physikalischen Classe wurden gewählt und von Seiner Königlichen Hoheit dem Prinz-Regenten bestätiget:

I. zu ausserordentlichen Mitgliedern:

- 1. Dr. Hermann Ebert, ord. Professor der Physik an der k. technischen Hochschule dahier:
- 2. Dr. Sebastian Finsterwalder, ord. Professor der Mathematik an der k. technischen Hochschule dahier:
- 3. Dr. August Rothpletz, ausserord. Professor für Geologie an der k. Universität dahier;

II. zu correspondirenden Mitgliedern:

- Eugenio Beltrami, Professor der math. Physik an der Universität und Präsident der R. Accademia dei Lincei in Rom;
- Gaston Darboux, Professor der höheren Geometrie an der Sorbonne und Mitglied der Académie des Sciences in Paris;
- 3. Dr. Gustav Retzius, Professor der Zoologie und Präsident der Akademie der Wissenschaften in Stockholm;
- 4. Edouard Bornet, Botaniker und Mitglied der Académie des Sciences in Paris;
- 5. Sir George King, Botaniker und früher Superintendent des botanischen Gartens in Calkutta;
- 6. Dr. Eduard Strasburger, Geh. Regierungsrath und Professor der Botanik an der Universität Bonn;
- 7. Alexander Karpinsky, kais. russischer Staatsrath und Direktor der russischen geologischen Landesanstalt in St. Petersburg.

Hierauf hielt das ord. Mitglied der math.-physikal. Classe, Herr Dr. phil. Karl v. Orff, k. Generalmajor a. D., die Festrede: Ueber die Hülfsmittel, Methoden und Resultate der Internationalen Erdmessung, welche ebenfalls in den Schriften der Akademie veröffentlicht wird.

Sitzung vom 2. Dezember 1899.

- 1. Herr H. Seeliger legt eine Abhandlung: "Zur Vertheilung der Fixsterne am Himmel" vor.
- 2. Herr Joh. RANKE demonstrirt einen ihm von Herrn W. His, Professor der Anatomie an der Universität Leipzig, zugesandten Schädel bezüglich seiner Abhandlung: "Ueber die überzähligen Knochen der menschlichen Schädeldecke."
- 3. Herr F. Lindemann macht eine Mittheilung: "Zur Theorie der automorphen Funktionen."
- 4. Herr Ad. v. Baeyer hält einen Vortrag: "Ueber die Beckmann'sche Umlagerung." Derselbe wird anderweit zur Veröffentlichung gelangen.

Zur Vertheilung der Fixsterne am Himmel.

Von H. Seeliger.

(Eingelaufen 2. Dezember.)

In meinen früheren Untersuchungen über die scheinbare und räumliche Vertheilung der Fixsterne, 1) habe ich die hellsten Sterne der Bonner Durchmusterung (D. M.) bis zur Grösse 6.5, also ungefähr die mit freiem Auge sichtbaren Sterne, in eine einzige Gruppe zusammengefasst und zwar aus dem Grunde, weil die Anzahl dieser Sterne verhältnissmässig klein ist und zu befürchten war, dass etwaige Gesetzmässigkeiten in ihrer Vertheilung nicht deutlich genug erkennbar sein werden. Ferner war aus gleichem Grunde zu erwarten, dass sich die Beziehung zwischen den Bonner Schätzungen und einer photometrischen Scala nicht mit derselben Sicherheit ableiten lassen wird, wie bei den schwächeren Sternen. Ausserdem wird man bald die Vertheilung der hellen Sterne des nördlichen Himmels mit viel grösserer Sicherheit studiren können, wenn nämlich die Potsdamer photometrische Durchbeobachtung der D. M. Sterne bis zur Grösse 7.5 vollendet sein wird. Für die Südhälfte des Himmels fehlt zunächst die Aussicht auf eine Beobachtungsreihe von ähnlicher Zuverlässigkeit und die vorhandene, welche Herr Bailey 2) im Auftrag des Harvard College Observatory

¹⁾ Sitzungsberichte der Münchener Akademie 1884 S. 520-548; 1886 S. 219-251; 1898 S. 147-180; Abhandlungen der Münchener Akademie 1898 (Bd. XIX, III. Abth.) S. 564-629. Im folgenden werden diese Arbeiten nur mit ihrer Jahreszahl citirt.

²⁾ Annals of the Astron. Observatory of the Harvard College. Vol. 34.

ausgeführt hat, unterliegt. wie Herr Kempf 1) zeigte, sehr berechtigten Einwänden. Für die hellen Sterne liefert indessen die Harvard Photometry²) (H.) einigen, wenn auch keineswegs gleichwerthigen Ersatz für die noch unvollendete Potsdamer Arbeit. Bis zu den Sternen der nördlichen Halbkugel von der Grösse 51/2 dürfte H. nahezu vollständig sein, dagegen sind gewiss nicht alle Sterne 6.0 Grösse angeführt. Für die hellsten Sterne bis zu jener Grösse wird man die Harvard Photometry zum Studium der Vertheilung der Fixsterne unbedenklich in Anspruch nehmen können, wie es u. A. auch Herr Schiaparelli gethan hat. Schon bei den Sternen 6.0 wird man indessen damit nicht ohneweiteres auskommen. Ihre Verwendung bietet ferner Schwierigkeiten dar u. A. deshalb, weil die Helligkeitsschätzungen der hellen Sterne der D. M. bedeutenden systematischen Fehlern unterworfen sind, welche durch Vergleichung mit H. allein nicht genügend sicher ermittelt werden können. Indessen schien es mir doch nicht überflüssig zu sein, meine früheren Untersuchungen nach dieser Richtung zu ergänzen, wenngleich ein nennenswerther Erfolg für die Frage nach der räumlichen Vertheilung der Sterne auf diesem Wege kaum zu erwarten war. Eine solche Ergänzung hat mit der Vergleichung der D. M. Grössen und den Helligkeitsangaben der Harvard Photometry zu beginnen, was übrigens an sich einiges Interesse darbieten dürfte.

Herr Kobold³) hat kürzlich an der Hand der beiden genannten amerikanischen photometrischen Arbeiten die Vertheilung der hellen Sterne bis zur Grösse 5.7 untersucht und kam zu dem Ergebniss, dass diese sich in mancher Beziehung anders verhalten, wie die schwächeren Sterne der D. M. Für diese letzteren hatte ich gefunden, dass die Verhältnisse a der Anzahl der Sterne von den hellsten bis zu denen von einer

¹⁾ Vierteljahrsschrift der Astr. Ges. Jahrg. 31, S. 191.

²) Annals of the Astronomical Observatory of Harvard College Vol. XIV.

³⁾ Vierteljahrsschrift der Astron. Ges. Jahrgang 34.

bestimmten Grösse zu der Anzahl der Sterne bis zu einer etwas kleineren Helligkeit mit der Annäherung an die Milchstrasse nicht unbeträchtlich zunehmen. Die hellen Sterne zeigen nach Herrn Kobold diese Eigenschaft nicht, zum Theil vielmehr das Gegentheil. An sich ist dieses interessante Ergebniss nicht auffallend, weil man von vornherein keinen Grund hat anzunehmen, dass die für die telescopischen D. M. Sterne geltenden Vertheilungsgesetze auch für die hellen Sterne gültig bleiben. Ferner verläuft die Zunahme der α mit der Annäherung an die Milchstrasse keineswegs ganz gleichmässig und deutliche Schwankungen der Einzelwerthe der α scheinen reeller Natur zu sein, wie es auch nicht unwahrscheinlich ist, dass sie für die schwächsten Sterne der D. M. bedeutender ist, wie für die helleren.

Die Untersuchung der Grössenschätzungen der hellen Sterne in der D. M. ergeben für sie grosse und zum Theil auffallende Ungleichförmigkeiten. Diese machten mich darauf aufmerksam, dass manche der durch eine sehr einfache Behandlung der Abzählungsergebnisse der D. M. gefundenen Resultate nicht genügend fest begründet sind, da ihre Ableitung sich auf eine grössere Zuverlässigkeit der Bonner Schätzungen stützt, als diesen wahrscheinlich zuerkannt werden darf. Es erschien mir deshalb nicht überflüssig, den Verlauf der a auch für die telescopischen Sterne der D. M. durch eine andere Behandlungsweise des Materiales von Neuem zu untersuchen. Schliesslich ist freilich im Grossen und Ganzen eine Bestätigung des früheren Resultates aus den im Folgenden mitzutheilenden Rechnungen hervorgegangen. Die Zunahme der a mit der Annäherung an die Milchstrasse scheint mir deshalb für die Sterne von der Grösse 6.5 bis 9.0 eine ziemlich feststehende Thatsache zu sein, wenn sich auch der Betrag dieser Zunahme nicht genau aus der D. M. allein ermitteln lassen dürfte.

Die folgende Abhandlung, die eine Reihe ziemlich weitläufiger und zeitraubender Abzählungen erforderte, beschäftigt sich, den vorstehenden Andeutungen gemäss, mit folgenden Fragen: Im ersten Abschnitt werden die Beziehungen zwischen den Grössenschätzungen der nördlichen Sterne von der Grösse 5 und 6 in der D. M. mit den Angaben der H. aufgesucht. Es wird weiter die Vertheilung dieser Sterne, sowohl nach der D. M. als auch nach H. besprochen. Im zweiten Abschnitt wird die Vertheilung der telescopischen Sterne der D. M. in ihrer Abhängigkeit von der Lage zur Milchstrasse von Neuem betrachtet. Es sei hierbei noch bemerkt, dass bei allen folgenden Rechnungen die Eintheilung des Himmels in dieselben IX je 20 Grad breiten Zonen, deren mittelste (V) die Milchstrasse enthält, beibehalten worden ist, die ich in allen meinen früheren Publicationen über die Vertheilung der Fixsterne angewendet habe.

1.

Die Vergleichungen der D. M. Grössen mit der Harvard Photometry geschah so, dass für jedes Zehntel der D. M. Grösse zwischen 5.3 und 6.2, die Differenz D.M. - H. aufgesucht wurde. Diese Differenzen sind wieder nach den einzelnen Milchstrassenzonen I bis VIII geordnet und innerhalb der einzelnen Zonen in Unterabtheilungen, kleinere oder grössere Bezirke in Rectascension umfassend, je nachdem mehr oder weniger Vergleichsobjecte vorhanden waren. Für Zone VIII war eine solche Theilung zwecklos, da in ihr innerhalb der betrachteten Helligkeitsgrenzen nur 24 Sterne photometrisch bestimmt sind. Zone I liegt zwischen 12h 0m und 14h 40m R, der grössere Theil innerhalb noch engerer Grenzen, weshalb sie in der nun folgenden Zusammenstellung der Differenzen D. M. — H. ebenso wenig wie Zone VIII erscheint, vielmehr nur in den weiter unten folgenden Mittelwerthen. Neben den Differenzen stehen in den folgenden Tabellen die Anzahlen der concurrirenden Sterne.

H. Seeliger: Zur Vertheilung der Fixsterne am Himmel.

m 6.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+++ ++++++++++++++++++++++++++++++++++	27 + 0.17
m 6.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	18 + 0.17
m 6.0	12 + 0.07 19 + 0.18 14 + 0.11 12 - 0.03 57 + 0.09	16 16 17 18 18 19 19 10 10 10 10 10 10 10 10 10 10	107 + 0.10
m 5.9	$\begin{array}{c c} - & - \\ \hline 1 & -0.24 \\ 1 & -0.06 \\ 2 & -0.20 \\ \hline 4 & -0.17 \end{array}$	1	90.0 + 2
m 5.8	2 - 0.02 3 + 0.16 8 + 0.17 1 + 0.03 14 + 0.13	++++++++++++++++++++++++++++++++++++++	31 + 0.21
m 5.7	Zone II. 2 + 0.12 3 + 0.19 6 + 0.06 2 + 0.32 13 + 0.14	Zone III 2 + 0.15 + 0.15 1 - 0.49 1 - 0.17 2 - 0.07 1 - 0.30 2 - 0.35 3 + 0.30 4 + 0.19 5 - 0.43 6 - 0.43 7 - 0.03 7 - 0.03 8 - 0.03 1 - 0.03 1 - 0.03 1 - 0.03 1 - 0.03 1 - 0.03	+ 61
m 5.6	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 - 0.10
m 5.5	$ \begin{array}{c} 2 + 0.3 \\ 3 - 0.03 \\ 7 + 0.12 \\ 8 - 0.12 \\ 20 + 0.02 \end{array} $	20 + 0.13 - 0.14 - 0.17 - 0.14 - 0.16 - 0.06 - 0	+
m 5.4	1 -0.14 -0.14		6 + 0.22
m 5.3	2 - 0.17 2 - 0.36 4 - 0.13 8 - 0.20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 + 0.11
AR	h h 9-11 11-12 13-14 15-16 Mittel	$\begin{array}{c} 7 - 9 \\ 9 \\ 10 \\ 10 \\ 14 - 15 \\ 16 \\ 17 \\ 17 \\ 17 \\ 18 \\ 19 \\ 21 - 0 \\ 21 - 0 \end{array}$	Mittel

m 6.2		
m 6.1		1
m 6.0		6 + 0.15 8 + 0.21 12 + 0.13 13 + 0.24 14 + 0.24 15 + 0.25 16 + 0.25 17 + 0.25 18 + 0.25 19 + 0.25 19 + 0.25 10
m 5.9		1
m 6.8		1
m 5.7	Zone V	Zone VI 2 + 0.024 2 + 0.28 3 + 0.28 5 + 0.28 5 + 0.28 7 + 0.34 19 + 0.34 19 + 0.34 19 + 0.34 19 + 0.37 19 + 0.37 10 + 0.37 11 + 0.03 12 + 0.03 13 + 0.03 14 + 0.03 15 + 0.03 16 + 0.03 17 + 0.03 18 + 0.03 19 + 0.03 10 + 0.03 10 + 0.03 10 + 0.03 11 + 0.03 12 + 0.03 13 + 0.03 14 + 0.03 15 + 0.03 16 + 0.03 17 + 0.03 18 + 0.03 19 + 0.03 10 + 0.
m 5.6		1
5.5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
m 25.4		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5.3		
AR	-5	0 1 2 2 3 4 4 4 5 18—19 20 21 22 23 23 23 24 19—20 21 22 23 24 24 25 26 27 28 28 28 29 20 20 20 20 20 20 20 20 20 20

H. Seeliger: Zur Vertheilung der Fixsterne am Himmel.

200 01 1201	4
0.00	0.1
+ 0.20 + 0.08 + 0.72 + 0.47 + 0.47 + 0.05	+ 0.14
1	15
34 42 42 26	
	+0.14
++ 1+	+
1 01 - 01 -	9
0.06 0.17 0.11 0.32 0.30 0.26 0.26	07
00000000	0.
1++1+++	+ + +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44
35	9
0 0 1	0.6
+ +	2 + 0.46
0.16 0.22 0.22 0.12 0.01 0.02 0.03	19 + 0.08
0000 000	-0
++++	
40 01014	
+ 0.18 + 0.02 + 0.02 + 0.03 -	.21
+1+++	+ 0.21
1 1 1 1	
	0.04
+ 0.04	+
1111-11	18 + 0.03 1 + 0
	ന
0.05 0.08 0.08 0.15 0.15 0.01 0.01	0.0
++++	+
00000000	18
.03	
0.0	0.0
+	+
-	1 + 0.03
0.33 0.02 0.40 0.27	11
00001110	-0.
1+++ +	9 + 0.11
10101110	
	el
01224222	Mit

Hieraus ergeben sich folgende Mittelzahlen:

	(a)
VIII	+ + 0.15 + + 0.15 + + 0.14 + + 0.08 + + 0.08 + + 0.08 + + 0.08 + + 0.08
VII	9 10 10 10 10 10 10 10 10 10 10
VI	10 10 10 10 10 10 10 10 10 10
Λ	19 + 0.20 36 + 0.007 36 + 0.007 10 + 0.34 110 + 0.34 21 + 0.34 143 + 0.18 20 + 0.35 20 + 0.35 20 + 0.35
IV	17 + 0.11 6 + 0.22 6 - 0.10 19 + 0.25 31 + 0.21 5 + 0.06 107 + 0.10 27 + 0.10
Ш	16 + 0.01 16 + 0.01 17 + 0.08 18 + 0.01 19 + 0.11 11 + 0.23 11 + 0.23
П	8 - 0.20 1 - 0.14 20 - 0.02 11 - 0.12 13 + 0.12 16 + 0.11 4 - 0.17 57 + 0.09 12 + 0.17 23 + 0.27
Ι	10 11 10 10 10 10 10 10 10 10
	E 24 70 70 70 70 70 70 70 70 70 70 70 70 70

370 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

Die Gesammtmittel für alle Zonen sind:

	m	m	Anzahl
D.M.	5.3 = H.	5.22	89
	5.4	5.26	29
	5.5	5.47	172
	5.6	5.56	32
	5.7	5.48	111
	5.8	5.53	169
	5.9	5.69	49
	6.0	5.88	574
	6.1	5.85	79
	6.2	5.97	168

Zieht man noch, analog dem bei den telescopischen Sternen eingeschlagenen Verfahren, die Sterne von der Grösse 5.3—5.7 bezw. 5.8—6.2 zusammen und betrachtet die gefundene Correction als den Sternen 5.5 bezw. 6.0 Grösse zugehörig, so ergiebt sich:

Zone	m 5.5	Anzahl	6.0	AnzahI	5.5 D.M. = H.	6.0 D.M. = H.)
	m		m		m	m	
I	0.01	30	+0.04	44	5.51	5.96	
II	+0.01	43	+0.13	110	5.49	5.87	
III	+0.07	56	+0.13	166	5.43	5.87	(0)
IV	+0.13	88	+ 0.13	187	5.37	5.87	(β)
V	+0.16	96	+0.22	249	5.34	5.78	
VI	+0.10	77	+0.20	178	5.40	5.80	
VII	+0.09	38	+0.10	86	5.41	5.90	
VIII	+0.26	5	+0.12	19	5.24	5.88	
Mittel	+0.10	433	+0.16	1039	5.40	5.84	,

Aus diesen Tabellen dürfte folgen, dass die Schätzungen der D. M. sehr bedeutende systematische Fehler enthalten und dass sie zum Theil einen so wenig gleichförmigen Gang aufweisen, dass man sie zu feineren Untersuchungen, bei welchen 0.1 Grösse eine Rolle spielt, nur bedingungsweise verwenden kann. Zum grossen Theil wird dies daher rühren, dass die Zahl der Vergleichungen nicht genügend gross ist, als dass sich die zufälligen oder von andern Ursachen, als den betrachteten, herrührenden systematischen Fehler ausgleichen könnten; eine verhältnissmässig geringe Aenderung in der Anordnung ändert die Mittelwerthe gleich um erhebliche Beträge. Besonders auffallend ist das verschiedene Verhalten der Bonner

H. Seeliger: Zur Vertheilung der Fixsterne am Himmel.

Grössenangaben mit verschiedenen Zehnteln und diese ordnen sich in (a) nicht so, dass man behaupten kann, es liege eine gleichmässig verlaufende Helligkeitsscala vor. An sich dürfte dies übrigens nicht überraschen, wenn man sich die bekannte Art und Weise vergegenwärtigt, wie die einzelnen Zehntelgrössen in der Bonner Durchmusterung zu Stande gekommen sind. Ist die Anzahl der verglichenen Sterne sehr gross und sind dieselben über weite Strecken am Himmel vertheilt, so darf man erwarten, dass jene unregelmässigen Ursachen, durch welche die einzelnen Zehntel (ausgenommen die Dezimalen 0 und 5) entstanden sind, sich zu gewissen mittleren Zuständen summirt haben. Dies wird bei den telescopischen Sternen der Fall gewesen sein und besonders für die Grössen 9.1 und 9.2 scheint dies aus meinen früheren Vergleichungen der D.M. mit der Harvard-Revision mit einiger Sicherheit hervorzugehen. Bei den Sternen der 5-6. Grösse aber ist ein solcher mittlerer Zustand noch nicht erreicht worden und bei den noch helleren darf man wohl schon gar nicht darauf rechnen, weshalb ich diese bei den vorliegenden Vergleichungen ganz unberücksichtigt gelassen habe. So kommt es, dass die Bonner Grössen 5.3, 5.4..6.2 keineswegs überall eine stets abnehmende Reihe von Helligkeiten darstellen. In Zone V z. B. sind die Bonner Grössen 5.6 und 5.7 heller als die 5.5 und 6.1 heller als 6.0. Indessen folgt aus den weiter unten folgenden m. Fehlern, dass diese Erscheinung durch die relativ kleine Zahl der Vergleichungen bedingt ist und in diesem Sinne möglicherweise nicht reell zu sein braucht. Jedenfalls aber bestehen diese Anomalien und erschweren die Verwerthung der Bonner Abzählungen bei der Entscheidung etwas difficilerer Vertheilungsfragen ganz ausserordentlich.

Zur Beurtheilung der Sicherheit der Differenzen D.M.—H. wurden die durchschnittlichen Fehler einer Vergleichung berechnet. Es genügt, hierbei die Formel

$$\vartheta = \frac{\sum [A]}{n}$$

anzuwenden, wo [A] die absoluten Beträge der Differenzen gegen die Mittelzahlen (a) und n die Anzahlen dieser Differenzen sind. Es ergab sich so folgende Tabelle für die ϑ :

Zone	1	11	III	IV	V	VI	VII	VIII	Mittel
m 5.3	0.28	0.15	0.28	0.27	0.19	0.15	0.20		0.22
5.4		_		0.10	0.18	0.24			0.18
5.5	0.20	0.26	0.23	0.24	0.28	0.32	0.16	0.25	0.25
5.6	_	_	0.16	0.10	0.34	0.21			0.22
5.7	0.22	0.17	0.21	0.18	0.19	0.22	0.17	_	0.20
5.8	0.16	0.19	0.23	0.23	0.27	0.24	0.20	-	0.23
5.9	_	_	_	0.08	0.19	0.26	_	_	0.19
6.0	0.26	0.25	0.24	0.24	0.27	0.25	0.30	0.28	0.26
6.1		0.20	0.22	0.23	0.27	0.17	0.30	_	0.23
6.2	0.15	0.22	0.23	0.23	0.21	0.24	0.24	0.22	0.22
Mittel	0.23	0.22	0.24	0.23	0.25	0.24	0.24	0.27	0.24

Die ϑ haben sehr angenähert überall dieselbe Grösse; wo sich grössere Abweichungen zeigen, ist meist n keine grosse Zahl. Es scheint danach gestattet zu sein, in den meisten Fällen für ϑ die mit Rücksicht auf die Anzahlen gebildeten Mittelwerthe oder auch das Gesammtmittel

$$\theta = 0.24$$

anzunehmen. Nimmt man das Gauss'sche Fehlergesetz als geltend an, so folgt hieraus der mittlere Fehler:

$$\varepsilon = \vartheta \cdot 1.2533 = \overset{\text{m}}{0.30}.$$

Wie schon erwähnt, hatte ich in meinen früheren Abzählungen der in der nördlichen D.M. enthaltenen Sterne die Sterne von der Grösse 1—6.5 in eine Gruppe zusammengefasst. Es erschien nun von Interesse eine weitere Zerfällung dieser Gruppe vorzunehmen und auf meine Veranlassung hat der Officiant der Münchener Sternwarte, Herr List, ganz in derselben Weise, wie die früheren Abzählungen ausgeführt worden sind, die Abzählung der Sterne von der Grösse 1—5.5, 5.6—6.0 und 6.1—6.5 durchgeführt. Die erhaltenen Resultate sind in den 3 Tafeln am Schlusse dieser Abhandlung zusammengestellt. An den Zahlen der D.M. sind hierbei irgendwelche Correcturen nicht vorgenommen worden, da dies für die vorliegenden Zwecke ganz gleichgültig ist. In diese Tabellen wurden nun die Grenz-

linien der einzelnen Zonen I, II.. VIII als gebrochene Linien eingezeichnet (eventuell die einzelnen Trapeze halbirend), ganz so wie dies bei den früheren Abzählungen geschehen war und dann für jede Zone die Addition ausgeführt. So ergaben sich die folgenden Anzahlen für die Sterne von der Grösse 1—5.5, 1—6.0 und 1—6.5 am nördlichen Himmel, welche in der D.M. als solche angeführt sind.

Zone	m m 15.5	$\frac{m}{1-6.0}$	$\frac{m}{1-6.5}$
I	61.0	107.5	209.0
H	129.5	221.5	426.0
III	172.0	324.0	626.5
IV	196.5	373.5	759.5
V	238.5	479.5	959.5
VI	203.5	383.0	738.5
VII	90.5	177.5	322.5
VIII	27.5	42.5	77.5
Summe	1119	2109	4119

Für die Verhältnisse $a_{6.0}$ und $a_{6.5}$, das sind die Quotientienten der Anzahlen 1 – 6.0 bezw. 1—6.5 dividirt durch 1—5.5 bezw. 1—6.0 ergiebt sich hieraus:

•	$\log a_{6,0}$	$\log \alpha_{6.5}$		
I	0.246	0.289	0.45	0.46
II	0.233	0.284	0.38	0.60
III	0.275	0.286	0.44	0.66
IV	0.279	0.309	0.50	0.65
V	0.304	0.301	0.44	0.72
VI	0.274	0.285	0.40	0.74
VII	0.292	0.260	0.49	0.65
VIII	0.189	0.261	0.64	0.74
Mittel	0.275	0.291	0.44	0.68

Verfährt man mit diesen Zahlen ebenso wie s. Z. mit den telescopischen Sternen, so hat man zu berücksichtigen, dass diese α nicht halben photometrischen Grössenklassen entsprechen, sondern nach (β) und S. 171 meiner Vergleichung 1) der D. M. und H. R. den Bruchtheilen von Grössen, welche neben die $\log \alpha$ gestellt sind. Reducirt man auf das Intervall einer halben Grösse, so würde sich ergeben:

¹⁾ Münchener Sitzungsberichte 1898.

374 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

	$\log a_{6,0}^0$	$\log \alpha_{6.5}^0$	${\it \Sigma}$
I	0.273	0.314	0.587
II	0.307	0.237	0.544
III	0.313	0.217	0.530
IV	0.279	0.238	0.517
L	0.345	0.209	0.554
VI	0.342	0.193	0.535
VII	0.298	0.200	0.498
VIII	0.148	0.177	0.325
	0.313	0.214	0.527

Durch diese Reduction sind augenscheinlich grosse Ungleichförmigkeiten in den Verlauf der log a hineingekommen, die ja möglicherweise an sich reell sein könnten, von denen man dies aber zunächst als sehr unwahrscheinlich betrachten muss. Man wird wohl nicht fehlgehen, wenn man annimmt, dass die Reduction auf photometrische Grössen in der ausgeführten Weise unzulänglich ist. Der Verlauf der Correctionen D. M.—H. war schon selbst so wenig regelmässig, dass man die Mittelzahlen (β) eben nicht als die Correctionen, die an die D.M. Grössen 5.5 und 6.0 anzubringen sind, ansehen darf. Es scheint überhaupt nicht möglich, wie auch schon oben hervorgehoben wurde, auf Grund der angestellten Vergleichungen und Abzählungen die Vertheilung der Sterne von der Grösse 5-6 zu studiren und man wird deshalb die Bonner Durchmusterung nicht zu Rathe ziehen dürfen, wenigstens wenn es sich um mehr als ganz rohe Feststellungen handelt.

Es scheint deshalb am Platze für diese helleren Sterne die D.M. durch die Angaben der H. zu ersetzen. Ich habe deshalb in letzterer die Sterne von der Grösse 1—5.0 und 1—6.0 abgezählt, wobei die Variablen und solche Doppelsterne, die in H. oder in D.M. nicht getrennt erscheinen, unberücksichtigt geblieben sind. Es ergab sich so

H. Seeliger: Zur Vertheilung der Fixsterne am Himmel.

	m	nı	,
	1 - 5.5	1 - 6.0	$\log a_{6.0}$
I	56	109	0.289
II	129	226	0.243
III	181	315	0.240
IV	229	385	0.225
V	314	495	0.198
VI	250	392	0.190
VII	106	183	0.237
VIII	24	44	0.263
Summe	1289	2149	0.222

Die α zeigen hier ein durchaus anderes Verhalten wie früher, indem sie mit der Annäherung an die Milchstrasse nicht unmerklich abnehmen. Man sieht aber, dass dies fast ausschliesslich von der Verschiedenheit der beiderseitigen Angaben über die Anzahl der Sterne von der Grösse 1-5.5 herrührt.

Dass H. gänzlich frei von systematischen Fehlern sei, wird kaum vorausgesetzt werden können; andrerseits ist es nicht gerade wahrscheinlich, dass solche bei der Anordnung nach den Milchstrassenzonen merklich hervortreten werden. Da über die systematischen Fehler von H. vorläufig nichts bekannt ist, wird man sich begnügen müssen, zu untersuchen, ob und bis zu welcher Helligkeit die Sterne in nahezu vollständiger Anzahl in H. enthalten sind. Man wird nun mit einiger Sicherheit annehmen dürfen, dass die Sterne bis zur Grösse 5.5 in H. nahezu vollständig aufgeführt sind. Den H. zu Grunde liegenden Arbeitslisten wurden alle D. M. Sterne bis zur Grösse 6.0 incl. einverleibt, ferner der grössere Theil der Sterne von der Grösse 6.1 und 6.2 und einige in der D.M. als schwächer angegebene, bei denen eine grössere Helligkeit zu erwarten war. Von den 106 bezw. 293 Sternen, deren Grössen in D. M. als 6.1 und 6.2 aufgeführt sind, fehlen in H. 28 bezw. 111; diese vertheilen sich folgendermassen auf die einzelnen Zonen:

Sitzung der math.-phys. Classe vom 2. Dezember 1899.

	m	m	
	6.1	6.2	*
I	_	4	12
II	5	14	10
III	1	12	11
IV	6	20	27
V	9	30	29
VI	6	19	21
VII	1	8	14
VIII	_	4	6
	28	111	130

Unter * sind gleich die Anzahlen der Sterne angegeben, welche in D.M. schwächer als 6.2 geschätzt sind und in H. heller als oder gleich 6.0^m angegeben sind.

Danach kann nicht garantirt werden, dass H. nahezu alle Sterne bis zur Grösse 6.0 enthält. Man könnte die Sache näher untersuchen, wenn man sowohl die in der D.M. enthaltenen Sterne der einzelnen Zehntel der Grössenklassen in der Nähe von 6.0 kennte, ferner ihre Beziehung zu der photometrischen Scala von H. und endlich den m. F. einer Grössendifferenz D.M.-H. Die dazu nöthigen Formeln sollen später abgeleitet werden. Leider liegen aber die nöthigen Daten nicht vor, da die Differenzen der D.M.-H. für die Grössen 6.3, 6.4 als nicht bekannt und das vorhandene Material zu ihrer Ableitung nicht ausreichend ist. Was die Zahlen der D. M. Sterne betrifft, so wird es ausreichen, für jede Zone I-VIII procentualiter dieselbe Vertheilung in den einzelnen Zehntelgrössen anzunehmen, wie sie im Durchschnitt aus allen Zonen hervorgeht und also durch die von C. Littrow ausgeführten Abzählungen bekannt ist. Auf diesen Punkt wird weiter unten näher eingegangen werden. Nimmt man nun aber an - und das scheint nicht unbegründet zu sein - dass in H. fast alle Sterne berücksichtigt worden sind, die heller als 6.0 und in D.M. schwächer als 6.2 angegeben sind, dann ist die Rechnung durchführbar. Nach den weiter unten folgenden Formeln habe ich unter diesen Voraussetzungen gefunden, dass zu den Sternanzahlen die in den beiden ersten verticalen Reihen stehenden Zahlen von Sternen der Grösse 6.1 bezw. 6.2 in der

H. Seeliger: Zur Vertheilung der Fixsterne am Himmel.

D. M. hinzugefügt werden müssen, so dass die Anzahl der Sterne 1-6.0^m durch die angeführten Werthe zu ersetzen sind.

	m	m	m m	
	6.1	6.2	1-6.0	$\log \alpha_{6,0}$
I		1	110	0.293
II	3	8	237	0.264
III	1	6	322	0.250
IV	3	9	397	0.239
V	7	20	522	0.221
VI	5	12	409	0.214
VII	6	3	192	0.258
VIII	-	2	46	0.283
	25	61	2235	0.246

Die mit den vorhin aus H. hervorgegangenen Zahlen 1-5.5^m berechneten log a zeigen einen regelmässigen Verlauf, und zwar eine deutliche Abnahme mit der Annäherung an die Milchstrasse. Dieses Ergebniss, welches mit dem von Herrn Kobold gefundenen stimmt, scheint demnach ein ziemlich gesichertes zu sein.

Ich habe noch die oben erwähnten Formeln abzuleiten. Ein Stern von der photometrischen Grösse γ habe in D. M. die Grösse g. Die Vergleichung der D. M. Grössen mit einem photometrischen Catalog ergiebt dann

$$g = \gamma + c_g + \delta$$

 c_g wird eine Correction sein, welche aus dem Mittel aller Differenzen innerhalb einer gewissen Gruppe hervorgeht, δ ist der übrigbleibende zufällige Schätzungsfehler, der sich aus dem Fehler der D.M. und des Catalogs zusammensetzt. Es sei ferner a_g die Anzahl der D.M. Sterne von der Grösse g und

$$\varphi(\delta)$$
 das Fehlergesetz, wobei $\int_{-\infty}^{+\infty} \varphi(\delta) d\delta = 1$, so wird $a_{\alpha} \cdot \varphi(\delta) d\delta$

die Anzahl der Sterne in der D.M. sein, welche hier die Grösse g haben und ausserdem einen Schätzungsfehler, der zwischen δ und $\delta+d$ δ liegt, also eine photometrische Helligkeit zwischen $g-c_g-\delta$ und $g-c_g-\delta-d$ δ hat. Durchläuft δ die Werthe von $-\infty$ bis $+\infty$, so nimmt γ bei festgehaltenem g

alle Werthe von $+\infty$ bis $-\infty$ an. Der Mittelwerth $\delta A_{g_{7}}$, der Anzahl aller Sterne, welche in der D.M. die Grösse g und eine grössere photometrische Helligkeit als γ_1 haben, wird demnach sein:

$$\delta A_{g\gamma_1} = \int_{g - c_g - \gamma_1}^{g - c_g - \gamma_0} \alpha_g \cdot \varphi(\delta) \cdot d \delta$$

 γ_0 ist hier die photometrische Grösse der hellsten Sterne. Man wird annehmen dürfen, dass φ (δ) sehr schnell abnimmt, wenn δ sich von $\delta = 0$ aus nach der positiven oder negativen Seite ändert. Wenn man sich demnach auf Werthe von g beschränkt, die nicht zu nahe bei γ_0 liegen, wird man, da es sich ja nur um Abschätzungen handeln kann, die obere Grenze des Integrals positiv unendlich setzen dürfen. Die Anzahl A_{γ_1} aller Sterne in D.M., welche in der photometrischen Scala eine Grösse $\leq \gamma_1$ haben, wird also sein

$$A_{\gamma_{1}} = {}_{g} \sum_{\gamma} \int_{g-c_{g}-\gamma_{1}}^{\infty} \varphi(\delta) d \delta$$
 (1)

wo die Summe Σ über alle Werthe von g auszudehnen ist, die angenommen werden können, also $g=1.0,\,1.1$ etc. Genügend ausführlich angestellte Abzählungen nach der D.M. geben die a_g . Wäre also φ , welches im Allgemeinen als auch von g abhängig betrachtet werden muss, bekannt, so könnte man A_{74} berechnen. Die Formel (1) wird zweckmässig so umgeformt, dass man Correctionen erhält, welche man an die Abzählungsresultate $g \sum_{i=1}^g a_g$ anzubringen hat.

Es soll diese Umformung nur unter der Voraussetzung hingeschrieben werden, dass φ eine gerade und von g unabhängige Function ist. Setzt man dann

$$\int_{0}^{x} \varphi(\delta) d \delta = \frac{1}{2} \Theta(x)$$

also

$$\Theta(x) = -\Theta(-x); \ \Theta(\infty) = 1$$

so wird

H. Seeliger: Zur Vertheilung der Fixsterne am Himmel.

$$A_{\gamma_{1}} = {}_{g} \sum_{j=1}^{g} a_{j} - \frac{1}{2} \sum_{j=0}^{g} a_{j} \left[1 + \Theta \left(g - c_{j} - \gamma_{1} \right) \right]$$

$$+ \frac{1}{2} \sum_{j=0}^{g} a_{j} \left[1 - \Theta \left(g - c_{j} - \gamma_{1} \right) \right]$$

Hierbei ist ε das Intervall 0.1, welches zwei aufeinanderfolgende Grössenangaben der D.M. trennt. ${}_{g}\sum^{g}a_{g}$ ist die bis zur Grösse g incl. abgezählte Anzahl der Sterne der D.M. und die beiden andern Glieder die Reduction, die man anzubringen hat, um die Zahl der Sterne zu erhalten, welche heller, als die photometrische Grösse γ_{1} angiebt, sind.

Für die oben gegebenen Vergleichungen der hellen Sterne scheint in der That φ von g nahezu unabhängig zu sein, wie die Zusammenstellung der m. Fehler ergiebt. Der Verlauf von φ könnte durch eingehendere allerdings etwas weitläufige Betrachtungen bestimmt werden. Indessen ist es nicht unwahrscheinlich, dass φ ungefähr durch das Gauss'sche Fehlergesetz dargestellt wird, wenigstens fallen die aus den ersten und zweiten Potenzen der Abweichungen berechneten m. Fehler nicht sehr verschieden aus. Nimmt man das Gauss'sche Fehlergesetz an:

 $\varphi\left(\delta\right) = \frac{h}{\sqrt{\pi}} \cdot e^{-h^2 \delta^2}$

so wird

$$\Theta(x) = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{x} e^{-t^{2}} \cdot dt$$

aus den bekannten Tafeln leicht entnommen werden können. h, das sog. Maass der Genauigkeit, ist bekanntlich mit dem m. Fehler ε durch die Gleichung

$$h \varepsilon \sqrt{2} = 1$$

verbunden. Für die obigen Zahlen ergiebt sich $\frac{1}{h} = 0.43$. Ich habe die kleine Rechnung (S. 376) mit $h = 2\frac{1}{3}$ ausgeführt.

2.

Ich gehe nun zu den telescopischen Sternen der D.M. über. Um die Anzahl A_m aller Sterne von den hellsten bis zur Grösse m in den einzelnen Milchstrassenzonen I...VIII zu erhalten, hatte ich 1) das Abzählungsresultat aus der D.M. auf photometrische Grössen reducirt, wobei Mittelzahlen aus den Vergleichungen der geschätzten D.M. Grössen mit den Angaben der Harvard Photometric Revision benutzt worden sind. Die Reduction geschah in sehr einfacher und, allerdings unter Voraussetzung der Zulässigkeit gewisser Annahmen über die Gleichmässigkeit des Materiales, wohl auch unbedenklicher Weise. Auf einen Punkt mag indessen hingewiesen werden, der seiner Zeit nicht besonders hervorgehoben worden ist. Die D.M. enthält nur Zehntelgrössen. Als Sterne von der Grösse 9.0 z. B. werden also, abgesehen natürlich von den Fehlern der Schätzung, alle Sterne aufgeführt, welche thatsächlich zwischen den Grössen 8.95 und 9.05 liegen. Will man also genau $A_{9,0}$ haben, so muss man von der abgezählten Anzahl die Hälfte der Zahl der Sterne von der Grösse 9.0 in Abzug bringen. Für die a. a. O. verfolgten Zwecke, die Bildung der Zahlen $\log a = \log A_m - \log A_{m-1}$ nämlich, ist die Anbringung dieser Correction irrelevant und sie wurde auch nicht angebracht. Dies ist aber nur unter der Voraussetzung zulässig, dass die Anzahl der Sterne, deren Grösse in der D.M. die Decimalen 0 oder 5 hat, dividirt durch A_m , wo m ebenfalls eine Zahl mit denselben Decimalen ist, einen von m unabhängigen Werth besitzt. Es ist übrigens nur eine ganz beiläufige Erfüllung dieser Bedingung ausreichend, da nur die ersten zwei oder drei Stellen der log a in Frage kommen. Thatsächlich ist die genannte Bedingung ziemlich nahe erfüllt, wie die folgende Zusammenstellung ergiebt. In dieser steht neben der Sterngrösse m die Anzahl der Sterne dieser Grösse nach Littrows Abzählung,²) dann folgen: A_m , die Correction von log A_m :

¹⁾ Abhandlungen 1898.

²⁾ Sitzungsberichte der Wiener Akademie, Band 59, II. Abth., 1869.

H. Seeliger: Zur Vertheilung der Fixsterne am Himmel.

 $A \log A_m$, die hierdurch verursachte Aenderung $A \log \alpha$ von $\log \alpha$, das a. a. O. gefundene $\log \alpha_0$ und endlich das reducirte $\log \alpha$:

m		A_m	$\Delta \log A_m$	⊿ log α	$\log a_0$	log α
6.0	618 *	2108	- 0.069	_	_	_
6.5	1239	4122	-0.071	-0.002	_	. —
7.0	2141	8077	- 0.062	+0.009	0.256	0.265
7.5	2860	14078	-0.046	+0.016	0.239	0.255
8.0	5622	25321	-0.051	- 0.005	0.250	0.245
8.5	9788	48247	-0.047	+0.004	0.255	0.259
9.0	23277	101071	0.053	— 0.006	0.274	0.268

Die so entstehenden Correctionen sind also unbedeutend und kommen gegenüber durch andere Einwirkungen verursachten Schwankungen nicht in Frage. Im Uebrigen sind die corrigirten Werthe einander näher gebracht worden, als sie vorher waren.

Ob aber ähnliche Verhältnisse für die einzelnen Milchstrassenzonen I-VIII stattfinden ist zunächst fraglich, wenn man auch vielleicht keinen wirklich ausschlaggebenden Einfluss von dieser Seite auf die Werthe α zu besorgen haben wird. Zwei andere Umstände könnten dagegen von grösserem Einfluss sein. Diese rühren davon her, dass die Bonner Schätzungen mit bedeutenden systematischen und zufälligen Fehlern behaftet sind. Die ersteren lassen sich nur als gewisse Mittelwerthe mit genügender Genauigkeit herleiten, wobei es schwer ist jedenfalls liegt eine solche Untersuchung nicht vor - das verschiedene Verhalten der einzelnen Zehntel der Grössenangaben gehörig zu übersehen. Auch kommen die einzelnen Zehntelgrössen in der D.M. sehr verschieden häufig vor. Was die zufälligen Fehler betrifft, so findet ein Ausgleich derselben im Allgemeinen nicht statt, weil wegen der Zunahme der Anzahl der Sterne mit der Grösse die Anzahl der zu hell geschätzten Sterne durchaus nicht gleich der der zu schwach geschätzten sein wird. Bei den mit freiem Auge sichtbaren Sternen haben nachweisbar, besonders die zuerst genannten Verhältnisse, eine sichere Ermittlung der Sternanzahlen bis zu einer bestimmten Grösse fast unmöglich gemacht.

Ueber diese verschiedenen Einflüsse kann aber eine angemessen ausgeführte Vergleichung der Harvard Photometric Revision (H.R.) mit der D.M. Aufschluss geben, insoweit natürlich nur, als man H.R. als frei von systematischen Fehlern, namentlich von solchen, welche von der Lage der Sterne zur Milchstrasse abhängen, anzunehmen berechtigt ist. Da über diesen Punkt gegenwärtig nichts Näheres bekannt ist, muss eine solche Annahme nothgedrungen gemacht werden.

Ich habe nun eine solche Vergleichung angestellt. Es wurden fast alle Sterne benutzt, welche zugleich in D.M. und H.R. vorkommen, nur in den sehr reichen Zonen wurde hie und da ein Declinationsgrad fortgelassen. Bei den Zonen I, II, III, VII und VIII wurden dagegen alle Vergleichungen benutzt und nur sehr grosse, im Allgemeinen 0.9 übersteigende Abweichungen ausgeschlossen, da diese jedenfalls durch irgend welche Versehen, Druckfehler u. dergl. zu Stande gekommen sein können. Ich habe mich, wegen der Weitläufigkeit der Rechnung, begnügt, die Correctionen aufzunehmen, welche an die abgezählten D.M. Sterne bis zur Grösse 6.5, 7.5 und 9.0 anzubringen sind, um auf die entsprechenden photometrischen Grössen zu reduciren. Es wurde also die Rechnung für die Anzahlen $A_{7.0}$ und $A_{8.0}$ nicht ausgeführt.

Zur Reduction der geschätzten Grössen auf photometrische wurden die Δ meiner früheren Arbeit¹) (S. 171) verwendet. Wegen des Anschlusses an die oben gemachten Bemerkungen wäre eine Ausdehnung der Vergleichungen auf die Sterne von der Grösse 6.0 interessant gewesen; hierzu reicht aber die Anzahl der Vergleichspunkte zwischen D.M., H.R. und H. in keiner Weise aus. Die Ableitung der an die Abzählungsresultate anzubringenden Correctionen geschah nun in folgender Weise. Es wurden z. B. um das corrigirte $\Delta_{7.5}$ zu erhalten, gesondert für die einzelnen Zonen I, II. VII die Anzahlen aller Sterne, welche in der D.M. als von der Grösse 7.0, 7.1. bis 8.2 angeführt sind und in H.R. vorkommen, abgezählt — zweite Zahlenreihe unter I, II etc. in der folgenden Tabelle —

¹⁾ Sitzungsberichte 1898.

und dann diejenigen von ihnen, welche in der D.M. heller oder gleich 7.5 angegeben sind und in H.R. schwächer als die der Bonner Durchmusterungsgrösse 7.5 in jeder Zone entsprechende photometrische Grösse. Letztere sind in der 4-6. Tabelle am Schlusse unter der Bezeichnung "Grenze" angegeben. Ebenso wurden alle D.M. Sterne schwächer als 7.5 abgezählt, die in H.R. vorkommen und ebenso diejenigen von ihnen, welche in H.R. heller, als die 7.5 entsprechende photometrische Grösse angiebt, sind. Die Tabellen 4-6 enthalten die Verhältnisszahlen. So sagt z. B. die letzte Tabelle aus: von 1000 Sternen in der Zone V, welche in D.M. 9.0 angegeben sind, sind 594 schwächer als oder gleich 9.12 Grössen in der photometrischen Scala, von 1000 D.M. Sternen von der Grösse 9,2 in der Zone II sind 167 heller als 9.32 photometrisch. Die letzten drei Tabellen enthalten am Schlusse noch die mit Rücksicht auf die Anzahlen gebildeten Mittelwerthe der Verhältnisszahlen.

Die gewonnenen Resultate müssen im Allgemeinen den Eindruck einiger Sicherheit machen. Nur für Zone VIII ist überall das Material sehr spärlich und man wird deshalb auf die Resultate in dieser Zone kein Gewicht legen. Einige Unsicherheit ist auch bei den schwächsten Sternen vorhanden. Die D.M. Sterne von der Grösse 9.5 kommen in H.R. nur ganz vereinzelt vor. Ich habe deshalb, um nicht völlig in der Luft stehende Verhältnisszahlen zu bekommen, diese Sterne ganz fortgelassen. Da indessen bekanntlich die mit 9.4 und 9.5 bezeichneten Sterne der D.M. fast immer lichtschwache Sterne sind, dürfte voraussichtlich die so entstandene Unsicherheit nicht von Belang sein.

Multiplicirt man nun die angegebenen Verhältnisszahlen mit der Anzahl der D.M. Sterne jeder Zone und dem betreffenden Zehntel der Grösse, addirt die aus den oberhalb der horizontalen Striche stehenden Verhältnisszahlen erhaltenen Producte und subtrahirt die aus den unterhalb der Striche stehenden Zahlen erhaltenen Producte von den abgezählten Anzahlen $A_{6.5}$, $A_{7.5}$, $A_{9.0}$, so ergeben sich die auf die betreffenden photometrischen Grössen reducirten Anzahlen.

384 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

	I	I	I	I	II	I	V	7	7	V	I	V	II	VI	II
$\begin{array}{c} ^{\mathrm{m}} \\ +7.2 \\ -7.1 \\ -7.0 \\ 1 \\ 6.9 \\ 1 \\ 6.8 \\ 1 \\ 6.7 \\ 3 \\ 6.6 \\ 2 \\ \hline -6.5 \\ 14 \\ 6.3 \\ -6.5 \\ 14 \\ 6.3 \\ -1 \\ 6.0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	10 4 18 5 24 5 3 22 2 4 5	1 - 1 6 7 1 19 - 1 1	13 5 27 6 54 22 4 38 2 9 15 4 10	$ \begin{array}{c} 2 \\ -3 \\ 1 \\ 9 \\ 12 \\ 1 \end{array} $ $ \begin{array}{c} 41 \\ -5 \\ 1 \\ 1 \end{array} $	27 9 53 6 58 29 3 72 2 15 17 6 21	7 2 7 7 3 38 4 10 2 1 5	V 45 14 69 15 71 37 13 88 9 29 25 6 26	2 	45 17 94 40 79 43 28 106 14 23 23 12 26	$ \begin{array}{c} 2 \\ -3 \\ 6 \\ 13 \\ 8 \\ 4 \end{array} $ $ \begin{array}{c} 58 \\ -1 \\ 3 \\ -1 \end{array} $	33 9 69 15 56 30 11 107 3 14 19 8	V	8 5 39 7 22 5 5 5 26 3 8 12 4 10	VII	3 -2 -6 1 - - 2 -2 -2
24	108	36	209	77	318	86	447	127	550	99	384	30	154	4	20
	I	I	I	I	II :	I	V	7	7	V	I	V	II	V	III
+8.2 - 8.1 - 8.0 2 7.8 3 7.7 5 7.6 2 -7.5 14 7.4 2 7.3 1 7.2 5 7.1 - 3 3 39	8 9 6 25 18 8 26 5 6 11 4 19	$ \begin{array}{c} 1 \\ - \\ 2 \\ 3 \\ 8 \\ 4 \end{array} $ $ \begin{array}{c} 28 \\ 1 \\ 18 \\ - \\ 2 \end{array} $ $ \begin{array}{c} 68 \end{array} $	19 11 26 14 56 33 11 56 9 45 13 5 35 33	$ \begin{array}{c} 1 \\ 3 \\ 3 \\ 7 \\ 12 \\ 2 \\ \hline 50 \\ 3 \\ 9 \\ 2 \\ \hline 1 \\ 93 \end{array} $	40 18 46 21 59 52 12 97 13 33 28 9 57			2 1 6 6 28 27 16 64 11 20 8 17	63 51 86 60 124 86 43 145 36 58 52 19 108	1 5 7 18 13 10 38 8 20 8 2 9 139	51 18 50 37 89 43 25 80 16 54 37 10 82 592	$\begin{array}{c} 2 \\ - \\ - \\ 10 \\ 5 \\ 4 \\ 26 \\ 3 \\ 6 \\ 3 \\ - \\ 5 \\ 64 \end{array}$	27 10 27 12 40 22 8 49 6 14 8 5 38		8 2 4 4 8 4 - 9 - 2 4 - 3 48
I		I	I	I	II	I	V		V	V	I	V	II	V	III
+9.4 — 9.3 1 9.2 1 9.1 1	9 15 14	1 6 3	11 29 36 40	- 11 12	13 21 46 33	1 2 8 20	17 26 37 52	1 7 19	14 28 47 39		4 16 47 36	1 3 8	1 10 23 23	<u>-</u> - 1	1 10 4 4
-9.0 35 8.9 14 8.8 - 8.7 - 8.6 - 8.5 1 8.4 -	59 22 18 19 17 20 11	95 18 18 - 1 - - 142	144 43 83 45 24 64 17	81 14 22 2 6 1 0	132 50 68 36 26 48 25	133 28 24 9 6 2 —	240 81 105 99 50 94 41 842	161 41 33 14 1 7 2 286	271 115 105 102 65 105 56 947	133 32 26 1 5 2 —	217 83 112 66 53 88 31	$ \begin{array}{r} 94 \\ 20 \\ 16 \\ \hline 6 \\ \hline 1 \\ \hline 149 \end{array} $	144 46 68 42 24 49 18	4 13 1 2 -	53 12 34 18 10 18 —

H. Seeliger: Zur Vertheilung der Fixsterne am Himmel.

	I	II	III	IV	V	VI	VII	VIII	Mittel
m									
7.2	0	0	0.074	0	0.044	0.061	. 0	0:	0.038
7.1	Ö	0	0	0	0	0	Õ	_	0
7.0	0.056	0.037	0.057	0.101	0.106	0.043	0.077	0.5:	0.078
6.9	0.2:	0	0.167	0.133	0.100	0.400	0.286	_	0.170
6.8	0.041	0.111	0.155	0.099	0.101	0.232	0.136	0.167	0.130
6.7	0.600:	0.318	0.414	0.189	0.302	0.267	0.200:	0:	0.297
6.6	0.667:	0.250	0.333	0.231	0.571	0.364	0.20:	0:	0.418
6.5	0.636	0.500	0.569	0.432	0.547	0.542	0.538	0.50:	0.527
6.4	0.5 :	0.000	0.005	0.444	0.286	0.012	0.000	0.00.	0.327
6.3	0.0.	0.111	0.333	0.366	0.304	0.071	0.375		0.265
6.2	0.2:	0.067	0.059	0.080	0.087	0.158	0.167	0:	0.102
6.1	0.2.	0.007	0.167	0.167	0.083	0.130	0.107	· · ·	0.071
6.0	0	0	0.107	0.192	0.003	0.100	0.100	0:	0.092
									0.002
Grenze	6.43 ^m	6.47 ^m	6.53^{m}	6.52m	6.50m	6.54m	6.55^{m}	6.62m	
	I	II	TIT	IV	V	VI	VII	VIII	Mittel
	1	11	III	1 4	, v	A 1	V 11	V 111	Militel
m									
8.2	0	0.056	0.025	0	0.032	0	0.074	0.125	0.025
8.1	0	0	0	0.036	0.020	0.056	0	0:	0.021
8.0	0.222	0	0.065	0.120	0.070	0.100	0	0:	0.079
7.9	0.333	0.143	0.143	0.102	0.100	0.189	0	0:	0.123
7.8	0.120	0.054	0.119	0.194	0.226	0.202	0.250	0.250	0.181
7.7	0.278	0.242	0.231	0.378	0.319	0.302	0.227	0.250	0.299
7.6	0.250	0.364	0.167	0.356	0.372	0.400	0.500		0.353
7.5	0.538	0.500	0.515	0.516	0.441	0.475	0.531	0.556	0.493
7.4	0.400:		0.231	0.303	0.306	0.500	0.500	_	0.322
7.3	0.167	0.400	0.273	0.321	0.345	0.370	0.429	0.500:	0.347
7.2	0.455	0.077	0.071	0.185	0.154	0.216	0.375	_	0.179
7.1	0:	0:	0	0.048	0	0.200	0		0.0 11
7.0	0.158	0.057	0.018	0.074	0.157	0.100	0.132	0.333:	
Grenze	7.59m	7.61m	7.58m	7.58m	7.53m	7.61m	7.53m	7.38m	
OTCHZE	1.00	7.01	7.50	7.50-	7.00	1.01	7.00	1.50-	
	I	II	III	IV	V	VI	VII	VIII	Mittel
						-3	<u> </u>		
m O. 4		0	0	0.050	0	0	0	0.	0.016
9.4	0.111			0.059			0	0:	0.016
9.3	0.111	0.034	0	0.077	0.036	0.250	0.100	0	0.067
9.2	0.067	0.167	0.239	0.216	0.150	0.170	0.130	0:	0.173
9.1	0.071	0.075	0.364	0.385	0.487	0.333	0.348	0.25:	0.311
9.0	0.593	0,659	0.614	0.554	0.594	0.613	0.653	0.679	0.610
8,9	0.636	0.419	0.280	0.345	0.357	0.385	0.435	0.333	0.381
8.8	0	0.217	0.324	0.229	0.314	0.232	0.235	0.382	0.256
8.7	0	0	0.005	0.091	0.137	0.015	0.143	0.056	0.077
8.6	0	0.042	0.230	0.120	0.015	10.091	0	0.200	0.078
8.5	0.050	0	0.021	0.021	0.067	0.023	0.020	0	0.027
8.4	0	0	0	0	0.033	0	0	_	0.010
Grenze	9.38^{m}	$9.32^{\rm m}$	9.21m	9.18m	9.12m	9.22m	9.24m	9.29^{m}	

Die Abzählungen der D.M. sind aber in der hier geforderten Ausführlichkeit nicht ausgeführt worden, indem ich mich seiner Zeit darauf beschränkte, stets 5 Zehntel Grössen zusammenzufassen. Die ganze D.M. nach einem so wesentlich erweiterten Programme von Neuem abzuzählen, dürfte wohl ein zu weitläufiges Unternehmen sein und in keinem Verhältniss zu dem stehen, was damit zu erreichen ist. Ich habe mich darauf beschränkt, folgendes Verfahren einzuschlagen, welches genügende Sicherheit zu bieten scheint.

Es liegt die Vermuthung nahe, dass die Vertheilung der Bonner Zehntelgrössen in den einzelnen Zonen I... VIII procentualiter überall dieselbe ist, sofern man nur grössere Areale des Himmels in Betracht zieht. Die letztere Voraussetzung scheint nothwendig wegen der bekannten, auch von mir hervorgehobenen bedeutenden systematischen Schätzungsfehlern, welche von der Declination abhängig sind. Bestätigt sich diese Vermuthung, so hat man nur die bekannte Abzählung Littrows, der die Summen aller nördlichen D.M. Sterne für jedes Zehntelgrösse ermittelt hat, zu Rathe zu ziehen, da die kleineren Ungenauigkeiten dieser Abzählung hierbei ganz irrelevant sind. Ich habe nun Herrn List aufgefordert, Stichproben in angemessener Ausdehnung anzustellen. Herr List hat unter theilweiser Mitwirkung des Rechners Herrn K. Ebert an den von mir angegebenen Stellen — ich selbst habe mich an den Abzählungen nur in ganz geringem Umfange betheiligt - Abzählungen vorgenommen, die in den Tabellen am Schlusse dieser Arbeit angeführt sind. Am Kopfe dieser Tabellen steht der Declinationsgrad und die AR-Stunden, auf welche sich die darunter stehenden Anzahlen für jede Zehntelgrösse, von 5.6 angefangen, bezieht. Im Ganzen sind rund 42600 Sterne abgezählt worden und ihre Anzahl beträgt in den Zonen I bis VII den 5., 8., 10., 9., 9., und 6. Theil der in der D.M. enthaltenen Sterne. Zone VIII enthält aus Gründen, die gleich erörtert werden sollen, fast alle (genauer 11) Sterne der D.M. Die Abzählungen sind gleich nach den Zonen geordnet; einige wenige Stellen, welche durch * gekennzeichnet sind, gehören

infolge eines Versehens zwei Zonen an, was indessen für die hier in Frage kommenden Eigenschaften gänzlich ohne Bedeutung ist. Ich theile diese Abzählungsergebnisse so ausführlich mit, damit sie bei einer etwaigen Fortführung benutzt werden können.

Unter Σ ist die Summe der in derselben Horizontalen stehenden Zahlen angegeben, unter G die Anzahl, wie sie aus der Littrow'schen Abzählung folgen würde, wenn die Vertheilung der Sterne in die einzelnen Zehntelgrössen procentualiter in allen Zonen gleich wäre. Es wurde ganz beiläufig ein passender Factor f bestimmt, mit dem man die Littrow'schen Zahlen zu multipliciren hat um G zu erhalten, nachdem diese mit 23.28 — der Anzahl der Sterne 9.0 in Tausenden ausgedrückt — dividirt worden ist.

Die Gegenüberstellung der Zahlen Σ und G dürfte nun zweifellos die Berechtigung der obigen einfachen Annahme ergeben. Die Differenzen sind zum grossen Theil belanglos und in Anbetracht der relativ kleinen Zahl von Sternen sogar recht klein; man wird wohl annehmen dürfen, dass bei ausgedehnteren Abzählungen die Uebereinstimmung noch besser werden wird. Eine entschiedene Ausnahme macht aber Zone VIII. Hier sind grosse Differenzen oder besser wesentlich von 1 verschiedene Quotienten $\Sigma:G$ sehr häufig. Aus diesem Grunde wurde Zone VIII fast vollständig abgezählt, was sich ohne besondere Mühe erreichen liess. Eine Erklärung dieses auf den ersten Blick auffallenden Umstandes wird darin zu finden sein, dass sich Zone VIII in der D.M. nur über relativ wenige Declinationsgrade hin erstreckt. Die Ungleichförmigkeiten der Bonner Grössenschätzungen verlaufen aber in auffallender Abhängigkeit von den Declinationsgraden. So offenbar auch hier.

Dem eben gesagten zufolge habe ich die folgenden Rechnungen für die Zonen I—VII ausschliesslich mit den Littrowschen Zahlen ausgeführt, Zone VIII sowohl mit diesen, als auch mit dem mitgetheilten Abzählungsresultat.

Nach Littrows Abzählungen sind die Anzahlen der Sterne der D.M. auf der nördlichen Halbkugel:

m m		m		m	
1 - 5.5	1120	7.1	345	8.7	6799
5.6	30	7.2	984	8.8	10963
5.7	115	7.3	1356	8.9	7596
5.8	177	7.4	516	9.0	23277
5.9	48	7.5	2860	9.1	15615
6.0	618	7.6	609	9.2	20734
6.1	106	7.7	1537	9.3	31278
6.2	293	7.8	2484	9.4	34951
6.3	275	7.9	991	9.5	111276
6.4	101	8.0	5622		
6.5	1239	8.1	1778	m m	
6.6	159	8.2	3650	1 - 6.5	4122
6.7	457	8.3	4609	1 - 7.0	8017
6.8	901	8.4	3101	17.5	14078
6.9	237	8.5	9788	1-8.0	25321
7.0	2141	8.6	4189	1 - 8.5	48247
				1-9.0	101071

Daraus ergiebt sich der Quotient f der Anzahl der Sterne von gegebenem Zehntel der Grösse dividirt durch die Anzahl der Sterne 1—6.5 in der ersten Columne, der Sterne 1—7.5 in der zweiten und 1—9.0 in der dritten Columne:

m	f	m	f	m	f
7.2	0.239	8.2	0.259	9.4	0.346
7.1	0.084	8.1	0.126	9.3	0.309
7.0	0.519	8.0	0.399	9.2	0.205
6.9	0.058	7.9	0.070	9.1	0.154
6.8	0.219	7.8	0.176	9.0	0.230
6.7	0.111	7.7	0.109	8.9	0.075
6.6	0.039	7.6	0.043	8.8	0.108
6.5	0.301	7.5	0.203	8.7	0.067
6.4	0.025	7.4	0.037	8.6	0.041
6.3	0.067	7.3	0.096	8.5	0.097
6.2	0.071	7.2	0.070	8.4	0.031
6.1	0.026	7.1	0.025		
6.0	0.150	7.0	0.152		

Diese f sind mit den oben angegebenen Factoren (S. 385) zu multipliciren, und hierbei die oberhalb der Striche stehenden Zahlen positiv, die unterhalb stehenden negativ zu nehmen. Addirt man alles, so ergiebt sich der Reductionsfactor, mit dem die abgezählten Anzahlen der Sterne der D.M. 1-6.5, 1-7.5 und 1-9.0 zu multipliciren sind, um auf die photometrischen

389

Grössen H zu reduciren. Für den Logarithmus dieser Factoren ergiebt sich so:

	m	\mathbf{m}	\mathbf{m}
	6.5	7. 5	9.0
I	0.034	- 0.010	0.061
II	0.034	0.037	-0.072
III	-0.026	- 0.023	-0.048
IV	-0.042	-0.010	-0.019
V	0.028	- 0.014	-0.045
VI	0.018	- 0.018	-0.017
VII	-0.045	0.048	-0.045
VIII	+0.059	0.057	0.095

Hierdurch erscheinen die Anzahlen auf die folgenden photometrischen Grössen H reducirt:

	m 6.5	m 7.5	9.0
I	6.43	7.59	9.38
II	6.47	7.61	9.32
III	6.53	7.58	9.21
IV	6.52	7.58	9.18
V	6.50	7.53	9.12
VI	6.54	7.61	9.22
VII	6.55	7.53	9.24
VIII	6.62	7.38	9.29

Reducirt man nun alle Anzahlen auf die Sterngrössen 6.5, 7.5 und, um keine grossen Reductionsfactoren anwenden zu müssen, 9.2, so wird man den Logarithmus der Sternanzahlen um die folgenden Quantitäten zu corrigiren haben:

	m	m	m	1
	6.5	7 .5	9.2	
I	+0.030	0.039	- 0.077	0.43
II	+0.014	-0.050	-0.054	0.45
III	-0.015	-0.039	- 0.005	0.49
IV	-0.011	-0.043	+0.011	0.54
∇	0	-0.016	+0.043	0.54
VI	0.021	-0.057	-0.010	0.52
VII	-0.026	-0.016	-0.021	0.52
VIII	- 0.059	+0.059	- 0.014	0.49

Es ist hierbei angenommen, dass die Zunahme des Logarithmus der Sternanzahlen A bei Abnahme um eine Grössenklasse soviel beträgt, als die letzte Columne angiebt. Die Ge-

sammtcorrectionen der Logarithmen der Anzahlen $A_{6.5}$, $A_{7.5}$ und $A_{9.2}$ und diese selbst werden jetzt:

	m	\mathbf{m}	m	1		
	6.5	7.5	9.2	$\log A_{6.5}$	$\log A_{7.5}$	$\log A_{9.2}$
I	- 0.00 t	-0.049	0.138	2.315	-2.792	3.493
H	-0.020	-0.087	-0.126	2.609	3.048	3.818
III	0.041	0.062	-0.053	2.760	3.269	4.089
IV	-0.053	0.053	-0.008	2.827	3.367	4.279
V	-0.028	- 0.030	-0.002	2.953	3.514	4.421
VI	-0.039	-0.075	-0.027	2.829	3.323	4.224
VII	0.071	-0.064	-0.066	2.436	2.933	3.837
VIII	0	+0.002	- 0.139	1.889	2.381	3.236

Berechnet man hieraus $\log \alpha$, wo α das Verhältniss der Anzahlen der Sterne von den hellsten bis zu zwei aufeinanderfolgende Grössenklassen ist und zwar aus den Sternen von den Grössen 7.5 und 6.5, dann 9.2 und 7.5 und schliesslich 9.2 und 6.5, so findet sich:

	$\log a_{7.5}$	$\log a_{9,2}$	$\log a$	$\mid g \mid$
I	0.477	0.412	0.436	4
II	0.439	0.453	0.448	9
III	0.509	0.482	0.492	14
IV	0.540	0.536	0.538	19
V	0.561	0.532	0.544	27
VI	0.494	0.529	0.517	18
VII	0.497	0.532	0.519	8
VIII	∫0.492	∫0.503	∫0.499	2
V 111	(0.531	(0.463)	(0.488	-
	0.514	0.514	0.514	

Für die Zone VIII gelten, wie erwähnt, die angewendeten Factoren f nicht. Nimmt man die durch die Abzählungen gegebenen Werthe an, so findet man — wie nicht näher nachgewiesen werden soll — die an zweiter Stelle stehenden Logarithmen. Am besten wird man Zone VIII überhaupt ausschliessen, da sich für den nördlichen Himmel bei ihr einigermassen zuverlässige Reductionen nicht ausführen lassen.

Bildet man schliesslich, nach Vorschrift meiner früheren Abhandlung 1) und mit den hier wiederholten Gewichtszahlen g die Mittelwerthe von $\frac{1}{2}\log \alpha$ und die Grösse λ , so findet sich:

¹⁾ Abhandlungen 1898. Seite 16-17.

		½ log α	λ	$\frac{1}{2}\log a_0$	λ_0
I		0.218	+0.82	0.237	+0.63
II und	VIII	0.228	+0.72	0.243	+0.57
III und	VII	0.251	+0.49	0.248	+0.52
IV und	VI	0.264	+0.36	0.260	+0.40
V		0.272	+0.28	0.275	+0.25

Die früher erhaltenen Werthe sind hierbei unter $\frac{1}{2} \log a_0$ und λ_0 angegeben.

Danach ist die Uebereinstimmung der Werthe von λ mit den früher gefundenen durchaus befriedigend. Jedenfalls aber ergiebt die neue Bearbeitung der Abzählungsresultate das gleiche Resultat wie die frühere, dass nämlich die $\log a$ mit der Annäherung an die Milchstrasse zunehmen, so lange es sich um Sterne von der Grösse 6.5-9.0 handelt.

Für die helleren Sterne scheint dieser Satz nicht zu gelten, sich vielleicht sogar umzukehren. Die oben (S. 375) gefundenen Anzahlen $A_{5.5}$, $A_{6.0}$ in Verbindung mit den soeben abgeleiteten $A_{6.5}$ geben nämlich:

	$\log \alpha_{6.0}$	$\log a_{6.5}$	$\log (\alpha_{6.0} \alpha_{6.5})$
I	0.293	0.274	0.567
II	0.264	0.234	0.498
III	0.250	0.252	0.502
IV	0.239	0.228	0.467
V	0.221	0.235	0.456
VI	0.214	0.217	0.431
VII	0.258	0.153	0.411
VIII	0.283	0.226	0.509
alle	0.246	0.229	0.478

Eine Abnahme der log a mit der Annäherung an die Milchstrasse ist, wie schon oben bemerkt, besonders bei den Sternen von der Grösse 5.5—6.0 deutlich ausgesprochen. Indessen sind diese Zahlen unsicher, wenn auch wohl nicht in dem Betrage, dass dadurch die bemerkte Eigenschaft verloren gehen dürfte.

An sich ist es ja wenig wahrscheinlich, dass die a für alle Grössenklassen dasselbe Verhalten zeigen und es wird deshalb das gefundene Resultat in keiner Weise befremden können.

Grösse 1.0

	0-40	5-90	10-140	15-190	20-240	25-290	30-340	35-39°i
h m h m 0.0 - 0.40	0	0	3	3	2	2	2	3
0.40- 1.20	1	3	1	2	4	4	3	1
1.20 - 2.0	3	2	2	3	3	1	1	2
2.0 - 2.40	3	3	2	0	1	6	4	1
2.40- 3.20	2	3	1	1	4	2	5	3
3.20 - 4.0	0	1	3	1	7	2	3	4
4.0 - 4.40	0	5	4	14	3	2	3	0
4.40 - 5.20	7	5	2	5	3	2	3	5
5.20 6.0	1	5	3	2	5	3	1	4
6.0 - 6.40	1	2	5	2	3	3	0	0
6.40— 7.20	1	2	2	2	1	2	3	2
7.20 — 8.0	1	2	2	2	2	6	3	1
8.0 - 8.40	2	4	0	2	1	1	0	0
8.40- 9.20	1	2	2	0	1	3	2	3
9.20-10.0	0	3	3	1	3	1	2	3
10.0 -10.40	2	0	3	0	3	1	3	1
10.40-11.20	3	3	3	1	3	1	4	2
11.20 - 12.0	2	5	0	1	2	0	0	3
12.0 -12.40	2	0	1	4	2	7	2	1
12.40-13.20	1	1	2	2	2	3	1	2
13.20-14.0	3	0	1	3	4	1	1	3
14.0 —14.40	2	3	3	5	1	2	2	2
14.40 - 15.20	2	1	0	2	0	4	3	2
15.20 - 16.0	1	2	2	4	3	5	2	3
16.0 - 16.40	2	0	2	2	1	0	4	2
16.40 - 17.20	2	2	4	3	2	1	3	4
17.20-18.0	8	0	1	5	4	3	2	1
18.0 —18.40	3	3	0	1	5	3	4	7
18.40 - 19.20	5	1	7	3	4	3	2	4
19.20 - 20.0	0	5	3	10	3	3	3	4
20.0 -20.40	1	1	7	2	4	3	4	6
20.40-21.20	3	5	2	1	1	4	2	5
21.20-22.0	2	2	0	3	4	4	0	3
22.0 - 22.40	2	_1	3	0	2	3	1	4
22.40-23.20	3	5	2	2	4	0	0	0
23.20 - 0.0	2	3	2	1	1	1	1	0
Σ	74	85	83	95	98	92	79	91
					1	1		- 1

bis 5.5.

40-440	45-490	50-54°	55-590	60-640	65-69 ⁰	70-740	75-790	80-840	85-89 ⁰
2	5	2	1	1	0	1 1	0	0	0
4	1	2	5	1	1	0	0	0	2
4	2	1	0	2	2	3	2	0	0
1	3	0	0	0	1	1	0	0	0
2	3	3	4	0	1	1	0	1	0
1	5	0	1	3	1	1	0	3	0
2	4	3	0	1	1	0	0	1	0
2	1	2	1	1	0	1	1	0	0
1	1	1	1	0	0	0	0	0	0
2	1	0	2	1	3	0	2	0	1
1	2	0	3	0	1	0	0	1	0
0	1	1	1	0	1	1	0	0	0
1	0	0	0	2	0	0	0	0	0
3	3	1	1	2	3	0	0	1	0
3	0	3	3	1	0	2	0	0	0
3	1	0	1	0	4	0	1	2	0
3	1	0	1	1	0	0	0	0	0
2	1	1	0	0	1	2	0	0	0
2	1	1	1	0	0	3	1	0	0
3	0	1	4	0	2	0	0	1	0
0	1	1	1	1	1	0	0	0	0
2	2	4	0	0	1	1	2	0	0
2	2	1	1	0	2	2	0	0	0
5	3	1	3	0	0	1	2	0	0
3	3	2	1	3	2	0	2	0	0
2	2	1	1	0	2	0	0	1	0
2	1	3	3	1	2	1	1	0	0
2	1	1	3	1	1	2	0	0	1
1	2	5	3	0	3	3	1 '	0	0
3	3	3	2	1	2	0	0	0	0
2	4	0	1	2	1	1	1	0	0
5	6	3	1	3	1	0	0	1	0
3	3	2	0	3	2	3	0	0	0
4	4	2	2	2	0	2	0	0	1
2	6	2	1	1	3	1	0	2	0
2	2	1	2	1	1	0	1	0	0
82	81	54	55	35	46	33	17	14	5

Grösse 5.6

, ,	0-40	5-90	10-140	15-19 ⁰	20-240	25-290	30-34 ⁰	35-390
h m h m 0.0 — 0.40	0	1	2	2	4	1	4	1
0.40 1.20	5	0	1	4	3	2	0	2
1.20- 2.0	0	0	1	1	2	3	1	3
2.0 - 2.40	1	1	2	3	4	1	2	2
2.40 - 3.20	0	0	2	3	6	5	2	1
3.20-4.0	2	3	0	4	3	2	2	3
4.0 - 4.40	2	4	8	4	6	3	4	1
4.40 5.20	2	3	1	4	3	3	2	1
5.20- 6.0	6	3	4	2	2	2	1	1
6.0 - 6.40	1	1	4	3	0	2	3	0
6.40 - 7.20	1	2	1	4	5	1	3	0
7.20— 8.0	3	2	2	4	4	1	0	2
8.0 — 8.40	0	1	4	1	5	3	1	2
8.40- 9.20	0	2	1	2	0	2	3	0
9.20-10.0	2	3	2	0	0	1	2	1
10.0 10.40	0	1	3	1	1	0	3	3
10.40-11.20	2	0	0	1	0	1	1	2
11.20-12.0	1	1	0	3	1	1	2	0
12.0 —12.40	1	2	0	2	5	5	0	1
12.40—13.20	1	0	4	0	2	1	0	3
13.20-14.0	2	1	1	0	0	4	1	3
14.0 -14.40	0	0	1	0	1	1	0	1
14.40—15.20	2	0	0	1	1	1	1	3
15.20-16.0	1	0	2	4	0	1	2	2
16.0 - 16.40	1	4	2	1	2	3	2	2
16.40-17.20	1	1	3	2	5	3	1	1
17.20—18.0	2	1	2	2	5	4	3	3
18.0 18.40	1	3	1	2	4	1	2	3
18.40-19.20	4	3	3	6	4	2	6	0
19.20-20.0	0	2	6	5	4	3	3	4
20.0 -20.40	0	0	6	1	6	5	2	3
20.40-21.20	1	1	2	2	3	0	4	3
21.20-22.0	2	2	3	4	1	2	1	1
22.0 -22.40	1	1	2	1	3	1	3	3
22.40-23.20	3	1	0	1	1	0	3	5
23.20 — 0.0	0	1	1	2	4	1	2	4
Σ	51	51	77	82	100	72	72	70

H. Seeliger: Zur Vertheilung der Fixsterne am Himmel. 395

bis 6.0.

40-440	45-49 ⁰	50-540	55-59 ⁰	60-640	65-69 ⁰	70-740	75-7 9°	80-840	85-890
3	3	4	2	1	1	1	0	0	0
3	0	2	0	4	2	1	2	0	0
2	1	1	3	2	1	0	0	0	0
1	1	3	1	0	1	0	0	1	0
1	6	2	1	3	0	0	1	1	1
1	2	5	2	1	1	1	0	0	0
1	2	1	2	3	0	1	1	1	0
4	2	0	2	2	0	1	0	0	2
0	5	1	2	0	2	0	0	0	0
1	3	2	2	1	0	3	1	0	0
2	5	1	1	0	0	1	0	0	0
0	2	1	2	1	0	0	1	1	0
0	2	1	1	2	4	0	1	0	0
1	0	2	1	1	1	1	0	1	0
1	1	1	0	0	0	1	1	0	0
0	1	1	1	0	2	0	0	0	0
0	1	3	1	1	1	1	0	0	0
1	0	1	3	2	0	0	1	0	1
0	1	0	3	1	0	1	1	0	0
2	3	0	0	4	2	1	1	0	0
2	2	3	1	1	2	2	3	0	0
1	0	3	1	2	0	0	0	0	0
0	4	1	1	2	1	0	0	1	0
1	0	6	2	4	1	0	0	0	0
0	4	0	1	1	1	0	2	0	0
1	1	2	1	1	0	1	2	0	0
0	3	2	1	1	0	2	0	0	0
3	0	2	0	1	2	0	0	0	1
2	1	2	3	1	0	0	1	1	0
3	5	2	1	0	0	0	0	1	0
3	5	3	1	4	1	0	1	1	0
1	3	3	7	0	0	1	2	1	0
2	2	2	2	3	0	0	1	0	0
3	0	3	3	4	2	1	3	0	0
3	2	2	4	3	0	1	0	0	0
3	2	1	2	5	1	2	0	1	1
52	75	69	61	62	29	24	26	11	6

396

Sitzung der math.-phys. Classe vom 2. Dezember 1899.

Grösse 6.1

h m h m	0-40	5-90	10-140	15-19 ⁰	20-240	25-290	30-340	35-390
0.0 - 0.40	1	4	4	2	5	4	4	3
0.40 1.20	2	2	4	3	4	3	4	5
1.20 - 2.0	3	0	2	5	5	4	3	4
2.0 — 2.40	0	4	2	3	3	5	6	6
2.40- 3.20	2	1	2	5	0	4	6	4
3.20- 4.0	1	4	2	4	7	0	9	3
4.0 — 4.40	2	4	5	12	8	5	5	7
4.40- 5.20	5	2	3	8	4	6	6	6
5.20 - 6.0	5	3	7	7	2	3	6	4
6.0 - 6.40	6	4	5	10	3	4	3	8
6.40- 7.20	1	4	4	2	3	7	2	6
7.20— 8.0	4	1	6	3	4	2	3	4
8.0 - 8.40	1	1	5	5	3	3	3	5
8.40 9.20	1	2	0	4	5	4	5	3
9.20-10.0	3	2	3	2	3	3	5	5
10.0 -10.40	2	5	1	2	4	3	5	3
10.40-11.20	5	1	3	1	2	3	1	1
11.20-12.0	2	1	1	4	2	1	2	5
12.0 -12.40	3	3	5	2	3	7	1	1
12.40 - 13.20	()	1	3	6	4	2	2	3
13.20 - 14.0	0	4	1	2	5	2	4	5
14.0 —14.40	4	1	3	4	4	4	4	4
14.40 - 15.20	4	3	4	5	5	4	2	3
15.20—16.0	3	1	4	6	3	0	2	5
16.0 —16.40	3	3	2	5	3	5	1	1
16.40-17.20	2	4	5	10	5	4	3	1
17.20—18.0	5	1	8	7	4	3	7	5
18.0 —18.40	3	4	8	11	4	5	4	4
18.40-19.20	3	3	7	8	9	5	6	9
19.20-20.0	2	1	6	3	6	5	7	8
20.0 - 20.40	2	4	6	10	6	4	5	6
20.40 - 21.20	4	7	1	5	6	4	1	9
21.20-22.0	1	6	7	4	5	3	3	5
22.0 - 22.40	2	1	3	7	3	3	5	10
22.40 - 23.20	2	0	2	3	4	5	6	3
23.20 - 0.0	3	6	0	5	4	7	4	7
Σ	92	98	134	185	150	136	145	171

bis 6.5.

40-440	45-490	50-540	55-59 ⁰	60-64 ⁰	65-690	70-740	75-790	80-840	85-89 ⁰
5	2	4	4	2	4	2	3	1	0
10	9	3	4	4	0	2	5	1	0
0	3	2	5	6	2	4	3	1	0
4	6	8	7	1	3	2	0	0	0
5	7	3	2	4	2	2	1	0	0
4	6	5	4	2	3	6	1	0	1
7	1	1	4	1	0	1	1	0	0
3	4	4	4	0	2	4	0	0	0
2	4	5	5	3	1	1	1	0	0
2	2	1	5	1	0	1	1	0	0
3	4	2	1	1	1	2	1	1	0
3	2	2	4	2	2	1	0	3	0
2	4	3	1	0	2	3	3	0	0
2	4	2	3	1	0	3	1	0	0
1	1	2	2	3	3	2	0	1	0
3	3	4	3	3	2	2	0	2	0
5	0	5	3	2	4	2	2	0	0
5	5	0	3	4	1	1	1	2	0
5	1	4	3	3	2	2	0	0	3
4	3	3	0	2	1	0	0	3	0
5	1	5	3	2	2	0	1	1	0
6	3	0	5	2	1	0	0	1	0
3	4	2	1	2	3	1	1	0	0
2	1	3	4	3	2	0	1	0	0
3	1	3	1	3	2	3	1	0	0
5	6	2	2	4	2	1	3	0	0
6	9	2	3	2	3	1	1	1	0
4	9	4	2	2	2	1	4	0	0
7	8	5	1	3	1	1	3	2	0
3	5	7	13	5	3	1	2	0	0
10	7	8	7	3	2	1	1	1	1
9	8	7	4	4	3	0	1	3	0
5	11	8	4	7	3	2	3	0	0
3	4	4	5	5	2	2	0	0	1
12	5	1	7	7	1	1	0	1	0
6	6	4	5	6	4	3	0	0	0
164	159	128	134	105	71	61	46	25	6

	70	10^{0}	110	15 ⁰	210	220	250
Zone I.	h h	h h	h h	h h	h h	h h	h h
m m	12-13	12-14	12-14	12-14	12-14	12—14	12-14
1 - 5.5			2	1	1	2	1
5.6			_	_	_		_
7	_	_	1		1	_	_
8 9	_		_	_	1		
6.0	1	1			2		3
1			_	_		_	_
2	_	_	_	_	_	_	_
3	_		_	town	_		1
4 5	_	1	3	_	_	2	2
6	_	1					
7	_	1	_	1	_		
8	_	_	-		1	2	3
9	<u> </u>		1	1			
7.0	_	2	3	3	_	4	1
1	_	1		1		1	
2 3		1	1	1	1 1	1	$\begin{array}{c c} 1 \\ 2 \end{array}$
4			1		î	4	ī
5	1	1	1	2 2	5	4	6
6	_	_	_	2	_	1	_
7 8		3		1	$\frac{2}{2}$	_	3 2
9		$\frac{1}{2}$	_	1	_		_
8.0	2	4	3	3	7	8	7
1		3	1	_	i	ĭ	
2	4	4	2	4	3	1	
3	2	3	7	6	4	4	2
$\frac{4}{5}$	1 3	4 6	1 6	1 8	6	3 5	5 15
6	4	9	4	5	3	3	1
7	5	12	10	6	2	5	6
8	7	10	11	9	11	8	10
9	1	15	2	3	2	5	8
9.0	7	12	12	13	19	15	14
$\frac{1}{2}$	3 11	13 13	5 19	13 15	13 15	9 12	18 17
3	8	$\frac{15}{24}$	20	32	33	28	28
4	7	15	20	14	16	31	25
5	30	88	70	106	59	65	86
	97	250	206	252	212	224	268

30 ⁰ h h 12—14	31 ⁰ h h 12—14	350 h h 12-14	41 ⁰ h h 12 - 13	42 ⁰ h h 12-13	Σ	$G \\ f = 0.18$
	2	_	1	1	11	9
		1 1	_ _ _		3 2 —	1 1
	1 - 1 - 1 - 1 3			1 1	8 2 4 7 1 5 13 3	5 1 2 2 1 10 1 4 7
	1 -4 2 1 3 2 -1 1	2 1 - 3 2 2 1 1	$ \begin{array}{c} 2 \\ 4 \\ 1 \\ - \\ 3 \\ - \\ 1 \\ 1 \end{array} $	$\begin{bmatrix} - \\ - \\ 1 \\ - \\ 6 \\ 2 \\ - \\ 2 \\ 2 \end{bmatrix}$	18 3 11 13 8 36 10 12 11 9	17 3 8 11 4 22 5 12 19 8
3 2 6 3 6 8 3 6 7	2 2 2 6 1 3 6 4 7	2 3 5 2 6 2 10 8	3 1 2 1 2 3 1 - 2	1 1 1 2 1 4 2 1 3 5	45 15 32 45 27 73 43 67 92 62	44 14 28 36 24 76 32 53 85
13 14 9 27 39 97 257	15 21 12 24 35 79 253	17 9 10 24 15 71	6 3 2 5 10 28 83	5 4 6 12 7 29	148 125 141 265 234 808	180 121 160 242 270 860

Zone II.	1 ⁰ h h	20 h h	10 ⁰	10 ⁰ h h	11 ⁰	11 ⁰			22 ⁰	22 ⁰	30 ⁰
m m	11-13	1	1020-1120			14-15	10-11	14 ₄₀ -15 ₄₀	10-11	1440-1540	10-11
1—5.5 5.6	_	2	1	1	2	_					
7	_	=		_	_	_	_	_		_	
8 9			_	_	_	-	_	_		_	_
6.0	-	2	_	=	_			=	-	-	1
$\frac{1}{2}$			_	_	_	_	_	1	_		
3	_	_	_	_	_	_	_	_	_	1	_
4 5		1 1	_	_		1	3		_	_	2
6 7	_		_	_	_	_		_	_	_	=/
8	2		_	-0	_	_	_	= 1	_	1	2
$-\frac{9}{7.0}$				<u> </u>		_ 2	1	_	—	1	<u> </u>
1	_	_	_	_			_	2 —	3		
2 3	$\frac{1}{2}$	_	<u> </u>	1	1	_	1		_		
4	_	!		1	_	1	_	_	1	-	_
5 6	1	1	1 1	3 1	1	1 1	1		5	1	3
7	2	3	2	1	2	_	1	1	1	1	-
8 9	5	3 1	_	2	<u> </u>	2	1 1	_	1	$-\frac{2}{-}$	1
8.0	3 2	5	_	2		4	1	4	1	2	1 2 1 3 5 5 2 7
2	5	1	1	1	2	2	3	1	2	5	2
3 4	6 2	3 2	1	2 3		3	2 2	6	$\begin{vmatrix} 2\\2 \end{vmatrix}$	$\frac{1}{2}$	3
5	12	7	7	5	4	-	6 3	9	3	<u>-</u>	5
6 7	6	3 8	1 3	3 4	5	2 4	2	1 5	6	5	2
8 9	13	17	8	6	5 1	4 3	3	4 2	4 2	7 4	7 4
9.0	31	23	13	7	6	13	7	12	10	6	10
1 2	7 27	8 15	8 12	7 11	8	3 7	10	3 6	8	7 12	6 10
3	42	39	19	17	17	8	10	19	13	17	10
4 5	88	9 80	5 47	16 55	9 56	61	15 49	13 42	15 43	14 43	15 50
	268	237	135	157	124	136	132	132	134	134	143

30°	310	310	410	410	420	42^{0}	50^{0}	51º	62^{0}	63 ⁰	640	-	G
h h			h h	h h		h h 14-15		h h		h h	ь h 12-13	Σ	f = 0.25
15-16	10-11	15-16	11-12	14-15	11-12	14-10	11-14	11-14	12-13	12-13	12-15		
2	1	1	_	1	_	_	2	_	-	_	_	13	12
_	_	_	<u> </u>	-	_		_				_	_	_
_	_	_	_		_	_	<u> </u>	_	-	_		_	1
_	_	_	_	_		_	_	_		_		_	2
1	1	1					1	2	1	1	2	10	7
			_	_		1			=			10	1
_	_	_	1		_					_		3	3
-			-		_	1	_	_		_	_	2	3
_	-	_	_		_	_			_	-	-	1	1
1	_		2	1 1	2		3	1	. 1	1		19	13 2
_	_	_				_	_	1		_		1	5
	_	1	_	1	1	1		_	1	_	1	10	10
_	_		1	_	_	_	—	—	—		-	1	3
-	3	2	2	1	1	3	1	1	-	1	-	26	23
_	1	_	_	_	_		_	_	_	_	_	1	3
<u> </u>	_	1 3	2	2			$\begin{vmatrix} 2\\1 \end{vmatrix}$	3	1	1	1	9 17	11 15
	1		_	_	1	_		1	1			7	. 6
2	î	_	1	2	1	_	3	3	2	1		34	31
_			1	_	—			—		_	_	5	7
_	_		_	-	1	_	3	_	_	_	1	19	17
_		1		_	1	$\frac{2}{1}$	4	3	_			29 10	27 11
3	6	2	2	1			1	5	1	_		43	60
2	1		_	_		1	4	1		_	_	14	19
_	2	2	1	3	1	_	1	$\frac{1}{2}$	1	_	2	40	39
3	3	_	_	2	2	2	1	4	2		4	50	50
3	3	2	2	2	1		7	5	_	1		46	34
5 4	2	2 3	9	3 4	7 1	4	8 2	3 4	1	1	1	103 46	$\frac{105}{45}$
2	2	2	2	4	2	5	6	6	2		1	84	73
5	12	9	4	3	4	3	6	6		1	2	132	118
3	9	7	1	4	3	2	5	3	1	3	3	79	82
11	9	7	8	6	7	8	22	26	3	2	5	252	250
9	4	6	10	7	7	10	13	8	1	7	4	153	168
11 12	15 8	$\frac{5}{12}$	$\frac{10}{12}$	7 11	5 8	10 16	17 19	$\frac{22}{27}$	3 10	8 5	$\frac{4}{5}$	239 356	223 336
14	17	10	17	15	8	11	35	$\frac{27}{21}$	5	7	3	291	375
44	36	41	20	15	23	21	81	78	22	11	10	1016	1195
138	136	119	109	96	87	102	248	239	57	51	49	3163	

402

m m 15.5	-		1	1		10 ⁰	10	47			22° 40 45 45	220	30° 06-008	16-17 30 ₀	31° 4 026.028 1	31° = 21-91 3	41 ⁰ 401-6
5.6 7 8 9	_	_	1	_ _ _ _ _							_	1			_		
6.0 1 2 3 4		1 -	- 1 -	1 - 1 -	1 - - -	_ _ _ _				1 - - -			1 -	1 -	_ _ _ 1	_ _ _ _ _	
5 6 7 8 9	_ _ _ 1	_ _ 1 _			_	_ _ _ 1		1 - - - 1	1 - - 1	1	1 1 -	2	1 -	_ _ _ 2	1 1 -		
7.0 1 2 3 4	- - 1 1	1 2 1 -	_ _ _ _	- 1 - 1	_ _ _ _	2 - 3 2	1 1	1 1 1 1			1 1 1	1 1 -	1 - 1			_ _ 1 1	3
5 6 7 8 9	- - 1	2 - 1	2 - 2 -	1 1 -	1 2 2	- 1 1	- 2 3 1	3 1 1	2 - 1 3	1 1 2 1	2 1 - - 1	2 2 2		2 - - 1	3 -	1 1 1 1	1 1 2
8.0 1 2 3 4	2 - 4		6 - 4 3 3	$\frac{2}{1}$	1 1 2 2	3 3 1	5 - 1 5 1	6 2 1	2 2 - 1 2	5 1 8 3	3 2 2	3 - 2 3 1	1 1 4 6	3 2 2 1 3	2 - 1 2 3	3 - 2 2	3 3 1 1 2
5 6 7 8 9	6 - 2 16 4	1 7 4 3	5 1 2 14 2	1 5 1 4 2	9 2 6 6 3	10 1 2 5 2	5 - 4 10 5	7 2 6 8 5	4 5 1 5 4	6 3 6 4 4	2 2 2 6 2	3 - 3 7 1	4 1 3 2 7	5 5 3 6 3	6 1 5 7	3 3 3 -	6
9.0 1 2 3 4	15 10 7 24 16	4 2 7 11 9	11 5 9 23 15	4 3 13 14 4	11 9 11 29 27	12 9 14 22 24	15 1 2 24 7	15 7 8 25 19	11 8 13 12 32	16 11 11 16 15	9 10 11 9 20	16 13 5 12 22	6 9 6 10 27	9 8 13 19 24	17 5 16 10 15	16 9 12 20 16	16 9 8 8 15
5	55 165	73 135	32 144	67 131	42 170	67 188	94 188	72 196	68 178	56 176	33 125	48 150	65 158	67 179	71 169	146	39 135

				16-17 16-17 16-17		51 ⁰	620 401 46	62 ⁰	ਬ ਹੈ। ਬ ਹੈ। ਬ ਹੈ। 830	16—17 16—17				40	4 2	71 ⁰ 14 - 16		G f=0.3
_	_	2	-	-	-	-	1	_	1	_	_	1	1	1	-	-	21	14
-	-1	-	-	-	-	-1	-		-	-	_	-	-		-	-1	1	_
																	2	$\frac{1}{2}$
	_	_	_	-	_	_		_	-	_	_		_		_	=		1
-1	-	-	-	-		-	-	-	-	_	_		1	-1	-	-Ì	4	8
						1	_			_	_						3	1 4
_		1	_	_]	_		_		_	1	_		1		1		6	4
	-	-	-	-	_	_	_	_	-	_	_			-1		_!		1
2		1		2	_		_	1	1	1	1	-		-			17	$\begin{array}{c} 16 \\ 2 \end{array}$
	_	_			_	_	_			_							3	6
1	_	2	-	1	1	-	_	-	_	2	2	_		-	-	1	13	12
1	_2		_		1	2		1	-	_			2		-	1	17	3 28
				1			_		2	_	_		1				6	4
_	-	-	1	1	1	_	_	2	_	_	_	-	_	2	-	1	21	13
1	2	2		1		3	_	1	1	_	1		1	1	1		25 5	17 7
5	1	4	2	2	1	1	-	1	1	1	1		3	1	1	1	48	37
-	_	-	—	1	_	_	3	<u> </u>	_	—	-	-		1	-	-	9	8
	1	1	3		1	2	1	1	1	$\frac{2}{1}$	1	1 1	1 2			3	29 33	20 32
2	1	_	_	_	-	1	_						-	1	1	-	12	13
2	3	4	2	2	3	5	1		4	3	1	2		4	3	1	92	72
_ 5	2 1	3 2	2 1	$\frac{1}{1}$	1	_	2	1 1	$\frac{1}{2}$	- 1	! —	1	3	1	1		28 55	23 47
1	3	2	3	-	1	2	1	1		3	1		1			1	58	59
1	1	_	3	1	1	4	1	_	_	1	_		1	2	_	1	38	40
3	4	7	8	3 2	6	4	2	6	1	2	-	$\begin{vmatrix} 1\\2 \end{vmatrix}$	7	$\frac{2}{2}$	1	5 1	144 50	126 54
1	2	3	2	1	5	1	2	1	1	1		$\frac{2}{2}$	1	1	3	3	84	88
	4	4	2	4	6	3	3	6	2	3		2	2	3	2	5	160	141
$-\frac{6}{9}$	6	3	3 5	1	$\frac{1}{6}$	4	1	2	-	3				3	-		103	300
9	8 4	14 10	9	8 3	10	9	9 3		$\begin{vmatrix} 7\\1 \end{vmatrix}$	7				10 5	6	6	216	201
13	12	12	4	4	6	6	4	2	6		1	2	1	4	5	9	261	267
12 9	8 9	11 9	10 12	16 13	8	17 8	3		5 5	10				5 14	4	7 12	431 453	403 450
37	43	24	26	42	22	30			18					26	34	21	1445	1434
121	118	122	99	111	92	109	57	76	60	74	49	59	95	89	68	88	4220	

Zone IV.	10 4 6-8	10 H H 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 4 6 -8	2º = 1:	10° 00° 00° 10° 10° 10° 10° 10° 10° 10°	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	11 ⁰ 028.027	11° + 18 11° 11° 11° 11° 11° 11° 11° 11° 11°	210 = «	210 4 61 - 81	22°	22°	300	h 19	31°	31° d 4 d 181	410 = 8 = 1
1—5.5	_	2	1 —	4	-	_	1	1	_	2	2	1	1	2	_	2	-
5.6 · 7	_	_	-	-	-	-	-	_	-	_	-	-	_	-		_	-
8	_	_		_	_	1		_	1	_	_	_			_	1	
6.0	<u> </u>	<u>-</u>		_	_		_	_	_	1	_	_	<u> </u>		_	2	1
1	_		_		_	_		_		_		_	_	_	_	_	
2 3	_	_	_	_	_	_		_	_	_	1	_	_	1	_	_	_
4	<u> </u>			_	_			-	_	_	_	_	_	-	_	_	
5 6	_	1	1	3	1	_	1	2		_	_	2	_	1	2	1	1
7 8	-	3	_ 1	1	_	-		_	1	2	$\frac{}{2}$		_	1	1	_	1
9	=	-	_	_	_	_	-			2	_	_	_	_		_	
7.0	_	_	_	2 1	1	_	-	1	2	1	2 1	_	2	1	1	1	2
2	_	2	2	_	_	1		2	1	-	1	1	_	1			
3 4	2	_	_	1	_	_	3	1	_ 1	_	1	_	_	2	_	1	1
5	2	2	5	1	-	2	2	2	2	2	2	4	3	3	2		3
6 7	$\frac{1}{2}$	2	_	•	_ 1	1	1	2	1	1 4	1	2	2		2	3	1
8 9	$\frac{2}{2}$	4	4	3	2	1	2	1	2	4	- -	2	1	1 2	1	1	$\frac{2}{1}$
8.0	9	3	3	6	6	1	6	1	4	6	7	3	1	6	2	9	6
$\frac{1}{2}$	1	3	_ 4	2 1	_ 6	4 3	1	1 4	2	1 4	$\frac{2}{2}$	1 3	4	2	3 4	7	2
3	5	2	6	3	3	1	5	2	3	3	3	2	3	3	4	2	_
5	11	6	15	8	13	9	7	5	8	11	4	7	6	6	10	10	3
6	-	_	_	2		5	2	5	3	4	3	5	2	5	4	3	1
7 8	7 17	7 10	8 23	3 10	7 14	11 3	8 12	8 11	3	5 11	5 5	10 6	11 6	5 10	7 6	6 9	2 7
9	-	2	2	3	2	7	2	4	3	10	7	6	8	14	5	12	8 12
9.0	42	16 9	39 5	19 11	30	20 16	33	15 9	12 16	19 16	21 4	17 20	10 21	19 18	17 25	26 22	11
2 3	7 36	7 33	13 38	15 36	27 38	22 28	23 18	14 19	$\frac{17}{21}$	22 37	15 35	34 36	14 28	21 29	13 29	28 28	19 21
4	19	18	17	24	19	28	10	45	33	38	27	30	21	26	35	30	26
5	$\begin{vmatrix} 71 \\ 240 \end{vmatrix}$	77 213	81 268	83 244	$\frac{85}{264}$	$\frac{83}{247}$	113 254	$\frac{75}{231}$	$\frac{107}{248}$	147 355	$\frac{120}{274}$	117 311	$\frac{71}{218}$	$\frac{106}{290}$	$\frac{68}{242}$	$\frac{89}{296}$	$\frac{49}{187}$
					1												

18		4 8 L	500	4 S	51 ⁰	15 P	ا 🚙	4 18 - 80 A 61 A 6	200 a 8 - 1			40° 40° 40° 40° 40° 40° 40° 40° 40° 40°		a 2		71 ⁰	Σ	G = 0.5
1				2		-		_	-	_	-	1		_		_	22	24
		-	-	-	-	-	-	-	-	-	-	-			-	-	-	1 2
		_											_				3	4
		_				-	_	-	-	-	_	_		_	-	_	-	1
		_			1			-	1				2		1		10	13
		_		1		1											2	6
-	-	-,	-	-	-	-	-	-	-	1	-	1	-	1	-	-	5	6
	1	i	-	1		<u></u> ;	<u> </u>	1	_	1		1	1	-		_:	22	2 27
	-	_	_	_	-	_	-	1		_	-			_	_		2	3
1	1	-	-	1	-	1		2			-	-	1	1	1	1	13	10
1	_	_	_	_1		2	_							_1	2	1	17	19 5
2	1	1	<u> </u>	1	1	1	2	<u> </u>	1	1	-		2	-1	1	-i	30	46
-	-	1	-	-	-		-	1	-	-	1	-	1	-	-	1	6 15	7 21
1	2	3	1		1	1		_						_			19	29
	1		-	1	1	-	_	-		1		-		-	-	-	10	11
3	4	3	2	1 2	3	1 2	1	4	-	4	1	1	-	2	1	5	73 13	61 13
1	1 2	3		1	1	4	_	2	1		1		1	2	2	1	43	33
1	3	-	_	2	1	_	1	-	1	1	2	2	2	4	-	1	50	53
1	1 4	7	1	2	6	3	-	5	1	3	2	1	1 3	2	3		$\begin{array}{ c c c }\hline 23\\\hline 124\\\hline \end{array}$	$\frac{21}{121}$
2	-4	1		_	1	-	1	-	_	1	_	1		1	_	2	35	38
_	1	_	3	2	4	4	3	4	_	_	_	1	1	2	1	2	76	78
3 5	3	4	_	3 2	2	1 5	_	3 2	$\frac{1}{2}$	3	_	1	1	2	3	8	82 46	99 67
9	6	5	10	7	4	11	3	5	4	8	1	7	1	1		4	226	210
3	2	2 3	2	3	2	3		5	1	1	_	_	1	2	2	-	73	90
3 11	1 5	9 8	2 4	9	3 5	3	1 5	3 5	3 2	1 10	$\begin{vmatrix} 2\\4 \end{vmatrix}$	5	2 4	2	3	3	157 259	146 236
4	6	5	5	7	4	6	1	1	2	4	1	7	2	3	2	3	158	163
13 13	9	15 8	13 8	12 13	9 5	13 13	5 5	4 8	4 3	17 5	2 2		8 5	12 8	8	10	530 337	500 335
14	7	14	5	18	8	12	5	6	5 5	7	3		6	8	4	3 8	444	445
18	16	23	6	18	18	9	8	10	8	8	4	13	10	6	9	12	706	672
23 45	25 38	19 76	23 35	24 64	17 30	18 63	20	12 25	14 11	15 17	6 17	7 27	11 33	7 51	16 21	15 32	702 2147	751 2390
	153							109	66	1	49	,	100		90		6483	

Zone V.	10 H H H H H H H H H H H H H H H H H H H	20 61-81 4 4	10 ⁰	10° 4° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10	11 ⁰	110 407-61	21°	21° 4°51 4°51	220 = 2-9	220 4 03 - 61	4 9 4 9 300	19-20 19-20 008	310 = 9 = 10	31° 4° -61	41 ⁰	41 ⁰ 41 ⁰ 40 ⁰	42° q 9 q 9 q 10°
m m 1—5.5	1		1	3	2	3	-	1	2	_	_	-	_	_	_	1	_
5.6	-	-	-	_		_	-	_	-	-	_	-	_	-	<u> </u>	-	_
7 8	_	1	_	_	- -	1	_	_	_	1	_	2	_	_	_	_	
9	_		_	_				_	<u> </u>	1	-	<u> </u>	_	-	_	_	_
6.0	1	_	1	1		_	1	1		1	1		_ _ 1	$\frac{2}{-}$	1	_	1
2 3	-	<u> </u>	_	-	_	1		1	-	-	1	1	1	-	1	2	-
4	_	_		_	_	_	_	_	=	=	_		2	_	_	_	1
5 6	-	_	1	_	_	1 1	_	1 1	1	1	_	2	$\frac{1}{2}$	1	_	2	
7		_	_	1	_	_	-	1	1	2	_		1	1	2	2	
8 9	_	3	1	1	2 1	$\frac{2}{2}$	_	2	_		_	$\begin{vmatrix} 2\\4 \end{vmatrix}$	$\frac{2}{-}$	1	1	2 4	
7.0	2	1	2	4	2	2	-	1	2	3	2	4	2	3	4	3	1
$\frac{1}{2}$	1	2	1	2	2	_ 1	1	1	1 3	1	_	1	1	2	_	1	1
3 4	_	2	_	1	_	1	2	3	1	2	1	2 2	- 1	2	2	5	3
5	-	1	2	3	3	4	1	3	$\frac{}{}$	4	3	2	2	4	3	1	2
6	1	_	_	_	1	_	1	1	-	1	-	1	1	3	1	_	-
7 8	5 3	3	1	1	1	$\begin{vmatrix} 2\\4 \end{vmatrix}$		$\frac{3}{2}$	3	5 3	3	3 6	3 4	4	1	4 5	1
9	1	2	_	1	2	_	2	3	1	_	2	2	3	1	1	1	4
8.0	2 4	3	3	$\frac{10}{2}$	11 4	8	3 4	5 4	4	5 3	5 2	3 5	7 2	5 8	3 8	3	7
2	4	6	4	2	3	4	3	7	_	5	6	5	3	9	4	3	4 3
3 4	5	2 4	5 1	6 3	7 6	3	3	8 7	1 4	7 2	3	3 8	4	5 10	3 5	3 5	6
5 6	7 5	3	5 2	12 4	16 9	7 8	7 4	10 5	12 4	8 3	10	8	3 4	9	7 4	8 8	10
7	7	7	9	10	12	8	12	8	11	3	9	9	10	7	5	10	8
8 9	6 7	12 7	$\frac{20}{12}$	13 9	11 13	13 12	10	8 13	20	7 16	7 6	12 11	7 9	21 15	13 4	11 13	4 7
9.0	9	19	25	18	25	24	20	23	22	22	23	32	18	21	21	23	27
$\frac{1}{2}$	14 17	13 23	12 27	18 21	21 42	$\frac{20}{27}$	13 27	$\frac{22}{32}$	$\frac{20}{20}$	15 21	$\frac{33}{24}$	21 38	23 33	34 29	12 16	17 40	16 19
3	30	25	44	36	49	31	56	43	42	38	28	48	21	49	34	27	27
4 5	46 116	108	$\frac{36}{184}$	41 165	50 130	53 145	63 139	$\frac{45}{131}$	50 166	39 120	38 114	$\begin{array}{c} 70 \\ 164 \end{array}$	$\begin{array}{c} 40 \\ 132 \end{array}$	$\frac{76}{147}$	49 85	53 134	45 104
		296					388					475			290		309

407

42 ⁰	4.0	Ph h 200 21-22	51 ⁰	51 ⁰	62 ⁰	620 4 %	63 ⁰	63 ⁰ 4 4 63 ⁰ 83 - 83	4 2 -0	64 ⁰ 4 87 - 87	70°	700 4 0-87	71 ⁰	71 ⁰ q 0-83	Σ	G $f=0.6$
_	-	1	1	_	2	1	1	<u> </u>	_	i —	1	_	1	_	22	29
_	-	-	_	<u> </u>			_		_	-	-		_	_	_	1
_	1		_		_	_	1			1			_		3 6	3 5
_ 	-	_	_	_	_	_	_	_	1	_	_	_	-	_	2	1
1	2	-	-	-	<u> </u>	3	2	=	1	-	1	2	_	_	20	16
_ _ 1 1	1	-	-	-	-	 	1		—	- - -	1	_		_	6	3 8 8
1		_		_				_		_	1			_	8 3	8
î	-	—	_	1	_		_	_	_	-	—	<u> </u>	_	_	5	3
4 - 1		<u> </u>	_2	1	2	3	_	1	2	1	1	_	1 1	_	29	32
		1	1	1		_ _	1	_ 1	1		1	_	1	_	10 16	4 12
	1	_	_	1	_	1	_	1	1	1			1	1	27	23
1	1	-	_	_	-	_	_	_	-	_	_	_	_	1	18	6
	3	1	3	_	2	3	2	_	3	1	1	_	_		57	55
	1	2 1	_ _	$\frac{2}{2}$	$\frac{-}{2}$	_ _ _	_	- 1	_		$\frac{-}{2}$	_	_ _ _ 1	_	18 24	9 25
2 3	1	3	2	2		_	1		1	2	4			_	42	35
_3	2	2	_	1	2	_	_	_	1	<u> </u>	_	_			23	13
4	5	_	3	2	3	5	_	2	2	2	1	1	_	_	69	74
1	3	$\frac{2}{2}$	1	1 1	2	2	3	_	2	1	_	_		_	20 49	16 40
4	2	1	6	1	1	2	4	4	2	1	2	1	1	1	77	64
_	1	_	_	1				_		1	_		-		29	25
2	8	3	8	1	9	3	7	1	3	1	3	2	2	4	145	145
5 6	3	1 4	3	4	1 8	1 5	1 6	\$\frac{1}{3}	1 3	1	1	_	1	1	75 121	46 94
13	1	3	8	6	4	1	9	3	2	2	2	2	î	_	128	119
1	3	1	2	4	3	2	3	3	3	_	2	_		_	101	80
10	8	8	8	3	12	5 3	14 6	1	8	5	5	2	5	2	239	252 108
6 14	8	5 14	7 2	6	5 7	3	8	4 3	2 4	2	1 1	3	1 3	1	133 219	108
15	14	11	9	10	11	5	7	5	10	6	6	2	6	4	316	283
12	9	6	12	2	7	3	4	4	9	7	5	_	2	_	249	196
21	40	14	21	19	22	6	19	9	15	5	12	2	7 12	6	590 492	600
14 25	14 44	18 15	19 29	17 21	13 16	8 13	13 13	11 5	16 27	4 18	7 9	5	12	4	708	402 534
33	30	29	32	22	18	9	30	4	19	14	12	6	9	13	908	806
54	58	39	44	34	68	17	39	11	40	21	17	6	11	9	1305	901
120	146		124	86	137	40	105	47	123	36	66	10	46	22	3496	2868
378	421	291	3 00	254	357	141	300	125	302	133	165	46	120	69	9708	

Zone VI.	1 ⁰ h h 5-6	10 h h 20-21	2 ⁰ h h 5-6	20 h h 20-21	10 ⁰ h h 4-5	10 ⁰ h h 20-21	11 ⁰ h h 4-5	11 ⁰ h h 20-21	21 ⁰ h h 4-5	21 ⁰ h h 21-22	22 ⁰ h h 4-5	22 ⁰ h h 21-22
m m 1-5.5	1	_	2	_	_	3	_	_	2	1	2	1
5.6	_ 1	_	_	_	1	_	_ 1	_	_	i		
8	1		_	_	_	1	_		1		_	_
6.0	_	 	_		_	1	<u> </u>			1		
$\frac{1}{2}$	_ '		1		_	_	_	1	_		- 1	
3	_	_	_	_		_	1	1	1	_	_	
5	2	<u> </u>		1	1	1		— —		1		1
6 7	=	_	_	_	_		_ 1	1	_ 1	_ 1	_	1
8 9	2	_	· <u> </u>	1	_	1	î —		_	3	_	_
7.0	_	2		1	1	$\begin{vmatrix} - \\ 2 \end{vmatrix}$	2	1		4	3	2
$\frac{1}{2}$		_	_ 1	1 1	1	1	_	$\frac{1}{2}$	_	1	_	
3 4	_ 1		1 1	1 1	_	_	_		_	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	1 1	-
5	_	4	_	3	2	1	5	3	2	4	2	1
6 7	1	3	3	-	_	1 _	_	1 1	_	$-\frac{1}{2}$		2
8 9	$\begin{array}{c c} 2 \\ 1 \end{array}$	2	3	1	2	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	1	4	1	1	1	2 1
8.0	1	3	3	3	2 3	6	1	3 2	3	6	3	4
1 2	1 6	$\frac{1}{2}$	$\frac{1}{2}$	5	4	2	1	4	5	3	_	2 4
3 4	3	8	3	3	3 1	$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$	4	3 3	1	$\frac{2}{-}$	$\frac{2}{1}$	3 2
5 6	2 1	6 2	3 4	10 2	3 2	10 4	5	6 3	1 5	3	3 1	7 3
7	9	2	4	1	2	7	2	6	4	4	5	4
8 9	5 4	8 3	6 4	10	2 3	5 9	2 4	6 9	5 4	14	6 5	11 3
9.0	24 10	24	19 12	22 7	14 10	18 16	7 2	24	17 8	15 12	13 8	17 18
2 3	22 17	17 28	19 14	18 20	16 13	18 24	5 15	24 35	7 18	10 16	14 16	17 28
4	33	12	21	15	14	44	7	59	4	27	16	32
5	315	86	139	212	80 180	103	78 146	348	80 174	83	$\frac{95}{200}$	81

409

					·						
30 ⁰	300	310	310	410	410	420	420	500	510		G
h h	h h	h h	h h	h h	h h	h h	h h	h h	h h	Σ	G $f=0.4$
2-4	21_{20} -23	3-1	2120-2320	2-3	23-0	2-3	23-0	0-2	0-2		,
_	_	2	-			_	1	1	. —	16	19
_	-	_	_	- T	_	_	_	-	_	1	1
_	_	-	_	_	! -	-	-	-		2	2
1	_		2	_	1	_	_	_		6	3
	1	<u> </u>	2		2	<u> </u>	1		2	14	11
1			_	_		_	_	1		4	2
_	_	-	1	i —	_	_	1	_	-	3	5
	1	_	1		_		-		2	7	5
		<u> </u>	_			-		_		1	2
4	$\begin{array}{c c} 1 \\ 2 \end{array}$	4	_	_	1	2	1	2 1	_	21 5	21
	ī	_	2		1	1		2	1	12	8
		1	1	_	$\overline{2}$	2	-	$\frac{1}{2}$	1	17	15
1	_	<u> </u>	_	1		_	<u> </u>	1	_	4	4
1	5	4	2	1	3	1	2	3	5	45	37
$\frac{1}{2}$	2	1	1	2		1	—	3	$\frac{2}{2}$	11 21	6
3	1	1	$\frac{}{4}$	$\frac{2}{2}$	1	1	1	2	1	$\frac{21}{20}$	17 23
1			1	_	1		1		_	9	9
5	3	1	4	3	_	3	8	1	3	58	49
1	_	1	1	_	1	_		3	3	15	10
_	2		3	1	3	1	1	1	4	26	26
4	5 1	1	6 3	$\frac{2}{1}$	6	$\frac{1}{2}$	3 2	1	7 3	57 20	43 17
2	7	2	3	6	6	7	2	4	5	82	97
	3	$\frac{1}{2}$	1	_	1	3	2	2		24	31
5	10	3	4	3	6	3	4	5	2	83	63
7	6	5	8	4	4	6	5	4	3	92	79
4	7	4	6	3	1	1	4	8	4	56	53
6	11 7	5 2	13 6	$\begin{vmatrix} 10 \\ 2 \end{vmatrix}$	6	9 8	6 5	9 7	17 13	151 78	168 72
4	15	$\frac{4}{2}$	5	$\frac{2}{5}$	7-	4	6	5	12	115	117
12	17	13	24	5	14	14	5	18	11	213	188
11	10	6	7	5	6	5	12	12	13	142	131
18	28	9	39	11	10	16	19	26	27	417	400
10 21	18 37	9	28 33	15 15	19	16 14	18 14	$\begin{array}{c c} 27 \\ 20 \\ \end{array}$	26 29	310 390	268 356
27	48	17	46	$\begin{bmatrix} 19 \\ 22 \end{bmatrix}$	23	24	24	39	41	555	537
48	46	23	43	23	26	27	29	75	64	688	600
78	148	39	162	69	97	89	80	174	203	2337	1912
283	443	166	462	211	259	261	257	459	506	6129	

Zone VII.	10 h h 3-4	20 h h 3-4	70 h h 3-4	70 h h 22-23		10 ⁰ h h 22-0	11 ⁰ h h 2-4	$ \begin{array}{c c} 11^{0} \\ h & h \\ 22-0 \end{array} $
m m 1-5.5		1	_	_	$_2$	1	$_2$	4
5.6	- i	- j		-	-	-	i	
7 8		2	_	_	_	_	_	_
9	<u> </u>	_	1				_	
6.0		_	_	_	_	2 1	_	_
2	-	-		_	_	1	-	-
3 4	_	_	_	_	_	_		
5	-	1		_	_	_	1	
6 7	1		1	_	_	_		_
8 9	_	_	_	_	_ 1	_		1 1
7.0	1	1		2	3	3		$\frac{1}{2}$
$\frac{1}{2}$	_				1	<u> </u>	<u> </u>	_
3		_	_		1	2	3	1
4	1 2	1				<u> </u>	- 2	1
5 6		-	1	1 1	1 1	1	$\frac{2}{2}$	1
7 8	_	2	2 3		$\frac{1}{2}$	3 4	1	2 3
9				3	2	2	_	
8.0	6	5 2	1 1	3	6	3	4	2 2
2	3	2	1	3	5	1	1	3
3 4	2	$\begin{bmatrix} 7 \\ 2 \end{bmatrix}$	4	2	6 4	6 3	5	2 5
5	8	11	5	4	7	11	7	4
6 7	4	2	3	2 6	$\frac{1}{2}$	6 9	7 5	6
8	13 1	3 2	3	3 6	8 7	8	14 8	9 10
9.0	$\frac{1}{28}$	14	19	15	16	10	26	12
1	1 6	4	1 9	8 11	11 8	18 31	16 13	16 38
2 3	21	8 25	7	20	14	37	23	56
4 5	8 49	$\begin{array}{c} 7 \\ 64 \end{array}$	5 56	24 62	17 120	35 112	$\frac{28}{122}$	43 131
J	155	167	123	180	247	331	293	367
							i	

21 ⁰ h h 0—2	21 ⁰ h h 23—0	220 h h 0—2	22 ⁰ h 23-0	25 ⁰ h h 0-2	25 ⁰ h h 23—0	30 ⁰ h h 0—2	31 ⁰ h h 0—2	Σ	G $f = 0.3$
	-	3	2	_	_	2	1	18	14
_	-	-	-	_	-	- 1		- 1	0
-	_	-	-	_	-	-	-	2	$\frac{1}{2}$
_	_		_	_	_	_		1	1
3	2	2	_	2	_ i	1	<u> </u>	12	8
		}	-	_	_	-	-	1	1
			- 1	_	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$		1	3	4 4
_	_	_		_		1		1	1
	-	4		3	_ 1	1	1	11	16
-		-	1		1	_		3	$\frac{2}{6}$
_			_ 2	_		3	1 1	$\frac{2}{7}$	12
_		_		_	_	1	2	5	3
3	_	5		8	<u> </u>	1	_	29	28
	_	-	_	_	_	_	1	2	4
1	1	_	1	1 3	$\begin{bmatrix} 2\\1 \end{bmatrix}$	1	$\frac{2}{2}$	9 15	13 17
i	_	1	_	3	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	_		9	7
6	1	5	2	4	3	3	_	34	37
-	1		_	1	_	1	1	10	8
_	1 3	1 1	$\frac{2}{4}$	$\frac{2}{1}$	1	7	$\frac{1}{2}$	18 34	$\frac{20}{32}$
-	· —	î	ı î	i	_	i	2	13	13
5	3	10	3	9	6	10	8	84	72
2	1	2	1	4	1	3	3	25	23
3 7	$\frac{1}{2}$	$\frac{2}{4}$	3 1	4 5	3	$\frac{2}{7}$	6 6	40 69	47 59
4		5	3	5	2	4	$\frac{3}{2}$	41	40
10	5	9	7	10	6	11	8	123	126
1	3	7	4	6	2 2	11	1 7	57	54
6 14	7	6 10	3 14	9 13	7	$\frac{2}{7}$	7 7	77 140	88 141
6	2	6	5	7	3	12	7	92	98
25	8	18	9	23	13	23	25	292	300
17	5	16	9	13	5	18	27	185	201
$\begin{array}{c} 6 \\ 21 \end{array}$	11 16	11 41	9	20 17	12 19	15 32	21 34	$\frac{229}{402}$	267 403
35	14	29	18	36	33	37 37	55	424	450
107	58	109	55	143	67	120	134	1509	1434
283	145	308	179	353	194	337	369	4031	

Zone VIII.	00 h h 0-3	0 ⁰ h h 23-0	10 h h 0-3	10 h h 23-0	20 h h 0-3	20 h h 23-0	30 h h 0-3	30 h h 23-0	40 h h 0-3	4 ⁰ h h 23-0	50 h h 0-2	5 ⁰ h h 23 ₂₀ -0	60 h h 0-2
1-5.5	_	1	1	_	4	1	1		2	2	1	1	2
5.6 7		-	-		-	_	-	-	_		_	_	
8			1	_	_	_	_	_		_	_		
9				-						_		_	
6.0	1		1	1	_	_	_	_	3	_	_	_	
2 3	-	-	2	-	1	1	-	_	-	-	-	_	2
5 4		_	_	_			_	_	_	_	_	_	
5	1	1	1	-1	2	1	_	-	-	-1		-	_
6 7		_	-	_		_	_	_	- 1	_	_	_	
8	2	-	2	1	3	-	1		_	-	1	_	-
7.0	2		- 2	— —	1		1	_	2	2	1		1 2
1		_	_	-	_	_	1	-	-	1	_		
2 3	2	2	- 2	1	1 2	_	1 3	1	1		1	_	1 3
4		-1		-	ī		1		1	_	_	_	_
5 6	3	-	5	1	4	-	3	1	-	1	2	_	
7		2	3	2	2	2		1	1	_	_	_	4
8 9	4 3	-	11	1	7	2	3	1 1	2	1	2	1 1	5
8.0	12	-	5	6	12	4	11	1	9	1	5	1	2
1	1				_	_		2 2	1	-	2 2	_	2 2 5
2 3	13	$\frac{1}{2}$	9	5 1	3 11	3 2	8 8	1	10	1 3	5	$\frac{1}{2}$	4
4	1	_	1		2			_	3	1		_	1
5 6	24 2	1 2	26 3	7	18	15 1	21	2	22 3	8	11 4	8 2	8
7	12	1	4	6	15	5	14	4	17	7	12	4	11
8	28 6	4	41	7	25 7	14	27 3	9 2	18 2	10	15 1	8 2	13
9.0	56	8	68	15	58	19	65	12	62	20	31	10	40
$\frac{1}{2}$	9 28	10	26		7 25	7	11 20	$\frac{2}{10}$	10 21	1 6	9 17	4 4	9
3	60	10	75	13	44	25	53	29	56	19	24	7	32
4 5	24 221	53	$\begin{array}{c} 26 \\ 217 \end{array}$	6 73	32 191	3 36	18 158	5 20	$\frac{25}{220}$	3 42	10 128	5 32	29 123
	520	120	548	151	480	143	432	109	496	131	284	93	327
					1								

413

60 h h 23 ₂₀ -0	70 h h 0-2	$\begin{vmatrix} 7^{0} \\ h & h \\ 23_{20} - 0 \end{vmatrix}$	80 h h 0-2	80 h h 23 ₂₀ -0	90 h h 0-2	90 h h 23 ₂₀ -0		11 ⁰ h h 0-1 ₄₀	12 ⁰ h h 0-1 ₄₀	13 ⁰ h h 0-1 ₄₀	14 ⁰ h h 0-1 ₄₀	Σ	f = 0.5
1	1	_	1	_		1	_	1	_		4	25	24
_				_		_	_	_			_	_ 1	1 2
_		_	_	-		-	1	_	-		_	2	4
			_	_				-		_			1
_	_	_	1	1		_	_	1	2	_	1	11 1	13 2
_	2	-	-	_	-	_	-		2		-	10	6
_	_	1		_		_					1	1 1	6 2
2		1	-1	1	2	1	1	1	1	1	-	17	27
_	_	_	_	<u> </u>	-	_		-	-	1	-	1 4	3 10
1	1	1	_	_	3		2	2	_		1	21	19
	1		_		_		_					2	5
_	3	1	3	_	3		1	2		2	_	28 3	46
	1	1	2	-		_	1	1	1	-	1	19	21
1	3		1	_	1		3	_	1	1		21 6	29 11
	4	1	3	1	2	1	3	1	1	3		40	61
_		_			i	_	1	-	-	-	_	1	13
2	1		3	1	$\frac{2}{1}$	_	1	1	1	2	1	24 51	33 53
		1	4	2					1			14	21
3	5 3	2	5 1	-	2 1	2	2	9	3	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	1	102 19	121 38
_	6		6	1	5		8	5	2	$\frac{2}{2}$	5	93	78
1	$\frac{2}{3}$	4	3	3	5	2	8	7	4	1	3	107	99
4	8	·	8	4	$\begin{vmatrix} 2 \\ 7 \end{vmatrix}$	1	5	8	6	8	7	29	210
2	6	2	7		4	1	3	3	-	2	4	60	90
$\frac{2}{1}$	$\begin{array}{c} 7 \\ 12 \end{array}$	2 5	10 17	5 3	4 7	3	3	3 16	10	9	7 6	171 320	146 236
2	4		13	2	4	2	14 5	6	6	6	2	91	163
4	29		23	6	18	13	24	13	21	18	24	664	500
3 9	21 13	4 2	16 21	3	14 12	5 7	13 8	15 10	9 17	14 14	10 23	205 337	335 445
17	30	4	36	32	27	10	27	33	13	27	24	727	672
7 24	33 131		37 101	16 21	25 119	7 46	18 92	16 78	19 105	14 134	15 135	409 253 8	752 2390
86	330		327	109	271	106	242	233	232	272	277	6416	1 2000
										}			

Die überzähligen Hautknochen des menschlichen Schädeldaches.

(Nachtrag. S. Abhandlungen der k. bayer. Akad. d. Wiss. II. Cl. XX. Bd. II. Abth. 1899.)

Von J. Ranke.

(Eingelaufen 22. Dezember.)

Ein neuer Fall von Sutura parietalis an dem Schädel eines erwachsenen Europäers.

In der Abhandlung über "Die überzähligen Hautknochen" habe ich Seite 27 (301) um erneute Durchsicht der anatomischen Sammlungen ersucht speziell zur Auffindung weiterer Schädel mit Verdoppelung der Scheitelbeine namentlich bei Erwachsenen.

Heute kann ich schon einen Erfolg dieses Aufrufs mitteilen. Herr Geheimrath W. His hat mir, wofür ich hier den besten Dank aussprechen möchte, aus der anatomischen Sammlung der Leipziger Universität einen Schädel zur Untersuchung zugesendet, welcher auf der rechten Seite eine vollkommene Verdoppelung des Scheitelbeines, durch eine sagittal von vorn nach hinten verlaufende, stark gezackte Naht, aufweist (Fig. 1). Auf der linken Seite zeigt das Scheitelbein eine unvollständige Parietalnaht, von der Mitte der Lambdanaht aus nach vorwärts in das Scheitelbein in sagittaler Richtung einspringend (Fig. 2).

Die Parietalnaht geht auf der rechten Seite von der Höhe des unteren Drittels der Kranznaht aus und verläuft in einer Länge von 115 mm nach hinten bis zum oberen Drittel des rechten Schenkels der Lambdanaht. Auf der linken Seite zeigt sich ein 25 mm langer Nahtrest der Parietalnaht, welcher über der Mitte des linken Schenkels der Lambdanaht abgeht.

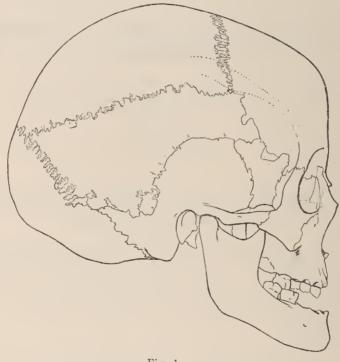


Fig. 1.

Die Richtung des Nahtrestes entspricht im Allgemeinen der Richtung des hinteren Abschnittes der Parietalnaht der rechten Seite (Fig. 4). Doch neigt sich das vordere verwachsene, aber noch deutlich sichtbare Ende nach abwärts, so dass die Fortsetzung der Naht die Kranznaht nicht erreichen, sondern einen hinteren, unteren Abschnitt des Scheitelbeines abtrennen würde. Auf diese Weise würde eine jener schiefen Scheitelbeinnähte

417 J. Ranke: Ueberzählige Hautknochen d. menschl. Schädeldaches.

entstehen, von welchen ich l. c. in Fig. 13, 14 und 15 nach meinen und Grubers Beobachtungen Beispiele mitgeteilt und ihre Entstehung aus der sagittal verlaufenden eigentlichen Parietalnaht geschildert habe (S. 28 (302) bis 35 (309)).

Die vollständige Parietalnaht auf der rechten Schädelseite erscheint namentlich in ihrem hinteren Abschnitte als eine

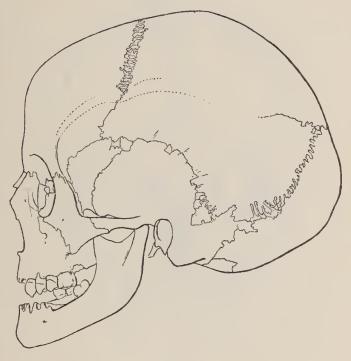


Fig. 2.

stark gezackte Zackennaht, auch in dem vorderen Abschnitte zeigen sich Zacken, welche aber nicht eigentlich durch das Ineinandergreifen der durch die Parietalnaht getrennten Scheitelbeinabschnitte gebildet werden, sondern der gezackte Rand des unteren Scheitelbeines legt sich schuppenartig über den unteren Rand des oberen Scheitelbeines. Wieder ist die Ausbildung des vorderen (Coronar)-Randes des unteren Scheitel-

beines von dem Coronarrand des oberen Scheitelbeines in der beschriebenen typischen Weise verschieden. Während letzterer eine wahre Zackennaht darstellt, ist der Coronarrand des unteren Scheitelbeines einfach linear begrenzt und lagert sich nach dem Typus einer wahren Schuppennaht über den entsprechenden Coronarrand des Stirnbeins (Fig. 3).

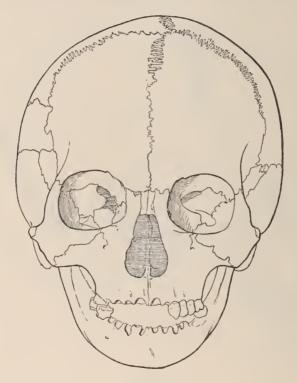


Fig. 3.

Durch den angegebenen Verlauf der Parietalnaht wird das Scheitelbein in zwei verschieden grosse und verschieden gestaltete Abschnitte geteilt. Das obere Scheitelbein stellt ein unregelmässiges Viereck dar, bei welchem die Sagittalnaht und Coronarnaht einen nahezu rechten Winkel miteinander bilden. der durch die Parietalnaht gebildete Unterrand wendet sich nicht parallel mit der Sagittalnaht nach hinten, sondern nähert sich derselben mehr und mehr an. Während der Vorderrand (Coronarrand) 74 mm beträgt, beträgt der Lambdarand des oberen Scheitelbeines nur 33 mm.

Das untere Scheitelbein bildet abgesehen von dem einspringenden Bogen der Schläfenschuppe ebenfalls ein unregel-

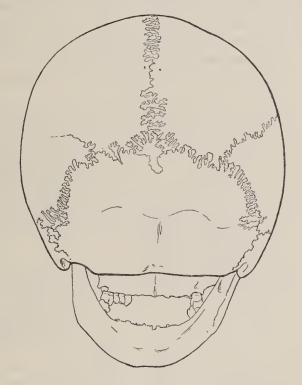


Fig. 4.

mässiges Viereck; aber umgekehrt wie bei dem oberen Scheitelbein ist hier der Coronarrand viel kürzer als der Lambdarand. Der Coronarrand misst 25, der Lambdarand 56 mm, wozu noch die zwischen Processus mastoideus und Schläfenschuppe einspringende hintere, untere Ecke hinzukommt. Rechnet man diese Ecke noch zum Lambdarand des unteren Scheitelbeins,

so ergibt sich eine Länge von 76 mm. Das untere Scheitelbein ist also umgekehrt wie das obere, hinten breit und vorne schmal. Sein Unterrand erscheint durch die einspringende Schuppe ausgeschnitten.

Der senkrechte Bogen des rechten Scheitelbeins von der höchsten Auswölbung der Schuppennaht aus mit dem Bandmass gemessen beträgt 113 mm, davon entfallen 27 mm auf den unteren, 86 mm auf den oberen Abschnitt des geteilten Scheitelbeines; über der Pars mastoidea beträgt die verticale Höhe des unteren Abschnittes 62 mm, die des oberen 88 mm.

Das untere Scheitelbein ist sonach nicht unwesentlich kleiner als das obere.

Bezüglich der Gesammtbildung des durch die Parietalnaht getrennten rechten Scheitelbeines ist zu bemerken, dass ein eigentlicher Scheitelbeinhöcker fehlt, während das linke, nur in seinem hinteren Abschnitte teilweise getrennte, Scheitelbein einen wohlausgebildeten und prominirenden Scheitelbeinhöcker zeigt. Es spricht das für eine relativ frühzeitige (theilweise) Verschmelzung der beiden Scheitelbeinanlagen der linken Seite, womit ja wohl auch die Ablenkung des hinteren Nahtrestes nach unten zusammenhängen mag.

Der Schädel ist brachycephal und zeigt eine geringe, linksseitig etwas stärkere Vorbuchtung des Hinterhauptes. Der Schädel ist klein und zart, weiblich, die Weisheitszähne fehlen noch und die Sphenobasilarfuge ist noch nicht vollkommen verknöchert. Es ist der Schädel eines jugendlichen, noch nicht vollkommen erwachsenen weiblichen Individuums.

Ich habe bei genauer Prüfung eine vorzeitige Verwachsung von Schädelnähten nicht nachweisen können, auch nicht an der Schädelbasis. Im Gegenteil zeigt sich eine vollkommen offene Stirnnaht (Fig. 3) und ein beträchtlicher Rest der linken Naht resp. Fuge, zwischen der Unterschuppe und dem Gelenkteil des Hinterhauptbeines, Synchondrosis condylosquomosa, die Persistenz dieser letzteren Naht ist bekanntlich beim Menschen relativ recht selten.

J. Ranke: Ueberzählige Hautknochen d. menschl. Schädeldaches. 421

Vom Foramen infraorbitale geht eine Naht beiderseits senkrecht hinauf zum untern Augenhöhlenrand.

Der Schädel zeigt keine stärker ausgesprochene Schiefheit, doch ist die Wölbung der ganzen linken Seite des Schädels, wie sich aus der schon erwähnten Ausbildung des Scheitelbeinhöckers auf dieser Seite ergibt, eine stärkere. Es ist das ein Unterschied gegen die bisher beobachteten Schädel mit Parietalnaht, bei welchen, wie bei dem von mir zuerst beschriebenen so auch, so viel ich sehe, bei den übrigen, die stärkere Wölbung des Schädels auf die Seite der persistirenden Naht trifft. Aber auch bei dem neuen Parietalnaht-Schädel des Herrn W. His ist das rechte geteilte Parietale grösser als das linke. Der Coronar-Rand beträgt links 11, rechts 12 cm, d. h. um 1 cm ist im Bregma die Sagittalnaht nach links verschoben, so dass das Ende der Stirnnaht nicht mit dem Anfang der Sagittalnaht zusammentrifft.

Sonst zeigt der Schädel keine gröberen Abnormitäten. In der Naht zwischen dem Oberrand des grossen Keilbeinflügels und dem Stirnbein, Sutura sphenofrontalis, rechts zeigt sich ein kleiner Schaltknochen; zwei kleine Schaltknochen finden sich zwischen dem Oberrand des grossen Keilbeinflügels und dem unteren Rande des linken Scheitelbeines in der Gegend der ehemaligen Schläfenfontanelle. Die Lambdanaht ist so gut wie frei von Worm'schen Knochen, nur in der hinteren kleinen Fontanelle befindet sich ein doppelter unregelmässig gestalteter Fontanellknochen.

Die Stirn ist gerade ansteigend mit gut ausgebildeten Stirnhöckern, die Scheitelkurve flach, beides im Ecker'schen Sinne weibliche Charaktere. Die Augenhöhleneingänge sind gerundet, relativ gross; die Nasenbeine, welche zum grösseren Teil abgebrochen sind, sind in der erhaltenen oberen Partie schmal, die Nase ist im ganzen schmal, die rechte Seite des Unterrandes der Apertura piriformis ist etwas stärker, ulmenblattförmig, nach unten gewölbt; die Fossae caninae sind tief, der Schädel gut profilirt; der Alveolarfortsatz des Oberkiefers kurz, die Zähne klein; der Unterkiefer niedrig und schwach,

aber mit gut ausgebildetem Kinnfortsatz, die Aeste des Unterkiefers niedrig und schmal, stark schief nach hinten gewendet mit einem entschieden weiblichen Winkel von 128°.

Die Anzahl der bis jetzt in der Literatur bekannten Menschenschädel mit vollkommener Verdoppelung des Scheitelbeines, d. h. mit Sutura parietalis completa, beträgt mit diesem Schädel aus der Leipziger Sammlung des Herrn W. His

> davon 9 Europäer 4 von anderen Rassen.

Schädelmasse:

Hirnschädel:	Länge Breite Höhe Ohr-Höhe Kleinste Stirnbreite Sagittalumfang Davon: Stirnbogen Scheitelbogen Hinterhauptsbogen Horizontalumfang Querbogen Davon: rechte Hälfte " linke " Capacität		165 136 132 104 90 384 116 132 100 486 290 153 137 1230 ccm.
Gesichtsschädel	Jochbreite Gesichtshöhe Mittelgesichtshöhe Mittelgesichtshöhe bis Mundspalte Nasenhöhe Nasenbreite Augenhöhlenhöhe Augenhöhlenbreite Profilwinkel	===	32) 1-1 00 40

Zur Theorie der automorphen Functionen.

Von F. Lindemann.

(Eingelaufen 3. Februar.)

Die Theorie der doppelt periodischen Functionen lässt sich bekanntlich sehr einfach dadurch begründen, dass man versucht, nach der Theorie der Partialbruch-Reihen eine Function zu bilden, die in jedem Periodenparallelogramme nur einen Pol erster Ordnung hat. Die entstehende Function ist dann mit einem Integrale zweiter Gattung im Wesentlichen identisch $\left(\frac{H'(z)}{H(z)}\right)$ in Jacobi's Bezeichnung); und von ihm steigt man durch Integration oder Differentiation unmittelbar zu den H-oder σ -Functionen bez. zur p-Function auf.

Bei den automorphen Functionen hat zwar Poincaré einen analogen Ansatz gemacht, erhält aber nicht die analoge Integralfunction zweiter Gattung, sondern seine "fonctions thetafuchsiennes", die sich bei linearer Transformation des Arguments um einen Factor ändern. Für die einfachsten Reihen, welche auch hier zu jenen Integralfunctionen führen würden, fehlt der Convergenzbeweis. Diese Schwierigkeit habe ich versucht, im Folgenden zu überwinden. Dadurch gelange ich dann direct zu den Integralen zweiter Gattung, an die man die Theorie der algebraischen Functionen (z. B. des Riemann-Roch'schen Satzes) sofort anknüpfen könnte; und durch Integration werden die Integrale dritter sowie diejenigen erster Gattung eingeführt.

424 Sitzung der math.-phys. Classe vom 2, Dezember 1899,

Für einen besonderen Fall (wo die das Kreisbogen-Polygon begrenzenden Kreise sich nicht schneiden, und die zugehörige Curve p^{ten} Geschlechts p+1 reelle Züge besitzt) hat Schottky schon analoge Untersuchungen angestellt, nachdem er den nöthigen Convergenzbeweis auf anderem Wege erbrachte: bei ihm bilden indessen nicht die Integrale zweiter Gattung den Ausgangspunkt, sondern er bildet direct unendliche Producte der Art, wie sie unten am Schlusse von § 3 auftreten werden.

Im Folgenden schliesse ich mich in der Darstellung und Bezeichnungsweise durchaus an die grossen Arbeiten Poincaré's an.¹) Die Entwicklungen sind zunächst dem Falle angepasst, wo ein Polygon mit "Hauptkreis" gegeben ist, lassen sich aber (wie ja auch die Poincaré'schen Untersuchungen) unmittelbar auf die übrigen Fälle übertragen.

§ 1. Die Convergenz einer gewissen Reihe.

Die Substitutionen der gegebenen Gruppe bezeichnen wir durch $f_i(z)$, so dass

(1)
$$f_i(z) = \frac{a_i z + b_i}{c_i z + d_i}$$

gesetzt wird und i einen von 0 bis ∞ laufenden Index bezeichnet, durch den die Substitutionen numerirt werden; dabei sei $f_0(z)=z$. Nach Herrn Poincaré kann man leicht Functionen bilden, die sich bei Substitutionen der Gruppe nur um einen Factor ändern, und zwar auf folgende Weise. Sei H(z) eine rationale Function von z, so bilde man die Reihe

(2)
$$\Theta(z) = \sum_{k} H(f_k(z)) [f'_k(z)]^m.$$

Dieselbe ist, wenn m > 1, für alle Werthe von z absolut convergent, allein ausgenommen die Pole der Function H(z) und die Pole der Functionen $f'_k(z)$, welche mit denjenigen Punkten identisch sind, die bei den Transformationen (1) dem

¹⁾ Acta mathematica, Bd. 1 und 3.

unendlich fernen Punkte zugeordnet werden; denn (da die Determinante $a_i d_i - b_i c_i$ immer gleich der Einheit angenommen wird) ist

(3)
$$f'_i(z) = \frac{1}{(c_i z + d_i)^2}.$$

Die durch (2) definirte Function genügt der Bedingung

$$(4) \qquad \Theta\left(f_{i}\left(z\right)\right) = \Theta\left(z\right) \cdot \left[f_{i}'\left(z\right)\right]^{-m} = \Theta\left(z\right) \cdot \left(c_{i}\,z\,+\,d_{i}\right)^{2\,m}.$$

Bildet man den Quotienten zweier solcher Poincaré'schen Θ -Functionen, bei denen m denselben Werth hat, so erhält man eine automorphe Function. d. h. eine solche, die bei den Transformationen der Gruppe völlig ungeändert bleibt.

Für uns kommt es darauf an, Reihen der Form (2) zu untersuchen, wenn die Zahl m den von Poincaré ausgeschlossenen Werth 1 besitzt. Zu dem Zwecke betrachten wir zunächst die Reihe

(5)
$$\sum f_i^*(z) = -2 \sum \frac{c_i}{(c_i z + d_i)^3}$$

und beweisen ihre absolute Convergenz.

Durch logarithmische Differenzirung der Gleichung (4) erhalten wir

(6)
$$-f_{i}^{"}(z) = \frac{1}{m} \left[\frac{\Theta'(f_{i})}{\Theta(f_{i})} f_{i}^{"2} - \frac{\Theta'(z)}{\Theta(z)} f_{i}^{"} \right]$$

$$= \frac{1}{m} \left[\frac{\Theta'(f_{i})}{\Theta(z)} f_{i}^{"m+2} - \frac{\Theta'(z)}{\Theta(z)} f_{i}^{"} \right].$$

Die Untersuchung der Reihe (5) können wir daher auf die Untersuchung der beiden einzelnen Reihen

(7)
$$U = \sum \frac{1}{m} \frac{\Theta'(f_i)}{\Theta(z)} f_i^{m+2},$$

$$V = \sum \frac{1}{m} \frac{\Theta'(z)}{\Theta(z)} f_i^{r}$$

zurückführen und haben dann den Vortheil, dass wir sowohl für die Zahl m, als für die Function $\Theta(z)$ noch besonders günstige Wahl treffen dürfen.

426 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

Wir beginnen mit Untersuchung der Reihe V. Die Gleichung (6) ist eine Identität; in ihr kann daher auch die Zahl m und die Function Θ von dem Index i selbst abhängen. Wir definiren nun $\Theta(z)$ durch die Gleichung (2), indem wir H(z) durch die Gleichung

(8)
$$H(z) = (z - f_1(\zeta))^2 (z - f_2(\zeta))^2 \dots (z - f_j(\zeta))^2,$$

bestimmen, wo ζ einen willkürlichen Punkt bezeichnet, und wo die Zahl j so gewählt sein möge, dass für alle Zahlen k, die der Bedingung k > j genügen, die Ungleichheit

(9) abs
$$f'_k(\zeta) < 1$$

erfüllt sei. Dabei können wir uns der Einfachheit wegen die Substitutionen (1) so geordnet denken, dass dem grösseren absoluten Betrage von $f'_i(z)$ ein kleinerer Index entspricht, ausserdem aber immer $f_0 = z$ gesetzt wird. Die Ungleichheit (9) ist für endliche hinreichend grosse Werthe von k immer zu erfüllen, denn nach Poincaré ist die Reihe

(10)
$$\sum f_i'(\zeta)^2$$

stets convergent, also sicher lim abs $f_i^*(\zeta) = 0$. Wir erhalten aus (2)

(11)
$$\Theta'(z) = \sum_{k=0}^{\infty} m H(f_k(z)) [f'_k(z)]^{m-1} f''_k(z) + \sum_{k=0}^{\infty} H'(f_k(z)) [f'_k(z)]^{m+1},$$

also für $z = \zeta$:

$$\Theta'(\zeta) = \sum_{k=j+1}^{\infty} m \ H(f_k(\zeta)) [f'_k(\zeta)]^{m-1} f''_k(\zeta) + \sum_{k=j+1}^{\infty} H'(f_k(\zeta)) [f'_k(\zeta)]^{m+1}.$$

$$\Theta(\zeta) = H(\zeta) + \sum_{k=j+1}^{\infty} H(f_k(\zeta)) [f'_k(\zeta)]^m.$$

Bedeutet nun m eine Zahl, welche mit dem Index i ebenfalls unendlich gross wird, etwa m=i, und sei dem entsprechend

(12)
$$\Theta_i(\zeta) = H(\zeta) + \sum_{k=j+1}^{\infty} H(f_k(\zeta)) [f_k^i(\zeta)]^i,$$

so wird $\Theta_i(\zeta)$ für keinen noch so grossen Werth von i unendlich gross und nach den Poincaré'schen Sätzen nur an einer endlichen Anzahl von Stellen in jedem Bereiche gleich Null. Die Anzahl der Nullstellen wächst allerdings mit der Zahl m=i in's Unendliche, bleibt aber stets eine discrete, so dass wir durch passende Wahl von ζ stets das Verschwinden von $\Theta(\zeta)$ vermeiden können; für $i=\infty$ wird überdies $\Theta_i(\zeta)=H(\zeta)$.

Der absolute Betrag der Function $\frac{1}{\Theta_i(\zeta)}$ bleibt daher stets unterhalb einer endlichen Grenze M:

(13)
$$\operatorname{abs} \frac{1}{\Theta_i(\zeta)} < M_i.$$

Ferner sind die Reihen (da i > 2)

$$\sum_{k=j+1}^{\infty} H(f_{k}\left(\zeta\right)) \left[\frac{f_{k}^{'}\left(\zeta\right)}{f_{j+1}^{'}\left(\zeta\right)} \right]^{i-1} f_{k}^{''}\left(\zeta\right) \ \, \text{und} \ \, \sum_{j+1}^{\infty} H^{'}\left(f_{k}\left(\zeta\right)\right) \left[\frac{f_{k}^{'}\left(\zeta\right)}{f_{j+1}^{'}\left(\zeta\right)} \right]^{i+1}$$

convergent und bleiben stets endlich. Bezeichnen wir die oberen Grenzen ihrer absoluten Beträge mit P_i und Q_i , so wird

$$abs V = abs \sum_{i} \frac{1}{i} \frac{\Theta'_{i}(\zeta)}{\Theta_{i}(\zeta)} f'_{i}(\zeta)$$

$$< \sum_{i} M_{i} \left[P_{i} abs \left(f'_{j+1}(\zeta) \right)^{i-1} + \frac{1}{i} Q_{i} abs \left(f'_{j+1}(\zeta) \right)^{i+1} \right] abs f'_{i}(\zeta).$$

Da nun die Reihe \sum_i abs $(f'_{j+1}(\zeta)^{i+1})$ in Folge der Forderung (9) sicher convergirt, so folgt, dass auch die Reihe V für $z=\zeta$ convergent, und zwar absolut convergent ist; ausgenommen sind dabei die Punkte $\zeta=-\frac{c_i}{d_i}$, für welche die Functionen $f'_i(\zeta)$ unendlich gross werden.

Was jetzt die Reihe U betrifft, so gilt für die in den Nennern auftretende Function wieder die Ungleichung (13). Auch der Zähler $\Theta_i^*(f_i(\zeta))$ bleibt nach (11) stets endlich; dies gilt noch für unendlich grosse Werthe von i, denn $f_i(\zeta)$ bezeichnet stets einen im Innern des Hauptkreises gelegenen Punkt, bleibt also endlich für unendlich grosse Werthe von i; in der Ungleichung (9) kann daher die Zahl j so gross gewählt werden, dass diese Bedingung nicht nur für einen Punkt ζ , sondern auch für alle Punkte ζ erfüllt ist, die aus dem ersten durch die Substitutionen $f_i(\zeta)$ hervorgehen, so dass:

abs
$$f'_k(f_i(\zeta)) < 1$$
 für $k > j$.

Setzen wir fest, dass die Zahl j in dieser erweiterten Weise bestimmt werde, so werden dadurch unsere Betrachtungen über die Reihe V nicht gestört. Das allgemeine Glied der Reihe U aber wird von der Form

$$R\left[f'_{j+1}\left(f_{i}(\zeta)\right)\right]^{i-1}f'_{i}(\zeta)^{i+2} + \frac{1}{i}S\left[f'_{j+1}\left(f_{i}(\zeta)\right)\right]^{i-1}f'_{i}(\zeta)^{i+2},$$

wo mit R und S endlich bleibende Ausdrücke bezeichnet sind. Die Reihe ist also sicher convergent, und zwar (wegen der Factoren f_i^{i+2}) in stärkerem Grade wie die Reihe U. Nach (5) und (6) haben wir also das Resultat gewonnen, dass die Reihe

(14)
$$\sum f_i^u(\zeta)$$

für alle Werthe von ζ , in denen $f_i(\zeta)$ nicht unendlich gross wird, absolut convergirt.

Die Zahl, welche gewählt werden muss, um den Rest der Reihe U+V kleiner als eine gegebene Zahl zu machen, hängt von der Zahl j ab, die nöthig ist, um die Ungleichung (9) zu befriedigen; und diese Zahl wieder ist von dem betrachteten Punkte ζ abhängig. Vergleicht man die Zahlen j für mehrere Stellen ζ mit einander, so braucht man nur den grössten benötigten Werth von j zu wählen, um für alle diese Stellen das gewollte zu erreichen. Ist dann die Zahl j entsprechend definirt, so ist die Reihe offenbar gleichmässig in einem gegebenen endlichen Gebiete, in dem kein Pol der Functionen f'_i liegt, convergent, denn sie convergirt im Wesentlichen wie eine Potenzreihe

$$\sum_{i} [f'_{j+1}(\zeta)]^{i},$$

und die absoluten Beträge der Functionen f'_{j+1} sind durch passende Wahl von j kleiner als Eins gemacht worden; die Potenzen $(f'_{j+1})^i$ lassen sich also durch passende Wahl von i kleiner als eine beliebig vorgegebene Zahl machen, und zwar für alle Werthe ζ eines solchen Gebietes durch denselben Werth von i.

Die Reihe $\sum f_i^u$ kann hiernach gliedweise integrirt werden; und somit folgt, dass die Reihe

$$\sum_{i}\left[f_{i}^{\prime}\left(z\right)-f_{i}^{\prime}\left(z_{0}\right)\right]$$

ebenfalls absolut convergirt, denn die gliedweise Integration einer absolut convergenten Reihe führt stets wieder zu einer absolut convergenten Reihe. Es ist

$$f_i'(z) - f_i'(z_0) = (z_0 - z) \frac{c_i(z_0 + z) + 2 d_i}{(c_i z_0 + d_i)^2 (c_i z + d_i)^2} c_i,$$

oder wenn wir annehmen, dass der Punkt z = 0 im Innern unseres Fundamentalbereiches liege, für $z_0 = 0$:

$$f'_{i}(z) - f'_{i}(0) = -z \frac{z + 2\frac{d_{i}}{c_{i}}}{(c_{i}z + d_{i})^{2}\left(\frac{d_{i}}{c_{i}}\right)^{2}}.$$

Der absolute Werth von $rac{c_i}{d_i}$ nähert sich mit wachsendem ider Grenze Eins, kann daher auf die Convergenz der Reihe nicht von Einfluss sein. Folglich muss auch die Reihe

(15)
$$\Theta_0(z) = \sum_{i} \frac{1}{(c_i z + d_i)^2} = \sum_{i} f_i'(z)$$

absolut convergiren für jede von den Punkten $-\frac{d_i}{c_i}$ verschiedene Stelle z.

Für diese Reihe $\Theta_0(z)$ gelten dieselben Ueberlegungen. wie sie Poincaré für seine Reihen $\Theta(z)$ anstellt. Es ist nemlich 430 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

$$\Theta_0\left(f_i(z)\right) = \sum_k f_k'\left(f_i(z)\right) = \sum_k \frac{d\,f_k\left(f_i(z)\right)}{d\,z} \frac{1}{f_i'\left(z\right)},$$

also:

(16)
$$\Theta_0(f_i(z)) = \frac{1}{f_i(z)} \Theta_0(z).$$

§ 2. Integrale zweiter Gattung.

Wir untersuchen jetzt die von zwei Punkten z und ζ abhängende Reihe

(17)
$$\Omega(z,\zeta) = \sum_{k} \frac{f'_{k}(\zeta)}{z - f_{k}(\zeta)}.$$

Da der reciproke Werth von $z - f_k(\zeta)$ stets endlich und von Null verschieden bleibt, falls nur z von ζ und den Punkten $f_i(\zeta)$ verschieden ist, so zieht die absolute Convergenz der Reihe (15) auch unmittelbar diejenige der Reihe (17) nach sich.

Die Eigenschaften dieser Reihe, insofern sie von ζ abhängt, sind nach Analogie der Poincaré`schen Reihe und der Gleichung (16), durch die folgende Gleichung dargestellt:

(18)
$$\Omega\left(z, f_{i}(\zeta)\right) = \frac{1}{f'_{i}(\zeta)} \Omega\left(z, \zeta\right).$$

Der Punkt ζ liege im Innern des Hauptkreises; dann wird $\Omega(z,\zeta)$ nur an der Stelle $z=\zeta$ und den homologen Stellen $z=f_k(\zeta)$ unendlich gross (erster Ordnung). Als Function von ζ wird Ω auch unendlich (zweiter Ordnung) an den Nullstellen der Gleichungen $c_i \zeta + d_i = 0$.

Hauptsüchlich kommt es uns darauf an, das Verhalten der Function Ω für den Fall festzustellen, dass z durch $f_t(z)$ ersetzt wird. Offenbar ist

$$\frac{1}{f_i(z) - f_k(\zeta)} = \frac{(e_i z + d_i) (e_k \zeta + d_k)}{(a_i e_k - e_i a_k) + \zeta (a_i d_k - e_i b_k)} \frac{1}{z - \zeta_1} = \frac{\Omega_{ik}}{z - \zeta_1},$$

wodurch Ω_{ik} definirt sei, und wo:

$$\zeta_1 = -\frac{b_i - d_i f_k(\zeta)}{a_i - c_i f_k(\zeta)} = f_i^{-1} (f_k(\zeta)),$$

ferner:

$$\frac{c_{i} z + d_{i}}{z - \zeta_{1}} = c_{i} + \frac{1}{z - \zeta_{1}} \frac{a_{i} d_{i} - b_{i} c_{i}}{a_{i} - c_{i} f_{k}(\zeta)},$$

$$\Omega_{ik} = \frac{c_{i} z + d_{i}}{a_{i} - c_{i} f_{k}(\zeta)},$$

also

$$\begin{split} \frac{\Omega_{ik}}{z - \zeta_1} &= \frac{c_i}{a_i - c_i f_k(\zeta)} + \frac{1}{z - \zeta_1} \frac{a_i d_i - b_i c_i}{[a_i - c_i f_k(\zeta)]^2} \\ &= \frac{c_i}{a_i - c_i f_k(\zeta)} + \frac{1}{z - f_i^{-1} (f_k(\zeta))} \frac{d f_i^{-1} (f_k(\xi))}{d f_k(\zeta)}, \end{split}$$

schliesslich

$$\Omega\left(f_{i}\left(z\right),\zeta\right) = \sum_{k} \frac{\Omega_{ik}}{z - \zeta_{1}} f'_{k}\left(\zeta\right)$$

$$= \sum_{k} \frac{1}{z - f_{i}^{-1}\left(f_{k}\left(\zeta\right)\right)} \frac{d f_{i}^{-1}\left(f_{k}\left(\zeta\right)\right)}{d \zeta} + \sum_{k} \frac{c_{i} f'_{k}\left(\zeta\right)}{a_{i} - c_{i} f_{k}\left(\zeta\right)},$$

oder, da die Gesammtheit der Werthe $f_i^{-1}(f_k(\zeta))$ identisch ist mit der Gesammtheit der Werthe $f_k(\zeta)$:

(19)
$$\Omega\left(f_{i}\left(z\right),\zeta\right) = \Omega\left(z,\zeta\right) + \Omega\left(\frac{a_{i}}{c_{i}},\zeta\right).$$

Das Verhalten der Function Ω ist also vollkommen analog dem Verhalten eines Integrals einer algebraischen Function: die Grösse $\Omega\left(\frac{a_i}{c_i},\zeta\right)$ ist ein Periodicitäts-Modul des Integrals. Die Function Ω bezeichnen wir als Integral zweiter Gattung, weil sie mit dem Abel'schen Integrale zweiter Gattung die erwähnte Eigenschaft gemein hat, und nach den Poincaré'schen Resultaten auch stets mit einem solchen Integrale identificirt werden kann.

Der Differentialquotient der Function $\Omega(z, \zeta)$ nach z ist nicht eine automorphe Function, sondern hat die Eigenschaft der Poincaré'schen Θ -Functionen sich um einen Factor zu ändern; in der That folgt aus (19):

(20)
$$\frac{d\Omega(z,\zeta)}{dz} \cdot \frac{df_i(z)}{dz} = \left(\frac{d\Omega(z,\zeta)}{dz}\right)_{f_i(z)} = \frac{d\Omega(f_i(z),\zeta)}{df_i(z)}.$$

Wir haben hier also eine neue Methode zur Bildung derartiger Functionen.

Die Periodicitätsmoduln von $\Omega\left(z,\zeta\right)$ sind Functionen von ζ , und zwar ist

(21)
$$\Omega\left(\frac{a_i}{c_i}, \zeta\right) = \sum_k \frac{c_i}{a_i - c_i} \frac{c_i}{c_i} f_k(\zeta) f_k'(\zeta),$$

also nach (18):

(22)
$$\Omega\left(\frac{a_i}{c_i}, f_r\left(\zeta\right)\right) \cdot f_r'\left(\zeta\right) = \Omega\left(\frac{a_i}{c_i}, \zeta\right).$$

Die Function $\frac{\Omega}{\Theta_0(\zeta)}$ dagegen würde, falls nicht etwa $\Theta_0(\zeta)$ identisch verschwindet, nur automorphe Functionen zu Periodicitätsmoduln haben, dem entsprechend, dass die Periodicitätsmoduln der Integrale zweiter Gattung algebraische Functionen des singulären Punktes sind. Die Functionen (21) sind stets endlich, weil die Punkte $\frac{a_i}{c_i}$ stets ausserhalb des Hauptkreises liegen, der Punkt ζ oder $f_i(\zeta)$ also nie mit ihnen zusammenfallen kann.

§ 3. Integrale dritter Gattung.

Durch Integration der Function Ω nach der Variabeln ξ zwischen den Grenzen η und ξ entsteht eine neue Function, die wir $S_{\xi\eta}$ nennen, und welche in zwei Punkten $(z=\xi)$ und $z=\eta$) eines jeden Gebietes je logarithmisch unendlich wird. Wir haben

(23)
$$S_{\xi\eta}(z) = \int_{\eta}^{\xi} \Omega(z,\zeta) d\zeta = \sum_{k} \log \frac{z - f_{k}(\xi)}{z - f_{k}(\eta)}.$$

Die gliedweise Integration der Reihe

$$\sum_{i} f_{i}'(\zeta) = \sum_{i} \frac{1}{(c_{i} \zeta + d_{i})^{2}} = \sum_{i} \frac{1}{c_{i}^{2}} \frac{1}{\left(\zeta + \frac{d_{i}}{c_{i}}\right)^{2}}$$

ist in der That erlaubt; denn die Grössen $\frac{d_i}{c_i}$ bleiben endlich

für $i=\infty$; die Convergenz der Reihe hängt also nur von den Grössen c_i^{-2} ab, ist folglich von dem Werthe der Variabeln ζ nicht wesentlich abhängig. Das allgemeine Glied der rechten Seite von (23) wird gleich Null bei unendlich wachsendem Index, denn es ist

$$f_{k}(\xi) = \frac{a_{k}}{c_{k}} - \frac{a_{k} d_{k} - b_{k} c_{k}}{(c_{k} \xi + d_{k}) c_{k}}, \quad f_{k}(\eta) = \frac{a_{k}}{c_{k}} - \frac{a_{k} d_{k} - b_{k} c_{k}}{(c_{k} \eta + d_{k}) c_{k}}.$$

Beide Grössen nähern sich also für $k = \infty$ dem von ξ und η unabhängigen endlichen Grenzwerthe von $\frac{a_k}{c_k}$. Ebenso kann die Reihe

$$\sum_{i} \frac{f_{i}'(\zeta)}{f_{i}'(\zeta)} = \sum_{i} \frac{1}{(a_{i}\zeta + b_{i})(c_{i}\zeta + d_{i})} = \sum_{i} \frac{1}{c_{i}^{2}\left(\frac{a_{i}}{c_{i}}\zeta + \frac{b_{i}}{c_{i}}\right)\left(\zeta + \frac{d_{i}}{c_{i}}\right)}$$

gliedweise integrirt werden; denn ihre Convergenz wird ebenfalls durch die Glieder c_i^{-2} bedingt, während sich die Quotienten $\frac{a_i}{c_i}$ und $\frac{d_i}{c_i}$ endlichen (wenn auch unbestimmten) Grenzwerthen nähern und ebenso

$$\frac{b_i}{c_i} = \frac{a_i d_i}{c_i^2} - \frac{a_i d_i - b_i c_i}{c_i^2} = \frac{a_i d_i}{c_i^2} - \frac{1}{c_i^2}$$

endlich bleibt.

Die Eigenschaften der Function $S_{\xi\eta}$ ergeben sich durch folgende Betrachtung. Es ist identisch

$$f_{i}(z) - f_{k}(\xi)$$

$$= \frac{[(a_{i}c_{k} - c_{i}a_{k})\xi + (a_{i}d_{k} - c_{i}b_{k})]z + (b_{i}c_{k} - d_{i}a_{k})\xi + (b_{i}d_{k} - d_{i}b_{k})}{(c_{i}z + d_{i})(c_{k}\xi + d_{k})}$$

$$= [z - f_{i}^{-1}(f_{k}(\xi))]c_{i}\left[\frac{a_{i}}{c_{i}} - f_{k}(\xi)\right](c_{i}z + d_{i})^{-1},$$

also unmittelbar:

(24)
$$\log \frac{f_{i}(z) - f_{k}(\xi)}{f_{i}(z) - f_{k}(\eta)} = \log \frac{z - f_{i}^{-1}(f_{k}(\xi))}{z - f_{i}^{-1}(f_{k}(\eta))} + \log \frac{\frac{a_{i}}{c_{i}} - f_{k}(\xi)}{\frac{a_{i}}{c_{i}} - f_{k}(\eta)}.$$

434 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

Da die Gesammtheit der Functionen $f_i^{-1}(f_k(\xi))$ identisch ist mit der Gesammtheit der Functionen $f_i(\xi)$, so führt die Anwendung dieser Relation auf die rechte Seite von (23) zu dem Resultate

(25)
$$S_{\xi\eta}(f_i(z)) = S_{\xi\eta}(z) + S_{\xi\eta}\left(\frac{a_i}{c_i}\right).$$

Die Grössen $S_{\xi\eta}\left(\frac{a_i}{c_i}\right)$, welche hier als Periodicitätsmoduln des Integrals dritter Gattung auftreten, sind Functionen von ξ und η , welche für alle Werthe dieser Grössen endlich bleiben, denn die Punkte $\frac{a_i}{c_i}$ liegen stets ausserhalb des Hauptkreises. Die Anzahl der Periodicitätsmoduln ergibt sich zunächst gleich n, wenn 2n die Zahl der Seiten des Fundamentalpolygons angibt, wird aber durch die Betrachtungen der folgenden Paragraphen wesentlich reducirt. Setzen wir

(26)
$$H(z) = \prod_{k} \frac{z - f_k(\xi)}{z - f_k(\eta)},$$

so genügt die Function H(z), welche nur in dem einen Punkte ξ gleich Null und nur in dem einen Punkte η gleich Unendlich wird, der Functionalgleichung:

(27)
$$H(f_i(z)) = H(z) \cdot e^{S_{z_{\eta}} \left(\frac{a_i}{c_i}\right)}.$$

Die durch (26) definirte Function hängt auf's Engste mit den von Klein eingeführten Primformen zusammen. Die letzteren (welche durch einen Grenzprocess aus Integralen dritter Gattung abgeleitet sind) werden nur an einer Stelle der Riemann'schen Fläche, also auch nur an einer Stelle des gegebenen Polygons gleich Null und an keiner Stelle unendlich gross, während unser Product an je einer Stelle unendlich klein bez. unendlich gross erster Ordnung wird. Wäre es erlaubt, Zähler und Nenner des Productes H(z) von einander zu trennen, ohne die Convergenz zu stören, so würde jeder für sich die

weist selbst auf diesen Zusammenhang hin unter Bezugnahme auf einen entsprechenden von Schottky²) aufgestellten Product-Ausdruck, der sich bei dessen schon erwähnten Untersuchungen über den besonderen Fall ergab, wo das gegebene Polygon durch mehrere sich nicht schneidende Kreise begrenzt wird, und wo in Folge dessen die gegebene Transformations-Gruppe zu den von Poincaré³) als Klein'sche Gruppen bezeichneten linearen Transformations-Gruppen gehört.

Die von v. Mangoldt⁴) und H. Stahl⁵) gegebenen Productdarstellungen automorpher Functionen sind wesentlich complicirterer Natur, da dort den einzelnen Factoren der unendlichen Producte Exponentialfactoren beigefügt werden müssen, um die Convergenz zu erzielen.

§ 4. Die Vertauschung von Parameter und Argument.

Es war der Definition nach

$$S_{\xi\eta}(\beta) - S_{\xi\eta}(\alpha) = \int_{\alpha}^{\beta} dS_{\xi\eta} = \sum_{k} \log \left(\frac{\beta - f_{k}(\xi)}{\beta - f_{k}(\eta)} \cdot \frac{\alpha - f_{k}(\eta)}{\alpha - f_{k}(\xi)} \right);$$
 ferner ist identisch

¹⁾ Zur Theorie der Abel'schen Functionen, Mathematische Annalen Bd. 36 (1889), p. 12 ff.

²⁾ Ueber eine specielle Function, welche bei einer bestimmten linearen Transformation ihres Arguments unverändert bleibt; Crelle's Journal Bd. 101, p. 227 ff. (1886). Auch die am Schlusse dieser Abhandlung aufgestellte Differentialgleichung, welche den Zusammenhang mit den θ-Functionen vermittelt, wird sich analog für die im Texte behandelten Fälle ableiten lassen.

³⁾ Mémoire sur les groupes kleinéens, Acta mathematica Bd. 3, p. 49 ff.

⁴) Ueber eine Darstellung elliptischer Modulfunctionen durch unendliche Producte, Göttinger Nachrichten 1885, p. 313 und 1886, p. 1 (hier mit Ausdehnung auf allgemeine Functionen).

⁵) Ueber die Darstellung der eindeutigen Functionen, die sich durch lineare Substitutionen reproduciren, durch unendliche Producte, Math. Annalen Bd. 33, p. 291 ff. (1888).

436 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

$$\beta - f_k(\xi) = \frac{(c_k \xi + d_k) \beta - (a_k \xi + b_k)}{c_k \xi + d_k},$$

$$= \frac{c_k \beta - a_k}{c_k \xi + d_k} (\xi - f_k^{-1}(\beta)),$$

$$\beta - f_k(\eta) = \frac{c_k \beta - a_k}{c_k \eta + d_k} (\eta - f_k^{-1}(\beta)).$$

Hieraus folgt:

(28)
$$\int_{a}^{\beta} dS_{\xi \eta} = \sum_{k} \log \left(\frac{\xi - f_{k}^{-1}(\beta)}{\eta - f_{k}^{-1}(\beta)} \cdot \frac{\eta - f_{k}^{-1}(\alpha)}{\xi - f_{k}^{-1}(\alpha)} \right),$$

und da die Gesammtheit der Transformationen f_k^{-1} identisch ist mit der Gesammtheit der Transformationen f_k , so ergibt sich weiter

(29)
$$\int_{\alpha}^{\beta} dS_{\xi\eta} = \int_{\xi}^{\eta} dS_{\alpha\beta}.$$

Dem Integrale $S_{\tilde{z}\,\eta}$ kommt also diejenige Eigenschaft zu, welche bei den Normalintegralen dritter Gattung in der Theorie der Abel'schen Functionen als Satz der Vertauschung von Parameter und Argument bekannt ist. Dieser Satz wird dort am einfachsten durch Untersuchung des Integrals

$$\int S_{\xi\eta} dS_{\alpha\beta}$$

abgeleitet, indem man die Integration über den Rand der betreffenden Riemann'schen Fläche ausdehnt, nachdem letztere durch Querschnitte in eine einfach zusammenhängende verwandelt ist, und nachdem man die singulären Punkte ξ , η , α , β durch Schleifen mit diesem Rande verbunden hat. An Stelle der Integration über die Ufer der Querschnitte tritt hier die Integration über den Rand des Kreisbogenpolygons, auf welches die Riemann'sche Fläche nach der Poincaré'schen Methode abgebildet ist. Seien A_i , B_i die Ecken einer Seite dieses Polygons und C_i , D_i diejenigen der zugeordneten Seite, so ergibt sich

$$\sum_{i=1}^{i=n} \left[\int_{A_i}^{B_i} S_{\xi \eta} dS_{\alpha \beta} - \int_{C_i}^{D_i} S_{\xi \eta} dS_{\alpha \beta} \right] + 2 \pi i \left[\int_{\xi}^{\eta} dS_{\alpha \beta} - \int_{\alpha}^{\beta} dS_{\xi \eta} \right] = 0.$$

Die erste Summe der linken Seite ist gleich

$$\sum_{i} \int_{A_{i}}^{B_{i}} \left[S_{\xi \eta} \left(z \right) - S_{\xi \eta} \left(f_{i} \left(z \right) \right) \right] d S_{\alpha \beta} = - \sum_{i} S_{\xi \eta} \left(\frac{a_{i}}{c_{i}} \right) \int_{A_{i}}^{B_{i}} d S_{\alpha \beta};$$

und die Vergleichung mit der Relation (29) lehrt, dass der Ausdruck der rechten Seite gleich Null ist. Die Integrale $\int_{A_i}^{B_i} d S_{\alpha\beta}$ sind Periodicitätsmoduln des Integrals $S_{\alpha\beta}$, lassen sich

also durch die Grössen $S_{\alpha\beta}\left(\frac{a_i}{c_i}\right)$ linear (mit ganzzahligen Coëfficienten) ausdrücken. Setzen wir zur Abkürzung

(30)
$$P_{i} = S_{\xi \eta} \left(\frac{a_{i}}{c_{i}} \right), \quad H'_{i} = \int_{A_{i}}^{B_{i}} dS_{\xi \eta},$$
$$P'_{i} = S_{\alpha \beta} \left(\frac{a_{i}}{c_{i}} \right), \quad H'_{i} = \int_{A_{i}}^{B_{i}} dS_{\alpha \beta},$$

so bestehen demnach Relationen der Form

(31)
$$II_i = \sum_{k=1}^n \gamma_{ik} P_k, \quad II'_i = \sum_{k=1}^n \gamma_{ik} P'_k,$$

wo die Coëfficienten γ_{ik} ganze Zahlen bedeuten. Die Gleichung (29) führt jetzt zu der Relation:

$$(32) \qquad \sum_{i} P_{i} \sum_{k} \gamma_{ik} P'_{k} = 0,$$

welche für alle Werthe von α und β erfüllt sein muss.

Nehmen wir nun an, dass die Grössen P_i von einander unabhängig seien, d. h. dass zwischen ihnen keine lineare Beziehung mit constanten Coëfficienten erfüllt sei, so müssten die n Gleichungen

$$\sum_{k} \gamma_{ik} P'_{k} = 0$$

erfüllt sein, und zwar für alle Werthe von α und β , also auch für $\alpha = \xi$, $\beta = \eta$, d. h. es müssten auch zwischen den P_i die

gleichen n Beziehungen bestehen, was der gemachten Annahme widersprechen würde.

Wenn r von einander unabhängige Relationen der Form

(34)
$$\sum_{k} \delta_{ik} P_{k} = 0 \text{ für } i = 1, 2, \dots, r$$

als erfüllt vorausgesetzt werden, so kann man r der n Grössen P_i mittelst derselben aus der Gleichung (32) herausschaffen, und es folgen für die P'_k dann n-r Relationen von der Form (33). Letztere müssen auch für $\alpha=\xi,\ \beta=\eta$ Geltung haben, also auch für die Grössen P_k ebenso erfüllt sein, wie für die P'_k . Die Gleichungen (34) müssen also mit den Gleichungen (33) identisch sein, und es muss n=2 r, also n eine gerade Zahl sein. Zwischen den n Periodicitätsmoduln

$$P_i = S_{\xi\eta} \left(\frac{a_i}{c_i} \right)$$

eines Integrals dritter Gattung bestehen daher mindestens $\frac{n}{2}$ lineare Relationen mit ganzzahligen Coëfficienten. In besonderen Fällen kann die Anzahl der
Relationen eine grössere sein, wie im folgenden Paragraphen
erörtert werden soll, wobei sich auch der Fall einer ungeraden
Zahl n erledigen wird.

Der Satz über die Vertauschung von Parameter und Argument lässt sich auch leicht für Integrale zweiter Gattung aussprechen. und zwar ganz so, wie es in der Theorie der Abel'schen Integrale geschieht.¹)

Es war

$$\int_{a}^{\beta} dS_{\xi\eta} = \int_{\eta}^{\xi} d\xi \int_{a}^{\beta} d\Omega_{\xi}.$$

Also folgt nach (29):

$$\frac{\partial \int_{a}^{\beta} d\Omega_{\xi}}{\partial \beta} = \frac{\partial^{2} \int_{a}^{\beta} dS_{\xi\eta}}{\partial \beta \partial \xi} = \frac{\partial^{2} \int_{\xi}^{\beta} dS_{\alpha\beta}}{\partial \beta \partial \xi};$$

¹⁾ Vgl. Clebsch und Gordan, Abel'sche Functionen, p. 122.

und hieraus die betreffende Gleichung für Integrale zweiter Gattung:

$$\left(\frac{\partial \Omega_{\xi}}{\partial z}\right)_{z=\beta} = \left(\frac{\partial \Omega_{\beta}}{\partial z}\right)_{z=\xi}.$$

Durch Differentiation erhält man für die Periodicitätsmoduln der Integrale zweiter Gattung analoge Relationen, wie für diejenigen der Integrale dritter Gattung.

§ 5. Einige Beispiele.

Hier mögen zunächst einige Beispiele betrachtet werden.¹) Es sei ein Achteck mit den Ecken A, B, C, D, E, F, G, H gegeben; und diese Ecken mögen bei positivem Umgange in der angegebenen Reihenfolge angetroffen werden. Einander entsprechende Seiten seien

$$A \ B \ \text{und} \ F \ E \ \text{durch} \ \text{die Transformation} \ f_1(z), \\ B \ C \ \ , \ G \ F \ \ , \ \ , \ \ f_2(z), \\ C \ D \ \ , \ H \ G \ \ , \ \ , \ \ , \ \ f_3(z), \\ D \ E \ \ , \ A \ H \ \ , \ \ , \ \ , \ \ f_4(z).$$

Dann ist

$$S_{\xi\eta}(F) = S_{\xi\eta}(f_{1}(A)) = S_{\xi\eta}(f_{2}(C))$$

$$= S_{\xi\eta}(A) + P_{1} = S_{\xi\eta}(C) + P_{2},$$

$$S_{\xi\eta}(G) = S_{\xi\eta}(f_{2}(B)) = S_{\xi\eta}(f_{3}(D))$$

$$= S_{\xi\eta}(B) + P_{2} = S_{\xi\eta}(D) + P_{3},$$

$$S_{\xi\eta}(H) = S_{\xi\eta}(f_{3}(C)) = S_{\xi\eta}(f_{4}(E))$$

$$= S_{\xi\eta}(C) + P_{3} = S_{\xi\eta}(E) + P_{4}.$$

Wir setzen nun

$$\begin{split} & H_{1} = S_{\xi \eta} \left(B \right) - S_{\xi \eta} \left(A \right), \quad H_{2} = S_{\xi \eta} \left(C \right) - S_{\xi \eta} \left(B \right), \\ & H_{3} = S_{\xi \eta} \left(D \right) - S_{\xi \eta} \left(C \right), \quad H_{4} = S_{\xi \eta} \left(E \right) - S_{\xi \eta} \left(D \right). \end{split}$$

¹⁾ Dieselben beiden Beispiele wählt Poincaré a. a. O. zur Erläuterung des Begriffes der Cyklen.

440 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

Die Gleichungen (31) nehmen hier die Gestalt an

(35)
$$\begin{aligned} II_1 &= & * - P_2 + P_3 - P_4, \\ II_2 &= & P_1 + * - P_3 + P_4, \\ II_3 &= - P_1 + P_2 + * - P_4, \\ II_4 &= & P_1 - P_2 + P_3 + *; \end{aligned}$$

und dieselben Relationen gelten für die Grössen P_i und Π_i . Diese Beziehungen sind identisch mit denjenigen, welche im Raume zwischen den Punkten P und Ebenen Π bei der Verwandtschaft des linearen Complexes bestehen. Die Bedingung (32) wird

(36)
$$P_1 \Pi_1' + P_2 \Pi_2' + P_3 \Pi_3' + P_4 \Pi_4' = 0.$$

Besteht zwischen den P_i die Relation

(37)
$$a_1 P_1 + a_2 P_2 + a_3 P_3 + a_4 P_4 = 0,$$

so ergibt sich durch Elimination von P_1 (wobei a_1 nicht gleich Null sein darf):

$$\begin{array}{ll} (38) & P_2(a_1\Pi_2'-a_2\Pi_1')+P_3(a_1\Pi_3'-a_3\Pi_1')+P_4(a_1\Pi_4'-a_3\Pi_1')\!=\!0. \\ & \\ \cdot & \text{Ist ausserdem} \end{array}$$

(39)
$$\beta_1 P_1 + \beta_2 P_2 + \beta_3 P_3 + \beta_4 P_4 = 0,$$
 so folgt:

(40) $P_2(a_1\beta_2-a_2\beta_1)+P_3(a_1\beta_3-a_3\beta_1)+P_4(a_1\beta_4-a_4\beta_1)=0.$ und durch Elimination von P_2 aus (38) erhalten wir eine im P_2 und P_3 lineare und homogene Gleichung, deren Coëfficienten verschwinden müssen; die letzteren sind linear im H_1 , H_2 , H_3 , H_4 und führen zu den Relationen:

$$(41) \begin{array}{l} (a_1\beta_2-a_2\beta_1)(a_1\Pi_3'-a_3\Pi_1')-(a_1\beta_3-a_3\beta_1)(a_1\Pi_2'-a_2\Pi_1')=0,\\ (a_1\beta_2-a_2\beta_1)(a_1\Pi_4'-a_4\Pi_1')-(a_1\beta_4-a_4\beta_1)(a_1\Pi_2'-a_2\Pi_1')=0. \end{array}$$

Dieselben Gleichungen müssen erfüllt sein, wenn man α , β bez. durch ξ , η , d. h. H'_i durch H_i ersetzt, und müssen dann mit den Gleichungen (37) und (39) gleichbedeutend werden. Aus (35) folgt:

$$\begin{split} &a_1\,H_2 - a_2\,H_1 = &a_1\,\,P_1 + a_2\,\,P_2 - (a_1 + a_2)\,(P_3 - P_4),\\ &a_1\,H_3 - a_3\,H_1 = -a_1\,\,P_1 + (a_1 + a_3)\,\,P_2 - a_3\,\,P_3 - (a_1 - a_3)\,\,P_4,\\ &a_1\,H_4 - a_4\,H_1 = &a_1\,\,P_1 - (a_1 + a_4)\,\,P_2 + (a_1 - a_4)\,\,P_3 + a_4\,\,P_4. \end{split}$$

Sei zur Abkürzung $(\alpha \beta)_{ik} = a_i \beta_k - a_k \beta_i$, so gehen folglich die Gleichungen (40) über in

$$\begin{split} &-a_1\;P_1\left[(a\;\beta)_{12}+(a\;\beta)_{13}\right]+a_1\;P_2\;(a\;\beta)_{32}+a_1\;P_3\;(a\;\beta)_{23}\\ &+P_4\left[(a\;\beta)_{13}\;(a_1+a_2)-(a\;\beta)_{12}\;(a_2-a_1)-a_1\;(a\;\beta)_{14}\right]=0. \end{split}$$

Formen wir dies Resultat mit Hülfe von (39) und den analogen Gleichungen

$$P_1 (\alpha \beta)_{12} + P_3 (\alpha \beta)_{32} + P_4 (\alpha \beta)_{42} = 0,$$

$$P_1 (\alpha \beta)_{13} + P_2 (\alpha \beta)_{23} + P_4 (\alpha \beta)_{43} = 0$$

um, so ergibt sich nach Weglassung des Factors P_4 eine Beziehung zwischen den a_i und β_i , nemlich

$$a_1[(\alpha\beta)_{13}-(\alpha\beta)_{14}-(\alpha\beta)_{12}-(\alpha\beta)_{24}-(\alpha\beta)_{34}]=a_2[(\alpha\beta)_{12}-(\alpha\beta)_{13}].$$

Analoge Gleichungen wird man durch Vertauschung der Indices erhalten.

Von anderem Gesichtspunkte aus lässt sich dies Beispiel in folgender Weise behandeln. Die beiden Relationen, welche sich für die Π_i^{\prime} ergeben, sollen (falls man H_i für H_i schreibt) mittelst der Transformation (35) auf die ursprünglichen Gleichungen (37) und (39) zurückgeführt werden. Umgekehrt müssen so aus diesen Gleichungen diejenigen für die Π_i (oder Π_i^i) gewonnen werden können; es ergibt sich

$$a_{1} \Pi_{1}' + a_{2} \Pi_{2}' + a_{3} \Pi_{3}' + a_{4} \Pi_{4}' = 0,$$

$$b_{1} \Pi_{1}' + b_{2} \Pi_{2}' + b_{3} \Pi_{3}' + b_{4} \Pi_{4}' = 0,$$
wo
$$a_{1} = * - a_{2} + a_{3} - a_{4},$$

$$a_{2} = a_{1} + * - a_{3} + a_{4},$$

$$a_{3} = -a_{1} + a_{2} + * - a_{4},$$

$$a_{4} = a_{1} - a_{2} + a_{3} + *,$$

und wo dieselben Gleichungen zwischen den b_i und β_i bestehen. Mit Hülfe von (36) eliminiren wir H'_1 und H'_2 und finden:

$$\begin{vmatrix} a_1 & a_2 & a_3 H_3' + a_4 H_4' \\ b_1 & b_2 & b_3 H_3' + b_4 H_4' \\ P_1 & P_2 & P_3 H_3' + P_4 H_4' \end{vmatrix} = 0,$$

und hieraus die beiden Gleichungen:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ P_1 & P_2 & P_3 \end{vmatrix} = 0, \quad \begin{vmatrix} a_1 & a_2 & a_4 \\ b_1 & b_2 & b_4 \\ P_1 & P_2 & P_4 \end{vmatrix} = 0.$$

Diese letzteren müssen bez. identisch sein mit den Relationen:

(43)
$$P_{1}(\alpha \beta)_{14} + P_{2}(\alpha \beta)_{24} + P_{3}(\alpha \beta)_{34} = 0, P_{1}(\alpha \beta)_{13} + P_{2}(\alpha \beta)_{23} + P_{4}(\alpha \beta)_{43} = 0;$$

und daraus ergeben sich die folgenden Bedingungsgleichungen:

(44)
$$\varrho (a \beta)_{14} = (a b)_{23}, \qquad \varrho' (a \beta)_{13} = (a b)_{42}, \\
\varrho (a \beta)_{24} = (a b)_{31}, \qquad \varrho' (a \beta)_{23} = (a b)_{14}, \\
\varrho (a \beta)_{34} = (a b)_{12}, \qquad \varrho' (a \beta)_{43} = (a b)_{21}.$$

Wegen des doppelten Werthes von $(a\ b)_{12} = -(a\ b)_{21}$ muss $\varrho' = \varrho = 1$ sein: berechnet man ferner die Grössen $(a\ b)_{ik}$ durch $(a\ \beta)_{ik}$ gemäss (42), so reduciren sich die Bedingungen (44) auf die Forderung:

(45)
$$(a \beta)_{34} = (a \beta)_{24} = (a \beta)_{14} = (a \beta)_{31} = (a \beta)_{23}.$$

Die Gleichungen (43) werden demnach:

$$P_1 + P_2 + P_3 = 0,$$

 $P_1 - P_2 + P_4 = 0.$

Mit diesen Gleichungen müssen die ursprünglichen Relationen (37) und (39) äquivalent sein; auch die oben (p. 441) vorläufig aufgestellte Bedingung ist durch sie identisch erfüllt.

Die Elimination setzt voraus, dass nicht gleichzeitig a_3 und a_4 verschwinden; denn in dem Falle würden die linken

Seiten der beiden Gleichungen (43) einander proportional werden. Das Resultat wäre im Wesentlichen dasselbe, als wenn wir in den vorliegenden Formeln a_1 und a_2 verschwinden lassen. Aus (45) folgt dann

$$\beta_1 = 0$$
, $\beta_2 = 0$, $\alpha_3 \beta_4 - \beta_3 \alpha_4 = 0$;

die angenommenen Bedingungen wären also einfach

$$P_3 = 0$$
 und $P_4 = 0$.

Das erhaltene Resultat ist aber nicht anwendbar, wenn sowohl a_1 und a_2 , als auch β_3 und β_4 gleich Null sind. In diesem Falle ergibt sich

$$(a_3 - a_4) (\Pi_1' - \Pi_2') - a_4 \Pi_3' + a_3 \Pi_4' = 0,$$

$$\beta_2 \Pi_1' - \beta_1 \Pi_2' + (\beta_1 - \beta_2) (\Pi_3' - \Pi_4') = 0.$$

Die Anwendung von (36) führt durch Elimination von Π'_1 und Π'_2 zu der Relation:

$$\left| \begin{array}{cccc} a_3 - a_4 & a_4 - a_3 & -a_4 \, \varPi_3' + a_3 \, \varPi_4' \\ \beta_2 & -\beta_1 & (\beta_1 - \beta_2) \, (\varPi_3' - \varPi_4') \\ P_1 & P_2 & P_3 \, \varPi_3' + P_4 \, \varPi_4' \end{array} \right| = 0 \, ;$$

und hieraus, da die Coëfficienten von Π'_3 und Π'_4 einzeln verschwinden müssen:

$$\begin{split} &(P_1 + P_2 + P_3) \left(\beta_1 - \beta_2\right) \left(a_3 - a_4\right) + \beta_1 \, a_4 \, P_1 + \beta_2 \, a_4 \, P_2 = 0 \,, \\ &(P_1 + P_2 + P_4) \left(\beta_1 - \beta_2\right) \left(a_3 - a_4\right) + \beta_1 \, a_3 \, P_1 + \beta_2 \, a_3 \, P_2 = 0 \,. \end{split}$$

Wir haben also folgende Möglichkeiten:

1)
$$a_3 = a_4$$
, $\beta_1 P_1 + \beta_2 P_2 = 0$, es folgt $P_3 + P_4 = 0$;

2)
$$\beta_1 = \beta_2$$
, $P_1 + P_2 = 0$, , $a_3 P_3 + a_4 P_4 = 0$;

3)
$$\beta_1 P_1 + \beta_2 P_2 = 0$$
, $(a_3 - a_4)(P_1 + P_2) + a_3 P_3 - a_4 P_4 = 0$.

Im letztern Falle müsste auch

$$(a_3 - a_4)(\beta_1 - \beta_2) P_2 + 2 a_3 \beta_1 P_3 = 0$$

sein; es würde folgen $\beta_1 = \beta_2$ und $a_3 = 0$, so dass die ursprünglichen Relationen lauteten

$$P_1 + P_2 = 0$$
, $P_4 = 0$.

444 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

Im Falle 1) geht die Gleichung (36) über in

$$P_1(\beta_2 \Pi_1' - \beta_1 \Pi_2') + \beta_2 P_3(\Pi_3' - \Pi_4') = 0$$

also:

$$\begin{split} \beta_2 \, \varPi_1' - \beta_1 \, \varPi_2' &= (P_3 - P_4) \, (\beta_1 + \beta_2) - (\beta_1 \, P_1 + \beta_2 \, P_2) = 0 \,, \\ \varPi_3' - \varPi_4' &= - \, (P_3 + P_4) + 2 \, (P_2 - P_1) = 0 \,. \end{split}$$

Es ist also nothwendig $\beta_1 + \beta_2 = 0$ und $P_3 + P_4 = 0$, we dann die ursprünglichen Gleichungen (37) und (39) in der Form

$$P_1 - P_2 = 0$$
, $P_3 + P_4 = 0$

erscheinen.

Ein anderes Beispiel gibt dasselbe Achteck, wenn die Seiten auf einander nach folgendem Schema bezogen werden:

Haben die Grössen P_i und H_i die frühere Bedeutung, so wird hier

$$\begin{split} P_{1} &= S_{\xi\eta} (D) - S_{\xi\eta} (A) = S_{\xi\eta} (C) - S_{\xi\eta} (D), \\ P_{2} &= S_{\xi\eta} (E) - S_{\xi\eta} (B) = S_{\xi\eta} (D) - S_{\xi\eta} (C), \\ P_{3} &= S_{\xi\eta} (G) - S_{\xi\eta} (F) = S_{\xi\eta} (H) - S_{\xi\eta} (E), \\ P_{4} &= S_{\xi\eta} (F) - S_{\xi\eta} (A) = S_{\xi\eta} (H) - S_{\xi\eta} (G). \end{split}$$

An Stelle der Gleichungen (35) treten die folgenden

$$\begin{split} & \Pi_{1} = S_{\xi\eta}\left(B\right) - S_{\xi\eta}\left(A\right) = -P_{2}, \\ & \Pi_{2} = S_{\xi\eta}\left(C\right) - S_{\xi\eta}\left(B\right) = P_{1}, \\ & \Pi_{3} = S_{\xi\eta}\left(D\right) - S_{\xi\eta}\left(C\right) = -P_{4}, \\ & \Pi_{4} = S_{\xi\eta}\left(G\right) - S_{\xi\eta}\left(F\right) = P_{3}. \end{split}$$

Wir gehen wieder von den Relationen (37) und (39) aus,

$$\begin{aligned} & - a_2 \Pi_1' + a_1 \Pi_2' - a_4 \Pi_3' + a_3 \Pi_4' = 0, \\ & - \beta_2 \Pi_1' + \beta_1 \Pi_2' - \beta_4 \Pi_3' + \beta_3 \Pi_4' = 0, \end{aligned}$$

und die Anwendung von (36) führt zu dem Resultate

$$\begin{vmatrix} -a_2 & a_1 & a_3 H_4' - a_4 H_3' \\ -\beta_2 & \beta_1 & \beta_3 H_4' - \beta_4 H_3' \\ P_1 & P_2 & P_4 H_4' + P_3 H_3' \end{vmatrix} = 0;$$

also bestehen die beiden Gleichungen

$$\begin{split} P_{1} \left(\alpha \, \beta \right)_{13} + \, P_{2} \left(\alpha \, \beta \right)_{23} + \, P_{4} \left(\alpha \, \beta \right)_{12} &= 0 \,, \\ P_{1} \left(\alpha \, \beta \right)_{14} + \, P_{2} \left(\alpha \, \beta \right)_{24} - \, P_{3} \left(\alpha \, \beta \right)_{12} &= 0 \,. \end{split}$$

Die Vergleichung mit (43) ergibt:

$$(\alpha \beta)_{12} + (\alpha \beta)_{34} = 0$$

als einzige Bedingung. Dieselbe ist insbesondere erfüllt für

$$a_1 = 0$$
, $a_2 = 0$, $\beta_3 = 0$, $\beta_4 = 0$,

in welchem Falle die Relationen

$$\begin{aligned} a_3 \ P_3 + a_4 \ P_4 &= 0 \,, \quad \beta_1 \ P_1 + \beta_2 \ P_2 &= 0 \,, \\ a_3 \ H_4' - a_4 \ H_3' &= 0 \,, \quad \beta_1 \ H_2' - \beta_2 \ H_1' &= 0 \end{aligned}$$

bestehen. Ist gleichzeitig $a_1=0$, $a_2=0$, $a_3=0$, $\beta_1=0$, $\beta_2=0$, $\beta_4=0$, so haben wir $P_3=0$ und $P_4=0$, d. h. P_1 und P_2 sind die normalen Periodicitätsmoduln des Normalintegrals $S_{\xi\eta}$.

§ 6. Die Integrale erster Gattung.

In der Theorie der Abel'schen Integrale erscheinen als Periodicitätsmoduln der Normalintegrale dritter Gattung an den Querschnitten der Riemann'schen Fläche bekanntlich die Normalintegrale erster Gattung; und die Grenzen der letzteren sind die Unstetigkeitspunkte der Integrale dritter Gattung.

Fassen wir jetzt die Grössen $S_{\xi \eta} \left(\frac{a_i}{c_i} \right)$ als Functionen von ξ und η auf, und setzen dem entsprechend nach (24) und (25)

(46)
$$S_{\xi\eta}\left(\frac{a_{i}}{c_{i}}\right) = \sum_{k} \log \frac{\frac{a_{i}}{c_{i}} - f_{k}\left(\xi\right)}{\frac{a_{i}}{c_{i}} - f_{k}\left(\eta\right)},$$

sämmtlich ausserhalb des Hauptkreises.

446 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

oder abgekürzt

$$S_{\xi \eta}\left(\frac{a_{i}}{c_{i}}\right) = \int_{\eta}^{\xi} du_{i} = u_{i}\left(\xi\right) - u_{i}\left(\eta\right),$$

so zeigt sich, dass die rechte Seite für keinen Punkt ξ im Innern des Hauptkreises unendlich gross wird, ihr also in der That die Eigenschaft eines Integrals erster Gattung zukommt; denn die Punkte $\frac{a_i}{c_i}$, welche durch die Substitution $f_i^{-1}(z)$ aus dem Punkte $z=\infty$ hervorgehen, liegen

Die Anzahl der von einander linear unabhängigen Integrale erster Gattung ist gleich der Anzahl der von einander linear unabhängigen Functionen $S_{\xi\eta}\left(\frac{a_i}{c_i}\right)$, welche in \S 4 vorläufig bestimmt wurde. Diese Bestimmung bedarf aber noch einer wesentlichen Modification in dem Falle, dass die Ecken des Fundamentalpolygons (im Sinne Poincaré's) in mehrere Cyclen zerfallen.

Der Punkt $z=\infty$, welcher bei Bildung der Ausdrücke $S_{\bar{z}\,\eta}\left(\frac{a_i}{c_i}\right)=S_{\bar{z}\,\eta}\left(f_i\left(\infty\right)\right)$ wesentlich zu sein scheint, muss thatsächlich durch einen beliebigen, ausserhalb des Hauptkreises gelegenen Punkt ersetzt werden können, denn durch eine lineare Hülfstransformation kann er an die Stelle eines beliebigen Punktes dieser Art gebracht werden. Um einen solchen willkürlichen Punkt ζ in die Rechnung einzuführen, beachten wir, dass nach (24) die Formel

$$S_{\tilde{z}\eta}(f_i(z)) - S_{\tilde{z}\eta}(z) = S_{\tilde{z}\eta}\left(\frac{a_i}{c_i}\right) - S_{\tilde{z}\eta}(\infty)$$
$$= S_{\tilde{z}\eta}(f_i(\zeta)) - S_{\tilde{z}\eta}(\zeta)$$

für jeden Werth von z oder ζ gilt. Es ist also auch

$$u_{i}(\xi) - u_{i}(\eta) = S_{\xi\eta}(f_{i}(\xi)) - S_{\xi\eta}(\xi)$$

$$= \sum_{i} \log \left(\frac{f_{i}(\xi) - f_{k}(\xi)}{f_{i}(\xi) - f_{k}(\eta)} \cdot \frac{\xi - f_{k}(\eta)}{\xi - f_{k}(\xi)} \right)$$

eine von ζ unabhängige Constante, falls ζ ausserhalb des Hauptkreises liegt.

Gehören nun einem Cyclus r Ecken A_i an, so können durch gewisse r-1 Transformationen diese Ecken mit einer von ihnen zur Deckung gebracht werden; dasselbe gilt für die zu diesen Ecken conjugirten Punkte A_i ausserhalb des Hauptkreises. Umgekehrt kann einer der letzteren Punkte, den wir jetzt ζ nennen, durch gewisse Transformationen successive mit den anderen Ecken zusammengebracht werden; die letzte Transformation $f_j(\zeta)$ aber führt ihn an die alte Stelle zurück. Ist nur ein Cyclus vorhanden, so setzt sich diese letzte Substitution aus den früheren zusammen; sind aber mehrere Cyclen vorhanden, so ist dies nicht der Fall, und doch ist für diese Transformation $f_j(\zeta) = \zeta$, also auch der entsprechende Periodicitätsmodul

 $S_{\xi \eta}\left(f_{j}\left(\zeta\right)\right) - S_{\xi \eta}\left(\zeta\right),$

welcher eine lineare Function der $S_{\tilde{z}\,\eta}\left(\frac{a_i}{c_i}\right)$ ist, gleich Null. Bei einem Cyclus haben wir also n, bei zwei Cyclen n-1 Grössen $S_{\tilde{z}\,\eta}\left(\frac{a_i}{c_i}\right) = P_i$ zu berücksichtigen; bei ϱ Cyclen bleiben $n-\varrho+1$ Grössen P_i zu untersuchen.

Auf diese $n-\varrho+1$ Grössen sind die Ueberlegungen von § 4 anzuwenden. Die Zahl p der von einander unabhängigen Integrale erster Gattung ist daher im Allgemeinen gleich

 $p = \frac{n+1-\varrho}{2}.$

Es ist dieses dieselbe Zahl, welche Poincaré durch andere Betrachtungen (über den "Zusammenhang" des Polygons) für das Geschlecht der zugehörigen Riemann'schen Fläche abgeleitet hat. Ist n eine ungerade Zahl, so muss hiernach ϱ eine gerade Zahl sein.

Wir haben noch die Periodicitäts-Moduln der Integrale erster Gattung zu untersuchen. Die Aenderung, welche u_i erleidet, wenn ξ durch $f_m(\xi)$ ersetzt wird, ist gleich

$$(46) \quad u_i(f_m(\xi)) - u_i(\xi) = \sum_i \log \left(\frac{f_i(\zeta) - f_k(f_m(\xi))}{f_i(\zeta) - f_k(\xi)} \cdot \frac{\zeta - f_k(\xi)}{\zeta - f_k(f_m(\xi))} \right),$$

wo die rechte Seite unabhängig von ζ ist, indem z. B. $\zeta = \infty$ genommen werden kann. Wir haben nachzuweisen, dass die rechte Seite auch unabhängig von ξ ist.

Der Beweis wird unmittelbar durch den Satz über die Vertauschung von Parameter und Argument gegeben. In der That ergibt sich unmittelbar aus den Formeln, welche in § 4 auf die Gleichung (28) führten, das Resultat:

$$u_{i}(f_{m}(\xi)) - u_{i}(\xi) = \sum_{k} \log \left(\frac{f_{k}^{-1}(f_{i}(\xi)) - f_{m}(\xi)}{f_{k}^{-1}(f_{i}(\xi)) - \xi} \cdot \frac{f_{k}^{-1}(\xi) - \xi}{f_{k}^{-1}(\xi) - f_{m}(\xi)} \right)$$

$$= \sum_{k} \log \left(\frac{f_{m}(\xi) - f_{k}^{-1}(f_{i}(\xi))}{f_{m}(\xi) - f_{k}^{-1}(\xi)} \cdot \frac{\xi - f_{k}^{-1}(\xi)}{\xi - f_{k}^{-1}(f_{i}(\xi))} \right).$$

Die rechte Seite geht aber aus der rechten Seite von (46) hervor, wenn man ξ , ζ , f_i , f_m , f_k bez. durch ζ , ξ , f_m , f_i , f_{k-1} ersetzt. Da nun die Gesammtheit der Transformationen f_k identisch ist mit der Gesammtheit der Transformationen f_{k-1} , so folgt

$$(47) u_i(f_m(\xi)) - u_i(\xi) = u_m(f_i(\zeta)) - u_m(\zeta)$$

$$= u_m(f_i(\infty)) - u_m(\infty).$$

Die rechte Seite ist bereits als unabhängig von ζ nachgewiesen (indem z. B. $\zeta = \infty$ genommen werden konnte); folglich ist auch die linke Seite (die nach demselben Gesetze gebildet ist) unabhängig von ξ . Setzen wir

$$a_{im} = u_i(f_m(\xi)) - u_i(\xi) = u_m(f_i(\xi)) - u_m(\xi),$$

so folgt noch die Relation

$$a_{im} = a_{mi}.$$

Die Gleichung (46) löst die Aufgabe, alle Periodicitätsmoduln der Integrale erster Gattung als Functionen von 6 p-6Parametern darzustellen,¹) denn so gross ist nach Poincaré

¹⁾ Entsprechende Formeln gibt Schottky a. a. O. für den von ihm

die Anzahl der reellen Parameter, von welchen die gegebene Transformationsgruppe abhängt, und ebenso gross ist bekanntlich die Anzahl der Moduln, von denen die zu einer Curve gehörigen Abel'schen Integrale abhängen.

Die bekannten bilinearen Relationen für die Periodicitätsmoduln zweier Integrale erster Gattung werden durch Betrachtung des Integrals $\int u_i du_m$ ebenso gewonnen, wie für zwei Integrale dritter Gattung mittelst des Integrals $\int S_{\alpha\beta} dS_{\xi\eta}$ in § 4 geschah, und wie es Poincaré an einem Beispiele gezeigt hat.¹)

Die Anzahl der Relationen (48) ist gleich n (2 n - 1), da die Indices i, n alle von einander verschiedenen Werthe von 1 bis 2 n annehmen können. Es sind nur p der 2 n Integrale u_i von einander unabhängig; indem man die übrigen Integrale durch die p ersten ausdrückt, erhält man aus (48) für i > p lineare Relationen, welche die Periodicitätsmoduln dieser übrigen Integrale auf diejenigen der p ersten zurückführen. Für das auf p. 442 behandelte Beispiel findet man leicht, dass P_1 und P_2 Normalintegrale sind, und zwar

wozu noch je $2\pi i$ wegen des Logarithmus hinzutritt. Auch im Falle 1) p. 443 f. werden P_1 und P_3 leicht als Normalintegrale erkannt, bez. mit den Periodicitätsmoduln

$$a_{11} = a_{12}, \ a_{13} = - \ a_{14} \ \ {\rm und} \ \ a_{31} = a_{32}, \ a_{33} = - \ a_{34}.$$

In analoger Weise bleiben überhaupt p^2 Periodicitätsmoduln (von Normalintegralen) übrig, zwischen denen noch $\frac{1}{2} p (p-1)$ Relationen der Form (48) bestehen.

Die vorstehenden Betrachtungen müssen etwas modificirt werden, wenn die Begrenzung des ursprünglichen Kreisbogen-Polygons streckenweise von dem Hauptkreise selbst gebildet

behandelten besonderen Fall; die dabei eingeführten Integralfunctionen erster Gattung haben von selbst die Eigenschaften der Normalintegrale.

¹⁾ Vgl. Acta mathematica Bd. 1, p. 259 ff.

wird, d. h. wenn in der Begrenzung sogenannte Seiten zweiter Art vorkommen und wenn in Folge dessen das ursprüngliche Polygon R_0 zusammen mit seinem "Spiegelbilde (R'_0) in Bezug auf den Hauptkreis" ein einziges in sich zusammenhängendes Polygon bildet, das der weiteren Betrachtung zu Grunde zu legen ist. Wenn das ursprüngliche Polygon R_0 2 n Seiten erster Art mit q Cyclen besitzt, so bildet R_0 mit R'_0 zusammen ein Polygon mit 4n Seiten erster Art und 2q Cyclen. Die Anzahl der zu betrachtenden Functionen $P_i = S_{\xi\eta}\left(\frac{a_i}{c_i}\right)$ wäre also zunächst gleich 2n-2q. In diesem Falle aber liegen die Punkte $\frac{a_i}{c_i}$ zwar auch alle ausserhalb des Hauptkreises, aber einer liegt im Innern von R'_0 , und in ihm wird jede der Grössen

$$P_{i} = S_{\xi \eta} \left(\frac{a_{i}}{c_{i}} \right) = \sum_{k} \log \frac{a_{i} - c_{i} f_{k} \left(\xi \right)}{a_{i} - c_{i} f_{k} \left(\eta \right)}$$

unendlich gross, denn unter den singulären Punkten

$$\xi = f_k^{-1} \left(\frac{a_i}{c_i} \right)$$

dieser Function kommen alle Punkte $\frac{a_r}{c_r}$ vor, wenn man von einem $\left(\frac{a_i}{c_i}\right)$ ausgeht. Als überall endliche Integrale können daher nur die Differenzen $P_i - P_h$ in Betracht kommen, d. h. 2n-2q-1 Functionen; und die Anzahl der zwischen ihnen bestehenden Relationen muss gleich der Hälfte der um eine Einheit vermehrten Zahl sein (wie oben); das Geschlecht, d. i. die Anzahl der von einander unabhängigen Integrale erster Gattung, wird demnach

$$p = n - q,$$

wie es Poincaré seinerseits findet.

Hat man es mit sogenannten Klein'schen Gruppen zu thun, so können weitere Vereinfachungen eintreten, indem man als singuläre Punkte der Integrale erster Gattung die Grenzpunkte

benutzt, um welche sich die Polygon-Seiten unendlich verdichten, und die selbst in keinem Polygon liegen, wie es Schottky in dem von ihm behandelten Falle thut.

§ 7. Die Fuchs'schen Zetafunctionen.

Ist eine lineare Differentialgleichung μ^{ter} Ordnung in der Form

(49)
$$\frac{d^{\mu} v}{d x^{\mu}} + \sum_{i=0}^{i=\mu-1} \varphi_{i}(x, y) \frac{d^{i} v}{d x^{i}} = 0$$

gegeben, wo die Coëfficienten $\varphi_i(x, y)$ rationale Functionen der Argumente x und y bezeichnen, und zwischen letzteren selbst eine algebraische Gleichung

$$(50) f(x,y) = 0$$

erfüllt ist, so kann man nach den Arbeiten von Klein, Poincaré und Schottky diese Coëfficienten $\varphi_i(x,y)$ als eindeutige automorphe Functionen einer Variabeln z darstellen,

welche gleich $\frac{w_1}{w_2}$ zu setzen ist, wenn w_1 und w_2 particuläre

Integrale einer Differentialgleichung zweiter Ordnung von der Form

(51)
$$\frac{d^2w}{dx^2} = \psi(x, y) \cdot w$$

sind, vorausgesetzt, dass die rationale Function $\psi(x, y)$ passend gewählt wird, nemlich so, dass x und y eindeutige automorphe Functionen von w werden.

Auch die Integrale der Gleichung (49) lassen sich dann als Functionen von z auffassen; und unter gewissen Voraussetzungen über die singulären Stellen der Differentialgleichung (49) sind ihre Integrale durch Potenzreihen nach Potenzen von z darstellbar, welche alle im Einheitskreise convergiren, falls man es so eingerichtet hat, dass der Einheitskreis als Hauptkreis für die durch (51) einzuführenden automorphen Functionen auftritt, wo dann nur Punkte z im Innern des Einheitskreises in Betracht kommen.

452 Sitzung der math.-phys. Classe vom 2. Dezember 1899.

Wenn nun z eine lineare Transformation der zu (51) gehörigen Gruppe erleidet, d. h. z durch $f_i(z)$ ersetzt wird, so erleiden die Integrale von (49), die wir Z_i nennen, ebenfalls eine lineare isomorphe Substitution, indem

(52)
$$Z_k(f_i(z)) = a_{k1}^{(i)} Z_1(z) + a_{k2}^{(i)} Z_2(z) + \dots + a_{k\mu}^{(i)} Z_{\mu}(z),$$

 $k = 1, 2, \dots, \mu; i = 1, 2, \dots, n.$

Solche Functionen Z bezeichnet Poincaré¹) als "fonctions zétafuchsiennes" und stellt sie durch Reihen ξ_j dar, die in folgender Weise definirt sind:

(53)
$$\xi_{j}(z) = \sum_{i=1}^{\infty} \left(\frac{df_{i}(z)}{dz} \right)^{m} \sum_{k=1}^{k=\mu} A_{jk}^{(i)} H_{k}(f_{i}(z)).$$

Hierin bedeutet $f_i(z)$ eine lineare Substitution (wie oben in § 1 ff.); $A_{jk}^{(i)}$ sind die bei Auflösung der Gleichungen (52) auftretenden Coëfficienten; und

$$H_1(z), H_2(z) \dots H_{\mu}(z)$$

sind μ rationale Functionen von z; der Index j kann die Werthe $1, 2, \ldots, \mu$ annehmen. Die ganze Zahl m muss so gewählt sein, dass die Reihe (53) convergirt. Die Convergenz wird durch Vergleichung mit der Reihe $\sum (f_i^i)^m$ beurtheilt. Bezeichnet M den grössten absoluten Betrag aller in der Substitutionsgruppe (52) vorkommenden Coëfficienten $a_{kl}^{(i)}$, so muss nach Poincaré

$$2 m - 4 > a \log (M\mu)$$

sein, wo α eine gewisse Constante bedeutet, ausserdem m > 1, damit die zum Vergleiche benutzte Reihe sicher convergirt.

Da wir nun in § 1 die Convergenz der letzteren Reihe auch für m=1 nachgewiesen haben, so kann die Bedingung (56) durch die günstigere

$$2 m - 2 > a \log (M \mu)$$

ersetzt werden, wobei ausserdem m > 1 sein muss. Insbesondere

Mémoire sur les fonctions zétafuchsiennes, Acta mathematica, Bd. 5, 1884.

anch m - 1 sain wann Mu 1 ist Diese Verens

kann auch m=1 sein, wenn $M\mu < 1$ ist. Diese Voraussetzung soll im Folgenden gemacht werden.

F. Lindemann: Zur Theorie der automorphen Functionen.

Die Function ξ_j genügt identisch der Bedingung

(54)
$$\xi_{j}(f_{r}(z)) = (f'_{r}(z))^{-m} \sum_{k=1}^{\mu} a_{jk}^{(r)} \xi_{k}(z).$$

Die Anwendung der linearen Transformation $f_r(z)$ auf die Variable z als Argument der Function $\xi_j(z)$ bewirkt also, dass sich letztere linear durch die anderen Functionen $\xi_k(z)$, versehen mit dem Factor $f'_r(z)^{-m}$, ausdrückt. Es ist dies derselbe Factor, welcher zu der in (2) gegebenen Poincaré'schen Θ -Function bei der gleichen Transformation hinzutritt, so dass die μ -Functionen

$$\frac{\xi_1}{\Theta}, \ \frac{\xi_2}{\Theta} \dots \frac{\xi_{\mu}}{\Theta}$$

ein System von Functionen Z_k bilden, wie es den Gleichungen (52) genügt; und sie genügen einer Differentialgleichung von der Form (49).

Im Folgenden soll nicht weiter auf den Zusammenhang mit den Differentialgleichungen eingegangen werden; es soll nur gezeigt werden, wie man eine besonders einfache Klasse von Functionen benutzen kann zur Bildung eines Systems von Fuchs'schen Zeta-Functionen.

Wir bilden die Reihe

(56)
$$\eta_{j}(z) = \sum_{i=1}^{\infty} \sum_{k=1}^{\mu} A_{kj}^{(i)} \frac{f'_{k}(\zeta_{k})}{z - f_{i}(\zeta_{k})};$$

dann ist nach der Umformung, welche zu Gleichung (19) führte:

$$\eta_{j}(f_{r}(z)) = \sum_{i} \sum_{k} A_{kj}^{(i)} \frac{1}{z - f_{r}^{-1} \left(f_{j}(\zeta_{k}) \right)} \frac{d \, f_{r}^{-1} \left(f_{j}(\zeta_{k}) \right)}{d \, \zeta_{k}} + \, \Omega_{jr}^{-1} \left(f_{j}(\zeta_{k}) \right) + \, \Omega_{jr}^{-1} \left(f_{j$$

wo Ω_{jr} eine von z unabhängige Constante bedeutet, nemlich

$$Q_{jr} = \sum_{i} \sum_{k} A_{kj}^{(i)} \frac{c_r}{a_r - c_r f_i(\zeta_k)}.$$

Andererseits ist identisch

$$\eta_{j}(z) = \sum_{i=1}^{\infty} \sum_{l=1}^{\mu} a_{jl}^{(r)} \sum_{k=1}^{\mu} A_{kl}^{(i)} \frac{1}{z - f_{r}^{-1}} \frac{1}{(f_{i}(\zeta_{k}))} \frac{d f_{r}^{-1} (f_{i}(\zeta_{k}))}{d \zeta_{k}},$$

denn die rechte Seite dieser Formel unterscheidet sich von der rechten Seite der Gleichung (56) nur dadurch, dass vor der Summation auf die ite Transformation die aufgelöste rte angewandt wurde, was das Resultat nicht beeinflussen kann, da in der Summe alle Transformationen der Gruppe vorkommen. Also folgt:

$$\eta_{j}(z) = \sum_{l=1}^{\mu} a_{jl}^{(r)} \, \eta_{l}(f_{r}(z)) - \sum_{l=1}^{\mu} a_{jl}^{(r)} \, \Omega_{jr}$$

oder durch Auflösung

$$\eta_{t}(\boldsymbol{f}_{r}(\boldsymbol{z})) = \sum_{j=1}^{\mu} A_{jl}^{(r)} \; \eta_{j}(\boldsymbol{z}) + A^{(r)} \; \varOmega_{jr},$$

wo $A^{(r)}$ die Determinante der r^{ten} Substitution (52) bedeutet. Hieraus folgt unmittelbar:

Die Differentialquotienten der η -Functionen, welche durch (56) definirt werden, haben die wesentliche Eigenschaft der Poincaré'schen Functionen ξ_j , indem sie den Gleichungen (54) genügen, nemlich:

$$\eta_{j}^{'}(f_{r}(z)) = [f_{r}^{'}(z)]^{-1} \sum_{l=1}^{\mu} A_{lj}^{(r)} \, \eta_{l}^{'}(z).$$

Den Functionen η kommen hiernach analoge Eigenschaften zu, wie den Integralfunctionen zweiter Gattung, zu deren Aufstellung die Betrachtung der automorphen Functionen in § 2 Veranlassung gab. Durch Integration nach dem Parameter ζ würden Functionen entstehen, welche den Abel'schen Integralen dritter Gattung analog sind, und deren Periodicitätsmoduln den Integralen erster Gattung entsprechen.

Die Functionen η_j' können an Stelle der ξ_j zur Bildung der Fuchs'schen Z-Functionen (55) benutzt werden, wenn auch Θ passend gewählt wird.

Verzeichniss der eingelaufenen Druckschriften

Juli bis Dezember 1899.

Die verehrlichen Gesellschaften und Institute, mit welchen unsere Akademie in Tauschverkehr steht, werden gebeten, nachstehendes Verzeichniss zugleich als Empfangsbestätigung zu betrachten.

Von folgenden Gesellschaften und Instituten:

Geschichtsverein in Aachen:

Zeitschrift. Band XXI. 1899. 80.

Observatory in Adelaide:

Meteorological Observations. Year 1896. 1899. Fol.

Südslavische Akademie der Wissenschaften in Agram:

Ljetopis za godinu. 1898. 1899. 8°. Rad. Vol. 138. 139. 1899. 8°. Stari pisci hrvatski Tom. 21. 1899. 8°.

Zbornik. Band IV, Heft 1.

Kroatisch, slavon, dalmatinisches Landesarchiv in Agram:

Vjestnik. Band I, Heft 3, 4. 1899. 40.

University of the State of New-York in Albany:

New-York State Museum. 49th Annual Report. 1895. Vol. 2. 1898. 40.

K. Akademie der Wissenschaften in Amsterdam:

Verhandelingen. Afd. Natuurkunde I. Sectie, Deel VI, No. 6, 7; II. Sectie, Deel VI, No. 3-8. 1898-99. 4°.

Zittingsverslagen. Afd. Natuurkunde. Jaar 1898/99, Deel VII. 1899. gr. 80. Jaarboek voor 1898. 1899. gr. 80.

Prijsvers Patris ad filium. 1899. 80.

Peabody Institute in Baltimore:

32 d annual Report. June 1. 1889. 80.

Johns Hopkins University in Baltimore:

Studies in historical and political Science. Series XVII, No. 1-5. 1898/99. 8°. Series XVI, No. 10-12;

Circulars. Vol. XVIII, No. 141. 1899. 4°.

American Journal of Mathematics. Vol. 20, No. 4; Vol. 21, No. 1, 2.

The American Journal of Philology. Vol. 19, No. 2-4. 1898.

American Chemical Journal, Vol. 20, No. 8-10; Vol. 21, No. 1-5, 1898/99. 80.

Memoirs from the Biological Laboratory. Vol. IV, 3. 1899. 4°. Bulletin of the Johns Hopkins Hospital. Vol. IX, No. 93-97. The Johns Hopkins Hospital Reports. Vol. VII, No. 4. 1898. 4.

Historischer Verein in Bamberg:

59. Bericht f. d. J. 1898. 1899. 89.

Bataviaasch Genootschap van Kunsten en Wetenschappen in Batavia:

Tijdschrift. Band 41, 1-6, 1899, 80.

Notulen. Deel 36, afl. 4; Deel 37, afl. 3. 1898/99. 8°. Dagh-Register int Casteel Batavia. Anno 1631-34. 1898. 40.

Kgl. natuurkundige Vereeniging en Nederlandsch Indië zu Batavia: Natuurkundig Tijdschrift. Deel 58. 1898. 80.

K. Serbische Akademie in Belgrad:

Spomenik. No. XXXIV. 1898. Fol.

Godischnijak. XII, 1898. 1899. 80.

Ragusa und das osmanische Reich von Lujo Knez Vojnović. 1. Buch. 1898. 80. (In serb. Sprache.)

Museum in Bergen (Norwegen):

G. O. Sars. An account of the Crustacea of Norway. 1899. 40. Afhandlinger og Aarsberetning 1899. 80.

K. preussische Akademie der Wissenschaften in Berlin:

Sitzungsberichte. 1899. No. XXIII-XXXVIII. 40.

Politische Correspondenz Friedrichs des Grossen. Band XXV. 1899. 40.

K. geolog. Landesanstalt und Bergakademie in Berlin:

Abhandlungen. Neue Folge. Heft 25 u. 29 in 80; Atlas zu Heft 25 in Fol. 1898/1899.

Archäologische Gesellschaft in Berlin:

59. Programm zum Winckelmannsfeste. 1899. 40.

Deutsche chemische Gesellschaft in Berlin:

Berichte. 32. Jahrg., No. 11-18. 1899. 80.

Deutsche geologische Gesellschaft in Berlin:

Zeitschrift. Band 51, Heft 1. 2. 1899. 80.

Physikalische Gesellschaft in Berlin:

Verhandlungen. Jahrg. I. No. 9-14. 1899. 40.

Physiologische Gesellschaft in Berlin:

Centralblatt für Physiologie 1899. Register zu Band XII. 80. Verhandlungen 1899. No. 13-16. 80.

K. technische Hochschule in Berlin:

A. Riedler, Die Technischen Hochschulen und ihre wissenschaftlichen Bestrebungen. 1899. 40.

Chronik der kgl. technischen Hochschule zu Berlin 1799-1899. 1899. 40. E. Lampe, Die reine Mathematik in den Jahren 1884-1899. 1899. 80.

Kaiserlich deutsches archäologisches Institut in Berlin:

Jahresbericht über d. Jahr 1898/99. 1899. 40. Jahrbuch. Band XIV, 2. 3. 1899. 40.

K. preuss, meteorologisches Institut in Berlin:

Deutsches meteorologisches Jahrbuch für 1898. Freie Hansestadt Bremen. Ergebnisse der meteorolog. Beobachtungen i. J. 1898. Bremen 1899. 4°.

Bericht über d. Jahr 1898. 1899. 80.

Ergebnisse der magnet. Beobachtungen in Potsdam i. J. 1898. 1899. 40. Jahrbuch über die Fortschritte der Mathematik in Berlin:

Jahrbuch. Band XXVIII, Heft 1, 2, 1899, 80,

Verein zur Beförderung des Gartenbaues in den preuss, Staaten in Berlin:

Gartenflora. Jahrg. 1899, No. 14-24; 1900, No. 1. 80.

Verein für Gesehichte der Mark Brandenburg in Berlin:

Forschungen zur Brandenburgischen und Preussischen Geschichte. Band XII, 2. Leipzig 1899. 80.

Naturwissenschaftliche Wochenschrift in Berlin:

Wochenschrift. Band XIV, Heft 7-12. 1899. Fol.

Zeitschrift für Instrumentenkunde in Berlin:

Zeitschrift. 19. Jahrg., Heft 7-12. 1899. 40.

Schweizerische naturforschende Gesellschaft in Bern:

Verhandlungen 1897 u. 1898 nebst französischem Auszuge. 1898. 80. Historischer Verein in Bern:

Archiv. Band XV, Heft 3. 1899. 80.

Gewerbeschule in Bistritz:

XXIII. Jahresbericht für 1887/98. 1898. XXIV. Jahresbericht für 1898/99. 1899. 8°.

R. Deputazione di storia patria per le Provincie di Romagna in Bologna:

Atti e Memorie.

Serie III. Vol. XV, Fasc. 4-6. , XVI, , 1-6. 1898. XVII, " 1-3. 1899. 4° .

Niederrheinische Gescllschaft für Natur- und Heilkunde in Bonn: Sitzungsberichte 1899, 1. Hälfte. 80.

Universität in Bonn:

Schriften aus dem Jahre 1898/99 in 4 u. 80.

Naturhistorischer Verein der preussisehen Rheinlande in Bonn:

Verhandlungen. 56. Jahrg., 1. Hälfte. 1899. 80.

Société de géographie commerciale in Bordeaux:

1899, No. 13-24. 8º.

American Academy of Arts and Sciences in Boston:

Proceedings. Vol. XXXIV, No. 21-23.

XXXV, No. 1-3. 1899. 80.

Public Library in Boston:

47th annual Report for 1899. 80.

Boston Society of natural History in Boston:

Proceedings. Vol. 28, No. 13-16, 1899, 80.

Memoirs. Vol. V, No. 4, 5. 1899. 40.

Verein für Naturwissensehaft in Braunschweig:

11. Jahresbericht 1897/98 u. 1898/99. 1899. 80.

Naturwissenschaftlicher Verein in Bremen:

Abhandlungen. Band XVI, 2. 1899. 80.

Schlesische Gesellschaft für vaterländische Cultur in Breslau: 76. Jahresbericht. 1898. 1899. 80.

Verein für die Geschichte Mährens und Schlesiens in Brünn: Zeitschrift. 3. Jahrg., Heft 3, 4. 1899. 80.

Académie Royale de médecine in Brüssel:

Mémoires couronnées. Tom. 15, Fasc. 4. 1899. 8°. Bulletin. IV. Série. Tom. XIII, No. 6—10. 1899. 8°.

Académie Royale des sciences in Brüssel:

Mémoires Tom. 53. 1898. 4°.

Mémoires couronnées in 4°. Tom. 55 u. 56. 1898. 4°.

Mémoires couronnées in 8°. Tom. 48, Vol. 2; 55 et 57. 1898. 8°.

Tables générales des Mémoires. 1772—1897. 1898. 8°.

Bulletin. a) Classe des Lettres 1899, No. 6—10; b) Classe des Sciences 1899, No. 6-10. 8º.

Collection des Chroniques belges. a) Chartes de l'Abbaye de St. Martin de Tournai. Tome 1. b) Cartulaire de l'église St. Lambert de Liège. Tome 3. 1898. 8°.

Biographie nationale. Tome XIV, 2, XV, 1. 1897-98. 80.

Inventaire des Cartulaires conservés en Belgique. 1897. 80.

Commentario del Coronel Francisco Verdugo de la guerra de Frisa, publié par Henri Lonchay. 1897. 8°. Edouard Poncelet, Le livre des fiefs de l'église de Liège. 1898. 8°.

Charles Duvivier, Actes et documents anciens intéressant la Belgique. 1898. 8°.

Société des Bollandistes in Brüssel:

Analecta Bollandiana. Tome 18, 3, 4, 1899, 80.

Société belge de géologie in Brüssel:

Bulletin. Tome X, Fasc. 4. 1899. 80.

Société Royale malacologique de Belgique in Brüssel:

Bulletin. 1899, p. XXXIII-XCVI. Annales. Tome 32. 1897, 1899. 80.

Observatoire Royale in Brüssel:

Bulletin mensuel de magnetisme terrestre. Januar-März, Mai-August 1899. 8°.

K. ungarische Akademie der Wissenschaften in Budapest:

Almanach. 1899. 8°. Nyelvtudományi Közlemények. (Sprachwissenschaftl. Mittheilungen.) Band 28, Heft 3, 4. Band 29, Heft 1, 2. 1898—99. 8°.

Történettud. Ertekezések. (Historische Abhandlungen.) Band 17, Heft

9, 10; Band 18, Heft 1-6. 1898-99. 8°.

Monumenta Comitiorum Hungariae. Vol. XI. 1899. 8°.

Monumenta Comitiorum Transylvaniae. Vol. XXI. 1899. 8°.

Archaeologiai Értesitő. Neue Folge. Band 18, Heft 4, 5; Band 19, Heft 1, 2. 1898/99. 4°.

Tarsadalmi Értekezések. (Staatswissensch. Abhandlungen.) Band 12, Heft 3. 1899. 8°.

Nyelvtudomán. Értekezések. (Sprachwissenschaftl. Abhandlungen.) Band 17, Heft 1, 2. 1898—99. 8°. Monumenta Hungariae historica. Sectio I, Vol. 30. 1899. 8°.

Mathematikai Ertesitö. (Mathemat. A. Band 17, Heft 1, 2. 1898/99. 8°. (Mathemat. Anzeiger.) Band 16, Heft 3-5;

Mathematikai Közlemények. (Mathem. Mittheilungen.) Band 27, Heft

Mathematische und naturwissensch. Berichte aus Ungarn. Band 15. 1899. 8°.

Rapport. 1898. 1899. 8º.

Beschreibender Katalog der ethnographischen Sammlung Ludwig Birós. $1899. 4^{\circ}$

Museo nacional in Buenos Aires:

Comunicaciones. Tomo I, No. 3, 4. 1899. 8°. Anales. Tomo VI. 1899. 8°.

Botanischer Garten in Buitenzorg (Java):

E. de Wildeman, Prodrome de la Flore Algologique des Indes Néerlandaises. Batavia 1899. 80.

Mededeelingen. No. XXXI-XXXV. Batavia 1899. 40.

Verslag over het jaar 1898. Batavia 1899. gr. 80.

Bulletin No. I, II. 1898. 40.

Academia Romana in Bukarest:

Publicationila. I-IV. 1899. 40. Publicatiunila. Octobre. 1899. 80.

Analele. Ser. II. Tome 20. 1897/98 in 3 Voll. 1899. 40. Tome 21. Partea administrativa. 1899. 4°. D. Brandza, Flora Dobrogei. 1898. 8°. Sim. Fl. Marian Sĕrbătorile la Românĭ. 2 Voll. 1898. 8°.

Basarabia in sec. XIX. de Zamfir C. Arbure. 1899. 8°.

Meteorological Department of the Government of India in Calcutta:

Monthly Weather Review 1899. February-July and Annual Summary 1898. 1899. Fol.

Indian Meteorological Memoirs. Vol. VI, part 5; Vol. X, part 3, 4; Vol. XI, part 1. Simla 1899. Fol.

Report on the Administration. 1898/99. Fol.

Memorandum on the snowfall of 1899. Simla 1899. Fol.

Asiatic Society of Bengal in Calcutta:

Bibliotheca Indica. New Ser., No. 931-948, 951-955. 1898-99 in 40 und 80.

Journal. No. 377—379, 381 and Extra-Number 1. 1899. 8°. Proceedings. No. IV—VII (April—July). 1899. 8°.

Catalogue of printed Books and Manuscripts in Sanskrit in the Library of the Asiatic Society of Bengal. Fasc. I. 1899. 4.

Geological Survey of India in Calcutta:

General-Raport 1898-99. 1899. 40.

Museum of comparative Zoology at Harvard College in Cambridge, Mass: Bulletin. Band 32, No. 10; Band 33, 34; Band 35, No. 1-7, 1899. 80. Annual Report for 1898—99. 1899. 80.

Astronomical Observatory of Harvard College in Cambridge, Mass.: Annals. Vol. 23, part. 2. 1899. 80.

Philosophical Society in Cambridge:

Proceedings. Vol. X, part 3. 1899. 80.

Accademia Gioenia di scienze naturali in Catania:

Bullettino mensile. Nuova Ser., Fasc. 59, Aprile 1899. 80.

Physikalisch-technische Reichsanstalt in Charlottenburg:

Die Thätigkeit der physikalisch-technischen Reichsanstalt i. J. 1898. Berlin 1899. 4°.

R. sächsisches meteorologisches Institut in Chemnitz:

Jahrbuch 1896. Jahrg. XIV, Abth. III; 1897, Jahrg. XV, Abth. I, II. 1898/99. 40.

Academy of sciences in Chicago:

40 th annual Report for the year 1897. 1898. 80.

Bulletin. No. 2. 1897. 80.

Field Columbian Museum in Chicago:

Publications. No. 30-39. 1899. 80.

The Birds of Eastern North America. Water Birds. Part I. By Charles B. Cory. 1899. 40.

Zeitschrift "The Monist" in Chicago:

The Monist. Vol. 10, No. 1. 1899. 80.

Zeitschrift "The Open Court" in Chicago:

The Open Court. Vol. XIII, No. 7-11. 1899. 80.

University of Chicago:

Bulletin. No. 6-10. 1899. 80.

Zeitschrift ,The Astrophysical Journal*. Vol. X, No. 1-5. 1899. gr. 80.

Gesellschaft der Wisseuschaften in Christiania:

Forhandlinger 1898, No. 6. 1899, No. 1. 80.

Skrifter. I. Mathem. Klasse 1898, No. 11, 12. 1899, No. 2-4; 6-7. II. Histor.-filos. Klasse 1898, No. 1, 6, 7. 1899, No. 1-4. 4°.

II. Histor.-filos. Klasse 1898, No. 1, 6, 7. 1899, No. 1—4. 40 Oversigt 1898. 1899. 80.

Schriften aus d. J. 1897/98 in 4º u. 8º.

Historisch-autiquarische Gesellschaft für Graubunden in Chur:

XXVIII. Jahresbericht. Jahrg. 1898. 1899. 80.

Naturforschende Gesellschaft Graubündeus in Chur:

Jahresbericht. Neue Folge. Band 42. 1898/99. 1899. 8°.

Observatory in Cincinnati:

Publications. No. 14. 1898. 40.

Academia nacional de ciencias in Cordoba (Republ. Argent.):

Boletin. Tomo XVI, 1. Buenos Aires 1899. 80.

Franz-Josephs-Universität in Czernowitz:

Verzeichniss der Vorlesungen. Winter-Semester 1899/1900. 1899. 8°. Uebersicht der akademischen Behörden i. J. 1899/1900. 1899. 8°.

Westpreussischer Geschiehtsverein in Danzig:

Zeitschrift. Heft 41. 1900. 80.

Union géographique du Nord de la France in Douai:

Bulletin. Tom. 20, trimestre 2, 3. 1899. 80.

K. sächsischer Alterthumsverein in Dresden:

Die Sammlung des k. sächs. Alterthumsvereins zu Dresden. Lief. II, lII. 1899. 40.

Jahresbericht 1898/99. 1899. 80.

Neues Archiv für sächsische Geschichte 20. Band. 1899. 80.

Generaldircktion der kgl. Sammlungen in Dresden:

Bericht während der Jahre 1896 u. 1897. 1898. Fol.

Royal Irish Academy in Dublin:

Proceedings. Ser. III, Vol. 5, No. 3. 1899. 80.

Polliehia in Dürkheim:

Mittheilungen. Pollichia. 56. Jahrg. 1898. No. 12. 80. American Chemical Societx in Easton, Pa.:

The Journal. Vol. 21, No. 7-12. 1899. 80.

Royal Society in Edinburgh:

Proceedings. Vol. XXII, part 441-536. 1899. 80.

Geological Society in Edinburgh;

Transactions. Vol. VII, part 4. 1899. 80.

Verein für Geschiehte der Grafschaft Mansfeld in Eisleben:

Mansfelder Blätter. XIII. Jahrg. 1899. 80.

Gesellschaft f. bildende Kunst u. vaterländische Alterthümer in Emden:

Jahrbuch. Band XIII. Heft 1, 2. 1899. 80.

K. Akademie gemeinnütziger Wissenschaften in Erfurt:

Jahrbücher. N. F. Heft XXV. 1899. 80.

K. Universitätsbibliothek in Erlangen:

Schriften aus d. J. 1898/99 in 40 u. 80.

Reale Accademia dei Georgofili in Florenz:

Atti. IV. Serie, Vol. XXII. 2. 1899. 80.

Società Asiatica Italiana in Florenz:

Giornale. Vol. XII. 1899. 80.

Senckenbergische naturforschende Gesellschaft in Frankfurt a.M.:

Abhandlungen. Band XXI, 4. 1899. 40.

Physikalischer Verein in Frankfurt a/M .:

Jahresbericht für 1897/98. 1899. 80.

Walter König, Göthes optische Studien. 1899. 80.

Naturwissenschaftlicher Verein in Frankfurt a. O.:

Band 16. Berlin 1899. 80.

Societatum Litterae. Jahrg. XII, 5-12. 1898. 80.

Breisgau-Verein Schau-ins-Land in Freiburg i. Br.:

"Schau-ins-Land." Jahrlauf 26. 1899. Fol.

Kirchlich-historischer Verein in Freiburg i. Br.:

Freiburger Diöcesan-Archiv. 27. Band. 1899. 80.

Universitätsbibliothek in Freiburg i. Br.:

Schriften a. d. J. 1898/99 in 40 u. 80.

Universität Freiburg in der Schweiz:

Index lectionum. Discours prononcé à l'occasion de l'inauguration des cours de l'année 1899-1900. 1899. 8º.

Collectanea Friburgensia. Fasc. VIII. 1899. 4°. Behörden, Lehrer und Studirende. Winter-Semester 1899—1900. 1899. 8°.

Bibliothèque publique in Genf:

Compte-rendu pour l'année 1898. 1899. 80.

Observatoire in Genf:

Resumé météorologique de l'année 1897 et 1898, 1898/99. 8º.

Universität in Genf:

Schriften aus d. J. 1898/99.

Museo civico di storia naturale in Genua:

Annali, Serie II, Vol. 19, 1899, 80,

Universität in Giessen:

Schriften aus d. J. 1898/99 in 40 u. 80.

K. Gesellschaft der Wissenschaften in Göttingen:

Göttingische gelehrte Anzeigen. 1899, No. VII-X. Berlin 1899. 4°.

Nachrichten 1) Philol.-histor. Klasse 1899. Heft 2, 3. 4°.
2) Mathem.-phys. Klasse 1899. Heft 2. 4°.
Geschäftliche Mittheilungen 1899. Heft 1. 4°.

Abhandlungen. Philol.-histor. Klasse. Neue Folge. Band III, No. 1. Berlin 1899. 40.

The Journal of Comparative Neurology in Granville (U. St. A.):

The Journal. Vol. IX, No. 2-4. 1899. 80.

Scientific Laboratories of Denison University in Granville, Ohio:

Bulletin. Vol. XI, No. 4-8. 1898-99. 80.

Universität in Graz:

Verzeichniss der Vorlesungen 1899/1900, 1899. 40.

Historischer Verein für Steiermark in Graz:

Mittheilungen. Heft 46. 1898. 80.

Beiträge zur Kunde steiermärkischer Geschichtsquellen. 29. Jahrgang. 1898. 80.

Naturwissenschaftlicher Verein für Steiermark in Graz:

Mittheilungen. Jahrg. 1898. 1899. 80.

Rügisch-Pommerscher Geschichtsverein in Greifswald:

Th. Pyl, Nachträge zur Geschichte der Greifswalder Kirchen. 1900. 80. K. Instituut voor de Taal-, Land- en Volkenkunde van Nederlandsch-Indië

im Haag:

Bijdragen. VI. Reeks, Deel VI, aflev. 3 und 4. 1899.

Teyler's Genootschap in Haarlem:

Archives du Musée Teyler. Sér. II, Vol. VI, partie 3. 1899. 40.

Société Hollandaise des Sciences in Haarlem:

Archives Néerlandaises des sciences exactes. Sér. II, Tom. 3, livre 1 u. 2. La Haye. 1899. 8°.

Oeuvres complètes de Christian Huygens, Vol. VIII. La Haye. 1899. 40.

K. K. Obergymnasium zu Hall in Tyrol:

Programm für das Jahr 1898/99. Innsbruck 1899. 80.

Kaiserlich, Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher in Halle:

Leopoldina. Heft 35, No. 6-11, 1899, 40.

Nova Acta. Tom. 72, 74. 1899. 40.

Deutsche morgenländische Gesellschaft in Halle:

Zeitschrift. Band 53, Heft 2, 3 u. Register zu Band 41-50. Leipzig 1899. 8°.

Abhandlungen zur Kunde des Morgenlandes. Band XI, No. 2. Leipzig 1899. 80.

Universität Halle:

Verzeichniss der Vorlesungen. Winter-Semester 1899/1900. 1899. 80. Schriften aus d. J. 1898/99 in 40 u. 80.

Naturwissenschaftlicher Verein für Sachsen und Thüringen in Halle: Zeitschrift für Naturwissenschaften. Bd. 72, Heft 1, 2. Stuttgart 1899. 8°.

Thüring.-Sächs. Geschichts- und Alterthums-Verein in Halle:

Neue Mittheilungen. Band 20, Heft 1, 2. 1899. 80.

Stadtbibliothek in Hamburg:

Schriften der Hamburgischen wissenschaftl. Anstalten für 1898/99 in 4° u. 8°.

Sternwarte in Hamburg:

Mittheilungen No. 1-5. 1895-99. 80.

Wetterauische Gesellschaft für die gesammte Naturkunde in Hanau: Bericht 1895/99. 1899. 8⁰

Historischer Verein für Niedersachsen in Hannover: Zeitschrift. Jahrgang 1899. 8^o.

Universität Heidelberg:

Schriften der Universität aus dem Jahre 1898/99 in 40 u. 80.

Historisch-philosophischer Verein in Heidelberg:

Neue Heidelberger Jahrbücher. Jahrg. IX, Heft 1. 1899. 80.

 $Naturhistorisch-medicinischer\ Verein\ zu\ Heidelberg:$

Verhandlungen. N. F. Band VI, Heft 2. 1899. 80.

Commission géologique de la Finlande in Helsingfors:

Bulletin. No. 6, 8. 1898/99. 80.

Finländische Gesellschaft der Wissenschaften in Helsingfors:

Acta societatis scientiarum Fennicae. Vol. XXIV. 1899. 40.

Bidrag till kännedom af Finlands Natur och Folk. Heft 57. 1898. 80.

Société de géographie de Finlande in Helsingfors:

Atlas de Finlande. 1899. Fol.

Fennia. Vol. XIV, XV, XVII. 1899. 80.

Universität Helsingfors:

Schriften aus dem Jahre 1898/99 in 40 u. 80.

Verein für siebenbürgische Landeskunde in Hermannstadt:

Archiv. N. F., Band 29, Heft 1. 1899. 80.

Siebenbürgischer Verein für Naturwissenschaften in Hermannstadt: Verhandlungen und Mittheilungen. 48. Band. Jahrg. 1898. 1899. 8°. Verein für Meiningische Geschichte und Landeksunde in Hildburghausen: Schriften. Heft 32. 33. 1899. 8°.

Voigtländischer Alterthumsverein in Hohenleuben: 67. u. 69. Jahresbericht. 1899. 80.

464

Verzeichniss der eingelaufenen Druckschriften.

Ungarischer Karpathen-Verein in Igló:

Jahrbuch. 26. Jahrg. 1899, 80.

Historischer Verein in Ingolstadt:

XXIII. Heft. 1898. 80. Sammelblatt.

Ferdinandeum in Innsbruck:

Zeitschrift. 3. Folge. Heft 43, 1899, 80.

Naturwissenschaftlich-medicinischer Verein in Innsbruck:

Berichte. 24. Jahrg. 1897/98 u. 1898/99. 1899. 80.

Journal of Physical Chemistry in Ithaca, N.Y.:

The Journal. Vol. 3, No. 5-8, 1899. 80.

Ostsibirische Abtheilung der Kaiserlich russischen Geographischen Gesellschaft in Irkutsk:

Iswestija. Tom. 30, No. 1. 1899. 80.

Medicinisch-naturwissenschaftliche Gesellschaft in Jena:

Denkschriften. Band IV, Lieferung 2. Text und Atlas.
Band VI, Lieferung 2. Text und Atlas.
Band VII, Lieferung 2. Text und Atlas. 1898. Fol.

Jenaische Zeitschrift für Naturwissenschaft. Register zu Band 1-10. 1899. 8°.

Gelehrte Estnische Gesellschaft in Jurjew (Dorpat):

Sitzungsberichte 1898. Dorpat 1899. 80.

Verhandlungen. Band XX, 1. Dorpat 1899. 80.

Centralbureau für Meteorologie etc. in Karlsruhe:

Jahresbericht des Centralbureaus für das Jahr 1898. 1899. 40.

Grossherzoglich technische Hochschule in Karlsruhe:

Schriften aus dem Jahre 1898/99 in 40 u. 80.

Grossh, badische Staats-Alterthümersammlung in Karlsruhe:

Veröffentlichungen der grossh. badischen Sammlungen. 2. Heft. 1899. 40.

Universität Kasan:

Utschenia Sapiski. Band 66, No. 5-6. 1899. 80.

Verein für hessische Geschichte und Landeskunde in Kassel:

Zeitschrift. N. F. Band XXIV, 1. Hälfte. 1899. 80.

Mittheilungen. Jahrgang 1898. 1899. 8°.

Quartalblätter 1895. 4. Vierteljahrsheft u. Register zu 1891/95. 1899. 80.

Verein für Naturkunde in Kassel:

Abhandlungen und Bericht XLIII. 1899. 80.

Société mathématique in Kharkow:

Communications. 2º Série, Tome VI. No. 5, 6. 1899. 80.

Université Impériale in Kharkow:

Sapiski (Annales) 1899. Band 4. 1899. 80.

Annales 1899. Heft 2. u. 3. 8°. F. A. Maslow, Eine Dissertation in russ. Sprache. 1899. 8°.

Gesellschaft für Schleswig-Holstein-Lauenburgische Geschichte in Kiel:

Zeitschrift. Register zu Band 1-20. 1899. 80.

Kommission zur wissenschaftl. Untersuchung der deutschen Meere in Kiel: Wissenschaftliche Meeresuntersuchungen. N. F. Band III, IV. 1899. 40.

Sternwarte in Kiel:

Publikation X. Leipzig 1899. 4°.

K. Universität in Kiel:

Schriften aus dem Jahre 1898/99 in 40 und 80.

Naturwissenschaftlicher Verein für Schleswig-Holstein in Kiel:

Schriften. Band XI, Heft 2. 1898. 80.

Physikal,-chemische Gesellschaft au der Universität in Kiew: Schurnal. Vol. XXXI, 7. 1899. 80.

Universität in Kicw:

Iswestija. Vol. 39, No. 3, 4, 6-8. 1899. 80.

Geschichtsverein für Kärnten in Klagenfurt:

Jahresbericht für 1898. 1899. 80.

Carinthia I. 89. Jahrg. No. 1-6. 1899. 80.

Stadtarchiv in Köln:

29. Heft. 1899. 80. Mittheilungen.

Universität in Königsberg:

Schriften aus dem Jahre 1898/99 in 40 u. 80.

K. Akademie der Wissenschaften in Kopenhagen:

1899. No. 2-5. 8º.

Skrifter. 6. Raekke, Naturvid. Afd. IX, 3. 1899. 40.

Mémoires. a) Sections des Lettres. Tome 4, No. 6. b) Sections des Sciences. Tome 9, No. 1, 2. Tome X, No. 1. 1899/1900. 4°.

Regesta diplomatica historiae Danicae. Series Il, Tome II, 4. 1808/28. 1893. 4°.

Gesellschaft für nordische Alterthumskunde in Kopenhagen:

Aarböger, II. Raekke. 14. Band, Heft 2, 3. 1899. 80. Mémoires. Nouv. Sér. 1898. 1899. 80.

Genealogisk Institut in Kopenhagen:

Sofus Elvius, Bryllupper og Dödsfeld i Danmark 1898. 1899. 80. Bitrag til Frederiksborg Latinskoles historie af G. J. L. Feilberg og Sofus Elvius. Hilleröd. 1899. 80.

Akademic der Wissenschaften in Krakau:

Anzeiger. 1899. Juni, Juli. 80. Biblioteka pisarzow polskich. No. 36. 1899. 80.

Atlas geologiczny Galicyi. Liefrg. X. 1899. Fol.

Société Vaudoise des sciences naturelles in Lausaune:

Bulletin. IV. Série, Vol. 35, No. 132. 1899. 80.

Observations météorologiques. Année 1898, XIIº année. 1899. 80.

Kansas Academy of Science in Lawrence, Kansas:

Transactions. Vol. XVI. Topeka 1899. 80.

Kansas University in Lawrence, Kansas:

The Kansas University Quarterly. Vol. VIII, 2, 3. 1899. 80.

Maatschappij van Nederlandsche Letterkunde in Leiden:

Tijdschrift. N. Serie, Deel XIII, aflev. 2, 3. 1899. 80.

D. C. Hesseling, Het Afrikaansch. 1899. 80.

Archiv der Mathematik und Physik in Leipzig:

Archiv. Il. Reihe, II. Serie, Theil XVII, Heft 1. 2. 1899. 80.

K. Gesellschaft der Wissenschaften in Leipzig:

Abhandlungen der philol.-hist. Classe. Band XVIII, No. 5. 1899. 40.

Abhandlungen der math.-phys. Classe. Band XXV, No. 3-5. 1899. 40. Berichte der philol.-hist. Classe. Band 51, No. II, III. 1899. 80. Berichte der mathem.-physik. Classe. Band 51. Mathematischer Theil. No. IV, V. 1899. 80.

Journal für praktische Chemie in Leipzig:

Journal. N. F. Band 60, Heft 1-8, 1899, 80,

Verein für Erdkunde in Leipzig:

Wissenschaftliche Veröffentlichungen. Band 4. 1899. 80. Verein für Geschichte des Bodensees in Lindau:

Der "Bodensee-Forschungen" X. Abschnitt. 1899. 40.

Museum Francisco-Carolinum in Linz:

57. Jahresbericht. 1899. 80.

Sociedade de geographia in Lissabon:

16a Serie, No. 11. 1897. 80. Boletin.

Zeitschrift "La Cellule" in Loewen:

Tome XVI, 2. 1899. 40. La Cellule.

Royal Institution of Great Britain in London:

Proceedings. Vol. 15, part 3. 1899. 80.

The English Historical Review in London:

Historical Review. Vol. 14, No. 45, 46. 1899. 8°.

Royal Society in London:

Year-book 1899. 80.

Proceedings. Vol. 65, No. 416—421. 1899. 80. Philosophical Transactions. Series A. Vol. 191; Series B. Vol. 190. 1898. 40.

List of Members, 30th Nov. 1898. 40.

R. Astronomical Society in London:

Monthly Notices. Vol. 59, No. 9, 10; Vol. 60, No. 1. 1899. 80.

Memoirs. Vol. 52, 53, 1899, 80.

Chemical Society in London:

Journal No. 441—446 (August 1899 — Januar 1900). Proceedings. Vol. 15, No. 213—216. 1899. 8°.

Linnean Society in London:

Nov. 1897 to June 1898. Oct. 1899. 1898/99. 80. Proceedings.

a) Zoology. Vol. 26, No. 172; Vol. 27, No. 173—176, 178. b) Botany. Vol. 33, No. 234; Vol. 34, No. 235—39. The Journal. b) Botany. 1898/99. 80.

The Transactions. a) Zoology. 2^d Series, Vol. VII, part 5-8. b) Botany. 2^d Series, Vol. V, part 9, 10. 1899. 4^o.

List 1898/99. 8°.

Medical and chirurgical Society in London:

Medico-chirurgical Transactions. Vol. 82. 1899. 80.

R. Microscopical Society in London:

Journal 1899, part 4-6. 80.

Zoological Society in London:

Proceedings. Vol. 1899, part 2, 3. 80.

Transactions. Vol. XV, 2-4. 1899. 40.

A List of the Fellows. 1899. 80.

Zeitschrift "Nature" in London:

Nature. No. 1549-1574. 1899. 40.

Academy of Science in St. Louis:

Transactions. Vol. VIII, No. 8-12; Vol. IX, No. 1-5, 7. 1899. 80.

Missouri Botanical Garden in St. Louis:

10th annual Report. 1899. 80.

Société géologique de Belgique in Lüttich:

Annales. Tome XXVI, 3. 1899. 80.

Société Royale des Sciences in Lüttich:

Mémoires. Série III, Tome 1. Bruxelles 1899. 80.

Section historique de l'Institut Royal Grand-Ducal in Luxemburg:

Publications. Vol. 46, 47, 49. 1898/1900. 80.

Historischer Verein der fünf Orte in Luzern:

Der Geschichtsfreund. Band 54. Stans 1899. 80.

Université in Lyon:

Annales. Nouv. Série. I. Sciences, Médecine Fasc. 1, 2.

II. Droit, Lettres Fasc. 1, 2. Paris 1899. 80.

Wisconsin Academy of Sciences in Madison:

Transactions. Vol. XII, 1. 1898. 80.

The Government Observatory in Madras:

Report 1898/99. 1899. Fol.

R. Academia de la historia in Madrid:

Boletin. Tomo 35, cuad. 1-6. 1899. 80.

Società Italiana di scienze naturali in Mailand:

Atti. Vol. 38, Fasc. 3. 1899. 80.

Società Storica Lombarda in Mailand:

Archivio Storico Lombardo. Serie III, anno XXVI, Fasc. 22, 23. 1898. 8°.

Literary and philosophical Society in Manchester:

Memoirs and Proceedings. Vol. 43, part 4. 1899. 8°.

Universität in Marburg:

Schriften aus dem Jahre 1898/99 in 40 u. 80.

Royale Society of Victoria in Melbourne:

Proceedings. Vol. XI, part 2. 1899. 80.

Rivista di Storia Antica in Messina:

Rivista. Anno IV, Fasc. 3. 1899. 80.

Académie in Metz:

Mémoires. Année 78. 1896/97. 1899. 80.

Gesellschaft für lothringische Geschichte in Metz:

Jahrbuch. X. Jahrgang 1898. 40.

Observatorio meteorológico-magnético central in México:

Boletin mensual. 1899, Febrero-Junio. 40.

Sociedad cientifica "Antonio Alzate" in Mexico:

Memorias y Revista. Tomo XII, No. 4-10. 1899. 80.

Regia Accademia di scienze lettere ed arti in Modena:

Memorie. Serie III, Vol. 1. 1898. 40.

1899. Sitzungsb. d. math.-phys. Cl.

Società dei naturalisti in Modena:

Atti. Ser. III, Vol 16, Año 31, Fasc. 3. 1899. 80.

Numismatic and Antiquarian Society of Montreal:

The Canadian Antiquarian and Numismatic Journal. 3d Series, Vol. II, No 1, 1899. 80.

Société Impériale des Naturalistes in Moskau:

Nouveaux Mémoires. Tome XVI, 2. 1899. gr. 40.

Mathematische Gesellschaft in Moskau:

Matemat. Ibornik XX, 3, 1898. 80.

Deutsche Gesellschaft für Anthropologie in Berlin und München: Correspondenzblatt. 30. Jahrgang 1899, No. 7-9. 40.

Generaldirektion der k. b. Posten und Telegraphen in München: Preissverzeichniss der Zeitungen und Zeitschriften für 1900. I. und II. Abthlg. mit Nachträgen für 1899 und 1900. Fol.

Geographische Gesellschaft in München:

Aventins Karte von Bayern MDXXIII, hrsg. v. Hartmann. 1899. Fol. K. bayer, technische Hochschule in München:

Personalstand. Winter-Semester 1899/1900. 1899. 8°. Bericht für das Jahr 1898/99. 1899. 4°.

Metropolitan-Kapitel München-Freising in München:

Amtsblatt der Erzdiözese München und Freising. 1899, No. 17-28. 80. Universität in München:

Schriften aus dem Jahre 1899 in 40 und 80.

Amtliches Verzeichniss des Personals. Winter-Semester 1899/1900. Verzeichniss der Vorlesungen. Winter-Semester 1899/1900.

Jos. Bach, Ueber das Verhältniss von Arbeit und Bildung. 1899. 4°.

Historischer Verein in München:

Altbayerische Monatsschrift. Jahrg. I, Heft 3-6. 1899. 40.

Landtags-Archivariat in München:

Die Verfassungsurkunde des Königreichs Bayern mit den hierauf bezüglichen Gesetzen. 1899. 80.

Verlag der Hochschul-Nachrichten in München:

Hochschul-Nachrichten. 1899, No. 106-111. 40.

Ausschuss der 71. Versammlung deutscher Naturforscher und Acrzte in München:

Festschrift, Die Entwickelung Münchens etc. 1899. 40.

K. bayer, meteorologische Zentralstation in München:

Beobachtungen der meteorologischen Stationen des Königreichs Bayern. Jahrgang 20, No. 2, 3. 1899. 4°.

Reale Accademia di scienze morali e politiche in Neapcl:

Atti. Vol. 30. 1899. 80.

Rendiconto, Anno 37, 1898, 80,

Accademia delle scienze fisiche e matematiche in Neapel:

Rendiconto. Serie 3, Vol. 5, Fasc. 6, 7. 1899. 80.

Historischer Verein in Neuburg a. D.:

Neuburger Kollektaneen-Blatt. 62. Jahrgang. 1898. 80.

Connecticut Academy of Arts and Sciences in New-Haven: Transactions. Vol. X, part 1, 1899, 80.

The American Journal of Science in New-Haven:

Journal. IV. Serie, Vol. 8, No. 43-48. 1899. 80.

Observatory of the Yale University in New-Haven:

Report for the year 1898/99. 1899. 80.

Academy of Sciences in New-York:

Annals. Vol. XI, part 3, 1898; Vol. XII, part 1. 1899. 80.

American Museum of Natural History in New-York:

Annual Report for the year 1898. 1899. 80.

American Geographical Society in New-York:

Bulletin. Vol. XXXI, No. 3, 4. 1899. 80.

Archaeological Institut of America in Norwood, Mass.:

American Journal of Archaeology. Vol. III, No. 2, 3. 1899. 80.

Naturhistorische Gesellschaft in Nürnberg:

Abhandlungen. Band XII. 1899. 80.

Neurussische naturforschende Gesellschaft in Odessa:

Tom. 22, Heft 2. 1898. 80.

Sapiski (mathemat. Abthlg.). Tom. 16 u. 19. 1899. 80.

Historischer Verein in Osnabrück:

Osnabrücker Urkundenbuch. Band III, Heft 2, 3, 1899. gr. 80.

Geological Survey of Canada in Ottawa:

Contributions to Canadian Palaeontology. Vol. I, part 1 u. 5. Ottawa 1885/98. 80.

Royal Society of Canada in Ottawa:

Proceedings and Transactions. IId Series, Vol. 4. 1898. 80.

Radcliffe Observatory in Oxford:

Observations, 1890/91. Vol. 47. 1899. 8°.

Società Veneto-Trentina di scienze naturali in Padua:

Bullettino. Tomo VI, 4. 1899. 80.

Circolo matematico in Palermo:

Rendiconti. Tomo 13, Fasc. 5, 6. 1899. 80.

Collegio degli Ingegneri in Palermo:

Atti. Anno 1899. Gennajo - Giugno. 1899. 40.

Académie de médecine in Paris:

Bulletin. 1899, No. 27-45. 8°.

Académie des sciences in Paris:

Comptes rendus. Tome 129, No. 1-26; Tome 130, No. 1. 1899. 40.

Comité international des poids et mesures in Paris:

Travaux et Mémoires. Tome IX. 1898. 40.

Ministère de la Justice in Paris:

Le Bhâgavata Purâna. Tome V. 1898. Fol.

Moniteur Scientifique in Paris:

Moniteur. Livre 692-696, (Août - Déc.) 1899; 697 (Janvier 1900). 40.

Société d'anthropologie in Paris:

Bulletins. IV. Série. Tome IX, Fasc. 6; Tome X, Fasc. 1. 1898. 80.

Société des études historiques in Paris:

Revue. 65e année. Nouv. Sér., Tome 1. Août, Sept., Déc. 1899, Janvier 1900. 80.

Société de géographie in Paris:

Comptes rendus. 1899. No. 5, 6. 80.

Bulletin. VIIº Série, Tome 20, 2º et 3º trimestre 1899; Tome 18, 4º trimestre 1897. 1899. 80.

Société mathématique de France in Paris:

Tome 27, Fasc. 2, 3, 1899, 80, Bulletin.

Académie Impériale des sciences in St. Petersburg:

Byzantina Chronika. Tom. 6, Heft 1, 2. 1899. 8°. Mémoires. a) Classe historico-phil. Série VIII, Tome III, 3—5.

b) Classe physico-mathém. Série VIII, Tome VII, 4; VIII, 1-5. 1898/99. $4^{\circ}.$

Bulletin. V. Série, Tome VIII, 5; IX, 1-5; X, 1-4. 1898/99. 4°. Annuaire du Musée zoologique 1899. No. 1-3. 1899. 8°.

Kais, botanischer Garten in St. Petersburg:

Acta horti Petropolitani. Tom. XV, 2. 1898. 80.

Historischer Abriss des kais. botan. Gartens 1873/98. 1899. 80. (In russ. Sprache.)

Kais, Russische archäologische Gesellschaft in St. Petersburg: Sapiski. Tom. 9, No. 1, 2; Tom. X, No. 1, 2. 1897/98. 40.

Trudy. (Orientalische Abtheilung.) Band XXII. 1898. 40.

Kaiserl. mineralogische Gesellschaft in St. Petersburg:

Verhandlungen. II. Serie, Band 36, Lfg. 2; Band 37, Lfg. 1. 1899. 80. Materialien zur Geologie Russlands. Band XIX. 1899. 80.

Physikalisch-chemische Gesellschaft an der kaiserl, Universität in St. Petersburg:

Schurnal. Tom. 31, No. 5, 6. 1899. 8°.

Kaiserliche Universität in St. Petersburg:

Obosrenie 1899/1900, 1899, 8°.

Schriften aus d. J. 1898/99.

Nicolai-Hauptsternwarte in St. Petersburg:

Die Odessaer Abtheilung der Nicolai-Hauptsternwarte. 1899. 4°.

Academy of natural Sciences in Philadelphia:

Catalogue of duplicate books and pamphlets. 1899. 80.

Journal. II. Series, Vol. XI, part 2. 1899. Fol. Proceedings. 1899, part 1. 1899. 80.

Historical Society of Pennsylvania in Philadelphia:

The Pennsylvania Magazine of History. Vol. 22, No. 4; 23, No. 1-3. 1899. 8°.

Alumni Association of the College of Pharmacy in Philadelphia:

Alumni Report. Vol. 35, No. 7-12. 1899. 80.

American Thilosophical Society in Philadelphia:

Proceedings. Vol. 38, No. 159. 1899. 80.

Società Italiana di fisica in Pisa:

Il nuovo Cimento. Serie IV, Tomo 10, Giugno - Ottobre. 1899. 80.

Centralbureau der internationalen Erdmessung in Potsdam: Verhandlungen der 1898 in Stuttgart abgehaltenen XII. allgemeinen Conferenz. Berlin 1899. 40.

A. Ferrero, Rapport sur les triangulations. Florence 1899. 40.

K. geodätisches Institut in Potsdam:

Jahresbericht 1898/99. 1899. 8°.

Böhmische Kaiser Franz-Joseph-Akademie in Prag:

Rozprawy. Třída II. Ročník VII. 1898. 8°.
Historický Archiv. Číslo 13—15. 1898/99. 8°.
Věstník. Ročník VII. No. 1—9. 1898. 8°.
Bulletin international. No. 5 (2 Hefte). 1898. 8°.
Almanach. Ročník VIII, Almanach. Ročnik IX. 1899. 8°.
Památík na jubilea Františka Josefa I. 1848—1898. 1898. 4°.

Památík na oslavu Frantíska Palackého. 1898. 80.

Spisy Jana, Amosa Komenského Číslo I (Schlussheft). 1898. 80.

Repertorium literatury geologické. Díl I. 1898. 80.

Sbírka pramenu etc. II, 4. 1898. 8°.

Gesellschaft zur Förderung deutscher Wissenschaft, Kunst und Literatur in Prag:

Rob. v. Weinzierl, Das La Tène-Grabfeld von Langugest in Böhmen. Braunschweig 1899. 40. Die deutsche Karl-Ferdinands-Universität in Prag. 1899. 40.

J. E. Hirsch, Geologische Karte des böhmischen Mittelgebirges. Blatt II. Wien 1899. 80.

Rich. Batka, Altnordische Stoffe und Studien in Deutschland. Abschnitt II (Sep.-Abdr.). Wien 1899. 80.

Lese- und Redehalle der deutschen Studenten in Prag:

Bericht über das Jahr 1898. 1899. 80.

Deutsche Carl-Ferdinands-Universität in Prag:

Personalstand 1899/1900. 1899. 80.

Ordnung der Vorlesungen. Winter-Semester 1899/1900. 8°.

Verein für Geschichte der Deutschen in Böhmen in Prag:

Mittheilungen. Jahrgang 37, Heft 1-4. 1898/89. 80.

Verein für Natur- und Heilkunde in Pressburg:

Közleményei. Neue Folge, Heft 10. 1899. 80.

Historischer Verein in Regensburg:

Verhandlungen. Register zu Band 1-40. 1892. 80. Observatorio in Rio de Janeiro:

80. Annuario 1899.

R. Accademia dei Lincei in Rom:

Atti. Serie V. Rendiconti. Classe di scienze fisiche. Vol. 8. 1º se-

mestre, Fasc. 12; 2° semestre, Fasc. 1—12. 1899. 4°. Atti. Ser. V. Classe di scienze morali. Vol. 7, parte 2. Notizie degli scavi 1899. Febraio — Luglio 1899. 4°.

Rendiconti. Classe di scienze morali. Serie V, Vol. VIII, Fasc. 5-8. 1899. 4°.

Rendiconto dell' adunanza solenne del 4 Giugno 1899. 1899. 40.

Biblioteca Apostolica Vaticana in Rom:

Studi e documenti di storia e diritto. Anno XIV-XIX. 1897/98. 40.

I Codici Capponiani della Biblioteca Vaticana da Gius Salvo-Cozzo. 1897. 40.

R. Comitato acologico d'Italia in Rom:

Bollettino. Anno 1898, No. 4; 1899, No. 1-3. 80.

Accademia Pontificia de' Nuovi Lincci in Rom:

Atti. Anno 52, Sessione 5-7, 1899, 40,

Kais, deutsehes archäologisches Institut (röm, Abth.) in Rom:

Mittheilungen. Band XIV, 2. 1899. 80.

Kal, italienische Regierung in Rom:

Opere di Galilei. Vol. IX. Firenze 1899. 40.

R. Società Romana di storia patria in Rom:

Archivio. Vol. XXII, Fasc. 1, 2. 1899. 80.

Universität Rostock:

Schriften aus dem Jahre 1898/99 in 40 und 80.

Bataafsch Genootschap der Proefondervindelijke Wijsbegeerte in Rotterdam:

Catalogus van de Bibliotheek. 1899. 80.

R. Aecademia degli Agiati iu Rovercto:

Atti. Serie III, Vol. 5, Fasc. 2. 1899. 80.

Essex Institute in Salem:

Bulletin. Vol. 28, No. 7-12; Vol. 29, No. 7-12; Vol. 30, No. 1-12. 1896/98. 8°.

Gesellschaft für Salzburger Landeskunde in Salzburg:

Mittheilungen. 39. Vereinsjahr. 1899. 80.

K. K. Staatsquunasium in Salzburg:

Programm für das Jahr 1898/99. 1899. 80.

Historischer Verein in St. Gallen:

Joh. Dierauer, Die Stadt St. Gallen im Jahre 1798. 1899. 40. Urkundenbuch der Abtei St. Gallen. Theil IV, Liefg. 5; 1402-11. 1899, 40,

Joh. Häne, Der Auflauf zu St. Gallen i. J. 1491. 1899. 80.

Instituto y Observatorio de marina de San Fernando (Cadiz):

Anales. Sección 1a. Observationes astronómicas Año 1893. Seccion 2a, Anno 1898. 1899. Fol.

Almanaque náutico para 1901. 1899. 40.

Californio Academy of Sciences in San Francisco:

Occasional Papers VI. 1899. 80.
Proceedings. III^d Series. a) Zoology. Vol. 1, No. 11, 12. b) Botany. Vol. 1, No. 6-9. c) Geology. Vol. 1, No. 5-6. 1899. 40.

Bosnisch-Herzegoviuisches Landesmuseum in Sarajevo:

Wissenschaftl. Mittheilungen. Band VI. Wien 1899. 40.

Verein für mecklenburgische Geschichte in Schwerin:

Jahrbücher und Jahresberichte. 64. Jahrg. 1899. 80.

Mecklenburgisches Urkundenbuch. Band XIX. 1899. 40.

China Branch of the R. Asiatic Society in Shangai:

Journal. N. S., Vol. 30, 1895/96, 1899, 80,

K. K. archäologisches Museum in Spalato:

Bullettino di Archeologia. Anno 1899. No. 5-10. Mai-Oct. 8º.

K. Vitterhets Historie och Antiquitets Akademie in Stockholm: Antiquarisk Tidskrift för Sverige. Band XIV, Heft 1. 1899. 8°.

K. Akademie der Wissenschaften in Stockholm:

Handlingar. N. F., Band 31. 1898/99. 40.

Bihang til Handlingar. Band XXIV, afd. 1-4. 1899. 80.

K. öffentliche Bibliothek in Stockholm:

Accessions-Katalog 1898. 1899. 80.

Geologiska Förening in Stockholm:

Förhandlingar. Band 21, Heft 5, 6. 1899. 80.

Institut Roal géologique in Stockholm:

Sveriges geologiska undersökning. Series Aa, No. 114; Ac, No. 34; Ba, No. 5; C, No. 162, 176—179, 181, 182. 1896/99. 40 u. 80.

Nordiska Museet in Stockholm:

Bidrag till Vår Odlings Häfder. No. 6, 7. 1899. 89.

Gesellschaft zur Förderung der Wissenschaften in Strassburg:

Monatsbericht. Tome 33, Fasc. 6-9 (Juni-Okt.). 1899. 80.

Kais. Universitäts-Sternwarte in Strassburg:

Annalen. Band II. Karlsruhe 1899. 40.

Kais. Universität Strassburg:

Schriften aus dem Jahre 1898/99 in 40 u. 80.

Württembergische Kommission für Landesgeschichte in Stuttgart:

Vierteljabreshefte für Landesgeschichte. N. F. Jahrg. VIII, Heft 1—4. 1899. 8°.

K. Württemberg, statistisches Landesamt in Stuttgart:

Württembergische Jahrbücher für Statistik und Landesgeschichte. Jahrg. 1898. Theil I, II und Ergänzungshand I. 1898/99. 40.

Australasian Association for the advancement of science in Sydney: Report of the 7th Meeting at Sydney 1898. 80.

Royal Society of New-South-Wales in Sydney:

Journal and Proceedings. Vol. XXXII. 1898. 80.

Department of Mines and Agriculture of New-South-Wales in Sydney:

Annual Report for the year 1898. 1899. Fol.

Records of the Geological Survey of New-South-Wales. Vol. VI, part 3. 1899. 40.

Mineral Resources. No. VI. 1899. 80.

Observatorio astronómico nacional in Tacubaya:

Boletín. Tomo 2, No. 5. 1899. Fol.

Dcutsche Gesellschaft für Natur- und Völkerkunde Ostasiens in Tokyo: Mittheilungen. Band VII, Heft 2. 1899. 80.

Kaiserliche Universität Tokyo (Japan):

The Journal of the College of Science. Vol. XI, part 3. 1899. 40.

Canadian Institute in Toronto:

Proceedings. New Ser., Vol. 2, part 2. 1899. 40.

University of Toronto:

Studies. History, Ist Series, Vol. 3. 1898. 80.

Faculté des sciences in Toulose:

Annales. II. Série, Tome I, Fasc. 1. 1899. 40.

Biblioteea e Museo eomunale in Trient:

Archivio Trentino. Anno XIV, Fasc. 2. 1899. 80.

Kaiser Franz-Josef-Museum für Kunst und Gewerbe in Troppau: Jahresbericht 1898. 1899. 80.

Universität Tübingen:

Schriften aus dem Jahre 1898/99 in 40 und 80.

R. Accademia delle seienze in Turin:

Atti. Vol. 34, disp. 11—15. 1899. 8°. Osservazioni meteorologiche 1898. 1899. 8°.

K. Gesellschaft der Wissenschaften in Upsala:

Nova Acta. Ser. III, Vol. 18, Fasc. 1. 1899. 40.

K. Universität in Upsala:

Eranos. Acta philologica Suecana. Vol. 3, No. 2—3. 1899. 8°. Schriften der Universität aus d. J. 1898/99 in 4° u. 8°.

Redaetion der Praee matematyczno-fizyezne in Warsehau:

Prace matemat.-fizyczne. Tom. X. 1899-1900. 40.

American Academy of Arts and Sciences in Washington:

Proceedings. Vol. 34, No. 15-20. 1899. 80.

Volta-Bureau in Washington:

Marriages of the Deaf in America, by Edw. Allen Fay. 1898. 80.

U. S. Departement of Agriculture in Washington:

North American Fauna, No. 15. 1899. 80.

U. S. Coast and Geodetic Survey in Washington:

Annual Report for the year 1897. Parts 1 und 2. 1898. 40. Bulletin No. 37—39. 1899. 40.

Smithsonian Institution in Washington:

Smithsonian Miscellaneous Collections, No. 1171. 1899. 80.

U. S. Naval Observatory in Washington:

Report of the Superintendent for the year ending june 30, 1899. 1899. 80.

Surgeon General's Office, U. S. Army in Washington:

Index-Catalogue. II. Series, Vol. 4. 1899. 40.

United States Geological Survey in Washington:

Monographs. No. XXIX, XXXI (Text u. Atlas) XXXV. 1898. 4°. 18th annual Report 1896/97. Part I, III, IV. 19th annual Report 1897/98. Part I, IV, VI and VI continuated. 1898. 4°.

Savigny-Stiftung in Weimar:

Zeitschrift für Rechtsgeschichte: a) Germanist. Abtheilung Band XX. b) Romanist. Abtheilung Band XX. 1899. 8°.

Harzverein für Geschichte in Wernigerodc:

Zeitschrift. 32. Jahrg. 1899. 80.

Kaiserliche Akademie der Wissenschaften in Wien: Sitzungsberichte. Philos.-hist. Classe. Band 138-140. 1898/99. 80.

Mathem.-naturwissensch. Classe. 1898. 80.

Abth. I. Bd. 107, No. 6-10. II a. , 107, , 3—10. II b. , 107, , 4—10. III. " 107, 1-10.

Archiv für österreichische Geschichte. Band 85, 1, 2; 86, 1, 2. 1898. 80. Fontes rerum Austriacarum. Abtheilg. II, Band 50. 1898. 80. Almanach. 48. Jahrg. 1898. 80.

K. K. geologische Reichsanstalt in Wien:

Jahrbuch. Jahrgang 1898. Band 48, Heft 3 und 4; Jahrgang 1899. Band 49, Heft 1, 2. 1899. 4°. Verhandlungen. 1899. No. 9, 10. 4°.

Geologische Karte der Oesterreichisch-Ungarischen Monarchie. Lief. I, II. 1899. Fol.

Geographische Gesellschaft in Wien:

Verzeichniss der Bücher der Bibliothek. 1899. 80.

K. K. Gradmessungs-Commission in Wien:

Protokolle über die Verhandlungen 1898. 1898. 8°. Astronomische Arbeiten. Band X. 1898. 4°.

K. K. Gesellschaft der Aerzte in Wien:

Wiener klinische Wochenschrift. 1899, No. 28-52; 1900, No. 1. 4°.

Anthropologische Gesellschaft in Wien:

Mittheilungen. Band XXIX, Heft 3-5. 1899. 40.

Zoologisch-botanische Gesellschaft in Wien:

Verhandlungen. Band 49, Heft 6-9, 1899, 80. Exhumirung Stephan Endlichers. 1899. 80. Enthüllung des Endlicher Denkmals. 1899. 80.

K. K. militär-geographisches Institut in Wien:

Astronomisch-geodätische Arbeiten. Band XIII-XVI. 1899. 4°.

K. K. naturhistorisches Hofmuseum in Wien:

Band XIII, 4; XIV, 1, 2. 1898/99.

v. Kuffner'sche Sternwarte in Wien:

Publikationen. Band V. 1900. 40.

K. K. Universität in Wien:

Programm der volksthümlichen Universitätsvorträge (10 Stück). 1896/99. 8°. Bericht über die volksthümlichen Universitätsvorträge für d. J. 1898/99. 1899. 8°.

Oeffentliche Vorlesungen im Sommer-Semester 1899, Winter-Semester 1899/1900. 8°.

Uebersicht der akademischen Behörden für das Studienjahr 1899/1900. 1899. 8°.

Die feierliche Inauguration des Rektors für 1899/1900. 1899. 80.

K. K. Universitäts-Sternwarte in Wien:

Annalen. Band XIII. 1898. 40.

Verein zur Verbreitung naturwissenschaftlicher Kenntnisse in Wien: Schriften. 39. Band. Jahr 1898/99, 1899, 8°,

Verein für Nassauische Alterthumskunde etc. in Wiesbaden: Jahrbücher. Jahrg. 52. 1899. 80.

Oriental Nobility Institute in Woking:

Vidyodaya. Vol. 28, No. 4-9. Calcutta 1899. 80.

Physikalisch-medicinische Gesellschaft in Würzburg:

Festschrift zur Feier ihres 50 jährigen Bestehens. 1899. 40.

Physikalische Gesellschaft in Zürich:

10. Jahresbericht. 1898. Uster-Zürich 1899. 80.

Zeitschrift: Astronomische Mittheilungen in Zürich:

Astronom. Mittheilungen. Jahrg. No. 90. 1899. 80.

Schweizerisches Landesmuseum in Zürich:

Anzeiger für Schweizerische Alterthumskunde. Band I, Heft 1—3. 1899. 8°.

Sternwarte des eidgen. Politechnikums in Zürich:

Publikationen. Band II. 1899. 40.

Universität in Zürich:

Schriften aus dem Jahre 1898/99 in 40 und 80.

Von folgenden Privatpersonen:

P. Bachmetjew in Sofia:

Ueber die Temperatur der Insekten nach Beobachtungen in Bulgarien. Leipzig 1899. 8⁰.

Léon Bollack in Paris:

Grammaire abregée de la langue bleue, bolak-langue internationale pratique. 1899. 80.

W. Borchers in Aachen:

Jahrbuch der Elektrochemie. IV, V. 1897/98. Halle 1898/99. 8°. Zeitschrift für Elektrochemie. Jahrg. IV, V. 1897/98 und 1898/99. Halle. 4°.

Jul. W. Brühl in Heideberg:

Roscoe-Schorlemmer's ausführliches Lehrbuch der Chemie von Jul. Wilh. Brühl. VII. Band. Bearbeitet in Gemeinschaft mit Ossian Aschan und Edw. Hjelt. Braunschweig 1899. 8°.

Domenico Carutti in Turin:

Bibliografia Carloalbertina. 1899. 40.

Margaritis G. Dimitsas in Athen:

Ο Έλληνισμός. 1900. 8°.

Wilhelm Goering in Dresden:

Die Auffindung der rein geometrischen Quadratur des Kreises. 1899. 80.

Antonio de Gordon y de Acosta in Habana:

Consideraciones sobre la voz humana. 1899. 8º. Declaremos en Cuba guerra á la Tuberculosis. 1899. 8º.

Anton Hacklin in Lulea:

Olavus Laurelius 1585-1670. 1896. 80.

Ernst Haeckel in Jena:

Kunstformen der Natur. Lief. III. Leipzig 1899. Fol.

J. M. Hulth in Stockholm:

Öfversikt af Litteratur rörande Nordens Fåglar 1899. 40.

Albert Jahn in Bern:

Biographie von Carl Jahn, Professor der Philologie in Bern. 1898. 8°. Michael Psellos über Platons Phaidros. Berlin 1898. 8°.

Glossarium sive Vocabularium ad Oracula Chaldaica. Paris 1899. 80.

A. Karpinsky in St. Petersburg:

Ueber die Reste von Edestiden und die neue Gattung Helicropion. 1899. 8° mit 1 Atlas 4°.

R. W. O. Kestel in Port Adelaide:

Radiant Energy, a Working Power in the Mechanism of the Universe. 1898. 8°.

Jos. von Körösy in Budapest:

Zur internationalen Nomenclatur der Todesursachen. Berlin 1899. 4°.

Karl Krumbacher in München:

Byzantinisches Archiv. Heft 2. Leipzig 1899. gr. 8°. Byzantinische Zeitschrift. 8 Bd., 4. Heft. Leipzig 1899. 8°.

C. Mehlis in Neustadt a/H.:

Die Liguren-Frage. Braunschweig. 1899. 4°.

Gabriel Monod in Versailles:

Revue historique. Année 24. Tome 71, No. I—II. Sept.—Déc. 1899. Paris 1899. 80.

D. H. Müller in Wien:

Die südarabische Expedition. 1899. 80.

Alfred Nehring in Berlin:

Ueber Herberstain und Hirsfogel. 1897. 80.

J. Praun in München:

Die Kaisergräber im Dome zu Speyer. Karlsruhe. 1899. 80.

Verlagshandlung Dietrich Reimer in Berlin:

Zeitschrift für afrikanische und oceanische Sprachen. 4. Jahrg., 4. Heft. 1898. 40.

Verlag von Seitz und Schauer in München: Deutsche Praxis. 1899. No. 12—24. 8°.

Friedrich Schmidt in Ludwigshafen:

Geschichte der Erziehung der Bayerischen Wittelsbacher. Berlin 1892. 8°. I. Geschichte der Erziehung der Pfälzischen Wittelsbacher. 1899. 8°. II.

Michele Stossich in Triest:

Strongylidae. Lavoro monografico. 1899. 8º. La Sezione degli Echinostomi. 1899. 8º. Appunti di elmintologia. 1899. 8º. Lo smembramento dei Brachycoelium. 1899. 8º.

J. Schubert in Eberswalde:

Der jährliche Gang der Luft- und Bodentemperatur. Berlin 1900. 80.

Wilhelm Thomsen in Kopenhagen:

Inscriptions de l'Orkhon. Helsingfors 1896. 80.

Giacomo Tropea in Messina:

Studi sugli Scriptores historiae Augustae. No. I—III. 1899. gr. 8°. La stele Arcaica del Foro Romano. 1899. gr. 8°.

Nicolaus Wecklein in München:

Euripidis fabulae. Vol. I, pars 1, 2. Editio altera. Lipsiae 1899. 80.

Josef Weisz in Budapcst:

Das 2000 jährige Problem der Einschreibung des Siebeneckes. 1899. 80.

Ed. v. Wölfflin in München:

Archiv für lateinische Lexikographie. 11. Bd, 3. Heft. Leipzig 1899. 80.

Namen - Register.

v. Baeyer Adolf 1. 362. Beltrami Eugenio (Wahl) 361. Bornet Edouard (Wahl) 361.

Cranz C. 38.

Darboux Gaston (Wahl) 361. Doflein Franz 177.

Ebert Hermann 23. (Wahl) 360. Egger J. G. 38.

v. Fedorow Eugraph 63. Finsterwalder Sebastian (Wahl) 360.

v. Gümbel Wilhelm (Nekrolog) 281.

Karpinsky Alexander (Wahl) 361. King George (Wahl) 361. Koch K. R. 38. Korn Arthur 228.

v. Linde Carl 65. Lindemann Ferdinand 71. 423. v. Lommel Eugen 63.

Maurer L. 147.

v. Orff Karl 361.

Namen - Register.

v. Pettenkofer Max 273. Pringsheim Alfred 39. 261.

Ranke Johannes 63. 415. Retzius Gustav (Wahl) 361. Rothpletz August (Wahl) 360. Rückert Johannes 196.

- v. Sandberger Fridolin (Nekrolog) 307. Seeliger Hugo 3, 362. Strasburger Eduard (Wahl) 361.
- v. Voit Carl 280. 339.
- v. Weber E. 231. Weinschenk E. 137, 197.
- v. Zittel Karl Alfred 339. 360.

Sach-Register.

Ansprache des Präsidenten 273.

Beobachtung an einem hungernden Hunde 339. Beckmann'sche Umlagerung 362. Bilinearformen und Differentialsysteme 231.

Convergenzkriterium für Kettenbrüche mit positiven Gliedern 261.

Dämmerungsfarben 63. Dekapoden, amerikanische, der bayerischen Staatssammlungen 177. Doppel-Integral, Theorie desselben 39. Druckschriften, eingelaufene 315. 455.

Elastischer Stoss, mechanische Theorie desselben 223.

Fehler, Vertheilung derselben nach einer Ausgleichung 3. Fixsterne, Vertheilung derselben am Himmel 363. Foraminiferen aus den Kreidemergeln 38.

Geologisches aus dem bayerischen Walde 197. Gewichte, prähistorische 71. Glimmlichtphänomene 23.

Invariantensysteme, Endlichkeit derselben 147.

Meteoriten 137.

Sach - Register.

Nekrologe 281. 307.

Plan- und Raum-Theilung 63. Polyspermie 196.

Schädeldecke, überzählige Knochen derselben 63. 415. Seiser Alp, Wengener-, St. Cassianer- und Raibler-Schichten auf derselben 341.

Terpenartige Körper 1. Theorie der automorphen Funktionen 423.

Verbrennung in flüssiger Luft 65. Vibration des Gewehrlaufs 38.

Wahlen 360.

Inhaltsverzeichniss

der

Sitzungsberichte

der

mathematisch-physikalischen Classe

der

k. b. Akademie der Wissenschaften.

Jahrgang 1871-1885.

München.

Akademische Buchdruckerei von F. Straub. 1886.

In Commission bei G. Franz.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.ai

Vorbemerkung.

Die mit * bezeichneten akad. Vorträge sind nicht in den Sitzungsberichten, sondern in den Denkschriften in 40 oder anderwärts gedruckt. — Die zwischen Jahres- und Seitenzahl stehende Zahl bezieht sich auf das betr. Heft der Sitzungsberichte.

- *Abel'sche Integrale, deren kanonische Perioden 1884, 4 p. 604
- Abel'sches Theorem 1885, 4 p. 462—468
- Absorptionsfähigkeit der Humussubstanzen 1879, 2 p. 208—216
- Absorptionsspectra gelöster absorbirender Medien 1877, 2 p. 234—262
- Abwasser, Infection mit städtischem und industriellem 1879, 3 p. 381—387
- Acanthaceen, systematischer Werth der Pollenbeschaffenheit bei den A. 1883, 2 p. 256—314
- Acrylsäure 1877, 3 p. 330—335
- Aescorcin 1884, 4 p. 609
- AethylenmilchsäureWislicenus'-sche 1877, 3 p. 326—330
- Aethylverbindungen, sauerstoffhaltige 1871, 3 p. 256—274

- Aetzfiguren an Krystallen 1874, 1 p. 48-53
- am Kaliglimmer, Granat und Kobaltnickelkiese 1874, 3 p. 245—251
- des Magnesiaglimmers und des Epidots 1875, 1 p. 99
 105
- der Apatits und des Gypses 1875, 2 p. 169—177
- Affen, ihre Brachycephalie und Brachyencephalie 1881, 4 p. 379-390
- untere oder dritte Stirnwindung der A. 1877, 1 p. 96—139
- über das Gehirn eines Chimpansé 1871, 1 p. 98-105
- über das Gehirn eines Orang-Outan 1876, 2 p. 193— 205
- Affenhand, Muskeln der 1880, 4 p. 485—496
 - Afrika, Geologie der Goldküste 1882, 2 p. 170—196

Agassiz Lud. Joh. Rud. (Nekrolog) 1874, 1 p. 84—87

v. Alberti Friedr. Aug. (Nekrolog) 1879, 2 p. 133 f.

Allylverbindungen, deren relative Constitution 1875, 1 p. 1-6

Alkohol, absoluter, dessen Einfluss auf chemische Reactionen 1872, 1 p. 17—22

dessen electrische Leitungsfähigkeit 1885, 2 p. 227
 241

Alkohol und Wasser, electrische Leitungsfähigkei ihrer Mischung 1885, 1 p. 93—108

Alpen, geognostische Mittheilungen aus den A. 1. 1873, 1 p. 14—88. II. 1874, 2 p. 177—203. III. 1876, 1 p. 51—105. IV. 1876. 3 p. 271—291. V. 1879, 1 p. 33—85. VI. 1880, 2 p. 164—240. VII. 1880, 4 p. 542—623

eocene Thonschiefer der Glarner A. 1880, 4 p. 461 -484

Alpenbuntsandstein 1873, 1 p. 26

Altgermanische Gräber in der Umgebung des Starnberger-Sees 1873, 3 p. 295—344

Aluminium, Voltasche Polarisation desselben 1875, 1 p. 87-98

Aluminiumanode, electrochemischer Vorgang an derselben 1877, 1 p. 90—95

Aluminiumphosphate 1875, 1 p. 7 f.

Amblygonit 1872, 1 p. 23—27 Ameisensäure 1882, 3 p. 345 —355

Amidosäuren der Fettreihe 1875, 1 p. 106—114

Ammocoetes, Bildungsweise der Ganglienzellen im Ursprungsgebiete des Nervus acusticofacialis 1884, 2 p.333 — 354

v. Ammon L. Ein Beitrag zur Kenntniss der vorweltlichen Asseln 1882, 4 p. 507—550

*— Ueber fossile Medusen aus dem lithographischen Schiefer 1883, 3 p. 400

*— Ueber Homoeosaurus Maximiliani 1885, 3 p. 326

Ammoniakgehalt des Schneewassers 1872, 2 p. 124 —133

Analyse, Beiträge zur mikroskopisch-chemischen 1883, 3 p. 436-448. 1885, 2 p. 206-226. 1885, 4 p. 403-414

 quantitative landwirthschaftlich wichtiger Stoffe 1879, 3 p. 388

Andesite, sog. süd- und mittelamerikanische 1880, 2 p. 241 —254. 1881, 3 p. 321

Anpassungs-Vermögen der mit Lungen athmenden Süsswasser-Mollusken 1875, 1 p. 39—54

Anthracit 1883, 1 p. 186 Antigorit 1874, 2 p. 165— 176 Antilopen, Drüse auf der Stirnund Scheitelregion derselben 1885, 2 p. 110—112

Apatit 1873, 2 p. 150

Aetzfiguren 1875, 2 p. 169
 -177

Apparat, heliographischer 1873, 2 p. 207—209

Aquarelle aus Indien und Hochasien im Kupferstich-Cabinet 1880, 4 p. 516-522

Aragonit 1872, 1 p. 9—13

Archaeopteryx, Fund eines Skeletes im lithographischen Schiefer von Solenhofen 1877, 2 p. 155 f.

Argelander Friedr. Wilh. Aug. (Wahl) 1871, 2 p. 210 (Nekrolog) 1875, 1 p. 134 f.

Arnicawasser und aetherisches Arnicaöl, Bestandtheile 1873, 2 p. 210—212

Arrest Heinr. Lud. d' (Nekrolog) 1876, 1 p. 124

Arsenige Säure, ihre Löslichkeit in Wasser 1873, 2 p. 159 —167

Artemia salina, Parthenogenesis 1873, 2 p. 168—196

 $\begin{array}{ccccc} \text{Arthropoden, Parthenogenesis} \\ \text{derselben 1871, 3 p. 232} \\ -242 \end{array}$

Arvicola arvalis (Feldmaus) deren Ei 1882, 5 p. 621 ---637

Arzneimittellehre, älteste indische des Arztes Tscharaka 1883, 3 p. 364-371 Aschebestandtheile, Verwerthung gewisser im Thierkörper 1871, 1 p. 78—88

Aschen einzelner Pflanzentheile, ihre Verschiedenheit 1880, 4 p. 523—528

Ascherson P., Neue Beobachtungen über Ozon in der Luft der Libyschen Wüste 1877, 1 p. 77-89

Asparagin, Bedeutung des A. als Nahrungsstoff 1883, 3 p. 401 -405

Asseln, vorweltliche 1882, 4 p. 507—550

Astigmatische Strahlenbündel, unendlich dünne, ihre Form 1883, 1 p. 35—51

Athem-Volum 1871, 2 p. 195 —201

Athemluft, Einwirkung der schwefligen Säure in ihr auf den thierischen Organismus 1883, 3 p. 449-455

Atmosphäre, Physik der 1880, 2 p. 107—122

*Atomgewichte, über einen Fehler der bei mathematischer Bestimmung derselben vorkommen kann 1871, 2 p. 139

Aufgabe, Pothenot'sche, eine mechanische Lösung derselben 1871, 2 p. 124—127

Augit 1873, 2 p. 149

Augitophyr 1873, 1 p. 60

Ausdehnung von Flüssigkeiten durch die Wärme 1881, 1 p. 23-56

Ausgleichung zufälliger Beobachtungsfehler in geometrischen Höhennetzen 1876, 3 p. 243—270. 1878, 4 p. 415—423

Ausscheidung des gasförmigen Stickstoffs aus dem Thierkörper 1881, 3 p. 270 —320

Auwers A. (Wahl) 1882, 5 p. 620

Axencylinder markhaltiger Nervenfasern 1883, 3 p. 466 - 475

Babbage Charles (Nekrolog) 1872, 1 p. 95

v. Baer K. Ernst (Nekrolog) 1877, 1 p. 142—145

v. Baeyer Adolph, Zur Kenntniss des Rosanilins nach einer Untersuchung von Emil und Otto Fischer 1876, 2 p. 145—162

 Ueber das Phtalid (Phtalaldehyd) und das Mekonin, nach einer Untersuchung von Jul. Hessert 1878, 1 p. 8-13

*— Ueber die Constitution des Indigo's 1883, 3 p. 405

— Ueber Polyacetylenverbindungen 1885, 2 p. 117

Bamle in Norwegen. Kjerulfin, eine neue Mineralspecies von dort 1873, 1 p. 106—108

Bandenspectrum des Stickstoffs, Ueberführung in ein Linienspectrum 1879, 2 p. 171 -207 * Barometrisch bestimmte Höhen, deren tägliche Periode 1883, 3 p. 355

Bary Ant. de (Wahl) 1879, 4 p. 679

Basen, wässerige und schmelzende alkalische 1877, 3 p. 330--335

Bauer Gust., Bemerkungen über einige Determinanten geometrischer Bedeutung 1872, 3 p. 345—354

Bemerkungen über Reihen nach Kugelfunktionen und insbesondere auch über Reihen, welche nach Produkten oder Quadraten von Kugelfunktionen fortschreiten, mit Anwendung auf Cylinderfunktionen 1875.
 p. 247—272

 Ueber Systeme von Curven
 6. Ordnung, auf welche das Normalenproblem bei Curven
 2. Ordnung führt 1878,
 2 p. 121-135

 Ueber eine Eigenschaft des geradlinigen Hyperboloids 1880, 4 p. 635-640

Ueber Tripel von Geraden,
 welche auf einem Hyper boloid liegen 1881, 2 p. 241
 248

Von der allgemeinen Inversion.
 Von J. S. Vaněček
 1882, 4 p. 463-466

 Ueber die Hesse'sche Determinante der Hesse'schen Fläche einer Fläche dritter Ordnung 1883, 2 p. 320 Bauer Gust., Von den gestaltlichen Verhältnissen der parabolischen Curve auf einer Fläche dritter Ordnung 1883, 2 p. 320—343

- (Wahl) 1871, 2 p. 210

Bauer Jos., Untersuchung über den Stoffumsatz bei der Phosphorvergiftung 1871, 1 p. 29-37

 Ueber die Grösse der Eiweisszersetzung nach Blutentziehungen 1871,3 p.254 f.

- v. Bauernfeind Carl Max, Ueber eine mechanische Lösung der Pothenot'schen Aufgabe 1871, 2 p. 124—127
- Ueber ein neues graphisches und mechanisches Verfahren, die Lage zweier Standorte des Messtisches an den daselbst gemessenen scheinbaren Grössen der Verbindungslinien dieser Orte mit zwei anderen gegebenen Punkten zu bestimmen 1871, 2 p. 157—161
- Ueber sein Näherungsverfahren zur Ausgleichung der zufälligen Beobachtungsfehler in geometrischen Höhennetzen 1876, 3 p. 243—270 u. 1878, 4 p. 415—423
- Die Beziehungen zwischen Temperatur, Druck und Dichtigkeit in verschiedenen Höhen der Atmosphäre 1880, 2 p. 107—122
- *— Neue Beobachtungen über die tägliche Periode baro-

metrisch bestimmter Höhen 1883. 3 p. 355

*v. Bauernfeind Carl Max, Ergebnisse aus Beobachtungen der terrestrischen Refraktion. 2. Mittheilung 1883, 3 p. 355

*— Astronomische Bestimmung der Polhöhe auf den Punkten Irschenberg, Höhensteig und Kampenwand. Von Karl Oertel 1885, 1 p. 108

Baumhauer Heinr., Die Aetzfiguren an Krystallen 1874, 1 p. 48—53

- Die Aetzfiguren am Kaliglimmer, Granat und Kobaltnickelkiese 1874, 3 p. 245
 —251
- Die Aetzfiguren des Magnesiaglimmers und des Epidots 1875, 1 p. 99—105

 Ueber die Aetzfiguren des Apatits und des Gypses 1875, 2 p. 169—177

Bayerische Hochebene, Gletschererscheinungen 1874, 3 p. 252-283

Bayern, Steinmeteoriten 1878, 1 p. 14—72

*— zündende Blitze in B. von 1833—1882—1884, 1 p. 38

Beckenkamp H., Untersuchung über die Bestimmung der Elasticitätscoëfficienten der Krystalle 1884, 2 p. 280 -285

Becker Helene, ein microcephalisches Mädchen, über deren Gehirn 1872, 2 p. 163—171

- Beetz Wilh., Ueber die Messung des inneren Widerstandes voltaischer Ketten nach der Compensationsmethode 1871, 1 p. 3-17
- Ueber die Einwirkung der Electricität auf Flüssigkeitsstrahlen 1871, 3 p. 221 -227
- Ueber die Frage: Wird durch das Strömen des Wassers ein electrischer Strom erzeugt? 1872, 2 p. 138—142
- Ueber die Rolle, welche Hyperoxyde in der voltaschen Kette spielen 1873, 1 p. 89—105
- Ueber die Darstellung von Magneten auf electrolytischem Wege 1874, 1 p. 35
 47
- Ueber die Electricitätsleitung in Electrolyten 1875, 1 p. 59-70
- Ueber die voltasche Polarisation des Aluminiums 1875,
 p. 87 98
- Ueber anomale Angaben des Goldblattelectroskops 1876, 1 p. 20-26
- Ueber das electrische Leitungsvermögen des Braunsteins und der Kohle 1876, 1 p. 26-29
- Ueber den electrochemischen Vorgang an einer Aluminiumanode 1877, 1 p. 90—95
- Ueber die electromotorische Kraft und den inneren Wi-

- derstand einiger Thermosäulen 1877, 3 p. 292—301 Beetz Wilh., Ueber die Electri-
- Beetz Wilh., Ueber die Electricitätserregung beim Contact fester und gasförmiger Körper 1878, 2 p. 140-160
- -- Ueber das Wärmeleitungsvermögen der Flüssigkeiten m. 1 Taf. 1879, 1 p. 86 -- 115
- Ueber die Natur der galvanischen Polarisation 1880,
 p. 429-456
- Beschreibung eines Schlüssels für electrische Leitungen 1880, 4 p. 457-460
- Ueber die Elasticität und das electrische Leitungsvermögen der Kohle 1881, 1 p. 10—22
- Noch eine Bemerkung zur Frage nach der Natur der galvanischen Polarisation 1881, 2 p.161-164 u. 248
- Untersuchung über den Einfluss der Temperatur auf Aeusserungen von Molekularkräften. Von Dr. A. Miller (mit 4 Tafeln) 1882, 4 p. 377—462
- Ueber Normalelemente für electrometrische Messungen 1884, 2 p. 207—216
- Ueber galvanische Trockenelemente und deren Anwendung zu electrometrischen und galvanometrischen Messungen (mit I Tafel) 1885, 2 p. 242 – 257

Befruchtungsakt beim Bufo variabilis und vulgaris 1882, 4 p. 608—618

Bentham George (Nekrolog) 1885, 2 p. 186—193

Beobachtungen, Wahrscheinlichkeitsgesetz der Fehler bei denselben 1884, 2 p. 194

Beobachtungsfehler zufällige in geometrischen Höhennetzen, Ausgleichung derselben 1876, 3 p. 243—270 u. 1878, 4 p. 415—423

Bergamasker Alpen, geognostischer Streifzug 1880, 2 p. 164

Bernoulli'sche Zahlen, eine einfache Entstehungsweise derselben 1877, 2 p. 157 —187

*Beugungserscheinungen einer kreisrunden Oeffnung und eines kreisrunden Schirmchens theoretisch und experimentell bearbeitet 1884, 2 p. 254

Bernstein, sogenannter unreifer, dessen Identität mit dem Krantzit 1872, 2 p. 200 -202

Bernsteinflora 1871, 2 p. 172 Bewegungen kleinster Körperchen 1879, 3 p. 389—453

v. Bezold Wilh., Die Theorie des Electrophor's 1871, 1 p. 18—28

 Ueber gesetzmäss. Schwankungen in der Häufigkeit
 der Gewitter während langjähriger Zeiträume (mit 1 Tafel) 1874, 3 p. 284 -322

v. Bezold Wilh., Ueber das doppelte Maximum in der Häufigkeit der Gewitter während der Sommermonate 1875, 2 p. 220 – 238

 Ueber die Vergleichung von Pigmentfarben mit Spectralfarben 1876, 1 p. 30-34

 Eine neue Methode der Farbenmischung 1876, 1
 p. 106—112

 Die Theorie der stationären Strömung unter ganz allgemeinen Gesichtspunkten betrachtet 1877, 2 p. 188
 —215

Ueber Lichtenberg'sche Figuren und elektrische Ventile 1880, 4 p. 624—634

 Versuche über die Brechung von Strom- und Kraftlinien an der Grenze verschiedener Mittel 1883, 3 p. 456—465

 Untersuchungen über die dielektrische Ladung und Leitung 1884. 1 p. 14—38

*— Ueber zündende Blitze im Königreich Bayern während des Zeitraumes 1833—1882 1884, 1 p. 38

— Ueber eine neue Art von Cohäsionsfiguren (mit 1 Taf.) 1884, 2 p. 355—365

— Ueber Strömungsfiguren in Flüssigkeiten (mit 1 Tafel) 1884, 4 p. 611—638

 Ueber Herstellung des Farbendreiecks durch wahre Farbenmischung 1885, 3 p. 305-324

v. Bezold Wilh. (Wahl) 1883, 3 p. 406

 u. G. Engelhardt, Ueber die Fluorescenz der lebenden Netzhaut 1877, 2 p. 226
 233

Bewegung der Luft in den Sielen von München 1881, 2 p. 196—198

v. Bibra Ernst Frhr. Nekrolog 1879, 2 p. 129-131

Bieber in Hessen, Speiskobalt und Spathiopyrit von dort 1873, 2 p. 135—140

Biegung und Drillung eines unendlich dünnen elastischen Stabes 1883, 1 p. 82—110

Bienen und Bienenbrot, Fermente in ihnen 1874, 2 p. 204-207

Bierhefe, ihr Fettgehalt, 1871, 2 p. 109--118

Bir Keraui in der Libyschen Wüste, Schwefelwasser von dort 1875, 1 p. 19—38

Bischof Carl Gust. Christoph Nekrolog 1871, 2 p. 145 - 148

v. Bischoff Theodor, Ueber das Gehirn eines Chimpansé m. 5 Figuren 1871, 1 p. 98

 Ueber das Gehirn eines microcephalischen achtjährigen Mädchens, Helene Becker 1872, 2 p. 163-171

 Ueber Unrichtigkeit der Angabe in Haeckel's Anthropogenie in Bezug auf das Ei des Menschen und derandem Säugethiere 1876, 1 p. 1 f.

v. Bischoff Theodor, Ueber das Gehirn eines Orang-Outan mit 6 Figuren 1876, 2 p. 193 – 205

 Ueber das Gehirn eines Gorilla und die untere oder dritte Stirnwindung der Affen Mit 4 Tafeln 1877, 1 p. 96
 —139

 Ueber die Bedeutung des Musculus Extensor indicis proprius und des Flexor pollicis longus der Hand des Menschen und der Affen 1880, 4 p. 485—496

 Ueber Brachycephalie und Brachyencephalie des Gorilla und der anderen Affen. Mit 1 Tafel 1881, 4 p. 379
 — 390

Bemerkung über die Geschlechtsverhältnisse der Feuerländer 1882, 2 p. 243
 246

 Weitere Bemerkungen über die Feuerländer (mit 1 lithogr. Abbildung) 1882, 3
 p. 356-368

Bismuthit von St. José in Brasilien 1871. 2 p. 167

Blätter Lichtwirkung verschieden gefärbter 1872, 2 p. 133
–137

Bleilegirung, Spontane Zersetzung einer B. 1872, 2 p. 218 —222 * Blitze, zündende in Bayern von 1833—1882 1884, 1 p. 38

Blüthen, Säurereaction derselben 1879, 1 p. 19—29

Blutentziehungen, Grösse der Eiweisszersetzungnachihnen 1871, 3 p. 254 f.

Blutkörperchen, rothe des Frosches, Einfluss des Wassers auf sie 1873, 3 p. 348—352

Boden, Permeabilität für Luft 1879, 2 p. 137—140

Bodenanalyse 1882, 4 p. 595 --605

*Bogen, reduzirte Länge eines geodätischen Bogens 1883, 2 p. 247

*Bogenhausen, Bestimmung der Länge des einfachen Sekundenpendels in B. 1883, 3 p. 364

Boghead-Kohle 1883, 1 p.179 Borchardt Carl Wilh. (Nekrolog) 1881, 4 p. 374

Borsäure, ihre Krystallform 1882, 5 p. 638—640

Borverbindungen in Tibet 1878, 4 p. 505—538

Botzen, Porphyr und Carbonschichten 1873, 1 p. 20

*Boveri Theod., Beiträge zur Kenntniss der Nervenfasern 1885, 3 p. 304

Bowring Sir John (Nekrolog) 1873, 2 p. 116—118

Brachycephalie und Brachyencephalie der Affen 1881, 4 p. 379-390 Brandl J., Ueber die chemische Zusammensetzung der Mineralien der Kryolithgruppe 1882, 1 p. 118—129

Brandt J. F., (Nekrolog) 1880, 3 p. 274—276

Brasilien, eine neue Scrophularineengattung aus B. 1885, 2 p. 258—275

Braun Alex., Nekrolog 1878, 1 p. 99—102

Braun W., Ueber den Luftwiderstand bei kleinen Geschwindigkeiten 1881, 2 p. 165-195

Braunkohle tertiäre 1883, 1 p. 139

*v. Braunmühl, Ueber die reducirte Länge eines geodätischen Bogens und die Bildung einer Fläche, deren Normalen eine gegebene Fläche berühren 1883, 2 p. 247

Braunstein, elektrisches Leitungsvermögen 1876, 1 p. 26 —29

Brechung von Strom- u. Kraftlinien an der Grenze verschiedener Mittel 1883, 3 p. 456-465

Breithaupt Joh. Friedr. Aug. (Nekrolog) 1874, 1 p. 76 —79

*Brill Alex., Zur Theorie der geodätischen Linie und des geodätischen Dreiecks 1883, 1 p. 51

- Bestimmung der optischen Wellenfläche aus einem

ebenen Centralschnitte derselben 1883, 3 p. 423-435

Brill Alex., Ueber rationale Curven und Regelflächen 1885, 2 p. 276-287

— (Wahl) 1882, 5 p. 620

Bromüre die beiden isomeren C₃H₆Br₂ 1879, 1 p.1—17 Brongniart Adolph Theodor' (Nekrolog) 1876, 1 p. 120 f.

Brücke Ernst (Wahl) 1873, 3 p. 353

*Brunnenwasser, Bestimmung der Kohlensäure in demselben 1871, 2 p. 139

Bucherer Emil, Ueber den Einfluss der Temperatur auf die Elektrolyse 1875, 3 p. 273-283

Buchner Hans, Ueber die experimentelle Erzeugung des Milzbrandcontagiums I. 1880, 3 p. 368-413

II. 1882, 2 p. 147—169

 Versuche über die Entstehung des Milzbrandes durch Einathmung 1880, 3 p. 414 -423

Buchner L. A., Ueber die Bildung durchsichtiger, dem Steinsalze ähnlicher Salzwürfel 1871, 1 p. 89-97

- Ueber eine Verbindung des Jods mit arseniger Säure, die Jodarsensäure, und deren Verbindungen mit basischen Oxyden und alkalischen Jodüren 1872,3 p. 364 -369

Buchner L. A., Ueber die Löslichkeit der arsenigen Säure in Wasser 1873, 2 p. 159 -167

- Ueber die Selbstentzündung des Heues 1873, 2 p. 197 -207

Buchonit, eine Felsart aus der Gruppe der Nephelingesteine 1872, 2 p. 203-208 u. 1873, 1 p. 11—13

Büchergeschenke, eingesendete s. Druckschriften

Buff Heinr., Nekrolog 1879. 2 p. 132 f.

Bufo variabilis und vulgaris, Befruchtungsakt 1882. 4 р. 608—618

v. Buhl Ludwig (Nekrolog) 1881, 4 p. 372

Buntsandstein 1874, 2 p. 192 -194

Caffein 1882, 2 p. 247—251 Calciumphosphate und Calciumsulfat 1872, 3 p. 269-275 Calorimetrische Untersuchungen

1884, 2 p. 366-378 Camphengruppe, ihr Verhältniss zum Pflanzenleben 1873.

2 p. 213-226 Cannelkohle 1883, 1 p. 177 Capparideen-Familie 1884, 1

p. 58—100 Capparis-Arten, über einige 1884, 1 p. 101-182

Carbonschichten, Mineralkohle der 1883, 1 p. 161

Carbonschichten bei Botzen 1873, 1 p. 20

Caseinbestimmung in der Milch, neue Methode 1877, 2 p. 263—272

Cementmergel von Ulm, dessen geognostische Verhältnisse 1871, 1 p. 38-72

Chalcedonmandeln (Enhydros) 1880, 2 p. 241—254

Chemische Arbeiten im Laboratorium Erlenmeyer's 1874, 1 p. 28—34

Chemische Formeln, Einführung der modernen in die Mineralogie 1872, 3 p. 297—304

Chemische Zusammensetzung der Mineralien der Kryolithgruppe 1882, 1 p. 118 —129

Chimborazogestein 1881, 3 p. 340—346

Chimpansé, sein Gehirn 1871, 1 p. 98—105

Chinin, Reaction auf dasselbe mit Ferrocyankalium 1883, 1 p. 69—75

Chininprüfung zur 1885, 1 p. 1—8

Chinone, ihre relative Constitution 1874, 2 p. 210—213

Chlornatriumkrystalle, abnorme 1871, 2 p. 169

Chrysolith 1873, 2 p. 149

Chrysotil 1874, 2 p. 165—176

Circularpolarisation, ihre Darstellung durch Glimmerblättchen 1876, 2 p. 211—215

Clausius Rudolph (Wahl) 1871, 2 p. 210 Clebsch Rud. Friedr. Alfred (Nekrolog) 1873, 2 p. 129 f. Cohäsion wässriger Salzlösungen 1876, 1 p. 3—19

Cohäsionsfiguren, eine neue Art von 1884, 2 p. 355—365

Collio 1880, 2 p. 186

ComplementärfarbendesGypses

im polarisirten Licht 1876, 2 p. 206—210

Compositae des Herbarium Schlagintweit 1878, 1 p. 73 —98 u. 1881, 1 p. 57—62

Conglomeratschichten bei Recoaro 1879, 1 p. 57—61

Conodictyum bursiforme, eine Foraminifere 1873, 3 p.282 —294

Copal 1881, 2 p. 145—160 Cotopaxi-Gestein 1881,3 p. 351 v. Cotta Bernhard (Nekrolog) 1880, 3 p. 272—274

Cremona Luigi, Wahl 1878 4 p. 413

Cupania und damit verwandte Pflanzen 1879, 4 p. 457 —678

Curve parabolische auf einer Fläche dritter Ordnung, gestaltliche Verhältnisse derselben 1883, 2 p. 320—343

Curven und Regelflächen rationale 1885, 2 p. 276—287

- Systeme von Curven 6. Ordnung, auf welche das Normalenproblem bei Curven 2. Ordnung tührt 1878, 2 p. 121-135

Cyanamid 1874, 1 p. 21-25

Cyannachweis 1884, 2 p. 286 —292

Cylinderfunktionen 1875, 3 p. 247-272

Dachstein am Hallstädter See, Gletscherschlamm von dort 1880, 4 p. 529—532

Dactyloporideen 1873, 3 p. 282 ---294

Damour A. (Wahl) 1881, 4 p. 469

Daniell'sches Element, dessen elektromotorische Kraft 1882, 4 p. 467—506

Daphnoidee, Ueber eine von Grisebach unter den Sapotaceen aufgeführte Daphnoidee 1884, 3 p. 487—520

Darwin Charles (Wahl) 1878, 4 p. 413 (Nekrolog) 1883, 2 p. 222—231

Dauphiné, Minerallagerstätten 1885, 4 p. 371—402

Decaisne Jos. (Nekrolog) 1883, 2 p. 242—244

De la Rive Aug. Arthur (Nekrolog) 1874, 1 p. 79 f.

DelesseAchille (Nekrolog) 1882, 3 p. 263 f.

*DeterminanteHesse'sche 1883, 2 p. 320

Determinanten geometr. Bedeutung 1872, 3 p. 345 — 354

Dezzothal 1880, 2 p. 201 Diäthylglycolsäure (Diäthoxalsäure) 1879, 1 p. 17 f.

Diazoverbindungen, ihre relative Constitution 1874, 2 p. 208—210 Didymglas 1884, 4 p. 605 Dielektrische Ladung und Leitung 1884. 1 p. 14—38

Dihydroxypropionsäure, Di-und Monohydroxybernsteinsäure 1877, 3 p. 323—325

Dilatation, Einfluss der durch sie erzeugten Temperaturveränderung auf die Messung der Dilatation 1883, 1 p.17 – 34

Dispersionstheorie, deren Ausdehnung auf die ultrarothen Strahlen 1884, 2 p. 245 — 252

Dolorit 1873, 2 p. 140—154 Dolomit, Verhalten gegen Essigsäure 1881, 2 p. 220—237

Dolomite 1882, 4 p.551—594 — und dolomitische Kalke 1876, 1 p. 80 ff.

Doppelbrechung, Theorie der elliptischen 1882, 1 p. 39 —56

Dotter, dessen aktive Betheiligung am Befruchtungsacte beim Bufo variabilis und vulgaris 1882, 4 p. 608—618

Dove Heinr. Wilh. (Nekrolog) 1880, 3 p. 268—70

*Dreieck, geodätisches, dessen Theorie 1883, 1 p. 51

Drillung eines unendlich dünnen elastischen Stabes 1883, 1 p. 82—110

Druckschriften, Verzeichniss der zur k. Akademie eingesendeten 1871, 2 p. 212; 3 p. 311. 1872, 1 p. 102;

2 p. 256; 3 p. 370. 1873, 1 p. 109; 2 p. 268; 3 p. 354. 1874, 1 p. 93; 2 p. 233; 3 p. 352. 1875, 1 p. 139; 2 p. 239; 3 p. 331. 1876, 1 p. 126; 2 p. 216; 3 p. 298. 1877, 1 p. 149; 2 p. 279; 3 p. 381. 1878, 1 p. 115; 2 p. 215; 3 p. 409. 1879, 1 p. 116; 2 p. 274; 3 p. 454; 4 p. 680. 1880, 1 p. 101; 2 p. 255; 3 p. 424; 4 p. 643. 1881, 1 p. 139; 2 p. 249; 4 p. 470. 1882, 1 p. 138; 2 p. 252; 3 p. 369; 5 p. 646. 1883, 2 p. 340; 3 p. 476. 1884, 2 p. 379; 4 p. 639. 1885, 3 p. 357; 4 p. 477

Drüse auf der Stirn- und Scheitelregion von Antilopen 1885, 2 p. 110--112

Du Bois-Reymond Paul in Tübingen, Ueber den Gültigkeitsbereich der Taylorschen Reihenentwicklung 1876, 3 p. 225-237

Ein allgemeiner Satz über die Integrirbarkeit von Functionen integrirbarer Functionen 1882, 2 p. 240 —242

(Wahl) 1874, 2 p. 231
Dumas Jean Bapt. André (Nekrolog) 1885, 2 p. 136
—153
Dysodil 1883, 1 p. 147

Ebermayer Ernst, Physiologie der Pflanzen 1882, 1 p. 114 —117

 Die Beschaffenheit der Waldluft 1885, 3 p. 299—304
 Ehrenberg Chr. Gottfr. (Nekrolog) 1877, 1 p. 140—142

Ei von Arvicola arvalis (Feldmaus) 1882, 5 p. 621 — 637

 des Menschen und der andern Säugethiere 1876, 1 p. 1 f.

Eichler Aug. Wilh. (Wahl) 1884, 4 p. 649

Einschlüsse in vulcanischen Gesteinen 1872, 2 p. 172 —176

Einsendung v. Druckschriften s. Druckschriften

Eisen, Scheidung desselben von Nickel und Kobalt 1879, 3 p. 325—328; von Uran ibid. p. 328—331

Eisenindustrie 1880, 2 p. 179 Eisenlohr (Wilh.) Nekrolog 1873, 2 p. 131

Eisenphosphate 1875, 1 p. 8 f. Eisenvitriol, Krystallisation 1878, 4 p. 550 f.

Eiweiss, sein Wassergehalt 1877, 3 p. 285–291

bei der Emährung 1883, 3
p. 355—363

Eiweisszersetzung im Thierkörper bei Transfusion von Blut und Eiweisslösungen 1875, 2 p. 206 – 219

deren Grösse nach Blutentziehungen 1871, 3p. 254 f.

Eiweisszersetzung, Einfluss künstlich erhöhter Körpertemperatur auf dieselbe 1884, 2 p. 226-229

Eiszeit, Gletschererscheinungen aus derselben 1872, 2 p. 223 —255

Elasticität der Kohle 1881, 1 p. 10—22

Elasticitätscoëfficienten der Krystalle, über die Bestimmung derselben 1884, 2 p. 280—285

Elastischer Stab, Biegung und Drillung eines unendlich dünnen 1883, 1 p. 82 – 110

Elektricität, Einwirkung auf Flüssigkeitsstrahlen 1871, 3 p. 221-227

— Theorie der stationären Strömung 1877, 2 p. 188 —215

Elektricität der Pflanzen 1872, 2 p. 177—199

 Einfluss eingeschobener dielektrischer Platten auf die Wechselwirkung elektrisirter Körper 1884, 1 p. 35—38

Elektricitätserregung beim Contact fester u. gasförmiger Körper 1878, 2 p. 140—160

Elektricitätsleitung in Elektrolyten 1875, 1 p. 59-70

Elektrische Influenz auf Flüssigkeiten 1875, 2 p.147—168

— auf nichtleitende feste Körper 1877, 1 p. 1–76

Elektrische Leitungen, Schlüssel für 1880, 4 p. 457 —460 Elektrische Leitungsfähigkeit des kohlensauren Wassers 1884, 2 p. 293 – 324

— des absoluten Alkohols 1886, 2 p. 227—241

— der Mischung von Wasser und Alkohol 1885, 1 p.93 —108

Elektr. Stromerzeugung durch das Strömen des Wassers 1872, 2 p. 138—142

Elektrische Ventile 1880, 4 p. 624—634

Elektrisches Leitungsvermögen des Braunsteins und der Kohle 1876, 1 p. 26-29

— des Wassers und der Säuren 1875, 3 p. 284—305

— der Kohle 1881, 1 p. 10 —22

Elektrochemischer Vorgang an einer Aluminiumanode 1877, 1 p. 90 – 95

Elektrolyse, Einfluss der Temperatur auf dieselbe 1875, 3 p. 273—283

Elektrolyten, Elektricitätsleitung in ihnen 1875, 1 p. 59—70

Elektrolytischer Weg zur Darstellung von Magneten 1874, 1 p. 35—47

Elektromagnetische Drehung der Polarisationsebene des Lichtes im Schwefelkohlenstoffdampf 1878, 4 p. 546— 549

Elektrometrische Messungen, Normalelemente für dieselben 1884, 2 p. 207 —216 Elektrometr. Messungen vermittelst galvanischer Trockenelemente 1885, 2 p. 242 —257

Elektromotorische Kraft einiger Thermosäulen 1877, 3 p.292 —301

— des Daniell'schen Elements 1882, 4 p. 467—506

Elektrophor, Theorie desselben 1871, 1 p. 18-28 u. 1884, 1 p. 14-35

Element, Daniell'sches, dessen elektromotorische Kraft 1882, 4 p. 467—506

Elephantenzähne, ihre Structur 1871, 3 p. 243—253

Élie de Beaumont, Jean Bapt. Armand Louis Léonce (Nekrolog) 1875, 1 p.132—134

Elliptische Doppelbrechung 1882, 1 p. 39—56

Elliptisches Integral erster Gattung, unendlich viele Normalformen desselben 1880, 4 p. 533—541

Emmerich Rudolf, Experimentelle Untersuchungen über Infection mit städtischem und industriellem Abwasser 1879, 3 p. 381—387

Ems, geologische Fragmente aus der Umgegend von E. 1882, 2 p. 197—239

Endorgane der sensiblen Nerven in der Zunge der Spechte 1884, 1 p. 183—192

Engelhardt G., Ueber die FluorescenzderlebendenNetzhaut 1877, 2 p. 226-233

Enhydros von Uruguay 1880, 2 p. 241—254 u. 1881, 3 p. 321—368

Eocene Thonschiefer der Glarner Alpen 1880, 4 p. 461

—484

Epidot, Aetzfiguren 1875, 1 p. 99—105

Erdmagnetische Horizontal-Intensität, locale Variationen derselben 1883, 1 p. 1—16

Erdpfeiler im Etsch- u.Innthale 1872, 2 p. 223—255

*Erk Fritz, Die Bestimmung wahrer Temperaturtagesmittel unter besonderer Berücksichtigung des Gangs der Temperatur in Süddeutschland 1883, 1 p. 75

Erlenmeyer Emil, Üeber sauerstoffhaltige Aethylverbindungen 1871, 3 p. 256—274

 Ueber einige Eigenschaften der Calciumphosphate und des Calciumsulfats 1872, 3
 p. 269-275

Ueber die relative Constitution der Harnsäure und einiger Derivate derselben 1872, 3 p. 276—283

 Ueber die Bestandtheile des Arnicawassers und des aetherischen Arnicaöls 1873, 2
 p. 210—212

 Ueber verschiedene Arbeiten in seinem Laboratorium 1874, 1 p. 28-34

 Ueber die Fermente in den Bienen, im Bienenbrot und im Pollen und über einige Bestandtheile des Honigs 1874, 2 p.204 — 207 Erlenmeyer Emil, Ueber die relative Constitution der Diazoverbindungen 1874, 2 p. 208—210

Ueber die relative Constitution der Chinone 1874,

2 p. 210—213

 Ueber eine einfache Darstellung von Oxalsäure-Methylester resp. Methylalkohol aus Holzgeist 1874, 2 p. 213 f.

Ueber die relative Constitution der Allylverbindungen und Trimethylenverbindungen 1875, 1 p. 1-6

 Ueber verschiedene phosphorsaure Salze 1875, 1
 p. 6—9

 Ueber die Darstellung der ungeformten Fermente 1875, 1 p. 82—86

 Ueber die Amidosäuren und Hydroxysäuren der Fettreihe 1875, 1 p. 106—114

Ueber die relative Constitution des Nelkenöls (Eugenols) 1875, 1 p. 114-122

 Das Wasser als Oxydationsund Reductionsmittel 1876, 3 p. 292—296

 Ueber Paramethoxyphenylglycolsäure und Paramethoxyphenylglycocoll 1877, 2
 p. 273—276

Ueber polymerisirten Zimmtsäureäthylester 1877, 2 p. 276—278 Erlenmeyer Emil, Ueber Hydroxysäuren 1877, 3 p. 323 — 330

 Ueber das Verhalten des acrylsauren Natrons gegen wässerige und schmelzende alkalische Basen 1877, 3 p. 330—335

 Ueber die beiden isomeren Bromüre C₃H₆Br₂ 1879, 1

p. 1—17

Ueber zwei isomere Säuren von der Zusammensetzung C₆H₁₀O₂ aus Diäthylglycolsäure(Diäthoxalsäure) 1879, 1 p. 17—18

- Ueber Phenylmilchsäuren 1880, 2 p. 123-128

— Ueber künstliches Tyrosin 1882, 4 p. 606—608

Ernährung, Ueber den Stoffumsatz bei der Phosphorvergiftung 1871, 1 p. 29 —37

 Ueber die Verwerthung gewisser Aschebestandtheile im Thierkörper 1871, 1
 p. 78-88

 Ueber die Grösse der Eiweisszersetzung nach Blutentziehungen 1871, 3 p. 254 f.

 Bedeutung der Kohlehydrate in der Nahrung 1873, 3
 p. 273—281

 Eiweisszersetzung im Thierkörper bei Transfusion von Blut und Eiweisslösungen 1875, 2 p. 206-219

— Ueber die Abstammung des Glykogens im Thierkörper 1876, 2 p. 138 -144

Ernährung, Zur Frage der Ausscheidung gasförmigen Stickstoffs aus dem Thierkörper 1881, 3 p. 270—320

- Ueber den zeitlichen Verlauf der Zersetzungen im Thierkörper 1882, 1 p.130
 —137
- Werth der Weizenkleie für die E. des Menschen 1883,
 1 p. 76-81
- Vertretungswerthe von Eiweiss, Fett und Kohlehydraten bei der E. 1883,
 p. 355-363
- Einfluss künstlich erhöhter Körpertemperatur auf die Eiweisszersetzung 1884, 2 p. 226—229
- Colorimetrische Untersuchungen 1884, 2 p. 366 — 378
- Ueber die Fettbildung im Thierkörper 1885, 2 p. 288
 --297

Ernährungschemismus der niederen Pilze 1880, 3 p. 277

—367

Escher Arnold von der Linth (Nekrolog) 1873, 2 p. 127 f.

Ethnographische Gegenstände eingesendet von Armin Wittstein 1875, 2 p. 178—183

— der Schlagintweit'schen Sammlungen in der k. Burg zu Nürnberg 1877, 3 p. 336 — 380

Ethnographisches Museum, Sammlungsgegenstände aus Indien und Hochasien 1880, 4 p. 497—516

Etschthal, Gletscherschliffe und Erdpfeiler 1872, 2 p. 223 —255

v. Ettingshausen Andreas Frhr. Nekrolog 1879, 2 p. 135 f.

Eugenol, dessen relative Constitution 1875, 1 p. 114 -122

Extensor indicis proprius 1880, 4 p. 485—496

Farbendreieck hergestellt durch wahre Farbenmischung 1885, 3 p. 305-324

Farbenmischung, eine neue Methode derselben 1876, 1 p. 106-112

Feder Ludwig, Ueber die Ausscheidung des Salmiaks im Harn 1876, 2 p. 131—137

 Ueber den zeitlichen Verlauf der Zersetzungen im Thierkörper 1882, 1 p. 130
 —137

*Fehler bei Beobachtungen, deren Wahrscheinlichkeitsgesetz 1884, 2 p. 194

*— über einen, der bei mathematischer Bestimmung der Atomgewichte vorkommen kann 1871, 2 p. 139

Feldmaus, deren Ei 1882, 5 p. 621—637

Feldspath 1873, 2 p. 143

Feldspäthe Gruppe der 1873, 3 p. 345---347

Ferment, diastatisches und peptonbildendes, in den

Wickensamen 1874, 3 p. 241 —244

Fermente, ungeformte, ihre Darstellung 1875, 1 p. 82 -86

— in den Bienen, im Bienenbrot und im Pollen 1874, 2 p. 204—207

Fermentwirkungen, Wärmetönung bei F. 1880, 2 p. 129
—146

FerrocyankaliumChininreaktion mit demselben 1883, 1 p. 69—75

Fett bei der Ernährung 1883, 3 p. 355—363

Fettbildung bei den niederen Pilzen 1879, 3 p. 287-316

— im Thierkörper 1885, 2 p. 288—297

Fettbestimmung in der Milch, neue Methode 1877, 2 p. 263—272

Fettgehalt der Bierhefe 1871, 2 p. 109—118

 der Samen, Einfluss der Keimung auf denselben 1871, 2 p. 206 – 209

Fettreihe, Amidosäuren und Hydroxysäuren 1875, 1 p. 106—114

—Hydrazinverbindungen1875, 3 p. 306—312 u. 1876, l p. 35—43

Fettsäuren 1876, 3 p. 295 f. Feuerländer, ihre Geschlechtsverhältnisse 1882, 2p. 243—246 u. 1882, 3 p. 356—368

Fichtelgebirge, Vorkommen d. Lithionglimmers 1871, 2 p. 193 f.

Figuren, Lichtenberg'sche 1880, 4 p. 624—634

Filtrirapparat, über einen kleinen 1885, 2 p. 224—226

Fischer Emil, Ueber die Hydrazinverbindungen der Fettreihe 1875, 3 p. 306—312 u. 1876, 1 p. 35—43

Ueber die chemische Zusammensetzung der Mineralien der Kryolithgruppe Von J. Brandl 1882, 1 p. 118-129

 Umwandlung des Xanthins in Theobromin und Caffeïn 1882, 2 p. 247-251

- (Wahl) 1880, 4 p. 641

Fischer Emil und Otto, Zur Kenntniss des Rosanilins 1876, 2 p. 145—162 u. 1878, 2 p. 210—214

Fischer Heinr., Mikrostructur der Künlün-Nephrite 1874, 1 p. 63—68

Fischer Otto, Ueber Flavanilin 1885, 3 p. 327—355

— (Wahl) 1884, 4 p. 649

Fischer Seb., Nekrolog 1872, 1 p. 92 f.

Fittig Rudolf (Wahl) 1885, 3 p. 356

Fiume nero 1880, 2 p. 219
*Fläche, deren Normalen eine
gegebene Fläche berühren
1883, 2 p. 247

*— Hesse'sche einer Fläche dritter Ordnung, deren Hesse'sche Determinante 1883, 2 p. 320 Flächen von constantem Krümmungsmaass 1884, 2 p. 194

—206

Flavanilin 1885, 3 p.327—355 Fleischmann W., Ueber die specifische Wärme der Milch und über die Volumenveränderung, welche die Milch beim Abkühlen bis auf 0° erleidet 1874, 2 p.97—108

Flexor pollicis longus 1880, 4 p. 485-496

Fluorescenz Beobachtungen übersie 1884,4 p. 605—610

— der lebenden Netzhaut 1877, 2 p. 226—233

Flüssige Verbindungen, deren Molecularrefraction 1882, 1 p. 57-104

Flüssigkeiten, elektrische Influenz auf sie 1875, 2 p.147 —168

— ihr Wärmeleitungsvermögen 1879, 1 p. 86—115

- ihre Ausdehnung durch die Wärme 1881, 1 p. 23-56

— Spannungsdifferenzen zwischen sich berührenden F. 1881, 1 p. 113—138

- Strömungsfiguren in denselben 1884, 4 p. 611-638

verschiedener Concentration,
Spannungsdifferenzen 1882,
1 p. 1—38

Flüssigkeitsstrahlen, Einwirkung der Elektricität auf dieselben 1871, 3 p. 221—227

Flüssigkeitswiderstände unter hohen Drucken zu messen 1884, 2 p. 293—324 Foraminiferen 1873, 3 p. 282 —294

— des Ulmer Cementmergels 1871, 1 p. 38—72

Forchhammeria Liebm., deren Zurückführung zur Familie der Capparideen 1884, 1 p. 58—100

Forelle, Histiogenese ihres Rückenmarkes 1884, 1 p. 39 —57

Formeln, Einführung der modernen chemischen in die Mineralogie 1872, 3 p. 297

—304

Fossile Asseln 1882, 4 p. 507 -550

*— Medusen aus dem lithogr. Schiefer 1883, 3 p. 400

Fossiles, vielleicht der Bernsteinflora angehöriges Harz 1871, 2 p. 172—176

Forster J., Ueber die Eiweisszersetzung im Thierkörper bei Transfusion von Blut und Eiweisslösungen 1875, 2 p. 206—219

 Ueber die Abstammung des Glykogens im Thierkörper 1876, 2 p. 138—144

Friedel Charles (Wahl) 1883, 3 p. 407

Fries Elias Magnus, Nekrolog 1878, 1 p. 109

Frosch, Einfluss des Wassers auf die rothen Blutkörperchen des F. 1873, 3 p. 348 —352

Functionaltheorem, Beweis von der Unmöglichkeit der Existenz eines andern als des Abel'schen Theorems 1885, 4 p. 462—468

Functionen integrirbarer Functionen, ihre Integrirbarkeit 1882, 2 p. 240—242

Gährungsmilchsäure 1877, 3 p. 325

Galvanische Polarisation 1880, 4 p. 429--456 u. 1881, 2 p. 161-164

- Trockenelemente 1885, 2 p. 242-257

Ketten 1871, 1 p. 3-17
 Galvanometrische Messungen vermittelst galvanischer Trockenelemente 1885, 2 p. 242
 -257

Gangādhara, Scholiast des Tscharaka 1884, 2 p. 325 — 332

Ganglienzellen, Kern ders. 1872, 2 p. 143—146

Bildungsweise ders., im Ursprungsgebiete des Nervus acustico-facialis bei Ammocoetes 1884, 2 p. 333—354

Gasschichten, Verbreitung specifisch leichterer in darunter liegenden specifisch schwereren 1872, 3 p. 263—268

Gasteropoden, Structur ihrer Nervenelemente 1872, 1 p. 3—8

Gebirge am Comer- u. Luganer-See 1880, 4 p. 542

Gebirgsgestaltung von Indien und Hochasien 1880, 1 p. 1-32

Gefängniss, Pneumonie-Epidemie in einem 1884, 2 p. 253 f.

Gehirn eines Chimpansé 1871, 1 p. 98—105

— eines Gorilla 1877, 1 p. 96 —139

— eines Orang-Outan 1876, 2 p. 193—205

eines microcephalischenMädchens 1872, 2 p. 163171

Geodätische Aufgabe über die Lagenbestimmung zweier Standorte des Messtisches gegen zwei andere gegebene Punkte 1871, 2 p. 157 — 161

*Geodätische Linie und geodätisches Dreieck, deren Theorie 1883, 1 p. 51

Geognostische Mittheilungen aus den Alpen I. 1873, 1 p. 14—88. II. 1874, 2 p. 177—203. III. 1876, 1 p. 51—105. IV. 1876, 3 p. 271—291. V. 1879, 1 p. 33—85. VI. 1880, 2 p. 164—240. VII. 1880, 4 p. 542—623

Geognostische Verhältnisse des Ulmer Cementmergels 1871, 1 p. 38—72

Geologie der Goldküste in Afrika 1882, 2 p. 170—196

Geologische Fragmente aus der Umgegend von Ems 1882, 2 p. 197—239

Gerade, Tripel von Geraden, welche auf einem Hyper-

- boloid liegen 1881, 2 p. 241 —248
- v. Gerlach Jos. (Wahl) 1883, 3 p. 407
- Geroldseck im Breisgau, Sphalerit von da 1871, 1 p. 73

 —77
- Geschlechtsverhältnisse der Feuerländer 1882, 2 p. 243 —246 u. 1882, 3 p. 356 —368
- Geschwindigkeiten, Luftwiderstand bei kleinen 1881, 2 p. 165-195
- Gesteine, vulcanische, Einschlüsse darin 1872, 2 p. 172

 —176
- Gewitter, gesetzmäss. Schwankungen in ihrer Häufigkeit 1874, 3 p. 284—322
- doppeltes Maximum ihrer
 Häufigkeit in den Sommermonaten 1875, 2 p. 220
 238
- Gierster J., Ueber Relationen zwischen Klassenzahlen binärer quadratischer Formen von negativer Determinante 1880, 2 p. 147—163
- Giftigkeit des Kohlenoxydes 1881, 2 p. 203—219
- Glarner Alpen, eocene Thonschiefer 1880, 4 p. 461 — 484
- Gleichungen, Reducibilität von G. insbes. derer vom fünften Grade, mit linearen Parametern 1885, 4 p.415—451
- Gletschererscheinungen aus der Eiszeit 1872, 2 p. 223 ---255

- Gletschererscheinungen in der bayerischen Hochebene 1874, 3 p. 252—283
- Gletscherschlamm vom Dachsteine am Hallstädter See 1880, 4 p. 529—532
- Gletscherschliffe im Etsch- und Innthal 1872, 2 p. 223 --255
- Glimmerblättchen, Circularpolarisation dargestelltdurch G. 1876, 2 p. 211—215
- Glykogen, seine Abstammung im Thierkörper 1876, 2 p. 138—144
- Göppert Heinr. Rob. (Nekrolog) 1885, 2 p. 193—201
- Goldblattelektroskop, anomale Angaben desselben 1876, 1 p. 20—26
- Goldküste in Afrika, ihre Geologie 1882, 2 p. 170—196
- Gorilla, Gehirn eines G. 1877, 1 p. 96—139
- dessen Brachycephalie und Brachyencephalie 1881, 4 p. 379—390
- v. Gorup-Besanez, Ueber das Vorkommen eines diastatischen und peptonbildenden Fermentes in den Wickensamen 1874, 3 p. 241—244
- Nekrolog 1879, 2 p. 134 f.
- Grad Ch., Température des mers de France 1876, 3 p. 297
- Graebe Karl, Wahl 1878, 4p.414 Gräber, altgermanische in der Umgebung des Starnberger Sees 1873, 3 p. 295—344

- Granat, Aetzfiguren 1874, 3 p. 245—251
- Grisebach Aug. Heinr. Rud. (Nekrolog) 1880, 3 p. 270 —272
- Groth Paul, Ueber die Pyroelektricität des Quarzes in Bezug auf sein krystallographisches System. Nach einer Untersuchung von Kolenko in Strassburg 1884, 1 p. 1—4
 - Ueber die Bestimmung der Elasticitätscoëfficienten der Krystalle 1884, 2 p. 280
 —285
- Die Minerallagerstätten des Dauphiné 1885, 4 p. 371
 —402
- (Wahl) 1881, 4 p. 469 u. 1885, 3 p. 356
- Gruber Max, Ueber den Nachweis und die Giftigkeit des Kohlenoxydes und sein Vorkommen in Wohnräumen 1881, 2 p. 203—219
- Grunert Joh. Aug. (Nekrolog) 1873, 2 p. 133
- Grundluft (Luft im Boden) 1871, 3 p. 275 - 301
- im Geröllboden von München, ihr Kohlensäuregehalt 1872,p. 355-363
- Grundwasserstand in München, in ihrer Beziehung auf die Bewegung der Typhusfrequenz *1872. 1 p. 60 u. 1872, 2 p. 107—123
- Guanidin 1874, 1 p. 11-21

- Gümbel C. W., Die geognostischen Verhältnisse des Ulmer Cementmergels, seine Beziehungen zu dem lithographischen Schiefer und seine Foraminiferenfauna m. I Tafel 1871, 1 p. 38—72
- Gletschererscheinungen aus der Eiszeit. (Gletscherschliffe und Erdpfeiler im Etschund Innthale) 1872, 2 p. 223
 255
- Geognostische Mittheilungen aus den Alpen I. 1873, 1 p.14—88. II. 1874,2p.177—203. III. 1876, 1 p.51—105. IV. 1876, 3 p.271—291. V. 1879, 1 p. 33
 - -291. V. 1879, 1 p. 33 -85. VI. 1880, 2 p. 164 -240. VII. 1880, 4 p. 542-623
- Ueber Conodictyum bursiforme Étallon einer Foraminifere aus der Gruppe der Dactyloporideen, m. 1 Taf. 1873, 3 p. 282 – 294
- Ueber die Beschaffenheit des Steinmeteoriten vom Fall am 12. Febr. 1875 in der Grafschaft Jowa N.-A., mit 1 Tafel 1875, 3 p. 313 —330
- Ueber die in Bayern gefundenen Steinmeteoriten
 m. 1 Taf. 1878, 1 p. 14
 —72
- Ueber die im stillen Ocean auf dem Meeresgrunde vorkommenden Manganknollen 1878, 2 p. 189—209

- Gümbel C. W., Ueber das Eruptionsmaterial des Schlammvulkans von Paterno am Aetna und der Schlammvulkane im Allgemeinen 1879, 2 p. 217—273
- Ueber die mit einer Flüssigkeit erfüllten Chalcedonmandeln (Enhydros) von Uruguay 1880, 2 p. 241-254
- Petrographische Untersuchungen über die eocenen Thonschiefer der Glarner Alpen von Fr. Pfaff 1880, 4 p. 461—484
- Nachträge zu den Mittheilungen über die Wassersteine (Enhydros) von Uruguay und über einige süd- und mittelamerikanische sogen. Andesite 1881, 3 p. 321-368
- Beiträge zur Geologie der Goldküste in Afrika 1882, 2 p. 170—196
- Geologische Fragmente aus der Umgegend von Ems 1882, 2 p. 197—239
- Einiges über Kalksteine und Dolomite (mit 2 lithogr. Tafeln). Von F. Pfaff 1882, 4 p. 551—594
- Beiträge zur Kenntniss der Texturverhältnisse der Mineralkohlen (mit 3 Tafeln) 1883, 1 p. 111-216
- Gyps, absolute Härte 1883, 3 p. 372-400
- Aetzfiguren 1875, 2 p. 169 —177

- Gyps, seine Complementärfarben im polarisirten Licht 1876, 2 p. 206-210
- Haeckel's Anthropogenie in Bezug auf das Ei des Menschen und der andern Säugethiere widerlegt 1876, 1 p. 1 f.
- Härte der Mineralien, deren Wesen 1883, 3 p. 372 -400
- absolute der Mineralien zu bestimmen 1883, 1 p. 55
 68
- die mittlere der Krystallflächen durch ein Instrument bestimmt 1884, 2 p. 255
 266
- v. Haidinger Wilh., Nekrolog 1871, 2 p. 153—156
- Halogensubstitutionsproducte der Fettsäuren 1876, 3 p. 295
- Handmuskeln des Menschen und der Affen 1880, 4 p. 485—496
- Hankel Wilh. Gottlieb (Wahl) 1880, 4 p. 641
- Hansen Peter Andreas (Nekrolog) 1875, 1 p. 123—125 Hansteen Christoph (Nekrolog) 1874, 1 p. 71 f.
- Harn, Salmiak Ausscheidung 1876, 2 p. 131—137
- Harnsäure, ihre relative Constitution 1872, 3 p. 276

 —283
- Harz, fossiles 1871, 2 p. 172 —176
- Hauptdolomit (Esinokalk Stoppani's) 1873, 1 p. 81

Haushofer K., Ueber das Verhalten des Dolomit gegen Essigsäure 1881, 2 p. 220 —237

 Ueber die Krystallform der Borsäure (H₃BO₃) 1882, 5
 p. 638—640

Ueber Zwillingsbildungen am
 Orthøklas 1882, 5 p. 641
 —645

Beiträge zur mikroskopischen
 Analyse (mit 1 lith. Tafel)
 1883, 3 p. 436—448

Mikroskopische Reactionen
 1884, 4 p. 590-604

Beiträge zur mikroskopischchemischen Analyse 1885,
2 p. 206—226 u. 1885, 4
p. 403—414

— (Wahl) 1882, 5 p. 620

Hébert Edmond (Wahl) 1879, 4 p. 679 u. 1883, 3 p. 406 Hebronit 1872, 3 p. 284—289 Heer Oswald (Nekrolog) 1884, 2 p. 234—241

Hefe, chemische Zusammensetzung 1878, 2 p.161—188 Heidenhain Rudolf (Wahl) 1883, 3 p. 407

Heine Heinrich Eduard (Nekrolog) 1882, 3 p. 263

Heliographischer Apparat 1873, 2 p. 207—209

Henri Jos., Nekrolog 1879, 2 p. 136

Hensen Viktor (Wahl) 1885, 3 p. 356

Herbarium Schlagintweit aus Hochasien und südlichen indischen Gebieten 1878, 1 p. 73—98 u. 1881, 1 p. 57—62

Hermite Charles, Wahl 1878, 4 p. 413

Herms Ernst, Ueber die Bildungsweise der Ganglienzellen im Ursprungsgebiete des Nervus acustico-facialis bei Ammocoetes (mit 2 Tafeln) 1884, 2 p. 333—354

Herrich-Schaeffer Gottl. Aug. (Nekrolog) 1875, 1 p. 125 —126

Herschel John Fred. Will., Nekrolog 1872, 1 p. 89—92

Hertwig Richard (Wahl) 1885, 3 p. 356

Hess W., Ueber die Biegung und Drillung eines unendlich dünnen elastischen Stabes 1883, 1 p. 82—110

*Hesse Lud. Otto, über einen Fehler, der bei mathematischer Bestimmung der Atomgewichte vorkommen kann 1871, 2 p. 139

— (Nekrolog) 1875, 1 p. 130 — 132

*Hesse'sche Determinante 1883, 2 p. 320

Hessenberg Friedr. (Nekrolog) 1875, 1 p. 128—130

Hessert Julius, Ueber das Phtalid (Phtalaldehyd) und das Mekonin 1878, 1 p. 8—13

Hessler Franz, Ueber die Materia Medica des ältesten indischen Arztes Tscharaka 1883, 3 p. 364— 371 Hessler Franz, Ueber Entwickelung und System der Natur nach Gangādhara, dem Scholiasten des Tscharaka 1884, 2 p. 325—332 Heu, Selbstentzündung 1873,

2 p. 197—207

Heubachit 1876, 3 p. 238 -242

Heupilze, Experimentelle Erzeugung des Milzbrandcontagiums aus ihnen 1880, 3 p. 368—413

Himálaya 1880, 1 p. 9

Hirne von neugeborenen und erwachsenen Microcephalen 1885, 2 p. 112—117

Hlasiwetz Heinr. Herm. (Nekrolog) 1876, 1 p. 121 f.

Hochasien, Karte des westlichen 1872, 3 p. 290-296

- Reisen in H.1880, 1 p.1-32

Sammlungsgegenstände aus 1880, 4 p. 497—516

- Herbarium Schlagintweit 1881, 1 p. 57—62

Genus Rosa 1874, 3 p. 32338

v. Hochstetter Ferd. (Nekrolog) 1885, 2 p. 201—205

*Höhen, barometrisch bestimmte, deren tägliche Periode 1883, 3 p. 355

Höhennetze geometrische, zufällige Beobachtungsfehler in denselben 1876, 3 p. 243 —270 u. 1878, 4 p. 415 —423

*Höhensteig, Bestimmung der Polhöhe 1885, 1 p. 108 Höhlenwohnung prähistorische in der bayr. Oberpfalz 1872, 1 p. 28—60

Hofmeister Wilh. Friedr. Ben. (Nekrolog) 1877, 1 p. 147 f.

Holzgeist, Darstellung von Oxalsäure - Methylester aus H. 1874, 2 p. 213 f.

*Homoeosaurus Maximiliani 1885, 3 p. 326

Honig, seine Bestandtheile 1874, 2 p. 204—207

Horizontal - Intensität, locale Variationen der erdmagnetischen 1883, 1 p. 1—16

Humussubstanzen, ihre Absorptionsfähigkeit 1879, 2 p. 208—216

Hydrazinverbindungen der Fettreihe 1875, 3 p. 306—312 u. 1876, 1 p. 35—43

Hydroxysäuren der Fettreihe 1875, 1 p. 106—114 u. 1877, 3 p. 323—330

Hydroxyfettsäuren 1876, 3 p. 293

Hyperboloid, geradliniges 1880, 4 p. 635—640 u. 1881, 2 p. 238—241

— Tripel von Geraden, welche auf einem H. liegen 1881, 2 p. 241—248

Hyperoxyde, Rolle welche sie in der voltaschen Kette spielen 1873, 1 p. 89—105

Jadeïtim Künlün-Gebirge 1873, 2 p. 227 – 267

Indien, Reisen in 1880, 1 p. 1—32 Indien, Sammlungsgegenstände aus 1880, 4 p. 497-516

*Indigo, Bericht über dessen Constitution 1883, 3 p. 405

Indische Wasseruhr und Klangscheibe 1871, 2p.128—138

Infection mit städtischem und industriellem Abwasser 1879, 3 p. 381—387

Influenz, elektrische, auf nicht leitende feste Körper 1877, 1 p. 1-76

Innthal, Gletscherschliffe und Erdpfeiler 1872, 2 p. 223 -255

Instrument zur Bestimmung der mittleren Härte der Krystallflächen 1884, 2 p. 255 —266

Integral elliptisches erster Gattung, unendlich viele Normalformen desselben 1880, 4 p. 533-541

Integrale Abel'sche, deren kanonische Perioden 1884, 4 p. 604

Integrirbarkeit von Functionen integrirbarer Functionen 1882, 2 p. 240—242

Introbbio 1880, 4 p. 562 Inversion, allgemeine 1882, 4 p. 463 – 466

Jod, Verbindung mit arseniger Säure 1872, 3 p. 364—369 Jodarsensäure und deren Verbindungen mit basischen Oxyden und alkalischen Jodüren 1872, 3 p. 364—369 Jodkalium vor dem Löthrohr

Jodkalium vor dem Löthrohr 1871, 2 p. 167 Jodkalium, dessen Zersetzbarkeit 1884, 1 p. 5—10

Jodkaliumamylonnitrit 1881, 1 p. 1—6

Jodschwefelsäure und jodschwefelsaure Salze 1871, 2 p. 177
–185

Jolly Phil., Ueber den Nachweis der elektromagnetischen Drehung der Polarisationsebene des Lichtes im Schwefelkohlenstoffdampf von A. Kundt u. W. C. Röntgen 1878, 4 p. 546—549 u. 1879, 1 p. 30

— Ueber die elektromagnetische Drehung der Polarisationsebene des Lichtes in den Gasen 1879, 2 p.148—-170

Ueber allmähliche Ueberführung des Bandenspectrums des Stickstoffs in ein Linienspectrum 1879, 2 p. 171—207

— Ueber eine Reihe von Thatsachen, die Ausdehnung von Flüssigkeiten durch die Wärme betreffend von H. Schröder 1881, 1 p. 23—56

 Ueber Volumänderungen einiger Metalle beim Schmelzen von F. Nies und A. Winkelmann 1881, 1 p. 63
 —112

 Ueber den Luftwiderstand bei kleinen Geschwindigkeiten von W. Braun und A. Kurz 1881, 2 p. 165
 — 195

- v. Jolly Phil., Theorie der Drehung der Polarisationsebene von E. Lommel 1881, 4 p. 454—468
- Theorie der elliptischen
 Doppelbrechung. Von E.
 Lommel 1882, 1 p. 39—56
- (Nekrolog) 1885, 2 p. 119 —136
- Jowa N.-A., Steinmeteoritenfall 1875, 3 p. 313—330
- *Irschenberg, Bestimmung der Polhöhe 1885, 1 p. 108

Iseosee 1880, 2 p. 196

Kaisergebirg der Nordalpen, Geognostisches Profil 1874, 2 p. 177—203

Kaliglimmer, Aetzfiguren 1874, 3 p. 245—251

Kalium-Eisen-Cyanür 1878, 4 p. 550 f.

Kalknatron-Feldspathe, deren chemische Constitution 1871, 2 p. 186—192

Kalkspath 1872, 1 p. 9—13
— absolute Härte 1883, 3
p. 372—400

Kalksteine und Dolomite 1882, 4 p. 551—594

*Kampenwand, Bestimmung der Polhöhe 1885, 1 p. 108 Karakorúm 1880, 1 p. 9

Karte des westlichen Hochasien 1872, 3 p. 290 – 296

Keimblätter deren vermeintliche Umkehr am Ei von Arvicola arvalis 1882, 5 p. 621 —637 Keimung, Einfluss auf den Fettgehalt der Samen 1871, 2 p. 206 – 209

Kerne sogenannte freie in der Substanz des Rückenmarkes 1872, 2 p. 209—217

Kette voltasche, Rolle welche Hyperoxyde in ihr spielen 1873, 1 p. 89—105

Kette, welche einen Erdinductor und ein Galvanometer enthält, deren absoluter Widerstand 1883, 2 p. 315

—319

Ketten, voltaische, Messung des inneren Widerstandes derselben nach der Compensationsmethode 1871, 1 p. 3—17

Kjerulfin, eine neue Mineralspecies von Bamle in Norwegen 1873, 1 p. 106—108

Kieselerde, deren Constitution 1871, 2 p. 164

Kirchhoff Gust. Rob. (Wahl) 1871, 2 p. 210

Kittler Erasmus, Ueber Spannungsdifferenzen zwischen sich berührenden Flüssigkeiten mit Berücksichtigung der Concentration. Mit I Tafel 1881, 1 p.113 – 138

 Ueber Spannungsdifferenzen zwischen einem Metall und Flüssigkeiten verschiedener Concentration (mit 1 lith. Tafel) 1882, 1 p. 1—38

 Die elektromotorische Kraft des Daniell'schen Elements 1882, 4 p. 467—506 Klangscheibe in Indien 1871, 2 p. 128—138

Klassenzahlenrelationen 1880, 2 p. 147—163

Klatt F. W., Die neuen Compositen des Herbarium Schlagintweit u. ihre Verbreitung 1878, 1 p.73 – 98

*Klaussner, Ueber das Rückenmark von Proteus anguineus 1883, 1 p. 51

Klein Felix, Zur Theorie der elliptischen Modulfunctionen 1880, 1 p. 89—100

 Ueber Relationen zwischen Klassenzahlen binärer quadratischer Formen von negativer Determinante von J. Gierster in Bamberg 1880, 2 p. 147—163

 Ueber unendlich viele Normalformen des elliptischen Integrals erster Gattung 1880, 4 p. 533—541

 (Wahl) 1879, 4 p. 679
 Kobaltnickelkies, Aetzfiguren 1874, 3 p. 245-251

Kobaltnickeloxydhydrat 1876, 3 p. 238—242

- v. Kobell Franz, Ueber das Verhalten der Lithionhaltigen Mineralien vor dem Spectroskop und über das Auffinden des Thalliums im Sphalerit von Geroldseck im Breisgau 1871, 1 p. 73—77
- Ueber den Monzonit, eine neue Mineralspecies 1871, 2 p. 162 f.

- v. Kobell Franz, Mineralogischchemische Bemerkungen. Marcelin. Constitution der Kieselerde 1871, 2 p. 164 - 167
- Ueber das Verhalten von Schwefelwismuth zu Jodkalium vor dem Löthrohr.
 Bismuthit von St. José in Brasilien 1871, 2 p. 167
 169

— Abnorme Chlornatriumkrystalle 1871, 2 p. 169

— Ueber den Montebrasit (Amblygonit) von Montebras 1872, 1 p. 23—27

 Ueber den neueren Montebrasit von Descloizeaux (Hebronit) 1872, 3 p. 284—289

- Zur Frage über die Einführung der modernen chemischen Formeln in die Mineralogie 1872, 3 p. 297
 304
- Ueber den Kjerulfin, eine neue Mineralspecies von Bamle in Norwegen 1873, 1 p. 106—108

Ueber den Wagnerit 1873,
 2 p. 155 – 158

 Ueber den Tschermakit, eine neue Mineralspecies aus der Gruppe der Feldspäthe 1873, 3 p. 345—347

 Ueber Chrysotil, Antigorit und Marmolit und ihre Beziehungen zu Olivin 1874, 2 p. 165--176

- Ueber die Complementärfarben des Gypses im po-

 2 larisirten Licht 1876, p. 206-210

v. Kobell Franz, Ueber das specifische Gewicht geglühter Silicate und anderer Oxydverbindungen 1878, 1 p. 1—7

- Ueber die Krystallisation des Kalium - Eisen-Cyanürs und des Eisenvitriols 1878,

4 p. 550 f.

 Ueber das Vorkommen von Lithion und Thallium in den Zinkerzen von Raibel in Kärnthen 1878, 4 p. 552

— Ueber Polarisationsbilder an Zwillingen zweiaxiger Krystalle 1881, 2 p.199-202

- Ueber das Verhalten des Dolomit gegen Essigsäure von K. Haushofer 1881, 2 p. 220-237
- von ihm als Sekretär der mathematisch-physikalischen Classe gesprochene Nekrologe

1871, 2 p. 141—156

1872, 1 p. 89—101 1873, 2 p. 121—134

1874, 1 p. 69—92

1875, 1 p. 123-138

1876, 1 p. 113—125

1877, 1 p. 140—148 1878, 1 p. 99—114

1879, 2 p. 129-136

1880, 3 p. 263-276

1881, 4 p. 369—378

1882, 3 p. 259-264

(Nekrolog) 1883, 2 p. 217

-222

Königsberger Leo, Beweis von der Unmöglichkeit der Existenz eines anderen Functionaltheorems als des Abel'schen Theorems 1885, 4 p. 462—468

— (Wahl) 1880, 4 p. 642

Körperchen, Bewegungen kleinster 1879, 3 p. 389-453

Körpertemperatur, Einfluss künstlich erhöhter auf die Eiweisszersetzung 1884, 2 p. 226—229

Kohle, elektrisches Leitungsvermögen 1876, 1 p. 26-29 u. 1881, 1 p. 10 - 22

Kohlehydrate, ihre Bedeutung in der Nahrung 1873, 3 p. 273—281 u. 1883, 3 p. 355-363

Kohlenoxyd, Nachweis und Giftigkeit sowie dessen Vorkommen in Wohnräumen 1881, 2 p. 203—219

*Kohlensäure i. Brunnenwasser, Bestimmung derselben 1871, 2 p. 139

- Unterscheidung der freien im Trinkwasser von der an Basen gebundenen 1875, 1 p. 55—58

— im Trinkwasser. Bestimmung derselben 1871, 2 p.170 f.

Kohlensäurebestimmung in kohlensauren Salzen 1875, 1 p. 10—18 u. 38

Kohlensäuregehalt der Luft im Boden von München 1871, 3 p. 275--301 u. 1872, 3 р. 3**55—36**3

Kohlensäuregehalt der Luft in der libyschen Wüste 1874, 3 p. 339-351

Kohlrausch F., Ueber das elektrische Leitungsvermögen des Wassers und der Säuren 1875, 3 p.284—305

 Ueber die Messung localer Variationen der erdmagnetischen Horizontal-Intensität 1883, 1 p. 1—16

Ueber einige Bestimmungsweisen des absoluten Widerstandes einer Kette, welche einen Erdinductor und ein Galvanometer enthält 1883,
 p. 315-319

Kolbe Hermann (Nekrolog) 1885, 2 p. 160—167

v. Kolenko, Ueber die Pyroelektricität des Quarzes in Bezug auf sein krystallographisches System 1884, 1 p. 1-4

Kollmann J., Ueber die Structur der Elephantenzähne m. 1 Taf. 1871, 3 p. 243 — 253

 Ueber Linien im Schmelz und Cement der Zähne 1871, 3 p. 302 – 310

- Ueber den Kern der Ganglienzellen 1872, 2 p. 143 - 146

 Altgermanische Gräber in der Umgebung des Starnberger Sees mit i Tafel 1873, 3 p. 295—344

— Ueber den Einfluss des Wassers auf die rothen Blutkörperchen des Frosches 1873, 3 p. 348—352

Kollmann J., Structurlose Membranen bei Wirbelthieren und Wirbellosen 1876, 2 p. 163—192

Kopal, Beitrag zur Kenntniss desselben 1881, 2 p. 145 -160

Kohlensaures Wasser, dessen elektrische Leitungsfähigkeit 1884, 2 p. 293—324

 $Korallenriffkalk\,1876, 1\,p.\,101\,\mathrm{ff}.$

Kraftlinien, deren Brechung 1883, 3 p. 456—465

Kraftwechsel, Beiträge zur Lehre vom K. 1885, 4 p. 452 – 461

Krantzit, Identität des sog. unreifen Bernsteins mit ihm 1872, 2 p. 200—202

Kreide, obere, einige fossile Lepaditen aus derselben 1884, 4 p. 577—589

Kröten, Befruchtungsakt 1882, 4 p. 608—618

Kru-Neger, Angaben zu ihrer Charakteristik 1875, 2 p.178 —201

Krümmungsmaass, Flächen von constantem K. 1884, 2 p. 194–206

Kryolithgruppe, Mineralien d. K. 1882, 1 p. 118--129

Krystalle, Aetzfiguren an ihnen 1874, 1 p. 48—53

Polarisationsbilder an Zwillingen zweiaxiger K. 1881,
 p. 199—202

Krystalle, Bestimmung ihrer Elasticitätscoëfficienten 1884, 2 p. 280—285

Krystallflächen, Bestimmung deren mittleren Härte durch ein Instrument 1884, 2 p. 255—266

Krystallform der Borsäure 1882, 5 p. 638—640

Krystallinische Niederschläge, deren mikroskopische Formen 1884, 4 p. 590—604

Krystallographisches System des Quarzes 1884, 1 p. 1—4 Kühne Willy (Wahl) 1885, 3 p. 356

Kuen Theodor, Ueber Flächen von constantem Krümmungsmaass 1884, 2 p. 194—206

Künlün-Gebirge 1880, 1 p. 9 — Nephrit, Jadeït u. Saussurit daselbst 1873, 2 p. 227

-267

— Nephrite, ihre Mikrostructur

1874, 1 p. 63—68 Kugelfunktionen 1875, 3 p. 247 —272

Kummer's Modell der unendlich dünnen astigmatischen Strahlenbündel 1883, 1 p. 35 —51

Kundt Aug., Ueber den Einfluss des Lösungsmittels auf die Absorptionsspectra gelöster absorbirender Medien 1877, 2 p. 234 – 262

(Wahl) 1874, 2 p. 231
 Kundt A. u. W. C. Röntgen,
 Nachweis der elektromagnetischen Drehung der Po-

larisationsebene des Lichtes im Schwefelkohlenstoffdampf 1878, 4 p. 546 – 549 u. 1879, 1 p. 30

Kundt A. u. W. C. Röntgen, Ueber die elektromagnetische Drehung der Polarisationsebene des Lichtes in Gasen 1879, 2 p.148—170

Kupfer, eine mikroskopische Reaction auf K. 1885, 4 p. 412—414

Kupfervitriollösung, Elektrolyse derselben 1875, 3 p. 278

Kupffer C., Ueber aktive Betheiligung des Dotters am Befruchtungsacte beim Bufo variabilis und vulgaris 1882, 4 p. 608—618

 Das Ei von Arvicola arvalis und die vermeintliche Umkehr der Keimblätter an demselben mit i Tafel 1882,
 p. 621—637

Ueber den Axencylinder
markhaltiger Nervenfasern
(mit 1 Tafel) 1883, 3 p. 466
-475

*— Ueber den Bau der markhaltigen Nervenfasern 1885, 2 p. 117

* — Beiträge zur Kenntniss der Nervenfasern. Von Theod. Boveri 1885, 3 p. 304

Primäre Metamerie des Neuralrohrs der Vertebraten
 1885, 4 p. 469-476

— (Wahl) 1881, 4 p. 469 u. 1882, 5 p. 619

Kupferstich- und Handzeichnungs-Cabinet in München, Aquarelle aus Indien und Hochasien 1880, 4 p. 516 —522

Kurz A., Ueber den Luftwiderstandb.kleinen Geschwindigkeiten 1881, 2 p.165—195

Ladung dielektrische 1884, 1 p. 14—38

*Länge des einfachen Sekundenpendels in Bogenhausen, Bestimmung derselben 1883, 3 p. 364

Lagen, gebogene, der Schichtgesteine 1880, 4 p. 596

Lakmusfarbstoff, Verhalten der Milch zu demselben 1873, 1 p. 1—9

v. Lamont Joh. (Nekrolog) 1880, 3 p. 263—265

Landwirthschaftlich wichtige Stoffe, quantitative Analyse derselben 1879, 3 p. 388

Lateral-Refraction 1872, 2 p. 147—162

Lava vom Chimborazo 1881, 3 p. 347—349

Lecco 1880, 4 p. 566

Le Conte John Lawrence (Ne-krolog) 1885, 2 p. 178 f.

Lehmann C., Ueber die Fettbildung im Thierkörper 1885, 2 p. 288—297

Lehmann Jul., Vorläufige Mittheilung über das Verhalten der Milch auf Thonplatten und über eine neue Methode der Casein- und Fettbestimmung in der Milch 1877, 2 p. 263—272

Leichtenstern O., Ueber das Volumen der unter verschiedenen Umständen ausgeathmeten Luft 1871, 2 p. 195—201

Leitung dielektrische 1884, 1

p. 14-38

Leitungen, Schlüssel für elektrische 1880, 4 p. 457—460 Leitungsfähigkeit elektrische, d.

absoluten Alkohols 1885, 2 p. 227—241

— der Mischung von Wasser und Alkohol 1885, 1 p. 93—108

— des kohlensauren Wassers 1884, 2 p. 293—324

Leitungsvermögen, elektrisches des Wassers und der Säuren 1875, 3 p. 284-305

— des Braunsteins und der Kohle 1876, 1 p. 26—29

-- der Kohle 1881, 1 p.10 --22

Lepaditen, über einige fossile aus dem lithographischen Schiefer und der oberen Kreide 1884, 4 p. 577—589

Leuchtgas Vergiftung damit 1883, 2 p. 247—255

Nekrolog 1878, 1 p. 102 f.

Libysche Wüste, Ozongehalt der Luft 1874, 2 p. 215—230 u. 1877, 1 p. 77—89

 Analyse des Schwefelwassers von Bir Keraui 1875, 1 p. 19—38

- Libysche Wüste, Kohlensäuregehalt der Luft 1874, 3 p. 339—351
- Licht, elektromagnetische Drehung der Polarisationsebene des Lichtes in Gasen 1879, 2 p. 148-170
- im Schwefelkohlenstoffdampf 1878, 4 p. 546 549 u. 1879, 1 p. 30
- Lichtbrechung, elliptische Doppelbrechung 1882, 1 p. 39
- Lichtenberg'sche Figuren 1880, 4 p. 624—634
- Lichtwirkung verschieden gefärbter Blätter 1872, 2 p. 133-137
- *v. Liebig, über die Bestimmung der Kohlensäure im Brunnenwasser und über die Seidenraupenkrankheit 1871, 2 p. 139
- Einleitende Worte gesprochen in der öffentl. Sitzung zur Feier des 114. Stiftungstages am 27. März 1873 1873, 2 p. 115-120
- *Linie, geodätische, deren Theorie 1883, 1 p. 51
- Linien im Schmelz und Cement der Zähne 1871, 3 p. 302

 —310
- Linienspectrum des Stickstoffs 1879, 2 p. 171—207
- Lithion 1878, 4 p. 552
- Lithionglimmer, dessen Vorkommen im Fichtelgebirge 1871, 2 p. 193 f.

- Lithionhaltige Mineralien, ihr Verhalten vor dem Spectroskop 1871, 1 p. 73—77
- Lösungsmittel, dessen Einfluss auf die Absorptionsspectra gelöster absorbirender Medien 1877, 2 p. 234—262
- Loew O., Versuche über die Fettbildung bei den niederen Pilzen 1879, 3 p. 287—316
- Lommel E., Theorie der Drehung der Polarisationsebene 1881, 4 p. 454—468
- Theorie der elliptischen
 Doppelbrechung 1882, 1
 p. 39—56
- Spectroskop mit phosphorescirendem Ocular; Beobachtungen über Phosphorescenz 1883, 3 p. 408-422
- *— Die Beugungserscheinungen einer kreisrunden Oeffnung und eines kreisrunden Schirmchens, theoretisch und experimentell bearbeitet 1884, 2 p. 254
- Beobachtungen über Fluorescenz 1884, 4 p.605—610 Lovén Sven Ludwig (Wahl)

1871, 2 p. 211

- Lucae Joh. Christian Gust. (Nekrolog) 1885, 2 p. 176 —178
- *Ludwig Ferdinand von Bayern, S. Kgl. Hoheit des Prinzen Werk "Zur Anatomie der Zunge, eine vergleichendanatomische Studie" 1884, 1 p. 4

Ludwig Ferdinand von Bayern, Kgl. Hoheit, Ueber Endorgane der sensiblen Nerven in der Zunge der Spechte. (mit 2 Tafeln) 1884, 1 p.183 —192

*Lüroth Jak., Ueber die kanonischen Perioden der Abel'schen Integrale 1884, 4 p. 604

- (Wahl) 1884, 4 p. 649

Luft der libyschen Wüste, ihr Ozongehalt 1874, 2 p. 215 —230 u. 1877, 1 p. 77 —89

 in der libyschen Wüste, ihr Kohlensäuregehalt 1874, 3
 p. 339—351

- im Boden (Grundluft) von München, Kohlensäuregehalt derselben 1871, 3 p. 275
 301
- in den Sielen von München, ihre Bewegung 1881, 2 p. 196—198
- Beschaffenheit der Waldluft 1885, 3 p. 299—304
- Sauerstoffgasgehalt der Waldluft 1885, 3 p. 325 f.
- Volumen der unter verschiedenen Umständen ausgeathmeten 1871, 2 p. 195
 201

Luftwechsel, natürlicher 1878, 4 p. 424—504

— Theorie des natürlichen L. 1880, 1 p. 33—88

Luftwiderstand bei kleinen Geschwindigkeiten 1881, 2 p. 165-195 Luganor-See 1880, 4 p. 542 Lugano 1880, 4 p. 569 Lyell Charles (Nekrolog) 1875, 1 p. 135—138

v. **M**ädler Joh. Heinr. (Nekrolog) 1874, 1 p. 91 f.

Magnesiaglimmer, Aetzfiguren 1875, 1 p. 99—105

Magnete, ihre Darstellung auf elektrolytischem Wege 1874, l p. 35—47

Magnus Heinr. Gust. (Nekrolog) 1871, 2 p. 148—151

Malzextrakt, sein Stickstoffgehalt 1875, 1 p. 71-81

Mangan, Scheidung und Bestimmung desselben 1879, 3 p. 333-370

Manganknollen, im stillen Ocean auf dem Meeresgrunde vorkommende 1878, 2 p. 189 - 209

Manganophosphate 1875, 1 p. 7

Manivasattel 1880, 2 p. 179

Marcelin 1871, 2 p. 164 Marmolit 1874, 2 p. 165 — 176

Marsh Othniel (Wahl) 1883, 3 p. 407

Materia medica des ältesten indischen Arztes Tscharaka 1883, 3 p. 364—371

Matthiessen Lud., Ueber die Form der unendlich dünnen astigmatischen Strahlenbündel und über die Kummerschen Modelle (mit 1 Taf.) 1883, 1 p. 35—51 v. Maurer Georg Lud., Staatsund Reichsrath (Nekrolog) 1873, 2 p. 115 f.

Maury Mathew Fontaine (Nekrolog) 1873, 2 p. 133 f. v.MayerJulius Robert (Nekrolog) 1878, 1 p. 112-114

Maximum, das doppelte in der Häufigkeit der Gewitter während der Sommermonate 1875, 2 p. 220—238

*Medusen fossile aus dem lithographischen Schiefer 1883, 3 p. 400

Meissner Carl Friedr. (Nekrolog) 1875, 1 p. 126—128

Mekonin 1878, 1 p. 8—13 Melam 1874, 1 p. 25—27

Membranen, structurlose, bei Wirbelthieren und Wirbellosen 1876, 2 p. 163—192

Mendel - und Schlerngebirge

1873, 1 p. 14—88 Mendeldolomit 1873, 1 p. 47 Menschenhand, Muskeln derselben 1880, 4 p. 485—496 Merian Peter (Nekrolog) 1884,

2 p. 230—233

Mesolithische Mineralkohlen 1883, 1 p. 156

Mesoklerometer, ein Instrument zur Bestimmung der mittleren Härte der Krystallflächen 1884, 2 p. 255—266

Messtisch, die Lage zweier Standorte desselben zu bestimmen 1871, 2 p. 157—161

Messung von Flüssigkeitswiderständen unter hohen Drucken 1884, 2 p. 293 – 324 Messungen elektrometrische und galvanometrische 1885, 2 p. 242—257

Normalelemente für elektrometrische M. 1884, 2 p. 207
216

Metall, Spannungsdifferenzen zwischen einem M. und Flüssigkeiten verschiedener Concentration 1882, 1 p.1 — 38

Metalle, Volumänderungen einiger beim Schmelzen 1881, 1 p. 63—112

Metamerie primäre des Neuralrohrs der Vertebraten 1885, 4 p. 469-476

Meteorit von Jowa N.-A. 1875, 3 p. 313—330

Meteorsteine in Bayern 1878, 1 p. 14—72

Methode, Flüssigkeitswiderstände unter hohen Drucken zu messen 1884, 2 p. 293

—324

Methylalkohol, Darstellung aus Holzgeist 1874, 2 p. 213 f. .

Methyläther, seine Darstellung 1874, 1 p. 33 f.

Mexico, Quecksilbererze 1875, 2 p. 202—205

Meyer Franz, Ueber die Reducibilität von Gleichungen, insbesondere derer vom fünften Grade, mit linearen Parametern 1885, 4 p. 415 — 451

Meyer Oskar Emil (Wahl) 1879, 4 p. 679

- Meyer Victor (Wahl) 1883, 3 p. 407
- Microcephalen, Hirne von neugeborenen und erwachsenen 1885, 2 p. 112—117
- Microcephalisches Mädchen, dessen Gehirn 1872, 2 p.163 —171
- Mikroskopisch-chemische Analyse 1883, 3 p. 436—448, 1885, 2 p. 206—226, 1885, 4 p. 403—414
- Reactionen 1884, 4 p. 590 -604
- Milch, Verhalten zum Lakmusfarbstoff 1873, 1 p. 1—9
- deren Verhalten auf Thonplatten 1877, 2 p. 263 — 272
- specifische Wärme und Volumenveränderung beim Abkühlen bis auf 0° 1874,
 p. 97—108
- Neue Methode der Caseinund Fettbestimmung in ihr 1877, 2 p. 263—272
- Miller A., Untersuchung über den Einfluss der Temperatur auf Aeusserungen von Molekularkräften. Mit 4 Tafeln 1882, 4 p. 377—462
- Ueber den Einfluss der durch Dilatation erzeugten Temperaturveränderung auf die Messung der ersteren mit I Tafel 1883, 1 p.17
 —34
- Ein Beitrag zur Kenntniss der Molekularkräfte. (m. 1 Taf.) 1885, 1 p. 9-92

- Miller William Hallows (Nekrolog) 1881, 4 p. 376—378
- Milzbrand, Versuche über dessen Entstehung durch Einathmung 1880, 3 p. 414—423
- Milzbrandcontagium, experimentelle Erzeugung desselben 1880, 3 p. 368—413 u. 1882, 2 p. 147—169
- Mineralien, Wesen der Härte derselben 1883, 3 p. 372 —400
- -- deren absolute Härte zu bestimmen 1883, 1 p. 55 -- 68
- lithionhaltige, ihr Verhalten vor dem Spectroskop 1871, 1 p. 73—77
- der Kryolithgruppe, chemische Zusammensetzung 1882, 1 p. 118—129
- mikroskopisch chemische
 Analyse 1883, 3 p. 436 –
 448, 1885, 2 p. 206 226
 1885, 4 p. 403 414
- Mikroskopische Reactionen
 auf dieselben 1884, 4 p. 590
 604
- Mineralkohlen, deren Texturverhältnisse 1883, 1 p. 111
 -216
- Minerallagerstätten des Dauphiné 1885, 4 p. 371—402
- Mineralogie, Einführung der modernen chemischen Formeln 1872, 3 p. 297—304
- Mineralogisch chemische Bemerkungen 1871, 2 p. 164 167

Miquel Friedr. Ant. Wilh., Nekrolog 1871, 2 p. 151—153 Mittelamericanische Andesite 1880, 2 p. 241—254 u.

1881, 3 p. 321—368

Modell Kummer'sches der unendlich dünnen astigmatischen Strahlenbündel 1883, 1 p. 35-51

Modulfunctionen elliptische, deren Theorie 1880, 1 p. 89

-100

v. Mohl Hugo (Nekrolog) 1873, 2 p. 124—126

Mohr Carl Friedr., Nekrolog 1880, 3 p. 266—268

Molekularkräfte, ein Beitrag zur Kenntniss derselben 1885, 1 p. 9—92

 Einfluss der Temperatur auf Aeusserungen von M. 1882,
 p. 377—462

Molekularrefraction flüssiger Verbindungen 1882, 1 p. 57 —104

Monohydroxybernsteinsäure 1877, 3 p. 323

Monohydroxypropionsäuren 1877, 3 p. 325—330

Monozit, eine neue Mineralspecies 1871, 2 p. 162 f. Monte Colombino 1880, 2 p. 186 Monte Somma, Wollastonit von dort 1871, 3 p. 228 —231

Monte Spizze 1879, 1 p. 64ff. Monte Venerocolo 1880, 2 p. 219

Montebrasit (Amblygonit) von Montebras 1872,1 p. 23—27 Montebrasit von Descloizeaux (Hebronit) 1872, 3 p. 284 —289

Monzonit v. Kobell's 1873, 1 p. 58

Moschellandsberg in der Pfalz, Quecksilberfahlerz von dort 1872, 1 p. 13—16

v. Müller Ferd. (Wahl) 1885, 3 p. 356

München, Kohlensäuregehalt der Luft im Boden (Grundluft) 1871, 3 p. 275—301 u. 1872, 3 p. 355—363

— Bewegung der Luft in den Sielen 1881, 2 p.196—198

 Typhusfrequenz und Grundwasserstand *1872, 1 p. 60
 u. 1872, 2 p. 107—123

— ethnographisches Museum 1880, 4 p. 497—516

Kupferstich- und Handzeichnungs - Cabinet 1880, 4p. 516—522

Murchison Roderick Impey Nekrolog 1872, 1 p. 96 —99

Muschelkalk, alpiner 1873, 1 p. 40 u. 1874, 2 p. 194 f.

Muschelkalkschichten bei Recoaro 1879, 1 p. 61—64

Musculus Extensor indicis proprius und Flexor pollicis longus 1880, 4 p. 485—496

Museum, ethnographisches, Sammlungsgegenstände aus Indien u. Hochasien 1880, 4 p. 497—516

- Naegeli C., Das gesellschaftliche Entstehen neuer Species 1872, 3 p. 305—344
- Verdrängung der Pflanzenformen durch ihre Mitbewerber 1874, 2 p. 109-164
- Ueber die chemische Zusammensetzung der Hefe 1878, 2 p. 161—188
- Ueber die Fettbildung bei den niederen Pilzen 1879, 3 p. 287—316
- Ueber die Bewegungen kleinster Körperchen 1879, 3 p. 389—453
- Ueber Wärmetönung bei Fermentwirkungen 1880, 2 p. 129—146
- Ernährung der niederen Pilze durch Kohlenstoff- und Stickstoffverbindungen 1880, 3 p. 277-367
- Ueber die experimentelle Erzeugung des Milzbrandcontagiums aus den Heupilzen von Dr. Hans Buchner 1880, 3 p. 368—413
- Versuche über die Entstehung des Milzbrandes durch Einathmung von Dr. Hans Buchner 1880, 3 p. 414
 423
- Ueber das Wachsthum der Stärkekörner durch Intussusception 1881, 4 p. 391
 —438
- Näherungs-Verfahren zur Ausgleichung der zufälligen Beobachtungsfehler in geome-

trischen Höhennetzen 1876, 3 p. 243—270

Nahrung s. Ernährung

Natracetessigester 1883, 1 p. 52

—54

Natriummalonsäureester 1884, 2 p. 217—225

Natron acrylsaures 1877, 3 p. 330—335

Natur, Entwickelung und System derselben, nach Gangādhara, dem Scholiasten des Tscharaka 1884, 2 p. 325—332

Naumann Karl Friedr. (Nekrolog) 1874, 1 p. 81—84

Nekrologe s. Döllinger, Kobell, Voit

Nelkenöl, dessen relative Constitution 1875, 1 p. 114 -122

Nephelingesteine 1872, 2 p. 203-208

Nephrit im Künlün - Gebirge 1873, 2 p. 227 – 267 u. 1874, 1 p. 63 – 68

Nerven, Endorgane d. sensiblen, in der Zunge der Spechte 1884, 1 p. 183—192

Nervenelemente, feinere Structur der N. bei den Gasteropoden 1872, 1 p. 3—8

- *Nervenfasern, Beiträge zur Kenntniss derselben 1885, 3 p. 304
- *— Bau der markhaltigen 1885, 2 p. 117
- Axencylinder markhaltiger 1883, 3 p. 466—475

Netzhaut, Fluorescenz der lebenden 1877, 2p. 226—233

Neuralrohr der Vertebraten, primäre Metamerie desselben 1885, 4 p. 469-476

Nicotinbestimmung 1881, 4 p. 439-453

Nies F., Ueber Volumänderungen einiger Metalle beim Schmelzen 1881, 1 p. 63 —112

Nöggerath Joh. Jak., Nekrolog 1878, 1 p. 105—108

Normalelemente für elektrometrische Messungen 1884, 2 p. 207—216

Normalformen unendlich viele des elliptischen Integral's erster Gattung 1880, 4 p. 533-541

Nürnberg, die ethnographischen Gegenstände der Schlagintweit'schen Sammlungen in der Burg daselbst 1877, 3 p. 336-380

Oberwern bei Schweinfurt Aragonit von dort 1872, 1 p. 9—13

Objectiv, von Ad. Steinheil construirtes 1872, 1 p. 76—88

Ocular, Spectroskop mit phosphorescirendem O. 1883, 3 p. 408—422

*Oeffnung, Beugungserscheinungen einer kreisrunden 1884, 2 p. 254

*Oertel Karl, Astronomische Bestimmung der Polhöhe auf den Punkten Irschenberg, Höhensteig und Kampenwand 1885, 1 p. 108

Ogata, Verhalten der schwefligen Säure zu Blut 1884, 1 p. 11—13

Ogliothal 1880, 2 p. 196

Ohm Martin (Nekrolog) 1873, 2 p. 132

v. Olfers Ignaz (Nekrolog) 1873, 2 p. 118 – 120

Olivin 1874, 2 p. 165—176 Omphalocarpum,dessen Zurückführung zu den Sapotaceen 1882, 3 p. 265—344

v. Oppolzer Theodor (Wahl) 1879, 4 p. 679

Optische Wellenfläche, deren Bestimmung aus einem ebenen Centralschnitte derselben 1883, 3 p. 423—435

Orang-Outan, Gehirn desselben 1876. 2 p. 193—205

*v. Orff Carl, Ueber die Bestimmung der Länge des einfachen Sekundenpendels in Bogenhausen 1883, 3 p. 364

Orthoklas, Zwillingsbildungen an demselben 1882, 5 p. 641—645

Oxalate, die mikroskopischen Krystallformen einiger 1885, 2 p. 213-224

Oxalsäure - Methylester, Darstellung aus Holzgeist 1874, 2 p. 213 f.

Oxydationsmittel, Wasser als O. 1876, 3 p. 292-296

Oxydverbindungen, deren specifisches Gewicht 1878, 1 p. 1-7

Ozon der Luft der libyschen Wüste 1874, 2 p. 215—230 u. 1877, 1 p. 77—89

Panama Isthmus 1881, 3 p. 355 Paramethoxyphenylglycolsäure und Paramethoxyphenylglycocoll 1877, 2 p. 273

Paramilchsäure 1877, 3 p. 325 Paramorphosen von Kalkspath nach Aragonit 1872, 1 p. 9 —13

Parlatore Filippo Nekrolog 1878, 1 p. 104 f.

Parthenogenesis der Arthropoden 1871, 3 p. 232 – 242 — der Artemia salina 1873,

2 p. 168—196

Partnachschichten 1874, 2 p. 196—198

Paterno am Aetna, Schlammvulkan 1879, 2 p. 217—273 Pechkohle tertiäre 1883, 1 p. 139 u. 148

Pechsteinporphyr in Südtirol 1876, 3 p. 271—291

*Periode, tägliche, barometrisch bestimmter Höhen 1883, 3 p. 355

*Perioden, die kanonischen der Abel'schen Integrale 1884, 4 p. 604

Perkin Henry William jun., Ueber Einwirkung von Trimethylenbromid auf Natracetessigester 1883, 1 p. 52 —54

Perledo-Fischschiefer 1880, 4 p. 555 Permeabilitaet des Bodens für Luft 1879, 2 p. 137—140 Perty Maximilian (Nekrolog) 1885, 2 p. 170—174

Peters Christ. Aug. Friedr. (Ne-krolog) 1881, 4 p. 374

Petrograph. Untersuchungen über die eocenen Thonschiefer der Glarner Alpen 1880, 4 p. 461–484

v. Pettenkofer Max, Ueber Bestimmung der Kohlensäure im Trinkwasser 1871, 2

p. 170 f.

- UeberKohlensäuregehalt der Luft im Boden (Grundluft) von München in verschiedenen Tiefen und zu verschiedenen Zeiten 1871, 3 p. 275—301 u. 1872, 3 p. 355—363
- Ueber Bewegung der Typhusfrequenz und des Grundwasserstandes in München *1872, 1 p. 60 und 1872, 2 p. 107—123
- Ueber ein Beispiel von rascher Verbreitung specifisch leichterer Gasschichten in darunter liegenden specifisch schwereren 1872, 3 p. 263 —268
- Ueber die Bedeutung der Kohlehydrate in der Nahrung 1873, 3 p. 273-281
- Ueber den Kohlensäuregehalt der Luft in der libyschen Wüste über und unter der Bodenoberfläche 1874, 3 p. 339—351

- v. Pettenkofer M., Ueber ein Reagens zur Unterscheidung der freien Kohlensäure im Trinkwasser von der an Basen gebundenen 1875, 1 p. 55—58
- Ueber G. Recknagel's Theorie des natürlichen Luftwechsels 1878, 4 p. 424
 —504
- Ueber die Permeabilität des Bodens für Luft 1879, 2 p. 137—140
- Ueber den Uebergang von Spaltpilzen in die Luft 1879, 2 p. 140-147
- Ueber den Nachweis und die Giftigkeit des Kohlenoxydes und sein Vorkommen in Wohnräumen von Max Gruber 1881, 2 p. 203—219
- Ueber Vergiftung mit Leuchtgas 1883, 2 p. 247—255
- Einwirkung der schwefligen Säure (SO₂) in der Athemluft auf den thierischen Organismus 1883, 3 p. 449 455
- Verhalten der schwefligen Säure zu Blut. Nach Versuchen von Dr. Ogata 1884, 1 p. 11—13
- Ueber Pneumoniekokken in der Zwischendeckenfüllung eines Gefängnisses als Ursache einer Pneumonie-Epidemie 1884, 2 p. 253 f.
- und v. Voit, Zur Frage der Ausscheidung gasförmigen

- Stickstoffs aus dem Thierkörper 1881, 3 p. 270—320 Pezzaze 1880, 2 p. 192 u. 196 Pfaff Fr., Beobachtungen über die Lateral-Refraction mit I Taf. 1872, 2 p. 147—162
- Zur Darstellung der Circularpolarisation durch Glimmerblättchen mit 1 Tafel 1876, 2 p. 211—215
- Versuche über das Verhalten des Wassers in engen Räumen bei Glühhitze 1877, 2 p. 216—225
- Petrographische Untersuchungen über die eocenen Thonschiefer der Glarner Alpen 1880, 4 p. 461—484
- Einiges über Kalksteine und Dolomite mit 2 Tafeln 1882,
 4 p. 551—594
- Versuche die absolute Härte der Mineralien zu bestimmen 1883, 1 p. 55—68
- Untersuchungen über die absolute Härte des Kalkspathes und Gypses und das Wesen der Härte m. 3 Taf. 1883, 3 p. 372—400
- Das Mesosklerometer, ein Instrument zur Bestimmung der mittleren Härte der Krystallflächen 1884, 2 p. 255-266
- Beobachtungen und Bemerkungen über Schichtenstörungen m. 2 Taf. 1884, 4
 549-576
- (Wahl) 1879, 4 p. 679

Pfeffer Wilh. (Wahl) 1880, 4 | p. 642

Pfeiffer Emanuel. Ueber die electrische Leitungsfähigkeit des kohlensauren Wassers und eine Methode, Flüssigkeitswiderstände unter hohen Drucken zu messen m. 2 Taf. 1884, 2 p. 293 – 324

 Ueber die electrische Leitungsfähigkeit der Mischung von Wasser und Alkohol 1885, 1 p. 93—108

 Ueber die electrische Leitungsfähigkeit des absoluten Alkohols 1885, 2 p. 227
 241

Pflanzenelectricität 1872, 2 p. 177—199

Pflanzenformen, Verdrängung durchihre Mitbewerber 1874, 2 p. 109-164

Pflanzenleben, Verhältniss der Camphergruppe zu ihm 1873, 2 p. 213 – 226

Pflanzenphysiologie 1882, 1 p. 114—117

Pflanzentheile, Verschiedenheit der Aschen einzelner 1880, 4 p. 523-528

Phenylmilchsäuren 1880, 2 p. 123—128

Phosphorescenz, Beobachtungen über 1883, 3 p. 408—422

Phosphorsaure Salze, verschiedene 1875, 1 p. 6-9

Phosphorvergiftung, Stoffumsatz bei derselben 1871, 1 p. 29-37 Phtalid (Phtaleldehyd) 1878, 1 p. 8—13

Phtalylmalonsäureester u. Phaloxyldimalonsäureester, die Produkte der Umsetzung zwischen Natriummalonsäureester u. Phtalylchlorür od. Phtalsäureanhydrid 1884, 2 p. 217—225

Physik der Atmosphäre 1880, 2 p. 107 – 122

Physiologie der Pflanzen 1882, 1 p. 114—117

Pichincha-Gestein 1881, 3 p. 349—351

Pictet François-Jules (Nekrolog) 1873, 2 p. 121—124

Pietra - verde und Monzonit v. Kobell's 1873, 1 p. 58

Pigmentfarben, ihre Vergleichung mit Spectralfarben 1876, 1 p. 30 – 34

Pilze niedere, Fettbildung bei denselben 1879, 3 p. 287 -316

— Ernährungschemisinus derselben 1880, 3 p. 277—367

Plattelkohle böhmische 1883, 1 p. 182

Plicatocrinus 1882, 1 p. 105 113

Pneumoniekokken in der Zwischendeckenfüllung eines Gefängnisses als Ursache einer Pneumonie-Epidemie 1884, 2 p. 253 f,

Poggendorff Joh. Chr., (Nekrolog) 1877, 1 p. 145-147

- Polarisation galvanische 1880, 4 p. 429—456 1881, 2 p. 161—164
- voltasche des Aluminiums 1875, 1 p. 87 – 98
- Darstellung der Circularpolarisation durch Glimmerblättchen 1876, 2 p. 211
 —215
- Polarisationsbilder an Zwillingen zweiaxiger Krystalle 1881, 2 p. 199–202
- Polarisationsebene, Theorie der Drehung derselben 1881, 4 p. 454—468
- des Lichtes, ihre Drehung in Gasen 1879, 2 p. 148
 —170
- des Lichtes, deren elektromagnetische Drehung im Schwefelkohlenstoffdampf 1878, 4 p. 546—549 u. 1879, 1 p. 30
- *Polhöhe, Astronomische Bestimmung derselben auf den PunktenIrschenberg,HöhensteigundKampenwand 1885, 1 p. 108
- Pollen, Fermente in ihm 1874, 2 p. 204-207
- Pollenbeschaffenheit bei den Acanthaceen 1883,2 p. 256 —314
- *Polyacetylenverbindungen 1885, 2 p. 117
- Porphyr- und Carbonschichten bei Botzen 1873, 1 p. 20 Pothenot'sche Aufgabe, eine mechanische Lösung derselben 1871, 2 p. 124 – 127

- Prähistorische Höhlenwohnung in der b. Oberpfalz 1872, 1 p. 28-60
- Pringsheim Nathan (Wahl) 1879, 4 p. 679
- Probabilitäten solcher Ereignisse, welche nur selten kommen, obgleich sie unbeschränkt oft möglich sind 1876, 1 p. 44-50
- *Proteus anguineus, dessen Rückenmark 1883, 1 p. 51 Pruner - Bey Franz (Nekrolog) 1883, 2 p. 244-246
- Pyrogallussäure, Einwirkung des aktiven Sauerstoffes auf dieselbe 1872, 1 p. 61—75
 Pyropissit 1883, 1 p. 146
- Quarz, dessen Pyroelektricität 1884, 1 p. 1—4
- *Quecksilbereinheit, eine Reproduktion derSiemens'schen 1884, 4 p. 638
- Quecksilbererze aus Mexiko 1875, 2 p. 202-205
- Quecksilberfahlerz, dessen Zersetzungsprodukte 1872, 1 p. 13—16
- Quetelet Lambert Ad. Jaques (Nekrolog) 1874, 1 p. 88 —91
- Quincke Georg Herm., Ueber die Cohäsion von Salzlösungen 1876, 1 p. 3—19 — (Wahl) 1873, 3 p. 353
- Radlkofer Lud., Ueber Sapindus und damit in Zusammenhang stehende Pflanzen 1878, 3 p. 221-408

Radlkofer Lud., Ueber Cupania u. damit verwandte Pflanzen 1879, 4 p. 457-678

 Ueber die Zurückführung von Omphalocarpum zu den Sapotaceen und dessen Stellung in dieser Familie 1882, 3 p. 265—344

 Ueber den systematischen Werth der Pollenbeschaffenheit bei den Acanthaceen 1883, 2 p. 256-314

- Ueber die Zurückführung von Forschhammeria Liebm.
 zur Familie der Capparideen 1884, 1 p. 58—100
- Ueber einige Capparis-Arten 1884, 1 p. 101-182
- Ueber einige Sapotaceen 1884. 3 p. 397—486
- Ueber eine von Grisebach unter den Sapotaceen aufgeführte Daphnoidee 1884, 3 p. 487—520
- Ueber Tetraplacus, eine neue Scrophularineengattung aus Brasilien 1885, 2 p. 258
 —275
- (Wahl) 1882, 5 p. 619
- Räuberhöhle am Schelmengraben in der bay. Oberpfalz 1872, 1 p. 28—60

Raibel in Kärnthen, Zinkerze 1878, 4 p. 552

Raibler Schichten 1873, 1 p. 76 u. 1874, 2 p. 200—203

Rammelsbergit 1871, 2 p. 202 -205

Ranke Joh., Untersuchungen über Pflanzenelectricität 1872, 2 p. 177—199

Rath G. vom, Ueber die chemische Constitution der Kalknatron-Feldspathe 1871, 2 p. 186-192

 Ein interessanter Wollastonit-Auswürfling vom Monte Somma 1871, 3 p. 228 – 231

Reaction mikroskopische 1884, 4 p. 590—604

- eine mikroskopische, auf Kupfer 1885, 4 p. 412—414

Reactionen chemische, Einfluss d. absoluten Alkohols auf dieselben 1872, 1 p. 17—22

Recknagel G., Theorie des natürlichen Luftwechsels I. 1878, 4 p. 424—460 II. 1878, 4 p. 461—504 III. 1880, 1 p. 33—88

Recoaro, Pflanzenreste-führende Sandsteinschichten bei R. 1879, 1 p. 33–85

 Krystallinische Schiefer bei R. 1879, 1 p. 50-57

Reducibilität von Gleichungen, insbes. derer vom fünften Grade, mit linearen Parametern 1885, 4p. 415 – 451

Reductionsmittel, Wasser als R. 1876, 3 p. 292—296

*Refraction, Ergebnisse aus Beobachtungen der terrestrischen 1883, 3 p. 355

- Beobachtungen über die Lateral-R. 1872, 2 p. 147 -162 v. Regel Ed. (Wahl) 1874, 2 p. 232

Regelflächen rationale 1885, 2 p. 276—287

Regnault Henri Victor (Nekrolog) 1878, 1 p. 108 f.

Reihen nach Kugelfunktionen und Reihen, welche nach Produkten oder Quadraten von Kugelfunktionen fortschreiten 1875, 3 p. 247 -272

Reihenentwickelung Taylorsche 1876, 3 p. 225—237

Relationen zwischen Klassenzahlen binärer quadratischer Formen von negativer Determinante 1880, 2 p. 147 -163

Reisen in Indien und Hochasien 1880, 1 p. 1-32

Renk Friedr., Ueber die Permeabilität des Bodens für Luft 1879, 2 p. 137 – 140 Richelot Friedr. Jul. (Nekrolog) 1876, 1 p. 125

v. Richthofen Freiherr (Wahl) 1881, 4 p. 469

Riess Peter Theophil (Nekro- \log) 1884, 2 p. 241-244

v. Ringseis Joh. Nep. (Nekrolog) 1881, 4 p. 369-372 Riva 1880, 2 p. 166

Römer Ferd. (Wahl) 1885, 3 p. 356

Röntgen W. C. u. A. Kundt, Nachweis der elektromagnet. Drehung der Polarisationsebene des Lichtes im Schwefelkohlenstoffdampf 1878,

4 p. 546—549 u. 1879, 1 p. 30

 — Ueber die elektromagnetische Drehung der Polarisationsebene des Lichtes in den Gasen 1879, 2 p. 148 -170

Rohon Viktor, Zur Histiogenese des Rückenmarkes der Forelle m. 2 Taf. 1884, 1 p. 39 - 57

Rosa, das Genus, in Hochasien 1874, 3 p. 323—338

Rosanilin 1876, 2 p. 145-162 u. 1878, 2 p. 210-214

Roscoe Henry E. (Wahl) 1882, 5 p. 620

Rose Gust. (Wahl) 1873, 3 p. 353; (Nekrolog) 1874, 1 p. 73—76

Rosenwasser und Rosenöl 1874, 3 p. 323-338

v. Rozsahegyi, Ueber die Bewegung der Luft in den Sielen von München 1881, 2 p. 196—198

Rubner Max, Ueber den Werth der Weizenkleie für die Ernährung des Menschen 1883, 1 p. 76—81

- Ueber die Vertretungswerthe von Eiweiss, Fett und Kohlehydraten im Thierkörper 1883, 3 p. 355

 Ueber calorimetrische Untersuchungen 1884. 2 p. 366 -378

— Ueber die Fettbildung im Thierkörper 1885, 2 p. 288 -297

Rubner Max, Beiträge zur Lehre vom Kraftwechsel 1885, 4 p. 452-461

Rückenmark der Forelle, dessen Histiogenese 1884, 1 p. 39 —57

*— vonProteus anguineus 1883, 1 p. 51

sog. freie Kerne in dessen
Substanz 1872, 2 p. 209
217

Rüdinger Nik., Ueber die Zunge von Spelerpes fuscus 1885, 2 p. 109 f.

- Ueber eine Drüse auf der Stirn- und Scheitelregion von Antilopen 1885, 2 p. 110 -112
- Ueber Hirne von neugegeborenen und erwachsenen Microcephalen 1885, 2 p. 112—117

— (Wahl) 1883, 3 p. 406

Sachs Julius (Wahl) 1874, 2 p. 232 u. 1880, 4 p. 641

Säure arsenige, Verbindung des Jods mit derselben; 1872, 3 p. 364—369; ihre Löslichkeit in Wasser 1873, 2 p. 159—167

— schweflige in der Athemluft, deren Einwirkung auf den thierischen Organismus 1883, 3 p. 449—455; ihr Verhalten zu Blut 1884, 1 p. 11—13

Säuren, ihr elektrisches Leitungsvermögen 1875, 3 p. 284 —305 Säuren, zwei isomere von der Zusammensetzung $C_6H_{10}O_2$ 1879, 1 p. 17 f.

Säurereaktion der Blüthen 1879. 1 p. 19—29

Salmiak-Ausscheidung im Harn 1876, 2 p. 131—137

Salze, jodschwefelsaure 1871, 2 p. 177—185

 kohlensaure, Bestimmung der Kohlensäure in ihnen 1875, 1 p. 10—18 u. 38

— verschiedene phosphorsaure 1875, 1 p. 6—9

schwerlösliche, deren mikroskopische Formen, 1884,
p. 590-604

Salzlösungen, ihre Cohäsion 1876, 1 p. 3--19

Salzwürfel, Bildung durchsichtiger, dem Steinsalze ähnlicher 1871, 1 p. 89—97

Samen, Einfluss der Keimung auf ihren Fettgehalt 1871, 2 p. 206-209

Sammlungsgegenstände aus Indien und Hochasien in das k. b. Ethnographische Museum aufgenommen 1880, 4 p. 497–516

St. Cassianer Schichten 1873, 1 p. 64

St. José in Brasilien, Bismuthit von dort 1871, 2 p. 167

Sandberger F., Ueber das Vorkommen des Lithionglimmers im Fichtelgebirg 1871, 2 p. 193 f.

- Sandberger F., Ueber den Weissnickelkies oder Rammelsbergit 1871, 2 p. 202 —205
- Ueber Paramorphosen von Kalkspath nach Aragonit von Oberwern bei Schweinfurt 1872, 1 p. 9-13
- Ueber die Zersetzungsprodukte des Quecksilberfahlerzes in Moschellandsberg in der Pfalz 1872, 1 p. 13 16
- Bemerkungen über Einschlüsse in vulkanischen Gesteinen 1872, 2 p. 172—176
- Vorläufige Bemerkungen über den Buchonit, eine Felsart aus der Gruppe der Nephelingesteine 1872, 2 p. 203-208
- Weitere Mittheilung über den Buchonit 1873, 1 p. 11
 —13
- Ueber Speiskobalt und Spathiopyrit von Bieber in Hessen 1873, 2 p. 135—140
- Ueber Dolerit. I. Die constituirenden Mineralien 1873 2 p. 140—154
- Ueber merkwürdige Quecksilbererze aus Mexiko 1875, 2 p. 202—205
- Ueber Heubachit, ein natürlich vorkommendes Kobaltnickeloxydhydrat 1876, 3
 p. 238-242
- Ueber das Vorkommen des Zinns in Silicaten 1878, 2
 p. 136—139

- Sandstein- und Conglomerat-Schichten, die unteren 1879, 1 p. 57-61 u. 73
- Sandsteinschichten, pflanzenführende, von Recoaro 1879, 1 p. 33—85
- Sapindus u. damit in Zusammenhang stehende Pflanzen 1878, 3 p. 221—408
- Sapotaceen-Familie 1882, 3 p. 265 u. 1884, 3 p. 397 —486
- Sauerstoff, Einwirkung auf Pyrogallussäure 1872, 1 p. 61

 —75
- Sauerstoffgasgehalt der Waldluft 1885, 3 p. 325 f.
- Saussurit im Künlün-Gebirge 1873, 2 p. 227—267
- Scheerer Carl Joh. Aug. (Nekrolog) 1876, 1 p. 113—116
- Scheidung der Schwermetalle der Schwefelammoniumgruppe 1879,3 p. 317—332
- des Zink von den übrigen Metallen der Schwefelammoniumgruppe 1879, 3
 p. 319-325
- des Eisens von Nickel u. Kobalt 1879, 3 p. 325—328;
 von Uran ibid. p. 328
 —331
- Scheidung und Bestimmung des Mangans 1879, 3 p. 333 370
- Schelmengraben in der Oberpfalz 1872, 1 p. 28-60
- Schiaparelli J. V. (Wahl) 1873, 3 p. 353

Schichtenstörungen 1884, 4 p. 549—576

Schichtgesteine in gebogenen Lagen 1880, 4 p. 596

- Schiefer, Beziehungen des Ulmer Cementmergels zum lithographischen 1871, 1 p. 38 —72
- einige fossile Lepaditen aus dem lithographischen 1884,
 p. 577 – 589; *fossile Medusen aus demselben 1883,
 p. 400
- lithographischer von Solenhofen, Fund eines Skeletes von Archaeopteryx, 1877, 2 p. 155 f.
- -- Krystallinische, bei Recoaro 1879, 1 p. 50-57
- Schimper Phil. Wilh. (Nekrolog) 1881, 4 p. 375 f.
- *Schirmchen kreisrundes, Beugungserscheinungen desselben 1884, 2 p. 254
- v. Schlagintweit Adolph, dessen Bild 1879, 1 p. 31 f.
- v. Schlagintweit Sakünlünski Herm., Die Wasseruhr und die Klangscheibe in Indien m. 1 Taf. 1871, 2 p. 128 —138
- Die Karte des westlichen Hochasien 1872, 3 p. 290 —296
- Ueber Nephrit nebst Jadeït und Saussurit im Künlün-Gebirge 1873, 2 p. 227 —267
- Mikrostructur der Künlün-Nephrite und verwandter

- Gesteine (nach Hofrath Fischer's Untersuchungen 1874, 1 p. 63-68
- v. Schlagintweit Sakünlünski Herm., Ueber das Genus Rosa in Hochasien und über Rosenwasser und Rosenöl 1874, 3 p. 323—338
- Ueber ein Geschenk Dr.
 Armin Wittsteins nebst Angaben zur Charakteristik der Kru-Neger mit 1 Taf. 1875,
 p. 178—201
- Ueber Ch. Grad's Température des mers de France 1876, 3 p. 297
- Bericht über die ethnographischen Gegenstände unserer Sammlungen und über die Raumanweisung in der k. Burg zu Nürnberg. Mit 1 Kartenskizze 1877, 3 p. 336—380
- Die neuen Compositen des Herbarium Schlagintweit und ihre Verbreitung nach Bearbeitung der Familie von F. W. Klatt 1878, 1 p. 73—98
- Ueber das Auftreten von Bor-Verbindungen in Tibet 1878, 4 p. 505—538
- gibt ein Bild seines Bruders Adolph ab 1879, 1 p. 31 f.
- überreicht den IV. Band
 "der Reisen in Indien und
 Hochasien" |1880, 1 p. 1
 32
- Ueber die Aufnahme neuen Beitrages von Sammlungsgegenständen aus Indien

- und Hochasien in das k. b. ethnographische Museum 1880, 4 p. 497—516
- v. Schlagintweit Sakünlünski, Ueber erstes Einreihen von 12 Aquarellen in das k. Kupferstich- und Handzeichnungs - Cabinet 1880, 4 p. 516—522
- Ueber die Compositae des Herbarium Schlaginweit aus Hochasien und südlichen indischen Gebieten 1881, 1 p. 57—62
- (Wahl) 1881, 4 p. 469; (Nekrolog) 1882, 3 p. 259 —261
- Schlammvulkane, ihr Eruptionsmaterial 1879, 2 p. 217 —273
- Schleiden Mathias Jakob (Nekrolog) 1882, 3 p. 261
- Schlerndolomit 1873, 1 p. 71 Schlerngebirge 1873, 1 p. 14 —88
- Schlüssel für elektrische Leitungen 1880, 4 p. 457—460
- Schmelzen, Volumänderungen einiger Metalle dabei 1881, 1 p. 63—112
- Schneewasser, dessen Ammoniakgehalt 1872, 2 p. 124
- Schroeder H., Das Sterengesetz 1877, 3 p. 302—322
- Ueber eine Reihe von Thatsachen, die Ausdehnung von Flüssigkeiten durch die Wärme betreffend 1881, 1 p. 23-56

- Schroeder H., Untersuchungen über die Abhängigkeit d. Molecularrefraction flüssiger Verbindungen von ihrer chemischen Zusammensetzung 1882, 1 p. 57—104
- Schröter H. in Breslau, Ueber eine Eigenschaft des geradlinigen Hyperboloids 1881, 2 p. 238—241
- Schrötter Anton, Ritter von Kristelli (Nekrolog) 1876, 1 p. 118 f.
- Schultze Max (Wahl) 1871, 2 p. 211; (Nekrolog) 1874, 1 p. 87 f.
- Schwankungen, gesetzmässige in der Häufigkeit der Gewitter 1874, 3 p. 284—322
- Schwann Theodor (Nekrolog) 1882, 3 p. 262
- Schwefelammoniumgruppe 1879 3 p. 317—332
- Schwefelkohlenstoffdampf, elektromagnetische Drehung der Polarisationsebene des Lichtes in demselben 1878, 4 p. 546—549 u. 1879, 1 p. 30
- Schwefelsäure, Electrolyse derselben 1875, 3 p. 273
- als Verbrennungsprodukt des Steinkohlenleuchtgases 1871, 2 p. 118—123
- Anwendung der concentrirten in der mikroskopischen
 Analyse 1885, 4 p. 403
 412

- Schwefelwasser von Bir Keraui in der Libyschen Wüste 1875, 1 p. 19—38
- Schwefelwismuth vor dem Löthrohr 1871, 2 p. 167
- Schweflige Säure, ihr Verhalten zu Blut 1884, 1 p. 11—13
- in der Athemluft, deren Einwirkung auf den thierischen Organismus 1883, 3 p. 449
 455
- Schweinfurth Georg (Wahl) 1882, 5 p. 620
- Schwendener Simon (Wahl) 1880, 4 p. 642
- Schwerd Fried. Magnus, Nekrolog 1872, 1 p. 93 f.
- Schwermetalle der Schwefelammoniumgruppe, ihre Scheidung 1879, 3 p. 317 —332
- Scrophularineengattung, eine neue, aus Brasilien 1885, 2 p. 258-275
- Secchi Angelo, Nekrolog 1878, 1 p. 110
- *Secundenpendel, Bestimmung der Länge des einfachen S. in Bogenhausen 1883, 3 p. 364
- Seeliger Hugo, Ueber die Gestalt des Planeten Uranus 1884, 2 p. 267—279
- Die Vertheilung der Sterne auf der nördlichen Halbkugel nach der Bonner Durchmusterung 1884, 4
 p. 521—548
- (Wahl) 1883, 3 p. 406

- Seethiere, über eine reichhaltige Sendung nordischer 1871, 3 p. 301
- Seidel Lud., Ueber ein von Dr. Adolph Steinheil neuerlich construirtes Objectiv, und über die dabei benützten Rechnungsvorschriften 1872, 1 p. 76—88
- Ueber einen heliographischen
 Apparat 1873, 2 p. 207
 209
- Ueber die Probabilitäten solcher Ereignisse, welche nur selten vorkommen, obgleich sie unbeschränkt oft möglich sind 1876, 1 p.44 50
- Ueber eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen 1877,
 p. 157-187
- Ein allgemeiner Satz über die Integrirbarkeit von Functionen integrirbarer Functionen von P. du Bois-Reymond in Tübingen 1882, 2 p. 240—242
- *— Ueber das Wahrscheinlichkeitsgesetz der Fehler bei Beobachtungen 1884, 2 p. 194

*Seidenraupenkrankheit 1871, 2 p. 139

Selbstentzündung des Heues 1873, 2 p. 197-207

Senfölessig-Säure 1874,1p.1—5 Sharpey William (Nekrolog) 1881, 4 p. 373

- Sickerwasser 1881, 3 p. 259 -269
- v. Siebold C., Ueber Parthenogenesis der Arthropoden 1871, 3 p. 232—242
- über eine reichhaltige Sendung nordischer Seethiere 1871, 3 p. 301

— Ueber Parthenogenesis der Artemia salina 1873, 2 p. 168—196

— Ueber das Anpassungs-Vermögen der mit Lungen athmenden Süsswasser-Mollusken 1875, 1 p. 39—54

Siele von München, Bewegung der Luft in ihnen 1881, 2 p. 196-198

*Siemens'sche Quecksilbereinheit, deren Reproduction 1884, 4 p. 638

Silber, Neue Methode der massanalytischen Bestimmung desselben 1874, 1 p. 54—62

- Elektrolyse des salpetersauren 1875, 3 p. 283

Silicate, Vorkommen von Zinn in denselben 1878, 2 p. 136 —139

 das specifische Gewicht geglühter 1878, 1 p. 1—7

Simanowsky Nic., Ueber den Einfluss künstlich erhöhter Körpertemperatur auf die Eiweisszersetzung 1884, 2 p. 226—229

Sitzung, öffentliche, zur Feier des Stiftungstages der k. Akademie am 28. März 1871, 2 p. 140 1872, 1 p. 89 1873, 2 p. 115 1874, 1 p. 69 1875, 1 p. 123 1876, 1 p. 113 1877, 1 p. 140 1878, 1 p. 99 1879, 2 p. 129 1880, 3 p. 263 1881, 4 p. 369 1882, 3 p. 259 1883, 2 p. 217 1884, 2 p. 230

Sitzung, öffentliche, zur Vorfeier des Geburts- und Namensfestes S. M. des Königs Ludwig II. im Juli 1871, 2 p. 210 1874, 2 p. 231 1878, 4 p. 413 1879, 4 p. 679 1880, 4 p. 641 1881, 4 p. 469 1882, 5 p. 619 1883, 3 p. 406 1884, 4 p. 649 1885, 3 p. 356

Smith Robert Angus (Nekrolog) 1885, 2 p. 167—170

Solbrig August, Ueber die feinere Structur der Nervenelemente bei den Gasteropoden 1872, 1 p. 3—8

Solenhofen, Fund eines Skeletes von Archaeopteryx im lithographischen Schiefer 1877, 2 p. 155 f.

Soyka Isidor, Ueber den Uebergang von Spaltpilzen in die Luft 1879, 2 p.140—147

Spannkräfte des gesättigten Wasserdampfes 1879, 3 p. 371—380

Spannungsdifferenzen zwischen sich berührenden Flüssigkeiten 1881, 1 p. 113 — 138

Spannungsdifferenzen zwischen einem Metall und Flüssigkeiten verschiedener Concentration 1882, 1 p.1—38

Spathiopyrit von Bieber in Hessen 1873, 2 p. 135 -140

Spechte, Endorgane der sensiblen Nerven in der Zunge der S. 1884, 1 p. 183—192

Species, Das gesellschaftliche Entstehen neuer 1872, 3 p. 305—344

Spectralfarben, Vergleichung v. Pigmentfarben mit denselben 1876, 1 p. 30—34

Spectroskop mit phosphorescirendem Ocular 1883, 3 p. 408--422

Spectroskopische Untersuchungen der Lithionhaltigen Mineralien 1871, 1 p. 73 —77

Speiskobalt von Bieber in Hessen 1873, 2 p. 135—140

Spelerpes fuscus, dessen Zunge 1885, 2 p. 109 f.

Sphalerit von Geroldseck 1871, 1 p. 73—77

Spirgatis H., Ueber ein fossiles, vielleicht der Bernsteinflora angehöriges Harz 1871, 2 p. 172—176

 Ueber die Identität des sogenannten unreifen Bernsteins mit dem Krantzit 1872, 2 p. 200—202

Spring Jos. Ant. (Nekrolog) 1872, 1 p. 100 f.

Stab, Biegung und Drillung eines unendlich dünnen elastischen Stabes 1883, 1 p. 82—110

Stärkekörner, deren Wachsthum durch Intussusception 1881, 4 p. 391

Starnberger-See, altgermanische Gräber in seiner Umgebung 1873, 3 p. 295—344

Stefan Josef (Wahl) 1878, 4 p. 414

v. Stein Friedrich (Nekrolog) 1885, 2 p. 175 f.

Steinheil Adolph, über ein von ihm neuerlich construirtes Objectiv 1872, 1 p. 76—88

v. Steinheil Karl Aug. (Nekrolog) 1871, 2 p. 141—144

Steinkohlenleuchtgas, Schwefelsäure als Verbrennungsproduct desselben 1871, 2 p. 118—123

Steinmeteoritenin Bayern 1878, 1 p. 14—72

Steinmeteoritenfall am 12. Febr. 1875 in Jowa N.-A. 1875, 3 p. 313-330

Sterengesetz, das 1877, 3 p. 302—322

Stern Moriz (Wahl) 1880, 4 p. 641

Sterne, deren Vertheilung auf der nördlichen Halbkugel 1884, 4 p. 521-548

Stickstoff, Ausscheidung des gasförmigen aus dem Thierkörper 1881, 3 p. 270 —320

Stickstoff, Ueberführung des Bandenspectrums in ein Linienspectrum 1879, 2 p. 171—207

Stirnwindung untere oder dritte, der Affen 1877, 1 p. 96 —139

Stoffumsatz bei der Phosphorvergiftung 1871, 1 p. 29

—37

Strahlen, Ausdehnung der Dispersionstheorie auf die ultrarothen 1884, 2 p. 245—252

Strahlenbündel, Ueber die Form der unendlich dünnen astigmatischen 1883, 1 p. 35 —51

Strecker Adolph (Nekrolog) 1872, 1 p. 99 f.

*Strecker K., Ueber eine Reproduction der Siemens'schen Quecksilbereinheit 1884, 4 p. 638

Strömung, Theorie der stationären 1877, 2 p. 188 – 215

Strömungsfiguren in Flüssigkeiten 1884, 4 p. 611–638

Strom- und Kraftlinien, deren Brechung an der Grenze verschiedener Mittel 1883, 3 p. 456-465

Struve H., Ueber die Einwirkung des activen Sauerstoffs auf Pyrogallussäure 1872, 1 p. 61-75

Studer Bernhard (Wahl) 1874, 2 p. 231

Südamerikanische Andesite 1880, 2 p. 241—254 u. 1881, 3 p. 321—368 *Süddeutschland, Gang der Temperatur 1883, 1 p. 75

Südindien, Herbarium Schlagintweit 1881, 1 p. 57—62

Südtirol, Pechsteinporphyr 1876, 3 p. 271—291

Suess Eduard (Wahl) 1880, 4 p. 642

Süsswasser-Mollusken, Anpassungs - Vermögen der mit Lungen athmenden 1875, 1 p. 39—54

Sulfoharnstoff, einige Derivate desselben 1874, 1 p. 1—27

Tabakverbrennungsprodukte 1881, 4 p. 439—453

Tasmanit 1883, 1 p. 181 Taurin 1874, 1 p. 28

Taylor'sche Reihenentwickelung 1876, 3 p. 225—237

Temperatur, Einfluss auf die Electrolyse 1875, 3 p. 273 —283

 Einfluss auf Aeusserungen von Molekularkräften 1882, 4 p. 377—462

Druck und Dichtigkeit in verschiedenen Höhen der Atmosphäre 1880, 2 p. 107
 —122

*— ihr Gang in Süddeutschland 1883, 1 p. 75

*Temperaturtagesmittel, Bestimmung desselben 1883, 1 p. 75

Temperaturveränderung, Einfluss der durch Dilatation erzeugten auf die Messung der Dilatation 1883, 1 p. 17—34

*Terrestrische Refraktion 1883, 3 p. 355

Tetraplacus, eine neue Scrophularineengattung aus Brasilien 1885, 2 p. 258—275

Texturverhältnisse der Mineralkohlen 1883, 1 p.111—216

Thallium 1878, 4 p. 552

 Auffinden desselben im Sphalerit von Geroldseck im Breisgau 1871, 1 p. 73
 77

Theobromin 1882, 2 p. 247 —251

Theorem Abel'sches 1885, 4 p. 462-468

Thermosäulen, elektromotorische Kraft u. innerer Widerstand einiger 1877, 3 p. 292

—301

Thierkörper, Zersetzungen in dems. 1875, 2 p. 206—219 u. 1882, 1 p. 130—137

Thomson William (Wahl) 1880, 4 p. 641

Thonschiefer eocene der Glarner Alpen 1880, 4 p. 461—484

Tibet 1872, 3 p. 290—296

Borverbindungen daselbst
1878, 4 p. 505—538

Titaneisen (Ilmenit) 1873, 2 p. 146

Tódaro Agostino (Wahl) 1884, 4 p. 649

4 p. 649 Torf- und torfähnliche kohlige

Substanzen 1883, 1 p. 125 Transfusion von Blut und Eiweisslösungen, Ueber die Eiweisszersetzung im Thierkörper bei derselben 1875, 2 p. 206 – 219

Trient, Umgegend von, geognostisch betrachtet 1876, 1 p. 51 ff.

Trimethylenbromid, dessen Einwirkung auf Natracetessigester 1883, 1 p. 52—54

Trimethylenverbindungen, deren relative Constitution 1875, 1 p. 1—6

Trinkwasser, Kohlensäurebestimmung 1871, 2 p. 170 f.

 Unterscheidung der freien Kohlensäure von der an Basen gebundenen in ihm 1875, 1 p. 55—58

Tripel von Geraden, welche aufeinem Hyperboloidliegen 1881, 2 p. 241—248

Trockenelemente galvanische 1885, 2 p. 242—257

Tscharaka ältester indischer Arzt, dessen Materia medica 1883, 3 p. 364—371

Tschermakit, eine neue Mineralspecies aus der Gruppe der Feldspäthe 1873, 3 p. 345

—347

Typhusfrequenz in München in ihrer Beziehung mit dem Grundwasserstande *1872, 1 p. 60 u. 1872, 2 p. 107 —123

Tyrosin, künstliches 1882, 4 p. 606—608

Ulmer Cementmergel 1871, 1 p. 38—72 Untersuchungen calorimetrische 1884, 2 p. 366—378

Uranoxyd, Fällung desselben mittelst Ammoniak 1879, 3 p. 331 f.

Uranus Gestalt des Planeten 1884, 2 p. 267—279

Uruguay, Chalcedonmandeln (Enhydros) von U. 1880, 2 p. 241—254 u. 1881, 3 p. 321—368

Val Ampola 1880, 2 p. 166 Val Sassina 1880, 4 p. 545 Val di Scalve 1880, 2 p. 201 Val Seriana 1880, 2 p. 219 Val Serimando 1880, 2 p. 186 Val Trompia 1880, 2 p. 192 Valle del Gleno 1880, 2 p. 219 Valle di Freg 1880, 2 p. 170 Vanecek J. S., Von der allgemeinen Inversion 1882, 4 p. 463—466

Varenna, schwarzer Kalk von 1880, 4 p. 555

Variationen, locale, der erdmagnetischen Horizontal-Intensität 1883, 1 p. 1—16

Vegetationsdecken, Wasserverdunstung von verschiedenen 1878, 4 p. 539-545

Ventilationscanäle 1880, 1 p.85 —88

Ventile elektrische 1880, 4 p. 624—634

Verbindungen, Molecularrefraction flüssiger 1882, 1 p. 57 -104

Vergiftung mit Leuchtgas 1883, 2 p. 247—255 Vertebraten, Primäre Metamerie des Neuralrohrs derselben 1885, 4 p. 469—476

Vertheilung der Sterne auf der nördlichen Halbkugel nach der Bonner Durchmusterung 1884, 4 p. 521—548

Vertretungswerthe von Eiweiss, Fett und Kohlehydraten im Thierkörper 1883, 3 p. 355 —363

v. Vierordt Carl (Wahl) 1882, 5 p. 620; (Nekrolog) 1885, 2 p. 180—185

Vogel Aug., Ueber den Fettgehalt der Bierhefe 1871, 2 p. 109—118

 Schwefelsäure als Verbrennungsprodukt des Steinkohlenleuchtgases 1871, 2 p. 118
 —123

 Ueber den Einfluss der Keimung auf den Fettgehalt der Samen 1871, 2 p.206
 —209

— Ueber den Einfluss absoluten Alkohols auf einige chemische Reactionen 1872, 1 p. 17—22

 Ueber den Ammoniakgehalt des Schneewassers 1872, 2
 p. 124-133

 Ueber die Lichtwirkung verschieden gefärbter Blätter 1872, 2 p. 133—137

— Ueber die spontane Zersetzung einer Bleilegirung 1872, 2 p. 218 – 222

- Vogel Aug., Ueber das Verhalten d. Milch zum Lakmusfarbstoff 1873, 1 p. 1—9
- Ueber die 4. Auflage seiner "Praktischen Uebungsbeispiele in der quantitativ chemischen Analyse". Erfurt 1873 1873, 1 p. 9 f.
- Ueber das Verhältniss der Camphengruppe zum Pflanzenleben 1873, 2 p. 213 —226
- Ueber den Stickstoffgehalt des Malzextraktes 1875, 1 p. 71—81
- Ueber den Wassergehalt des Eiweisses 1877, 3 p. 285
 291
- Ueber Wasserverdunstung von verschiedenen Vegetationsdecken 1878, 4 p. 539
 —545
- Ueber Säurereaktion der Blüthen 1879, 1 p. 19—29
- Ueber Absorptionsfähigkeit der Humussubstanzen 1879, 2 p. 208 – 216
- Ueber die Verschiedenheit der Aschen einzelner Pflanzentheile 1880, 4 p. 523 —528
- Ueber Natur und Ursprung des Gletscherschlammes vom Dachsteine am Hallstädter-See 1880, 4 p. 529—532
- Ueber Jodkaliumamylonnitrit 1881, 1 p. 1-6
- Ueber die Zusammensetzung des Zinnoxalates 1881, 1 p. 7—9

- Vogel Aug., Beitrag zur Kenntniss des Copal's 1881, 2 p. 145—160
- Ueber Sickerwasser 1881, 3 p. 259—269
- Ueber Nicotinbestimmung und Tabakverbrennungsprodukte 1881, 4 p. 439—453
- Ueber Prof. Dr. E. Ebermayer's Physiologie der Pflanzen 1882, 1 p. 114
 —117
- Ueber Ameisensäure 1882,3 p. 345—355
- Zur Bodenanalyse 1882, 4
 p. 595-605
- Ueber die Chininreaktion mit Ferrocyankalium 1883,
 p. 69-75
- Ueber die Zersetzbarkeit des Jodkalium 1884, 1 p. 5
 10
- Ueber Cyannachweis 1884, 2 p. 286—292
- Zur Chininprüfung 1885, 1 p. 1—8
- Die Beschaffenheit der Waldluft. Von Ernst Ebermayer 1885, 3 p. 299—304
- Ueber den Sauerstoffgasgehalt der Waldluft 1885,
 3 p. 325 f.
- Vogel Aug. und Dr. Wein, Anleitung zur quantitativen Analyse landwirthschaftlich wichtiger Stoffe 1879, 3 p. 388
- v. Voit Karl, Ueber den Stoffumsatz bei der Phosphorvergiftung 1871, 1 p. 29—37

v. Voit Karl, Ueber die Verwerthung gewisser Aschebestandtheile im Thierkörper 1871, 1 p. 78—88

— Ueber das Volumen der unter verschiedenen Umständen ausgeathmeten Luft 1871, 2 p. 195—201

-- über die Grösse der Eiweisszersetzung nach Blutentziehungen 1871, 3 p. 254 f.

— Ueber die Bedeutung der Kohlehydrate in der Nahrung. Nach Untersuchungen von M. v. Pettenkofer und C.Voit 1873, 3 p. 273—281

— über die Ausscheidung des Salmiaks im Harn nach einer Untersuchung von Lud. Feder 1876, 2 p. 131—137

— Ueber die Abstammung des Glykogens im Thierkörper nach einer Untersuchung von J. Forster 1876, 2 p. 138—144

— Ueber den zeitlichen Verlauf der Zersetzungen im Thierkörper. Von Ludwig Feder 1882, 1 p. 130—137

 UeberdenWerthderWeizenkleie für die Ernährung des Menschen. Nach Versuchen von Max Rubner 1883, 1 p. 76-81

 Ueber die Vertretungswerthe von Eiweiss, Fett und Kohlehydraten im Thierkörper, nach Versuchen von Max Rubner 1883, 3 p. 355
 — 363 v. Voit Karl, Ueber die Bedeutung des Asparagins als Nahrungsstoff 1883, 3 p.401 – 405

— Ueber den Einfluss k\u00fcnstlich erh\u00f6hter K\u00fcrpertemperatur auf die Eiweisszersetzung 1884, 2 p. 226—229

— Ueber die Fettbildung im Thierkörper 1885, 2 p. 288 —297

von ihm als Sekretär der mathem.-phys. Classe gesprochene Nekrologe 1883, 2 p. 217—246 1884, 2 p. 230—244 1885, 2 p.118—205

v. Voit und v. Pettenkofer, Zur Frage der Ausscheidung gasförmigen Stickstoffs aus dem Thierkörper 1881, 3 p. 270 —320

Voit Erwin, Ueber die Fettbildung im Thierkörper 1885, 2 p. 288—297

Volhard J., Ueber einige Derivate des Sulfoharnstoffs 1874, 1 p. 1—27

Ueber eine neue Methode der massanalytischen Bestimmung des Silbers 1874, 1 p. 54—62

 Zur Bestimmung der Kohlensäure in kohlensauren Salzen 1875, 1 p. 10—18 u. 38

 Analyse des Schwefelwassers von Bir Keraui in der Libyschen Wüste 1875, 1 p. 19-38 Volhard J., Zur Scheidung und Bestimmung des Mangans 1879, 3 p. 333—370

(Wahl) 1871, 2 p. 210
 Volkmann Alfred Wilhelm, Nekrolog 1878, 1 p. 103 f.

Volumänderungen einiger Metalle beim Schmelzen 1881, 1 p. 63—112

Volumen der unter verschiedenen Umständen ausgeathmeten Luft 1871, 2 p.195

—201

Vulkane, mittelamerikanische 1881, 3 p. 352—358

Vulcanische Gesteine, Einschlüsse darin 1872, 2 p.172

—176

Wärme, Ausdehnung von Flüssigkeiten durch sie 1881, 1 p. 23—56

Wärmebildung, Einfluss abundanter Kost auf sie 1885, 4 p. 452-457

Wärmeleitungsvermögen der Flüssigkeiten 1879, 1 p.86 – 115

Wärme-Regulation, über physikalische und chemische 1885, 4 p. 457 – 461

Wärmetönung bei Fermentwirkungen 1880, 2 p. 129 —146

Wagnerit 1873, 2 p. 155—158 *Wahrscheinlichkeitsgesetz der Fehler bei Beobachtungen 1884, 2 p. 194

Waldluft, Beschaffenheit 1885, 3 p. 299-304

Waldluft, Sauerstoffgasgehalt 1885, 3 p. 325 f.

Wasser, elektrisches Leitungsvermögen 1875, 3 p. 284 — 305

Verhalten in engen Räumen bei Glühhitze 1877, 2 p.216
225

als Oxydations- und Reductionsmittel 1876,3 p. 292
296

 Erzeugung eines elektrischen Stromes durch strömendes W. 1872, 2 p. 138—142

kohlensaures, dessen elektrische Leitungsfähigkeit 1884,
 p. 293—324

Wasser und Alkohol, elektrische Leitungsfähigkeitihrer Mischung 1885, 1 p. 93-108

ung 1885, 1 p. 93-108 Wasserdampf, Spannkräfte des gesättigten W. 1879, 3 p. 371 -380

Wassersteine (Enhydros) von Uruguay 1880, 2 p. 241 -254 u. 1881, 3 p. 321 -368

Wasseruhr in Indien 1871, 2 p. 128—138

Wasserverdunstung von verschiedenen Vegetationsdecken 1878, 4 p. 539 — 545

Weber Ernst Heinr., Nekrolog 1878, 1 p. 111 f.

Weber Maurus Ign. (Nekrolog) 1876, 1 p. 123

Weber Mich., Ueber die sogenannten freien Kerne in der Substanz des Rückenmarkes 1872, 2 p. 209-217 Dr. Wein, Anleitung zur quantitativen Analyse landwirthschaftlich wichtiger Stoffe 1879, 3 p. 388

Weismann Aug. (Wahl) 1884, 4 p. 649

Weissnickelkies 1871, 2 p. 202 -205

Weizenkleie, deren Werth für die Ernährung des Menschen 1883, 1 p. 76—81

Wellenfläche, Bestimmung der optischen aus einem ebenen Centralschnitte derselben 1883, 3 p. 423—435

Wengener-Schichten 1873, 1 p. 54

Wettersteinkalkstufe 1874, 2 p. 198—200

Wheatstone Charles (Nekrolog) 1876, 1 p. 117 f.

Wickensamen, diastatisches und peptonbildendes Ferment in ihm 1874, 3 p. 241-244

Widerstand absoluter einer Kette, die einen Erdinductor und ein Galvanometer enthält 1883, 2 p. 315—319

Wiedemann Gustav (Wahl) 1880, 4 p. 641

Will Heinr. (Wahl) 1873, 3 p. 353

Winkelmann A., Ueber das Gesetz der Spannkräfte des gesättigten Wasserdampfes 1879, 3 p. 371—380

— Ueber Volumänderungen einiger Metalle beim Schmelzen 1881, 1 p. 63— 112 Wislicenus Joh., Phtalylmalonsäureester und Phtaloxyldimalonsäureester, die Produkte der Umsetzung zwischen Natriummalonsäureester und Phtalylchlorür oder Phtalsäureanhydrid 1884, 2 p. 217—225

— (Wahl) 1882, 5 p. 620

Wislicenus'sche Aethylenmilchsäure 1877, 3 p. 326—330

Wittstein Armin, ein Geschenk desselben 1875, 2 p. 178

Wöhler Friedr. (Nekrolog) 1883, 2 p. 231—242

Wohnräume, Vorkommen von Kohlenoxyd in ihnen 1881, 2 p. 203—219

Wolfram, Nachweis desselben 1885, 2 p. 206—213

Wollastonit - Auswürfling vom Monte Somma 1871, 3 p. 228—231

Wüllner Adolf, Ueber die elektrische Influenz auf Flüssigkeiten 1875, 2 p.147—168

 Ueber die elektrische Influenz auf nichtleitende feste Körper 1877, 1 p. 1—76

 Ueber allmähliche Ueberführung des Bandenspectrums des Stickstoffs in ein Linienspectrum 1879, 2 p. 171—207

Ausdehnung der Dispersionstheorie auf die ultrarothen Strahlen 1884, 2 p. 245
 252

— (Wahl) 1874, 2 p. 232

- Wurtz Charles Adolphe (Wahl) 1878, 4 p. 413; (Nekrolog) 1885, 2 p. 153-160
- Xanthin, seine Umwandlung in Theobromin und Caffeïn 1882, 2 p. 247—251
- Zähne, Linien im Schmelz und Cement derselben 1871, 3 p. 302-310
- Zahlen, Bernoulli'sche, eine einfache Entstehungsweise derselben 1877, 2 p.157—187

Zantedeschi Franc. (Nekrolog) 1874, 1 p. 70 f.

- Zersetzung spontane, einer Bleilegirung 1872, 2 p. 218 -222
- Zersetzungen im Thierkörper, ihr zeitlicher Verlauf 1882, 1 p. 130—137
- Zersetzungsproducte des Quecksilberfahlerzes 1872, 1 p.13 —16
- Zimmermann Clemens, Zur Scheidung der Schwermetalle der Schwefelammoniumgruppe 1879, 3 p. 317 — 332

Zimmtsäureäthylester, polymerisirter 1877, 2 p. 273—278

- Zink, Scheidung desselben von den übrigen Metallen der Schwefelammoniumgruppe durch Rhodanammonium 1879, 3 p. 319—325
- Zinkerze von Raibelin Kärnthen 1878, 4 p. 552
- Zinn, Vorkommen in Silicaten 1878, 2 p. 136—139

- Zinno Silvestro, Ueber Jodschwefelsäure und jodschwefelsaure Salze 1871, 2 p. 177 —185
- Ueber eine Verbindung des Jod mit arseniger Säure, die Jodarsensäure, und deren Verbindungen mit basischen Oxyden und alkalischen Jodüren 1872, 3 p. 364
 —369
- Zinnoxalat, dessen Zusammensetzung 1881, 1 p. 7—9 Zirkel Ferdinand (Wahl) 1882, 5 p. 620
- Zittel Karl A., Die Räuberhöhle am Schelmengraben, eine prähistorische Höhlenwohnung in der bayr. Oberpfalz 1872, 1 p. 28—60
- Beobachtungen über Ozon in der Luft der libyschen Wüste 1874, 2 p. 215—230
- Ueber Gletscher-Erscheinungen in der bayerischen Hochebene 1874, 3 p. 252
 283
- Ueber den Fund eines Skeletes von Archaeopteryx im lithographischen Schiefer von Solenhofen 1877, 2 p. 155 f.
- Ueber Plicatocrinus. Mit
 Tafeln 1882, 1 p. 105
 —113
- Ein Beitrag zur Kenntniss der vorweltlichen Asseln.
 Von L. v. Ammon (mit 4 Tafeln) 1882, 4 p. 507
 —550

- Zittel Karl A., Bemerkungen über einige fossile Lepaditen aus dem lithographischen Schiefer und der oberen Kreide 1884, 4 p. 577— 589
- *Zündende Blitze im Königreich Bayern während des Zeitraumes 1833—1882 1884, 1 p. 38
- Zunge von Spelerpes fuscus 1885, 2 p. 109 f.

- Zunge der Spechte, Endorgane d. sensiblen Nerven in derselben 1884, 1 p. 183—192
- Zusammensetzung chemische der Mineralien der Kryolithgruppe 1882, 1 p. 118 129
- Zwillinge zweiaxiger Krystalle, Polarisationsbilder an ihnen 1881, 2 p. 199—202
- Zwilllingsbildungen am Orthoklas 1882, 5 p. 641—645

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Biodiversity Hentage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Inhaltsverzeichniss

der

Sitzungsberichte

der

mathematisch-physikalischen Classe

der

k. b. Akademie der Wissenschaften

Jahrgang 1886-1899.

München.

Verlag der k. Akademie. 1900.

In Commission des G. Franz'schen Verlags (J. Roth).

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

LN Y-A

Abbildung eines Objektes, über die Bedingungen möglichst präciser Abb. eines Obj. von endlicher scheinbarer Grösse durch einen dioptrischen Apparat, v. Seydel, herausgegeben v. S. Finsterwalder 1898 3, 395—422

Abel'sche Sätze, über zwei A. S., die Stetigkeit von Reihensummen betreffend, Pringsheim 1897 2, 343-358

Absolute Temperatur, über den Begriff von a. T., Boltzmann 1893 3, 321-328

Aequipotentiallinien, Sichtbare Darstellung der Aeq. L. in durchströmten Platten. Erklärung des Hall'schen Phänomens, v. Lommel 1892 3, 371—376

- Ueber die Beziehung der Aeq. und der magnetischen Kraftlinien, Boltzmann 1893 2, 119-128

- und Magnetkraftlinien, v. Lommel 1893 1, 103-109

— —, Nachtrag zum vorigen, v. Lommel 1893 2, 129—132

— Zum Hall'schen Phänomen, v. Lommel 1893 2, 217—222 Amberger Eisenerzformation, v. Gümbel 1893 3, 293—320

Ameisenäther, Einwirkung auf Campher, Claisen 1890 3, 445

-480

Anhydrit, Krystalle, Haushofer 1889 1, 12-13

Ausbreitung von Flüssigkeiten und damit zusammenhängende Erscheinungen, Stark 1898 1, 91—110

Automorphe Funktionen, Zur Theorie der a. F., Lindemann 1899 3, 423-461

Ayurvéda des Susrutas, generelle Uebersicht der Heilmittel, Hessler 1889 2, 153—166

Baeyer A. von, Ueber die Synthese des Acetessigäthers und des Phloroglucins, 1886 1, 1

Bauer Gust., Ueber die Berechnung der Discriminante einer binären Form, 1886 2, 183-191

— Ueber Flächen 4. Ordnung, deren geometrische Erzeugung sich an zwei Tetraeder knüpft, 1888 3, 337—370

- Bauer Gust., Ueber die Darstellung binärer Formen als Potenzsummen und insbesondere einer Form vom Grade 2n als eine Summe von n+1 Potenzen, 1892 1, 3-20
 - Bemerkungen über zahlentheoretische Eigenschaften der Legendre'schen Polynome, 1894 3, 343-359
 - Von 2 Tetraedern, welche einander zugleich eingeschrieben und umschrieben sind, 1897 2, 359—366
- Bauschinger J., Ueber eine neue Bestimmung der Refractionsconstante auf astronomischem Wege 1895 2, 239—260
- Bayerischer Wald, Geologisches aus dem bayer.W. (mit 2 Tafeln), Weinschenk 1899 2. 197-222
- Bayerns Bestrebungen auf meteorologischem Gebiete im 18. Jahrhundert, Lang 1890 1, 11-34
- Bdellostoma, Zur Ontogenie eines Myxinoiden (Bdellostoma Stouti, Leckington), Price 1896 1, 69-74
- Befruchtungsvorgang, Zur Kenntnis des B., Rückert 1895 1, 27-38
- Bergeat E., Ueber eine krystallisirte Säure aus der Schweinegalle, 1889 1, 17-18
- Beugungserscheinungen geradlinig begrenzter Schirme, Lommel $1886\ 1,\ 84-87$
- Beugungsfigur im Fernrohr weit ausserhalb des Focus, Schwarzschild 1898 2, 271-274
- Biegungsdeformationen, Zur Theorie der infinitesimalen B. einer Fläche, Voss 1897 2, 229-302
- Bilineare Formen, Ueber die cogrediente Transformation der bilinearen Formen in sich selbst, Voss 1896 1, 1-23
 - Bemerkungen zur Theorie der konjugierten Transformation einer bilinearen Form in sich selbst, Löwy 1896 1, 25 – 30
 - Ueber die Anzahl der cogredienten und adjungierten Transformationen einer bilinearen Form in sich selbst, Voss 1896 2, 211-272
 - Ueber Schaaren von B., v. Weber 1898 3, 369-394
 - -- und Differentialsysteme, v. Weber 1899 2, 231-260
- Binäre Formen, Darstellung als Potenzsummen, G. Bauer 1892 1, 3-20
- Blasius Eug., Ueber die Beziehungen zwischen den Theorien der Krystallstructur und über die systematische Eintheilung der Krystalle, 1889 1, 47-78

- Blei- und Fahlerzgänge in der Gegend von Weilmünster und Ränkel in Nassau, v. Sandberger 1895 1, 115-124
- Blümcke Ad. u. Finsterwalder, Zur Frage der Gletschererosion, 1890 3, 435-444
- Böhm A. A., Ueber die Befruchtung des Neunaugeneies, 1887 1, 53-62
- Böhmisches Silurbecken, älteste Ablagerungen im südöstlichen Teile und deren Verhältnis zu dem anstossenden Granit. Sandberger 1887 3. 433-454
- Bolonostonus, Aspidorhynchus und ihre Beziehungen zum lebenden Lepidosteus (mit 2 Tafeln), O. Reis 1887 1, 151 bis 177
- Boltzmann L., Ueber das den Newton'schen Farbenringen analoge Phänomen beim Durchgang Hertz'scher elektrischer Planwellen durch planparallele Metallplatten, 1892 1, 53 – 70
 - Ueber ein Medium, dessen mechanische Eigenschaften auf die von Maxwell für den Elektromagnetismus aufgestellten Gleichungen führen, 1892 I 2, 279—301
 - Studien über Gleichgewicht der lebendigen Kraft, 1892 III 3, 329—358
 - Ueber die Beziehung der Aequipotentiallinien und der magnetischen Kraftlinien, Nachtrag 1893 2, 129—136
 - -- Ueber den Begriff der absoluten Temperatur, 1893 3, 321-328
 - a) Ueber den Beweis des Maxwell'schen Geschwindigkeitsverteilungsgesetzes unter Gasmolekülen; b) Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten, 1894 2, 211-218
 - Nochmals das Maxwell'sche Verteilungsgesetz der Geschwindigkeiten, 1895 1, 25—26
- Bonner Durchmusterungen, Ueber die Grössenklassen der telescopischen Sterne der B. D., Seeliger 1898 2, 147-180
- Bormio, Thermen von B., Geologische Bemerkungen, C. W. v. Gümbel 1891 1, 79—120
- Böschingswinkel, mittlerer, Finsterwalder 1890 1, 35-82
- Braun Ferd., Untersuchungen über die Löslichkeit fester Körper und die den Vorgang der Lösung begleitenden Volumund Energieänderungen, 1886 2, 192-219
 - Untersuchungen über die Löslichkeit fester Körper etc., 1886 3, 450—452
- Brennerbad, Bemerkungen über die warme Quelle, v. Gümbel 1892 1, 137

Brill A., Ueber die Multiplicität der Schnittpunkte von zwei ebenen Curven, 1888 1, 81-94

— Ueber das Verhalten einer Funktion von zwei Veränderlichen in der Umgebung einer Nullstelle, 1891 2, 207 bis 220

Brunn H., Ueber Verkettung, 1892 1, 77-100

— Exakte Grundlagen für eine Theorie der Ovale, 1894 1, 93—111

Campanula rotundifolia, über die Abhängigkeit der Blattform von C. r. von der Lichtintensität, Goebel 1895 3, 331 —336

Capparisarten, Radlkofer 1887 3, 365-422

Cauchy'scher Integralsatz, Pringsheim 1895 1, 39-72

- Zum C. I., Pringsheim 1895 2, 295-304

Ceratodus (mit einer Tafel), v. Zittel 1886 2, 253-260

Charlier C., Untersuchung über die Methoden zum Tabulieren der Störungen der kleinen Planeten, 1896 2. 287-308

Claisen R. L., Ueber die Einwirkung des Ameisenäthers auf Campher, 1890 3, 445-479

Conjugierte Transformation einer bilinearen Form, Voss 1889 2, 175-212

Conodonten, Zittel und Rohon (mit 2 Tafeln), 1886 1, 108-136 Continuierliche, homogene und lineare Gruppen für Theorie, Baurer 1894 3, 297-342

Convergenz und Divergenz, Ueber die sogenannte Grenze und die Grenzgebiete von C. und D., Pringsheim 1896 4. 605-624

Cramer-Klettstiftung, 1896 3, 443

Curven gleicher Lichtstärke, Lommel 1889 3, 317-328

Curven, Multiplicität der Schnittpunkte zweier ebener C., Brill 1888 1. 81-94

Curvensysteme, Gestaltliche Verhältnisse der durch eine Differentialgleichung erster Ordnung definierten C. (mit 4 Tafeln), Dyck 1891 1, 23—58

Dekapoden, Amerikanische D. der k. bayerischen Staatssammlungen, Doflein 1899 2, 177-195

Determinantensatz, ein. Voss 1889 3, 329-340

Dielektrische Körper, Ueber die Bewegung d. K. im homogenen elektrostatischen Feld, Graetz und Fomm 1893 3, 275

—284

- Dielektrische Polarisation, Experimentelle Beiträge zur Kenntnis der d. P. in Flüsssigkeiten, Stankewitsch 1894 1, 63-92
- Differentialgleichungen 1. O. (mit 3 Tafeln), Dyck 1892 1, 101-136
 - dritter Ordnung, Beziehungen zwischen Fundamentalintegralen und deren Ableitungen, Königsberger 1887 3, 423—432
 - Ueber partielle Differentialgl. 2. Ordnung, die sich durch gewöhnliche Differentialgl. integrieren lassen, v. Weber 1896 3, 425-438
 - Ueber simultane partielle D. 2. O. mit drei Variabeln, v. Weber 1895 1, 101—114
- Diffusionscoefficienten, Zur Integration der Diffusionsgleichung bei variabeln D., Boltzmann 1894 2, 211-218
- Dicke, schliessliche eines Oeltropfens auf Wasser, Sohnke 1890 2, 93-104
- Discriminante einer binären Form, Berechnung, Gustav Bauer 1886 2, 183-191
 - einer tertiären Form, Gordan 1887 3, 477-480
- Dobinea, Versetzung zu den Anacardiaceen, Radlkofer 1888 3, 385-396
- Doflein F., Bericht über meine Reise nach Westindien und Nordamerika, 1898 4, 539-574
 - Amerikanische Dekapoden der k. bayer. Staatssammlungen, 1899 2, 177—196
- Döhlemann K., Ueber eine einfache, eindeutige Raumtransformation 3. Ordnung, 1894 1, 41-50
- Doppelintegral, zur Theorie des D.-I., Pringsheim 1898 1, 59-74
 - Zur Theorie des D.-I., des Green'schen und Cauchy'schen Integralsatzes, Pringsheim 1899, 39—62
- Doppelreihen, Zur Theorie der D., Pringsheim 1897 1, 101—154 Doppelsterne, optische Ungleichheiten in der Bewegung, Seeliger 1889 1, 19—32
- Drehung der Polarisationsebene für die Frauenhofer'schen Linien, Neue Methode, Lommel 1888 3, 321—324
- Drehung eines starren Körpers um seinen Schwerpunkt, Lindemann 1898 2, 181-202
- Du Bois-Reymond'sche Convergenzgrenze und eine besondere Form der Convergenzbedingungen für unendliche Reihen, Pringsheim 1897 2, 303-334

- Dyck W., Ueber die gestaltlichen Verhältnisse der durch eine Differentialgleichung 1. Ordnung zwischen 2 Variabeln definirten Curvensysteme (mit Tafel 1-4), 1891 1, 23-58
 - Ueber die gestaltlichen Verhältnisse der durch eine Differentialgleichung 1. Ordnung zwischen 2 Variabeln definirten Curvensysteme, 2. Mitteilung (mit Tafel 5-7). 1892 1. 101—139
 - Beiträge zur Potentialtheorie, Ueber die Darstellung der Kronecker'schen Charakteristiken eines Functionensystems durch bestimmte Integrale, 1895 I 2. 261--277
 - Beiträge zur Potentialtheorie, 1895 II 3, 447-500
 - Beiträge zur Potentialtheorie, 1898 2, 203-224
- Ebert H., Unsichtbare Vorgänge bei elektrischen Gasentladungen, $1898\ 4,\ 497-530$
- Zur Mechanik der Glimmlichtphänomene, 1899 1, 23—37 Eichenholz, Verschiedenheiten im Bau des E., Hartig 1894 4. 385-390
- Eindeutige analytische Funktionen in Potenzreihe, Entwicklung, Pringsheim 1895 1, 75-92
- Eiweissumsatz, Ueber den E. bei Zufuhr von Antipepton, v. Voit 1895 3, 443-446
- Elastische Körper, Theoretische Untersuchungen über el. K. und Elektricität. Glan 1898 1, 117—125
- Elastischer Stoss, Grundlagen einer mechanischen Theorie des elastischen Stosses und der inneren Reibung in kontinuierlichen Medien, Arth. Korn 1899 2, 223-230
- Elasticität der Metalle, Einfluss der Temperatur, Andr. Miller 1889 3. 33-46
- Elektricitätsleitung von festen Salzen unter hohem Druck, Graetz 1886 1, 88-107
- Elektrische Entladungen, Ueber eine neue Erscheinung bei elektrischen Entl. in verdünnten Gasen, Fomm 1898 3, 365-368
- Elektrische Gasentladungen, Unsichtbare Vorgänge bei elektr. Gasentl., Ebert 1898 4. 497-530
- Elektrischer Leitungswiderstand des Quecksilbers, Kohlrausch 1888 1, 3-14
- Elektrische und magnetische Kräfte der Atome, Richarz 1894 1, 3-40

- Elektrische Oscillationen, Ueber ein Instrument zur Messung der Spannung bei e. Osc., Graetz u. Fomm 1893 2, 245—250
- Elektrische Wellen, Ueber normale und anomale Dispersion e. W., Graetz und Fomm 1894 2, 189-206
- Elektrische Widerstandsverhältnisse und Anordnung von Rheostatenwiderständen, Kohlrausch 1887 1, 11—22
- Elektrochemisches Verfahren, um Wechselströme in Gleichströme zu verwandeln, Graetz 1897 2, 223—228
- Elektromagnetismus, über ein Medium, dessen mechanische Eigenschaften auf die von Maxwell für den Elektromagnetismus aufgestellten Gleichungen führen, Boltzmann 1892 I 2, 279 302
- Elektrometrische Untersuchungen, Götz u. Kurz 1887 2, 195—220

 II Götz und Kurz 1888 2, 249—255
- Elliptische Integrale, Ueber gewisse Umkehrprobleme aus der Theorie der ell. Int., Lindemann 1898 1, 37-54
- Emden R., Ueber den Magnetismus des Eisens unter dem Einfluss elektrischer Schwingungen (mit Tafel 1), 1892 1, 71-76
- Endolymphe des inneren Ohres, Abflusskanäle (mit 3 Tafeln), Rüdinger 1887 3, 455-476
- Erdbeben, Ueber die in den letzten Jahren in Bayern wahrgenommenen Erdb., v. Gümbel 1898 1, 3—18
- Erdbeben vom 22. Februar 1889 in der Umgebung von Neuburg a/D., Gümbel 1889 1, 79-108
- Erdmagnetismus, Ueber die Entstehung des Erdm. nach der hydrodynamischen Theorie, Korn 1898 2, 129-134
- Erzlagerstätte bei Goldkronach bei Berneck im Fichtelgebirge, v. Sandberger 1894 2, 231—255
- Erzgänge der Gegend von Freudenstadt und Bulach im Schwarzwald, v. Sandberger 1891 3, 281-318
- Erzgang der Grube Sagra Familia in Costarica und Bedeutung für die Theorie der Erzgänge, v. Sandberger 1891 2. 191-206
- Erzvorkommen in Cinque valle bei Roncegno im Val Sugana, v. Sandberger 1893 2, 199-216
- Extinction des Lichtes in der Atmosphäre, Seeliger 1891 3. 247-274

- Farbringe, Ueber das den F. analoge Phänomen. Boltzmann $1892 \ 1, \ 53-70$
- Fedorow E. v., Einige Betrachtungen über die Grundfragen der Krystallographie, 1896 3, 499-530
 - Die Resultate der Feldspathstudien, 1898 1, 55-58
- Fehler, Ueber die Verteilung der nach einer Ausgleichung übrig bleibenden Fehler, Seeliger 1899 1, 3-22
- Feldspatstudien. Resultate, v. Fedorow 1898 1, 55-58
- Feuerbacher Kreis und eine Steiner'sche Curve vierter Ordnung und dritter Klasse, Godt 1896 1, 119-166
- Finsterwalder S., Ueber die Verteilung der Biegungselasticität in dreifach symmetrischen Krystallen (mit 2 Tafeln), 1888 2, 257
 - Ueber katoptrische Eigenschaften der Flächen 2. Grades, 1887 1. 33-42
 - Ueber den mittleren Böschungswinkel und das wahre Areal einer topographischen Fläche. 1890 1 u. 2, 35-82
 - u. Blümcke, Zur Frage der Gletschererosion, 1890 3, 435—444
- Fixsterne, Zur Verteilung der Fixsterne am Himmel, Seeliger 1899 3, 363-419
- Flächen 4. Ordnung, deren geometrische Erzeugung sich an 2 Tetraeder knüpft, Bauer 1888 3, 337 – 370
- Flächen, auf denen zwei Schaaren geodätischer Linien ein conjugiertes System bilden, Voss 1888 1, 95-102
- Fluorescenz, Ueber polarisierte Fl., ein Beitrag zur kinetischen Theorie der festen Körper, Sohnke 1896 1, 75-118
- Flüssige Luft. Ueber Vorgänge bei Verbrennung in flüssiger L., Linde $1899\ 1,\ 65-70$
- Föppl A., Ueber eine mögliche Erweiterung des Newton'schen Gravitationsgesetzes 1897 1, 93-100
- Fomm L., Die Wellenlänge der Röntgenstrahlen, 1896 2, 283-286
 - Ueber eine neue Erscheinung bei elektrischen Entladungen in verdünnten Gasen, 1898 3, 365-368
- (siehe Graetz u. Fomm)
- Franke J. H., Koordinaten-Transformationen in geodätischen Dreiecknetzen, 1898 1, 19-36
- Fraunhofer-Objektiv, das, v. Merz 1898 1, 75-90
- Frühmittelalterliche Schädel und Gebeine aus Lindau, Ranke 1897 1, 1-92

- Funktion von zwei Veränderlichen in Umgebung einer Nullstelle, Brill 1891 2, 207—220
- Fundamentalgleichungen der Flächentheorie, Voss 1892 2, 247 bis 278
- Galvanische Kette, Entstehung des Stromes, Sohnke 1888 2, 371-384
- Gambetta's Hirn, Rüdinger 1887 1, 69-72
- Gasbeleuchtung, Wirkung bei Chloroformnarkose, v. Pettenkofer 1890 1, 1-3
- Gase und Dämpfe, Gesundheitsschädlichkeit mehrerer hygienisch und technisch wichtiger G., v. Pettenkofer 1887 2, 179—194
- Gase, Ueber die Veränderlichkeit der specifischen Wärme der Gase, Linde 1897 3, 485—490
- Gastein, warme Quellen, Gümbel 1889 3, 341-408
- Gebirgsmagnetismus, O. E. Meyer 1889 2, 117-174
- Gehirne verschiedener Hunderassen, Rüdinger 1894 2, 249 255 Geodätische Messungen, Bestimmung einer Fläche, Lüroth 1892 1, 27 – 52
- Gerlach J. v., Ueber die Einwirkung des Methylenblaus auf die Muskelnerven des lebenden Frosches (mit Tafel 1), 1889 2, 125-136
- Germaniumsulfid und Germaniumoxyd, microscopische Formen, Karl Haushofer 1887 1, 133-136
- Geschmacksorgan, Studien über den feineren Bau (mit 2 Tafeln), Hermann 1888 2, 277-317
- Gewichte, Ueber einige prähistorische Gewichte aus deutschen und italienischen Museen I (mit 1 Tafel), Lindemann 1899 1, 71—136 (vgl. auch Polyeder und Zahlzeichen)
- Gill A. C., Ueber Auflösung und Wachsthum der Krystalle, 1892 2, 303-306
- Gitterspectrum, ultrarotes, Phosphorophotographie, Lommel 1890 1, 83-88
- Glan P., Ein Spektrosaccharimeter, 1890 4, 513-522
 - Theoretische Untersuchungen über elastische Körper und Elektrizität, 1898 1, 117-125
- Gleichgewicht der lebendigen Kraft, Studien über, Boltzmann III 1892 V. Teil 3, 329-358
- Gleichung SX = XS', Symmetrische und alternierende Gl., Voss 1896 2, 273—281
- Gletschererosion, Blümcke und Finsterwalder, 1890 3, 435-444

- Glimmlichtphänomene, Zur Mechanik der Gl., Ebert 1899 1. 23-37
- Godt W., Ucber den Feuerbach'schen Kreis und eine Steiner'sche Curve vierter Ordnung und dritter Klasse, 1896 1, 119-166
- Goebel K., Ueber die Abhängigkeit der Blattform von Campanula rotundifolia von der Lichtintensität, 1895 3, 331-336
 - Ueber Jugendformen von Pflanzen und deren künstliche Wiederhervorrufung, 1896 3, 447 497
- Götz H. u. A. Kurz, Elektrometrische Untersuchungen I, 1887 2, 195-220
- Elektrometrische Untersuchungen II, 1888 2, 249—255 Gordan P., Ueber die Bildung der Discriminante einer tertiären Form, 1887 3, 477—478
- Graetz G., Ueber die Elektricitätsleitung von festen Salzen unter hohem Druck, 1886 1, 88-107
 - L., Eine neue Methode zur Messung von Selbstpotentialen und Induktionscoefficienten, 1893 2, 237-244
 - Ein elektrochemisches Verfahren, um Wechselströme in Gleichströme zu verwandeln, 1897 2, 223—228
 - u. L. Fomm, Ueber ein Instrument zur Messung der Spannung bei elektrischen Oscillationen, 1893 2, 245-250
 - — Ueber die Bewegung dielektrischer Körper im homogenen elektrostatischen Feld, 1893 3. 275—284
 - Ueber normale und anormale Dispersion elektrischer Wellen, 1894 2, 189 – 206
- Gravitation, Ein Modell zur hydrodynamischen Theorie der Gr., Korn 1897 1, 197-202
- Groth Paul, Ueber die Elasticität der Krystalle, 1888 2, 256 Grünerde vom Monte Baldo, Ueber die Gr., v. Gümbel 1896 4. 545-604
- Gümbel C. W. v., Ueber die Natur und Bildungsweise des Glaukonits (mit 1 Tafel), 1886 3, 417-449
 - Die miocänen Ablagerungen im oberen Donaugebiete und die Stellung des Schlicrs von Ottnang, 1887 2, 221—326
 - Ueber das Erdbeben vom 22. Februar 1889 in der Umgegend von Neuburg a/D., 1889 1, 79-108
 - Geologische Bemerkungen über die warmen Quellen von Gastein und ihre Umgebung, 1889 3, 341—408
 - Geologische Bemerkungen über die Thermen von Bormio und das Ortlergebirge, 1891 1, 79-120

- Gümbel C. W. v., Geologische Bemerkungen über die warme Quelle des Brennerbades und ihre Umgebung, 1892~1, 140-188
 - Geologische Mitteilungen über die Mineralquellen von St. Moritz im Oberengadin und ihre Nachbarschaft, 1893 1, 19-101
 - Die Amberger Eisenerzformation, 1893 3, 293-320
 - Ueber die in den letzten Jahren in Bayern wahrgenommenen Erdbeben, 1898 1, 3-18
- Halbebene, Ueber die conforme Abbildung der H. auf ein einfach zusammenhängendes Flächenstück, das von einer algebraischen Curve begrenzt wird, Lindemann 1894 4, 403-422
 - Die Abbildung der H. auf ein Polygon, das von Bögen confocaler Kegelschnitte begrenzt wird, Lindemann 1895 2, 219-238
- Halswirbelsäule, Zur Anthropologie der H., Beitrag zur Entwickelungsmechanik der menschlichen Körperform, J. Ranke 1895 1, 3-24
- Handbuch der angewandten Optik von Ad. Steinheil u. E. Voit, Erläuterungen, Steinheil 1891 1, 1-4
- Hartig R., Ueber die Verschiedenheiten im Bau des Eichenholzes, 1894 4, 385-389
 - Ueber den Drehwuchs der Kiefer, 1895 2, 199-218
 - Ueber den Nadelschüttepilz der Lärche, Sphaerella laricina
 n. sp., 1895 2, 279—293
- Haushofer Karl, Ueber einige mikroskopisch-chemische Reaktionen, 1886 1, 70-83
 - Ueber die mikroskopischen Formen des Germaniumsulfides und des Germaniumoxydes, 1887 1, 133—136
 - a) Ueber eine Methode zum mikroskopischen Nachweis von Tantal und Niob; b) über das Verhalten der Silikate im Phosphorsalz; c) über künstlich hergestellte Krystalle von Anhydrit; d) über den Lenzinit, 1889 1, 3-16
- Helmholtz'sche Wirbelintegrale, Ueber eine Verallgemeinerung der H. W., welcher eine unendliche Mannigfaltigkeit von mechanischen Bildern der Maxwell'schen Elektrodynamik entspricht, Schütz 1894 3, 273—295
- Henoonia, Versetzung zu den Solanaceen, Radlkofer 1888 3, 405-422

- Hermann F., Studien über den feineren Bau des Geschmacksorganes (mit zwei Tafeln)
- Hessler Frz., Ueber Naturgeschichte der alten Inder, 1887 1, 48-52
 - Allgemeine Uebersicht der Heilkunde der alten Inder, 1887 1, 137-150
 - Beiträge zur Naturgeschichte der alten Hindu, 1888 2, 267-276
 - Generelle Uebersicht der Heilmittel in dem Ayurvéda des Suśrutas, 1889 2, 153-166
- Jugendformen, Ueber die J. von Pflanzen und deren künstliche Wiederhervorrufung, Goebel 1896 3, 447—498
- Inder, Beiträge zur Naturgeschichte der alten Hindu, Hessler 1888 2, 267-276
- Heilkunde der alten I., Hessler 1887 1, 137-150
- Naturgeschichte der alten I., Hessler 1887 1, 43-52
- Inkompressible Flüssigkeit, Ueber die Erhaltung des dielektrischen Zustandes einer inkom. Fl., Korn 1898 2, 135 bis 146
- Innere Reibung, Bestimmung nach Coulombs Verfahren, Osk. E. Meyer 1887 3, 343-364
- Inneres Ohr, Entwicklung der häufigen Bogengänge (mit Tafel), Rüdinger 1888 3, 493—502
- Interferenz durch circulare Doppelbrechung, Lommel 1888 3, 325-336
- Interferenzerscheinungen in den Spectralfarben, Objektive Darstellung von, v. Lommel 1893 2, 133-136
- Interferenzstreifen, subjektive im objektiven Spectrum, v. Lommel 1888 3, 319—320
- Interpolatorische Darstellung einer Funktion durch eine nach Kugelfunktionen fortschreitende Reihe, Seeliger 1890 4, 499-511
- Invariantensysteme, allgemeinere, L. Maurer 1888 1, 103-150
 - Ueber die Endlichkeit der I., J. Maurer 1899 2, 147-176
- Irrationalität von ε und π , Ueber die ersten Beweise von I., Pringsheim 1898 2, 325 – 338

- Kalkgehalt der Knochen und Organe rhachitischer Kinder, v. Voit 1889, 437-438
- Katoptrische Eigenschaften der Flächen 2. Grades, Finsterwalder 1887 1, 33-42
- Kantor S., Ueber *n*-Momente von Ri-Complexen im Rr, 1896 3, 531-545
 - Theorie der Aequivalenz von linearen ∞^λ-Schaaren bilinearer Formen, 1897 2, 367—382
- Kegelschnitte, Die analytische Fortsetzung derjenigen Funktionen, welche das Innere eines Kegelschnittes conform auf die Halbebene abbilden, Lindemann 1896 3, 401—424
 - Die 7-Systeme von K., welche durch die Berührungspunkte der Doppeltangenten einer ebenen Curve 4. Ordnung gehen, Nöther 1895 1, 93-100
- Kettenbrüche, Convergenz unendlicher K., Pringsheim 1898 2, 295-324
 - Ueber ein Convergenzkriterium für Kettenbrüche mit positiven Gliedern, Pringsheim 1899 2, 261-272
- Kiefer, Ueber den Drehwuchs der K., Hartig 1895 2, 199—218 Königsberger Leo, Ueber die für eine homogene lineare Differentialgleichung 3. Ordnung zwischen den Fundamentalintegralen und deren Ableitungen stattfindenden algebraischen Beziehungen, 1887 3, 423—432
 - Ueber die Irreductibilität der algebraischen partiellen Differentialgleichungssysteme, 1891 3, 275-280
- Kohlrausch Fr., 1. Bestimmung der Selbstinduktion eines Leiters mittels inducierter Ströme, 1887 1, 3—10; 2. über die Herstellung sehr grosser elektr. Widerstandsverhältnisse und über eine Anordnung von Rheostatenwiderständen, 1887 1, 11—22; 3. über die Berechnung der Fernwirkung eines Magnets, 1887 1, 23—32
 - Ueber den absoluten elektrischen Leitungswiderstand des Quecksilbers, 1888 1, 3—14
- Koordinaten Transformationen in geodätischen Dreiecknetzen, J. H. Franke 1898 1, 19-36
- Korn Arthur, a) Ueber Molekular-Funktionen; b) ein Modell zur hydrodynamischen Theorie der Gravitation, 1897 1, 197-202
 - a) Ueber die Entstehung des Erdmagnetismus nach der hydrodynamischen Theorie; b) über die Erhaltung des dielektrischen Zustandes einer inkompressiblen Flüssigkeit, 1898 2, 129—146

- Korn Arthur, Grundlagen einer mechanischen Theorie des elastischen Stosses und der inneren Reibung in kontinuirlichen Medien, 1899 2, 223—230
- Krystalle, Auflösung und Wachstum, A. C. Gill, 1892 2, 303 bis 306
 - Elasticität, Groth 1888 2, 256
 - Ueber die Verteilung der Biegungselasticität in dreifach symmetrischen Krystallen (mit Tafel), 1888 2, 257-266
- Krystallographie, Einige Betrachtungen über die Grundfragen der Kr., v. Fedorow 1896 3, 499-540
- Krystallstruktur, Theorien, Blasius 1889 1. 47-78
- Kupffer C., Ueber die Entwicklung der Neunaugen, 1888 1, 71-80
- v., Ueber Monorhinie und Amphirhinie, 1894 1, 51-60 Kurz A. u. H. Götz, Elektrometrische Untersuchungen, 1887 2, 195-220
 - Elektrometrische Untersuchungen, 1888 II 2, 249-245
- Lärche, Ueber den Nadelschüttelpilz der L., Sphaerella laricina n. sp., Hartig 1895 2, 279—294
- Lang C., Die Bestrebungen Bayerns auf meteorologischem Gebiete im 18. Jahrhundert, 1890 1 u. 2, 11-34
- Lehmann K. B., Ueber die Wirkung des Schwefelkohlenstoffs auf den thierischen Organismus, 1888 1, 151-154
- Lehmann-Filhes R.: Ueber die Säcularstörung der Länge des Mondes unter der Annahme einer sich nicht momentan fortpflanzenden Schwerkraft, 1895 3, 371-422
- Legendre'sche Polynome, Bemerkungen über zahlentheoretische Eigenschaften der L. Polyn., G. Bauer 1894 3, 343-360
- Lenzinit, Haushofer 1889 1, 13-16
- Leppla, Die westpfälzische Moorniederung (das Gebrüch) und das Diluvium (mit 1 Tafel), 1886 2, 137—182
- Leucocytenwanderung, Ueber L. in den Schleimhäuten des Darmkanals (mit Tafel), Rüdinger 1895 1, 125-154
- Lieberkühne, Drüsen, Umbildung durch die Solitärfollikel im Wurmfortsatz des Menschen (mit Tafel), Rüdinger 1891 1, 121-138
- Lienenklaus E., Die Ostracoden aus dem Miocän von Ortenburg in Niederbayern (Collektion Eggers), 1896 1, 183-207
- Linde C., Ueber die Veränderlichkeit der spezifischen Wärme der Gase, 1897-3, 485-489

- Linde C., Ueber Vorgänge bei Verbrennung in flüssiger Luft, 1899 1, 65-70
- Lindemann F., Ueber die conforme Abbildung der Halbebene auf ein einfach zusammenhängendes Flächenstück, das von einer algebraischen Curve begrenzt wird, 1894 4, 403-422
 - Die Abbildung der Halbebene auf ein Polygon, das von Bögen confocaler Kegelschnitte begrenzt wird, 1895 2, 219-238
 - Ueber die linearen Transformationen einer quadratischen Mannigfaltigkeit in sich, 1896 1, 31-66
 - Die analytische Fortsetzung derjenigen Funktionen, welche das Innere eines Kegelschnittes conform auf die Halbebene abbilden, 1896 3, 401-424
 - Zur Geschichte der Polyeder und der Zahlzeichen (mit 9 Tafeln), 1896 4, 625—758
 - Ueber gewisse Umkehrprobleme aus der Theorie der elliptischen Integrale, 1898 1, 37-54
 - Ueber die Drehung eines starren Körpers um seinen Schwerpunkt, 1898 2, 181—202
 - Ueber einige prähistorische Gewichte aus deutschen und italienischen Museen (mit Tafel 1), 1899 I 1, 71-136
- Zur Theorie der automorphen Funktionen, 1899 3, 423—454
 Lineare Transformationen einer quadratischen Manigfaltigkeit in sich, Lindemann 1896 1, 31—66
- Lithionit-Granite im Erzgebirg, Fichtelgebirg und nördlichen Böhmen, 1888 3, 423-492
- Löslichkeit fester Körper und die den Vorgang begleitenden Volum- und Energieveränderungen, Ferd. Braun 1886 2. 192-219
- Lommel E., Ueber die Beugungserscheinungen geradlinig begrenzter Schirme, 1886 1, 84-87
 - Beobachtungen über Phosphorescenz, 1886 3, 283-298
 - Ueber die Photometrie der diffusen Zurückwerfung, 1887 1, 95-132
 - Subjektive Interferenzstreifen im objektivem Spectrum, 1888 3, 319—320
 - Neue Methode zur Messung der Drehung der Polarisationsebene die die Fraunhofer'schen Linien, 1888 3, 321 bis 324
 - Interferenz durch circulare Doppelbrechung, 1888 3, 325 bis 336

- Lommel E., Phosphoro-Photographie des ultrarothen Spectrums (mit Tafel 5), 1888 3, 397—404
 - Die Kurven gleicher Lichtstärke in den Axenbildern doppelbrechender Krystalle, 1889 3, 317-328
 - Ueber Selbstschatten einer Flamme, 1890 1 u. 2, 5-10
 - Phosphoro-Photographie des ultrarothen Gitterspectrums, 1890 1 u. 2, 83-88
 - Ueber die Schwingungsrichtung des polarisirten Lichtes, 1891 2, 181—188
 - Sichtbare Darstellung der äquipotentialen Linien in durchströmten Platten. Erklärung des Hall'schen Phänomens, 1892 3, 371-376
 - v., Aequipotential- und Magnetkraftlinien, 1893 1, 103-109
 - v., Objektive Darstellung von Interferenzerscheinungen in Spectralfarben, 1893 2, 133-136
 - v., Aequipotential- und Magnetkraftlinien. Zum Hall'schen Phänomen, 1893 2, 217—222
 - v., Ueber aus Kalkspath und Glas zusammengesetzte Nicol'sche Prismen, 1898 1, 111-116
- Löwy Alfr., Bemerkungen zur Theorie der konjugierten Transformation einer bilinearen Form in sich selbst, 1896 1, 25-30
- Luftelektricität, Beiträge zur Theorie, Sohnke 1888 1, 21-70 eine Abwehr, Sohnke 1890 2, 89-92
- Luftfahrten, Ueber wissenschaftliche L. des Münchener Vereins für Luftschiffahrt, Sohnke 1892 3, 359-364
- Lüroth Jakob, Ueber die Bestimmung einer Fläche durch geodätische Messungen, 1892 1, 27-52

Magnet, Fernwirkung, Kohlrausch 1887 1, 23-32

Magnetismus des Eisens unter dem Einfluss elektr. Schwingungen (mit Tafel), Emden 1892 1, 71-76

Magnetische Inclination, Messung, C. L. Weber 1891 1, 59-78 Maurer Ludw., Ueber allgemeinere Invariantensysteme, 1888 1, 103-150

- Zur Theorie der continuirlichen, homogenen und linearen Gruppen, 1894 3, 297-341
- Ueber die Endlichkeit der Invariantensysteme, 1899 2, 147—176
- Maxwell'sches Geschwindigkeitsverteilungsgesetz, Ueber den Beweis des M. G. unter Gasmolekülen, Boltzmann 1894 2, 207-210

Maxwell'sches Geschwindigkeitsverteilungsgesetz, Ueber den Beweis des M. G., M. Planck 1894 4, 391-394

- Nochmals das M. V., Boltzmann 1895 1, 25-26

Merz S. v., Das Fraunhofer-Objektiv, 1898 1, 75-90

Meteoriten, Zur Klassification der Meteoriten, Weinschenk 1899 2, 137—146

Methylenblau, Einwirkung auf die Muskelnerven des lebenden Frosches (mit Tafel), v. Gerlach 1889 2, 125-136

Meyer Oskar Emil, Ueber die Bestimmung der inneren Reibung nach Coulomb's Verfahren, 1887 3, 343-364

- Ueber Gebirgsmagnetismus, 1889 2, 167-174

Microscopische, Ueber ungewöhnliche m. Bilder, Sohnke 1893 2, 223-236

Miller Andr., Ueber den Einfluss der Temperatur auf die Elasticität der Metalle, 1889 1, 33-45

Miocane Ablagerungen im oberen Donaugebiete und die Stellung des Schliers von Ottnang, v. Gümbel 1887 2, 221-326

Molekularfunctionen, Korn 1897 1, 181-196

Monorhinie und Amphirhinie, v. Kupffer 1893 1, 51-60

St. Moritz im Oberengadin, Geologische Mitteilungen über die Mineralquellen von St. M. und ihre Nachbarschaft, v. Gümbel 1893 1, 19-101

Münchener Bürgerstiftung, 1896, 311 u. 441; 1897, 385 Myxinoiden, Für Ontogenie eines M. (Bdellostoma Stouti, Leckington), Price 1896 1, 69-74

Nahrungsmittel, Einfluss verschiedener N. auf den Wassergehalt der Organe und den Hämoglobingehalt des Blutes, v. Voit 1892 1, 21—26

Nekrologe

- Airy George Bidell 1892, 202
- Baeyer Joh. Jak. 1886, 6
- Bary Anton de 1888, 187
- Bauernfeind Karl Max v. 1895, 161
- Bauschinger Joh. 1894, 114
- Beetz Wilh. v. 1886, 10
- Benedeu Peter Jos. van 1894, 151
- Beyrich Heinr. Ernst 1897, 442
- Brioschi Francesco 1898, 449
- Brücke Ernst v. 1892, 203
- Buchner Ludw. Andr. 1898, 431
- Candolle Alphonse de 1894, 153

Nekrologe

- Carpenter William Benj. 1886, 45
- Chevreul Michel Eugène 1890, 418
- Clausius Rudolf 1899, 113
- Cope Edward Drinker 1898, 487
- Dana James Dwight 1896, 343
- Daubrée Gabriel Aug. 1897, 447
- Davidson Thomas 1886, 64
- Des Cloizeaux Legrand Alfred Louis Ollivier 1898, 492
- Döllinger Ignaz v. 1890, 382
- Donders Franz Cornelius 1889, 112
- Du Bois-Reymond Emil Heinr. 1897, 423
- Du Bois-Reymond Paul 1890, 415
- Ecker Alexander 1888, 166
- Edwards Henri-Milne 1886, 38
- Eichler Aug. Wilh. 1887, 87
- Fehling Herm. v. 1886, 50
- Fresenius Karl Remigius 1898, 452
- Gerlach Jos. v. 1897, 433
- Gray Asa 1888, 193
- Gyldén Hugo Joh. Aug. 1897, 409
- Haast Julius v. 1888, 176
- Harley Georg 1897, 421
- Haushofer Karl v. 1895, 171
- Hébert Edmond 1891, 146
- Heidenhain Rudolf 1898, 460
- Helmholtz Hermann v. 1895, 185
- Henle Jak. 1886, 31
- Henneberg Wilh. 1891, 154
- Hertz Rudolf Heinrich 1894, 146
- Hessler Franz 1891, 139
- Hofmann Aug. Wilh. v. 1893, 114
- Huxley Thomas Henry 1896, 321
- Hyrtl Josef 1895, 184
- Ismail Pascha 1895, 158
- Kekulé Friedr. Aug. 1897, 414
- Kenngott Gust. Adolf 1897, 440
- Kirchhoff Gust. Rob. 1888, 181
- Kittel Mart. Balduin 1886, 67
- Kokscharow Nicolaus v. 1893, 116
- Koninck Laurent Guillaume de 1888, 172
- Kopp Hermann 1892, 208

Nekrologe

- Kronecker Leopold 1892, 202
- Kummer Ernst Eduard 1894, 140
- Kundt Aug. 1895, 177
- Leidy Jos. 1892, 198
- Leuckart Rudolf 1898, 471
- Lovén Sven Ludwig 1896, 319
- Ludwig Carl 1896, 326
- Meyer Victor 1898, 455
- Middendorf Alex. Theod. v. 1894, 148
- Müller Ferd. Jac. Heinr. 1897, 436
- Munoz de Luna, Don Ramon Forres 1892, 198
- Nägeli Karl Wilh. v. 1892, 196
- Neumann Franz Ernst 1896, 338
- Oppolzer Theod. v. 1887, 75
- Owen Richard Sir 1893, 116
- Pedro Dom II d'Alcantara 1892, 192
- Pfaff Friedr. 1887, 89
- Pringsheim Nathanael 1895, 180
- Quatrefages de Bréau, Jean Louis Armand de 1892, 207
- Quenstedt Friedr. Aug. v. 1890, 430
- Rath Gerhard v. 1889, 109
- Renard Karl J. 1887, 73
- Regel Eduard v. 1893, 113
- Römer Ferd. 1892, 201
- Rohlfs Gerhard 1897, 450
- Rüdinger Nikolaus 1897, 390
- Rütimeyer Ludwig 1896, 314
- Sachs Julius 1898, 478
- Sandberger Fridolin v.
- Scacchi Arcangelo 1894, 156
- Schack Adolf Friedr. Graf v. 1895, 155
- Schafhäutl Karl Emil v. 1890, 397
- Schröder Heinr. Gg. Friedr. 1886, 57
- Sohncke Leonhard 1898, 440
- Stas Jean-Servais 1892, 200
- Steenstrup Joh. Japetes Smith 1898, 476
- Stefan Josef v. 1893, 117
- Steinheil Adolf 1894, 120
- Stern Moritz Abraham 1894, 142
- Studer Bernh. 1888, 162
- Todaro Agostino 1893, 113

Nekrologe

- Tschihatscheff Peter v. 1891, 175
- Tschudi Joh. Jak. v. 1890, 427
- Tulasne Louis René 1886, 62
- Tyndall John 1894, 143
- Vogel August 1890, 391
- Wagner Moritz Friedr. 1888, 155
- -- Wartmann Elie 1887, 83
- Weber Wilh. 1892, 199
- Weierstrass Karl Theodor Wilh. 1897, 402
- Will Heinr. 1891, 154

Neunaugenei, Befruchtung, A. A. Böhm 1887 1, 53-62

Neunaugen, Entwicklung, Kupffer 1888 1, 71-80

Nöther M., Die 7-Systeme von Kegelschnitten, welche durch die Berührungspunkte der Doppeltangenten einer ebenen Curve 4. Ordnung gehen, 1895 1, 93-100

Newton'sches Gravitationsgesetz, Seeliger 1896 3, 373-400

— Ueber eine mögliche Erweiterung des N. Gr., Föppl 1897 1, 93—100

N. Momente von Ri - Complexen im Rr, Kantor 1896 3, 531 - 545 Nicol'sche Prismen, Ueber aus Kalkspath und Glas zusammen-

gesetzte N. Pr., v. Lommel 1898 1, 111-116

Notochilus, Radlkofer 1889 2, 213-220

Objektivkonstruktion, Einfluss der O., Steinheil 1889 3, 413-436

- Orff K. v., Bemerkungen über die Beziehung zwischen Schweremessungen und geologischen Untersuchungen und Bericht über die in Bayern begonnenen Pendelbestimmungen, 1897 1, 155—180
- Ostracoden, Die Ostr. aus dem Miocän von Ortenburg in Niederbayern (Collection Eggers), Lienenklaus 1896 1, 183 bis 207
- Ovale, Exacte Grundlagen für eine Theorie der O., Brunn 1894 1, 43-60
- Pettenkofer Max v., Eröffnungsansprachen bei Festsitzungen. 1892, 189, 365, 368; 1893, 111, 285; 1894, 395; 1895, 365; 1896, 309, 439; 1897, 383, 477; 1898. 423, 531; 1899, 273
 - Ueber Gesundheitsschädlichkeit mehrerer hygienisch wichtiger Gase und Dämpfe. 1887 2, 179-194

- Pettenkofer Max v., Ueber Wirkung der Gasbeleuchtung bei Chloroformnarkose, 1890, 1 u. 2, 1—4
- Vorlage von Photographien eines in den Pampas ausgegrabenen grossen diluvialen Säugethieres, 1892 3, 328
- Pfaff'sche Gleichungen, Ueber gewisse Systeme P. Gl., v. Weber 1895 3, 423-442
- Phosphoreudiometrie, Für Geschichte des Ph., A. Vogel 1886 1, 2-5
- Photometrie der diffusen Zurückwerfung, Lommel 1887 1, 95—132 Photometrie zerstreut reflectierender Substanzen (mit Tafel), Seeliger 1888 2, 201—248
- Planek M., Ueber den Beweis des Maxwell'schen Geschwindigkeitsvertheilungsgesetzes unter Gasmolekülen, 1894 4, 391-394
- Pleistocäne Kalktuffe der fränkischen Alb, Sandberger 1893 1, 3-16
- Pringsheim A., Zur Theorie der Taylor'sehen Reihe und der analytischen Funktionen mit beschränktem Existenzbereich, 1892 2, 211—246
 - Ueber den Cauchy'schen Integralsatz, 1895 1, 39-72
 - Ueber die Entwicklung eindeutiger analytischer Functionen in Potenzreihen, 1895 1, 75-92
 - Zum Cauchy'schen Integralsatz, 1895 2, 295-304
 - Ueber Potenzreihen auf dem Convergenzkreise und Fourier'sche Reihen, 1895 3, 337-364
 - Zur Theorie der synektischen Funktionen, 1896 1, 167—182
 - Ueber die sogenannte Grenze und die Grenzgebiete zwischen Convergenz und Divergenz, 1896 4, 605—624
 - Zur Theorie der Doppelreihen, 1897 1, 101-152
 - Ueber die Du Bois-Reymond'sche Convergenzgrenze und eine besondere Form der Convergenz-Bedingungen für unendliche Reihen, 1897 2, 303-334
 - Ueber 2 Abel'sehe Sätze, die Stetigkeit von Reihensummen betreffend, 1897 2, 343 – 358
 - Zur Theorie des Doppel-Integrals, 1898 1, 59-74
 - a) Ueber die Convergenz unendlicher Kettenbrüche; b) über die ersten Beweise der Irrationalität von e und π, 1898
 2, 325—338
 - Zur Theorie des Doppel-Integrals, des Green'schen und Cauchy'sehen Integralsatzes, 1899 1, 39—62
 - Ueber ein Convergenzkriterium für Kettenbrüche mit positiven Gliedern, 1899 2, 261—272

- Polarisiertes Licht, Schwingungsrichtung, Lommel 1891 2, 181 bis 188
- Polyeder und Zahlzeichen, Zur Geschichte der P. und Z. (mit 9 Tafeln), Lindemann 1896 4, 625-758
- Potentialtheorie, Beiträge zur P., Dyck 1898 2, 203-224
 - Beiträge zur P., Ueber die Darstellung der Kronecker'schen Charakteristiken eines Functionensystems durch bestimmte Integrale, Dyck 1895 I 2, 261—278
 - Dyck 1895 II 3, 447-500
- Potenzreihen, Ueber P. auf dem Convergenzkreise und Fourier'sche Reihen, Pringsheim 1895 3, 337-364
- Princip des kleinsten Zwanges, Ueber die Anwendung des Pr. d. k. Zw. auf die Elektrodynamik, Wassmut 1894 2, 219-230
- Radlkofer L., Neue Beobachtungen über Pflanzen mit durchsichtig punktierten Blättern und systematische Uebersicht solcher, 1886 3, 299-344
 - Ueber die durchsichtigen Punkte und andere anatomische Charaktere der Connaraceen, 1886 II 3, 345-378
 - Ueber fischvergiftende Pflanzen, 1886 III 3, 379-416
 - Ueber einige Capparis-Arten, 1887 II 3, 365-422
 - Ueber die Versetzung der Gattung Dobinea von den Acerineen zu den Anacardiaceen, 1888 3, 385-396
 - Ueber die Versetzung der Gattung Henoonia von den Sapotaceen zu den Solanaceen, 1888 3, 405-422
 - a) Ueber Nothochilus, eine neue Scrophularineen-Gattung aus Brasilien;
 b) über Theophrasta und Clavija, 1889
 2, 213 - 174
 - Ueber die Gliederung der Familie der Sapindaceen, 1900
 1 u. 2, 105-379
- Ranke J., Zur Anthropologie der Halswirbelsäule; Beitrag zur Entwicklungsmechanik der menschlichen Körperform, 1895 1, 3-24
 - Ueber früh-mittelalterliche Schädel und Gebeine aus Lindau, 1897 1, 1—92
 - Ueber den Stirnfortsatz der Schläfenschuppe bei den Primaten, 1898 2, 227-270
 - Ueber die überzähligen Knochen der menschlichen Schädeldecke, 1899 3, 415—422
- Raumtransformation, Ueber eine einfache eindeutige R. 3. Ordnung, Döhlemann 1894 1, 41-50

- Reactionen, einige microscopisch-chemische, Karl Haushofer 1886 1, 70—83
- Recknagel G., Zur Hygiene der Wohnung, 1891 1, 5-22
- Refractionskonstante, Ueber eine neue Bestimmung der R. auf astronomischem Wege, Bauschinger 1895 2, 239-260
- Reis Otto, Ueber Bolonostomus, Aspidorhynchus und ihre Beziehungen zum lebenden Lepidosteus (mit 2 Tafeln), 1887 1, 151—177
- Reptilien, Ueber einige neue oder seltene Reptilien und Frösche der zoologischen Sammlung des Staates in München, Werner 1897 1, 203—220
- Richarz F., Ueber die elektrischen und magnetischen Kräfte der Atome, 1894 1, 3-40
- Röntgenstrahlen, Wellenlänge der R., Fomm 1896 2, 283—286 Rückert Joh., Zur Kenntnis des Befruchtungsvorganges, 1895 1, 27—38
- Rüdinger N., Das Hirn Gambettas, 1887 1, 69-72
 - Ueber die Abflusskanäle der Endolymphe des inneren Ohres (mit 3 Tafeln), 1887 3, 455—476
 - Zur Entwicklung der häutigen Bogengänge des inneren Ohres (mit Tafel 6), 1888 3, 493-502
 - Ueber die Bildung der primären und secundären Augenblase bei Triton alpestris (mit 2 Tafeln), 1889 2, 137—152
 - Ueber die Umbildung der Lieberkühn'schen Drüsen durch die Solitärfollikel im Wurmfortsatz des Menschen (mit Tafel 5), 1891 1, 121-138
 - Ueber die Gehirne verschiedener Hunderacen, 1894 2, 249-255
- Ueber Leucocytenwanderung in den Schleimhäuten des Darmkanals, 1895 1, 125—154
- Rohon (Zittel u. Rohon), Ueber Conodonten, 1886 1, 108-136
- Säcularstörung der Länge des Mondes unter der Annahme einer sich nicht momentan fortpflanzenden Schwerkraft, Lehmann-Filhés 1895 3, 371-422
- Sandberger F. v., Ueber die ältesten Ablagerungen im südöstlichen Theile des böhmischen Silurbeckens und deren Verhältnis zu dem anstossenden Granit, 1887 3, 433—454
 - Ueber Lithionit-Granite mit besonderer Rücksicht auf jene des Fichtelgebirges, Erzgebirges und des nördlichen Böhmens, 1888 3, 423—492

- Sandberger F. v., Ueber den Erzgang der Grubc Sagra Familia in Costarica und dessen Bedeutung für die Theorie der Erzgänge, 1891 2, 191—206
 - Ueber die Erzgänge der Gegend von Freudenstadt und Bulach im württembergischen Schwarzwald, 1891 3, 281—318
 - Ueber die pleistoc\u00e4nen Kalktuffe der fr\u00e4nkischen Alb, 1893 1, 3-16
 - Das Erzvorkommen in Cinque valle bei Roncegno im Val Sugana ca. 30 km östlich von Trient, 1893 2, 199—216
 - Ueber die Erzlagerstätte von Goldkronach bei Berneck im Fichtelgebirge, 1894 2, 231-255
 - Ueber Blei- und Fahlerzgänge in der Gegend von Weilmünster und Runkel in Nassau, 1895 1, 115—124
- Sapindaceen, Gliederung der Familie, Radlkofer 1890 2, 105-379 Saturnring. Maxwells und Hirns Untersuchungen über die Constitution des Sat., Seeliger 1894 2, 161-188
- Säugetiere, Die geologische Entwicklung, Herkunft und Verbreitung der Säugetiere, v. Zittel 1893 2, 137-198
- Schatten eines Planeten, Seeliger 1894 4, 423-438
- Schwefelkohlenstoff, Wirkung auf den thicrischen Organismus, Lehmann 1888 1, 151-154
- Schweinegalle, krystallisierte Säure, Bergeat 1889, 17-18
- Schütz Ign., Ueber eine Verallgemeinerung der v. Helmholtz'schen Wirbel-Integrale, welcher eine unendliche Mannigfaltigkeit von mechanischen Bildern der Maxwell'schen Elektrodynamik entspricht, 1894 3, 273—295
- Schwarzschild K., Ueber die Beugungsfigur im Fernrohr weit ausserhalb des Focus, 1898 2, 271—294
- Schweremessungen, Bemerkungen über die Beziehung zwischen Schw. und geologischen Untersuchungen und Bericht über die in Bayern begonnenen Pendelbestimmungen, v. Orff, 1897 1, 155—180
- Schwingungsrichtung des polarisierten Lichtes, Lommel 1891 2, 181—188
- Seeliger H., Ueber die Verteilung der Sterne auf der südlichen Halbkugel nach Schönfeld's Durchmusterung (mit 1 Tafel), 1886 2, 220-251
 - Zur Photometrie zerstreut reflectirender Substanzen (mit 1 Tafel), 1888 2, 201 - 248
 - Ueber optische Ungleichheiten in der Bewegung der Doppelsterne, 1889 1, 19—32

- Seeliger H., Ueber die interpolatorische Darstellung einer Funktion durch eine nach Kugelfunktionen fortschreitende Reihe, 1890 4, 499—511
 - Notiz über die Strahlenbrechung in der Atmosphäre, 1891
 3, 239—246
 - Ueber die Extinction des Lichtes in der Atmosphäre, 1891
 3, 247—272
 - Maxwell's und Hirn's Untersuchungen über die Constitution des Saturnringes, 1894 2, 161—188
 - Ueber den vierfachen Stern ζ Cancri, 1894 3, 257—272
 - Ueber den Schatten eines Planeten, 1894 4, 423-438
 - Ueber das Newton'sche Gravitationsgesetz, 1896 3, 373 bis 400
 - Ueber die Grössenklassen der telescopischen Sterne und der Bonner Durchmusterungen, 1898 2, 147-180
 - Ueber die Vertheilung der nach einer Ausgleichung übrig bleibenden Fehler, 1899 1, 3—22
 - Zur Vertheilung der Fixsterne am Himmel, 1899 3, 363 bis 414
- Seidel L. v., Ueber die Bedingungen möglichst präciser Abbildung eines Objekts von endlicher scheinbarer Grösse durch einen dioptrischen Apparat. Aus dessen Nachlasse herausgegeben von S. Finsterwalder, 1898 3, 395—422
- Selbstinduktion eines Leiters mittels inducierter Ströme, Kohlrausch 1887 1, 3-10
- Selbstpotentialen und Induktionscoefficienten, eine neue Methode zur Messung, Graetz 1893 2, 237—244
- Selbstschatten einer Flamme, Lommel 1890 1, 5-10
- Silikate im Phosphorsalz, Karl Haushofer 1889 1, 8-12
- Sohneke L., Beiträge zur Theorie der Luftelektricität, 1888 1, 21-70
 - Die Entstehung des Stroms in der galvanischen Kette, 1888 3, 371 – 384
 - a) Nachträgliches zur Theorie der Luftelektrizität, eine Abwehr; b) die schliessliche Dicke eines auf Wasser sich ausbreitenden Oeltropfens, 1890 1 u. 2, 89—104
 - Ueber wissenschaftliche Luftfahrten des Münchener Vereins für Luftschiffahrt, 1892 3, 359-364
 - Ueber ungewöhnliche mikroskopische Bilder, 1893 2, 223
 bis 236
 - Ueber polarisirte Fluorescenz, ein Beitrag zur kinetischen Theorie der festen Körper, 1896 1, 75-118

Sohncke L., Ueber die Aenderung der spezifischen Wärme mit der Temperatur, 1897 2, 337-342

Spectrosaccharimeter, Glan 1890 4, 513-522

Spectrum, Phosphoro-Photografie des ultraroten Sp., Lommel 1888 3, 397-404

Stankewitsch B. W., Experimentelle Beiträge zur Kenntnis der dieelektrischen Polarisation in Flüssigkeiten, 1894 1, 63-92

Stark J., Ueber Ausbreitung von Flüssigkeiten und damit zusammenhängende Erscheinungen, 1898 1, 91-110

Sterne, Verteilung auf der südlichen Halbkugel nach Schönfeld's Durchmusterung, 1886 2, 220—251

Steinheil A., Ueber den Einfluss der Objektivkonstruktion auf die Lichtverteilung in seitlich von der optischen Axe gelegenen Bildpunkten von Sternen bei zweilinsigen Systemen (mit Tafel 3-9), 1889 3, 413-436

— Erläuterungen der angewandten Optik von Ad. Steinheil u. E. Voit, 1891 I 1, 1—4

Stern & Cancri, Seeliger 1894 3, 257-272

Stirnfortsatz der Schläfenschuppe bei den Primaten, J. Ranke 1898 2, 227-270

Störe, Vermeintliche Hautschilder fossiler St., v. Zittel 1886 2, 261—265

Strahlenbrechung der Atmosphäre, Sceliger 1891 3, 239—246 Synectische Funktionen, Zur Theorie der s. F., Pringsheim 1896 1, 167—182

Tabulieren der Störungen der kleinen Planeten, Untersuchung über die Methoden, Charlier 1896 2, 287-308

Tantal und Niob, Haushofer 1889 1, 3-8

Tetraeder, Von zwei T., welche einander zugleich eingeschrieben und umschrieben sind, G. Bauer 1897 2, 359-366

Taylor'sche Reihe, Zur Theorie der T. R. und der analytischen Funktionen mit beschränktem Existenzbereich, Pringsheim 1892 2, 211—246

Theophrasta, Radlkofer 1889 2, 221-282

Theorie der Aequivalenz von linearen ∞^{λ} - Schaaren bilinearer Formen, Kantor 1897 2, 367--382

Thereianos-Fond 1898, 423

Theorie der Formen, Üeber einen Satz aus der Th., Voss 1888 1, 15-20

- Thermen von Bormio und des Ortler, Geologische Bemerkungen, C. W. v. Gümbel 1891 1, 79—120
- Triton alpestris, Bildung der primären und secundären Augenblase (mit Tafel), Rüdinger 1889 2, 137—152
- Ueberzählige Knochen der menschlichen Schädeldecke, J. Ranke 1899 3, 415—422
- Vegetarianer, Untersuchung der Kost eines, v. Voit 1887 1, 63-68
- Verkettung (mit 3 Tafeln), H. Brunn 1892 1, 79-100
- Vertauschbare, bilineare Formen, Voss 1889 2, 283-300
- Vogel A., Zur Geschichte der Phosphoreudiometrie, 1886 1, 2-5
- Voit C. v., Untersuchung der Kost eines Vegetarianers, 1887 1, 63-68
 - Ueber den Kalkgehalt der Knochen und Organe rhachitischer Kinder, 1889 3, 487—438
 - Ueber den Einfluss verschiedener Nahrungsmittel auf den Wassergehalt der Organe und den Hyämaglobingehalt des Blutes, 1892 1, 21—26
 - Ueber den Eiweissumsatz bei Zufuhr von Antipepton, 1895 3, 443-446
- Voss A., Ueber einen Satz aus der Theorie der Formen, 1888 1, 15-20
 - Ueber diejenigen Flächen, auf denen zwei Schaaren geodätischer Linien ein conjugirtes System bilden, 1888 1, 95-102
 - Ueber die conjugirte Transformation einer bilinearen Form in sich selbst, 1889 2, 175 – 212
 - -- Ueber die mit einer bilinearen Form vertauschbaren bilinearen Formen, 1889 2, 283-300
 - Ueber einen Satz aus der Theorie der Determinanten, 1889 3, 329-340
 - Ueber die cogrediente Transformation der bilinearen Formen in sich selbst, 1896 1, 1-23
 - a) Ueber die Anzahl der cogredienten und adjungirten Transformationen einer bilinearen Form in sich selbst;
 b) symmetrische und alternierende Lösungen der Gleichung SX = XS', 1896 2, 211-272
 - Zur Theorie der infinitesimalen Biegungsdeformationen einer Fläche, 1897 2, 229-302

- Wärme, Ueber die Aenderung der specifischen Wärme mit der Temperatur, Sohneke 1897 2, 337-342
- Wassmuth A., Ueber die Anwendung des Princips des kleinsten Zwanges auf die Elektrodynamik, 1894 2, 219-230
- Weber C. L., Zur Messung der magnetischen Inklination, 1891 1, 59-78
 - Ed. v., Ueber simultane partielle Differentialgleichungen
 2. Ordnung mit 3 Variabeln, 1895 1, 101—114
 - Ueber gewisse Systeme Pfaff'scher Gleichungen, 1895 3, 423-442
 - Ueber partielle Differentialgleichungen 2. Ordnung, die sich durch gewöhnliche Differentialgleichungen integrieren lassen, 1896 3, 425—438
 - Ueber Schaaren von Bilinearformen, 1898 3, 369-394
- Bilinearformen und Differentialsysteme, 1899, 231-260
- Weinschenk E., Zur Classification der Meteoriten, 1899 2, 137 bis 146
 - Geologisches aus dem bayerischen Walde (mit Tafel 2-3), 1899 2, 197-222
- Wengener-, St. Cassianer- und Raibler-Schichten auf der Seiser Alp in Tirol, v. Zittel 1899 3. 341-359
- Werner Franz, Ueber einige neue oder seltene Reptilien und Frösche der zoologischen Sammlung des Staates in München, 1897 1, 203-220
- Westindien, Bericht über meine Reise nach Westindien und Nordamerika, Doflein 1898 4, 539-574
- Westpfälzische Moorniederung (das Gebrüch) und das Diluvium (mit 1 Tafel), Leppla 1886 2, 137-182
- Wohnung, Zur Hygiene der, Recknagel 1891 1, 5-22
- Zittel u. Rohon, Ueber Conodonten, 1886 1, 108-136
- Zittel v., Ueber Ceratodus (mit 1 Tafel), 1886 2, 253-260
 - Ueber vermeintliche Hautschilder fossiler Störe, 1886 2, 261-265
- Zittel K. A. v., Die geologische Entwickelung, Herkunft und Verbreitung der Säugethiere, 1893 2, 137-198
 - Ueber Wengener-, St. Cassianer- und Raibler-Schichten auf der Seiser Alp in Tirol, 1899 3, 341-359

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Sitzungsberichte

der

mathematisch-physikalischen Classe

der

k. b. Akademie der Wissenschaften

zu München.

1899. Heft I.

München.

Verlag der k. Akademie. 1899.

Sitzungsberichte

der

mathematisch-physikalischen Classe

der

k. b. Akademie der Wissenschaften

zu München.

1899. Heft II.

München.

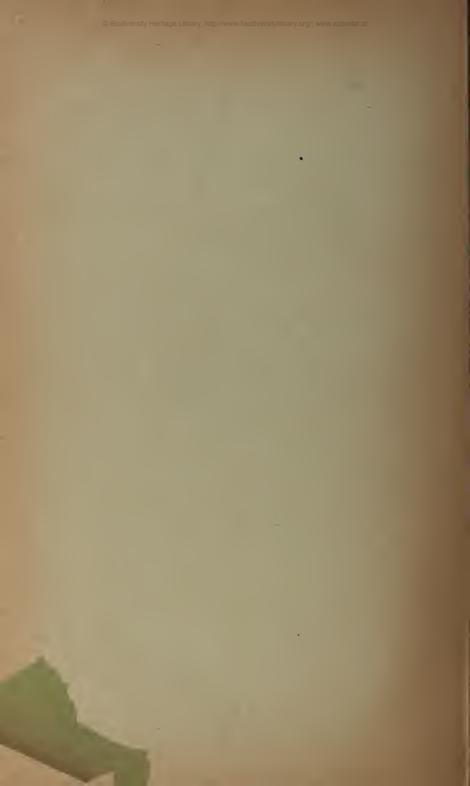
Verlag der k. Akademie. 1899.

Sitzungsberichte

der

mathematisch-physikalischen Classe

der


k. b. Akademie der Wissenschaften

zu München.

1899. Heft III.

München.

Verlag der k. Akademie. 1900.

Inhaltsverzeichniss

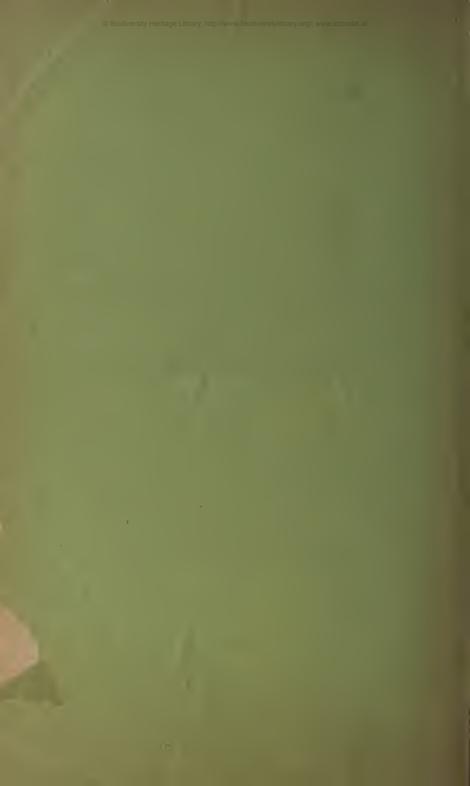
der

Sitzungsberichte

der

mathematisch-physikalischen Classe

der


k, b. Akademie der Wissenschaften.

Jahrgang 1871—1885.

München.

Akademische Buchdruckerei von F. Straub. 1886.

In Commission bei G. Franz.

Inhaltsverzeichniss

der

Sitzungsberichte

der

mathematisch-physikalischen Classe

der

k. b. Akademie der Wissenschaften.

Jahrgang 1886-1899.

München.

Verlag der k. Akademie. 1900.

© Rindiversity Heritage Library, http://www.bindiversitylibrary.org/; www.zobodat.at

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

© Riodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

Inhalt.

Die mit * bezeichneten Abhandlungen werden in den Sitzungsberichten nicht abgedruckt.

Sitzung vom 4. November 1899.	Seite
C. v. Voit: Ueber eine Beobachtung an einem Hunde, welcher vorher längere Zeit gehungert hatte K. A. v. Zittel: Ueber Wengener-, St. Cassianer- und Raibler-	339
Schichten auf der Seiser Alp in Tirol	341
-	
Oeffentliehe Sitzung zu Ehren Seiner Majestät des Königs und S	einer
Königl. Hoheit des Prinzregenten am 15. November 1899.	
K. A. v. Zittel: Eröffnungsrede	360
Wahlen	
der Internationalen Erdmessung	
	
Sitzung vom 2. Dezember 1899.	
H. Seeliger: Zur Vertheilung der Fixsterne am Himmel J. Ranke: Ueber die überzähligen Knochen der menschlichen	
Schädeldecke	
F. Lindemann: Zur Theorie der automorphen Functionen	
*A. v. Baeyer: Ueber die Beckmann'sche Umlagerung	
Einsendung von Druckschriften	455

Inhalt.

Die mit * bezeichneten Abhandlungen werden in den Sitzungsberichten nicht abgedruckt.

Sitzung vom 6. Mai 1899.	Seite
E. Weinschenk: Zur Classification der Meteoriten	. 137
	
Sitzung vom 3. Juni 1899.	
L. Maurer: Ueber die Endlichkeit der Invariantensysteme	. 147
F. Doflein: Amerikanische Dekapoden der k. bayerischen Staat	s-
sammlungen	. 177
Sitzung vom 8. Juli 1899.	
E. Weinschenk: Geologisches aus dem bayerischen Walde (m	it
Tafel II u. III)	. 197
Arth. Korn: Grundlagen einer mechanischen Theorie des elast schen Stosses und der inneren Reibung in kontinuirliche	
Medien , ,	. 223
E. v. Weber: Bilinearformen und Differentialsysteme	. 231
Alfr. Pringsheim: Ueber ein Convergenzkriterium für Kette	n-
brüche mit positiven Gliedern	. 261
*J. Rückert: Ueber Polyspermie	. 196
Oeffentliche Sitzung der kgl. Akademie der Wissenschaften zu des 140. Stiftungstages am 11. März 1899.	r Feier
M. v. Pettenkofer: Ansprache	. 273
C. v. Voit: Nekrologe	
Einsendung von Druckschriften	. 315

Inhalt.

Die mit * bezeichneten Abhandlungen werden in den Sitzungsberichten nicht abgedruckt.

Sitzung vom 7. Januar 1899.	Seite
H. Seeliger: Ueber die Vertheilung der nach einer Ausgleichung übrig bleibenden Fehler	3 23
terpenartigen Körpern	1
Sitzung vom 4. Februar 1899.	
*K. R. Koch und C. Cranz: Untersuchungen über Vibration des Gewehrlaufes	38 38 39
Sitzung vom 4. März 1899.	
C. Linde: Ueber Vorgänge bei Verbrennung in flüssiger Luft *J. Ranke: Ueber die überzähligen Knochen der menschlichen Schädeldecke	65 63
*E. v. Lommel: Theorie der Dämmerungsfarben F. Lindemann: Ueber einige prähistorische Gewichte aus deutschen	63
und italienischen Museen. 1. (Mit Taf. I.) *v. Fedorow: Ueber reguläre Plan- und Raum-Theilung	71 63