BAYERISCHE AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

SITZUNGSBERICHTE

JAHRGANG 1967

MÜNCHEN 1968

VERLAG DER BAYERISCHEN AKADEMIE DER WISSENSCHAFTEN
In Kommission bei der C. H. Beck'schen Verlagsbuchhandlung München

Einige Bemerkungen über Automorphismengruppen von Stellenringen

Von Wilhelm Kaup in Erlangen

Vorgelegt von Herrn Karl Stein am 5. Mai 1967

Es sei X ein (nicht notwendig reduzierter) komplexer Raum und G eine Gruppe von Automorphismen (d. h. biholomorphen Selbstabbildungen) von X mit Fixpunkt $p \in X$. Ist A der Ring der holomorphen Funktionskeime in p, so wird vermöge $g \to g^*$ mit $g^*(f) := f \circ g^{-1}$ für alle $f \in A$ die Gruppe G homomorph auf eine Gruppe G^* von Automorphismen des Ringes A abgebildet, die i. a. einfacher zu untersuchen ist und alle wesentliche Information über G enthält. Es existiert nämlich z. B. eine Umgebung U von p mit $g^* = h^* \Leftrightarrow g \mid U = h \mid U$. In der folgenden Arbeit sollen nun allgemein Automorphismengruppen von Ringen der Gestalt A untersucht werden – und zwar stets unter dem Gesichtspunkt der Anwendbarkeit auf Transformationsgruppen komplexer Räume.

Es sei im folgenden k der Körper R der reellen Zahlen oder der Körper C der komplexen Zahlen versehen mit der üblichen Topologie. Ferner sei A stets eine k-Stellenalgebra, d. h. eine kommutative k-Algebra mit 1, die genau ein maximales Ideal m besitzt und noethersch ist. Für jede natürliche Zahl n > 0 ist die Potenz \mathfrak{m}^n ein Ideal in A und A/\mathfrak{m}^n eine k-Algebra endlicher Dimension. Unter einem Automorphismus von A werde ein linearer Isomorphismus $g: A \to A$ mit g(ab) = (ga)(gb) für alle $a, b \in A$ verstanden. Jeder Automorphismus g bildet m" auf sich ab und induziert somit einen Automorphismus $\alpha_n(g)$ der Algebra $\mathfrak{m}/\mathfrak{m}^n$ für alle n > 0. Auf A existieren zwei wichtige Topologien: Die Krull-Topologie (das ist die gröbste Topologie auf A, so daß alle natürlichen Projektionen $A \to A/\mathfrak{m}^n$ stetig sind, wenn A/\mathfrak{m}^n mit der diskreten Topologie versehen wird) und die schwache Topologie (das ist die gröbste Topologie auf A, so daß alle Projektionen $A \rightarrow A/\mathfrak{m}^n$ stetig sind, wenn A/\mathfrak{m}^n mit der natürlichen Topologie eines k-Vektorraumes endlicher Dimension versehen wird). Für unsere Zwecke ist nur die schwache Topologie geeignet (denn die Krull-Topologie ist total unzusammenhängend und gestattet deshalb außer den trivialen keine zusammenhängende topologische Transformationsgruppe). Die schwache Topologie ist zusammenhängend, hausdorffsch, besitzt eine abzählbare Basis und macht A zu einer topologischen k-Algebra. Überdies hat die schwache Topologie die angenehme Eigenschaft, daß sich darin viele Sätze über topologische Vektorräume endlicher Dimension auf A übertragen. So ist z. B. jeder Automorphismus von A in der schwachen Topologie stetig (denn jede lineare Abbildung $k^p \rightarrow k^q$ ist stetig). Es gilt nun die

Bemerkung 1: Ist G eine topologische Gruppe von Automorphismen von A, so sind bezüglich der schwachen Topologie auf A die folgenden Bedingungen äquivalent:

- a) G ist eine topologische Transformationsgruppe von A (d. h. die durch $(g, a) \rightarrow ga$ definierte Wirkabbildung $G \times A \rightarrow A$ ist stetig),
- b) Für jedes $a \in A$ liefert $g \to g$ a eine stetige Abbildung $G \to A$,
- c) Es gibt ein Erzeugendensystem $E \subset \mathfrak{m}$ des maximalen Ideals \mathfrak{m} , so da β $g \to g$ a für jedes $a \in E$ eine stetige Abbildung $G \to A$ liefert,
- d) Für jede natürliche Zahl n ist $\alpha_n: G \to GL(\mathfrak{m}/\mathfrak{m}^n)$ eine stetige Darstellung $(GL(\mathfrak{m}/\mathfrak{m}^n))$ sei die Gruppe aller linearen Isomorphismen des Vektorraumes $\mathfrak{m}/\mathfrak{m}^n$ versehen mit der üblichen k-Liegruppenstruktur).

Der Beweis ist einfach und sei deshalb fortgelassen.

Ist eine der äquivalenten Bedingungen von Bemerkung 1 erfüllt, so sagen wir auch, daß G schwach stetig auf A operiert.

Der Vektorraum $\mathfrak{m}/\mathfrak{m}^2$ heißt auch Tangentialraum von A und – falls A der Ring aller konvergenten Potenzreihen in x_1, \ldots, x_n über k ist – stellt $\alpha_2(g)$ für jedes g aus G nichts weiter dar als die Funktionalmatrix (in koordinateninvarianter Form) von g im Punkte $o \in k^n$. Ein besonderer Fall liegt nun vor, wenn jedes $g \in G$ durch $\alpha_2(g)$ bereits eindeutig bestimmt ist (d. h. wenn

 $\alpha_2: G \to GL(\mathfrak{m}/\mathfrak{m}^2)$ injektiv ist); wir wollen dann auch sagen, für G gelte der Cartansche Eindeutigkeitssatz (vergl. [4; 5]).

Satz: Besitzt $\mathfrak{m}^2/\mathfrak{m}^n \subset \mathfrak{m}/\mathfrak{m}^n$ für jedes n ein G-invariantes lineares Komplement, so gilt für G der Cartansche Eindeutigkeitssatz.

Beweis: Es sei $\alpha_2(g) = \mathbf{1}$ für ein $g \in G$ und T_n ein $\alpha_n(G)$ -invarianter Unterraum mit $\mathfrak{m}/\mathfrak{m}^n = T_n \oplus \mathfrak{m}^2/\mathfrak{m}^n$. Dann ist jedes Element von T_n ein Fixpunkt von $\alpha_n(g)$. Da jedes Element von $\mathfrak{m}/\mathfrak{m}^n$ ein Polynom in Elementen von T_n ist, gilt $\alpha_n(g) = \mathbf{1}$ für alle n, d. h. g ist die Identität von G.

Folgerung 1: Für jede kompakte Gruppe G, die schwach stetig auf A operiert, gilt der Cartansche Eindeutigkeitssatz (denn dann ist jede der Darstellungen α_n halbeinfach; vgl. [1]).

Folgerung 2: Jede lokal-kompakte topologische Gruppe G, die schwach stetig auf A operiert, ist eine Liegruppe (und jede Darstellung α_n ist dann reell-analytisch).

Beweis: G besitzt einen kompakten, total unzusammenhängenden Normalteiler N, so daß G/N eine Liegruppe ist (vgl. [6]). Wegen Folgerung 1 ist N endlich, d. h. G ist selbst eine Liegruppe.

Ferner gilt

Bemerkung 2: Es sei G eine topologische Gruppe mit der Eigenschaft, daß jeder unendliche abgeschlossene Normalteiler $N \subset G$ ein Element $a \neq 1$ endlicher Ordnung enthält. Operiert G schwach stetig auf A, so gilt für G der Cartansche Eindeutigkeitssatz. Der Beweis folgt unmittelbar aus der folgenden

Bemerkung 3: Es seien g_1 und g_2 Automorphismen von A, die trivial auf dem Tangentialraum operieren (d. h. $\alpha_2(g_k) = 1$). Gilt dann $g_1^r = g_2^r$ für ein $r \neq 0$, so ist $g_1 = g_2$.

Beweis: Ist $g_1 \neq g_2$, so gibt es ein maximales $n \geq 2$ mit $\alpha_n(g_1) = \alpha_n(g_2)$. Bezüglich der direkten Summendarstellung

 $\mathfrak{m}/\mathfrak{m}^{n+1} \approx \mathfrak{m}/\mathfrak{m}^2 \oplus \mathfrak{m}^2/\mathfrak{m}^n \oplus \mathfrak{m}^n/\mathfrak{m}^{n+1}$

beschreibt sich α_{n+1} (g_k) durch eine Matrix

$$\begin{pmatrix}
I & A & B_k \\
o & C & D \\
o & o & I'
\end{pmatrix}$$

mit I = Identität auf $\mathfrak{m}/\mathfrak{m}^2$ und I' = Identität auf $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ (k = 1, 2). Durch Induktion über r folgt sofort, daß sich $\alpha_{n+1}(g_k^r)$ durch eine Matrix

$$\begin{pmatrix} I & X_r & rB_k + Y_r \\ o & Z_r & T_r \\ o & o & I' \end{pmatrix}$$

darstellt, wobei T_r , X_r , Y_r und Z_r nur von A, C, D und nicht von B_k abhängen. Aus $g_1^r = g_2^r$ für wenigstens ein r > 0 folgt daraus im Widerspruch zur Maximalität von n, daß $B_1 = B_2$ gilt.

Es läßt sich weiter zeigen

Bemerkung 4: Ist G eine zusammenhängende Liegruppe, die schwach stetig auf A und trivial auf $\mathfrak{m}/\mathfrak{m}^2$ operiert $(d.h. \alpha_2(G) = 1)$, so ist G einfach-zusammenhängend und nilpotent. Ferner ist K_n : = Kern (α_n) für alle n zusammenhängend.

Beweis: Für hinreichend großes r ist K_r diskret. $V_k := \mathfrak{m}^k/\mathfrak{m}^r$ stellt für k=1,2,...,r eine absteigende Folge von $\alpha_r(G)$ -invarianten Teilräumen in $\mathfrak{m}/\mathfrak{m}^r$ dar. Nach Voraussetzung operiert G trivial auf $\mathfrak{m}/\mathfrak{m}^2$ und damit auch trivial auf V_k/V_{k+1} für alle k, d. h. $\alpha_r(G)$ und damit auch G ist nilpotent. Da G außer der trivialen keine kompakte Untergruppe enthält, ist G einfachzusammenhängend. $G=K_2$ ist nach Voraussetzung zusammenhängend. Ist K_n zusammenhängend, so auch K_{n+1} , denn $K_n \to K_n/K_{n+1}$ ist ein Faserbündel über einer Vektorgruppe, und K_n ist deshalb als topologischer Raum isomorph zu $K_{n+1} \times K_n/K_{n+1}$ (vgl. [2] p. 270).

Ist also G eine Liegruppe, die schwach stetig auf A operiert, so ist die Einskomponente K^0 von K: = Kern (α_2) topologisch äquivalent zu einem \mathbb{R}^n . Im allgemeinen stimmt nun K^0 nicht mit K

überein wie folgendes Beispiel zeigt: Es sei k = C, A der Ring aller konvergenten komplexen Potenzreihen in z, w und G die einparametrige Gruppe aller Automorphismen

$$f(z, w) \rightarrow f(e^{it}z, e^{2it}w + it(e^{it}z)^2).$$

Es sei \bar{A} im folgenden die Komplettierung (vgl. [7]) von A bezüglich der Krulltopologie (A kann übrigens auch als Komplettierung bezüglich der schwachen Topologie aufgefaßt werden). \bar{A} ist ebenfalls eine **k**-Stellenalgebra, und jeder Automorphismus g von A kann zu einem Automorphismus \bar{g} von \bar{A} fortgesetzt werden. – Jede lineare Abbildung $D: A \rightarrow A$ mit D(ab) = D(a)b+ aD(b) für alle $a, b \in A$ heißt eine Derivation von A. Die Menge aller Derivationen D von A mit $D(\mathfrak{m}) \subset \mathfrak{m}$ ist vermöge $[D,D'] = D \circ D' - D' \circ D$ eine **k**-Liealgebra, die wir mit $\Delta(A)$ bezeichnen wollen. $\Delta(A)$ ist in natürlicher Weise ein A-Modul, und es gilt $D(\mathfrak{m}^n) \subset \mathfrak{m}^n$ für alle n und $D \in \Delta(A)$. Jede Derivation von A kann eindeutig zu einer Derivation von \bar{A} fortgesetzt werden; in diesem Sinne ist $\Delta(A)$ eine Unteralgebra von $\Delta(\bar{A})$. Nehmen wir nun an, es sei G eine Liegruppe mit Liealgebra g, die schwach stetig auf A operiert. Ist $g_t = \exp(tX)$ mit $X \in \mathfrak{g}$ eine einparametrige Untergruppe von G, so existiert für jedes $f \in \bar{A}$ der schwache Limes

$$D_X(f) := \lim_{t \to 0} \frac{1}{t} (g_t f - f) \in \bar{A}$$

(denn $t \to \alpha_n(g_t)$ ist reell-analytisch für alle n, und G operiert auf \bar{A} ebenfalls schwach stetig). Es gilt offensichtlich $D_X \in \Delta(\bar{A})$, und vermöge $X \to D_X$ kann $\mathfrak g$ als reelle Liesche Unteralgebra von $\Delta(\bar{A})$ angesehen werden. Wir sagen auch, D_X wird durch die einparametrige Gruppe (g_t) erzeugt. Ist umgekehrt $D \in \Delta(A)$ beliebig vorgegeben, so konvergiert für jedes $f \in \bar{A}$ und $t \in k$ die Reihe

$$\sum_{v=0}^{\infty} \frac{(tD)^{v}}{v!} (f) \qquad (=: \exp(tD) (f))$$

in \bar{A} schwach gegen ein $g_t(f) \in \bar{A}$, und $\{g_t\}$ ist eine einparametrige Liegruppe, die schwach stetig auf \bar{A} operiert und die

Derivation D erzeugt. Die Frage ist nun, wie die folgenden Bedingungen zusammenhängen: (1) $D \in \Delta(A)$; (2) $g_t(A) = A$ für jedes $g_t = \exp(tD)$. – Uns interessiert dabei besonders der Fall, daß A ein analytischer Stellenring ist; dabei heißt A ein analytischer Stellenring, wenn für geeignetes n im Ring \mathcal{O}_n aller konvergenten Potenzreihen in x_1, \ldots, x_n über k ein Ideal \mathcal{O} existiert mit $\mathcal{O}_n/\mathcal{O} = A$. Als Teilantwort auf die obige Frage wollen wir nun zeigen:

Bemerkung 5: Ist A ein analytischer Stellenring, so ist exp(D) für jedes $D \in \Delta(A)$ ein Automorphismus von A.

Beweis: Nach Voraussetzung existiert ein surjektiver Homorphismus $\varphi \colon \mathcal{O}_n \to A$ mit Kern \mathcal{O} . Wir wählen Elemente $\xi_1, \ldots, \xi_n \in \mathcal{O}_n$ mit $\varphi(\xi_k) = D\left(\varphi(x_k)\right)$ für alle k. Durch $\Theta(x_k) = \xi_k$ wird eindeutig ein $\Theta \in \Delta(\mathcal{O}_n)$ festgelegt mit $\Theta(\mathcal{O}) \subset \mathcal{O}$. Da $\Theta \colon \mathcal{O}_n \to \mathcal{O}_n$ schwach stetig und \mathcal{O} schwach abgeschlossen in \mathcal{O}_n ist, genügt es, $\exp\left(\Theta\right)(f) \in \mathcal{O}_n$ für jedes $f \in \mathcal{O}_n$ zu zeigen (denn dann folgt $\exp(D)\left(\varphi f\right) = \varphi\left(\exp(\Theta)f\right) \in A\right)$. Dazu fassen wir \mathcal{O}_n auf als Ring der k-analytischen Funktionskeime im Nullpunkt o des k^n . In einer Umgebung U des Nullpunktes $o \in k^n$ kann ein k-analytisches Vektorfeld

$$Y = \sum_{k=1}^{n} \bar{\xi}_{k} \frac{\partial}{\partial x_{k}}$$

so bestimmt werden, daß $\bar{\xi}_k$ ein Repräsentant von ξ_k ist. Ist $V \subset U$ eine weitere Umgebung von o in k^n so läßt sich Y bekanntlich integrieren zu einer lokalen einparametrigen Gruppe $\{h_t\colon |t|<\varepsilon\}$ von k-analytischen Abbildungen $h_t\colon V\to U$ (vgl. [4]). Wegen $D(\mathfrak{m})\subset\mathfrak{m}$ verschwinden alle Koeffizienten $\bar{\xi}_k$ im Punkte o, d. h. $h_t(\mathfrak{o})=\mathfrak{o}$ für $|t|<\varepsilon$. Da $\{h_t\}$ eindeutig durch Y bestimmt ist, gilt $\exp(tD)$ $(f)=f\circ h_t\in \mathcal{O}_n$ für alle $|t|<\varepsilon$ und $f\in \mathcal{O}_n$, d. h. $\exp(tD)$ ist für $|t|<\varepsilon$ und damit auch für alle t ein Automorphismus von A.

Bemerkung 5 liefert die Möglichkeit, einparametrige Automorphismengruppen von A zu konstruieren. Ob jede schwach stetige einparametrige Gruppe auf A in dieser Weise gewonnen wer-

den kann, ob also für jeden analytischen Stellenring die Relation $(2) \Rightarrow (1)$ gilt, ist noch offen.

Wir wollen jetzt speziell den Fall betrachten, daß A ein komplexer analytischer Stellenring ist. Dann gibt es also einen komplexen Raum X und einen Punkt $p \in X$, so daß A der Ring aller holomorphen Funktionskeime in p ist. Für jedes n > 0 ist $\{p\}$ versehen mit der Strukturgarbe A/\mathfrak{m}^n ein komplexer Raum Y_n ; und der Surjektion $A \to A/\mathfrak{m}^n$ entspricht eine Injektion $Y_n \subset X$ durch p. Die schwache Topologie kann also auch folgendermaßen charakterisiert werden: Eine Folge $f_v \in A$ konvergiert genau dann gegen ein $f \in A$, wenn für jeden einpunktigen komplexen Unterraum $Y \subset X$ durch p die Folge $f_v | Y$ gegen f | Y konvergiert.

Ist G eine Gruppe von Automorphismen des komplexen Stellenringes A, so sagen wir, daß G schwach holomorph auf A operiert, wenn G eine komplexe Liegruppe ist und jede Darstellung $\alpha_n: G \to GL$ $(\mathfrak{m}/\mathfrak{m}^n)$ holomorph ist. Da jede der komplexen Liegruppen $GL(\mathfrak{m}/\mathfrak{m}^n)$ holomorph-separabel ist, folgt insbesondere

Bemerkung 6: Operiert G schwach holomorph auf A, so ist G holomorph separabel. (Eine komplexe Liegruppe, auf der alle holomorphen Funktionen konstant sind, besteht also notwendig aus der Identität allein, wenn sie schwach holomorph auf A operiert).

Da jede holomorphe Darstellung einer reduzierten komplexen Liegruppe (vgl. [8]) vollreduzibel ist, gilt analog zu Folgerung 1 die

Bemerkung 7: Für jede reduzierte komplexe Liegruppe, die schwach holomorph auf A operiert, gilt der Cartansche Eindeutigkeitssatz.

Als einfache Konsequenz von ([4] Satz 1) sei schließlich noch vermerkt

Bemerkung 8: Ist G eine komplexe Liegruppe mit Liealgebra \mathfrak{g} , die schwach stetig auf A operiert, so operiert G genau dann schwach holomorph auf A, wenn die kanonische Injektion $\mathfrak{g} \to \Delta(\bar{A})$ komplex-linear ist.

Zum Schluß wollen wir noch den Zusammenhang zu den Transformationsgruppen komplexer Räume aufzeigen. Es sei also G eine Gruppe von Automorphismen des komplexen Raumes X und A der lokale Ring in einem Fixpunkt $p \in X$. Dann gilt

Satz: Operiert G stetig (bzw. holomorph)¹ auf X, so ist die durch $g \to \alpha_n(g^*)$ für jedes n definierte Darstellung $G \to GL$ ($\mathfrak{m}/\mathfrak{m}^n$) stetig (bzw. holomorph).

Der Beweis folgt für "stetig" und "n = 2" aus ([5] Satz 4.1); für beliebiges n kann der Beweis analog durchgeführt werden. Der Fall "holomorph" folgt dann aus ([4] Satz 1) und Bemerkung 8.

Literatur

- Chevalley, C.: Theory of Lie groups. Princeton: Princeton University Press 1946.
- [2] Grauert, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann. 135, 263-273 (1958).
- [3] Jurchescu, M.: On the canonical topology of an analytic algebra and of an analytic module. Bulletin de la Soc. Math. France 93, 129-154 (1965).
- [4] Kaup, W.: Infinitesimale Transformationsgruppen komplexer Räume. Math. Ann. 160, 72-92 (1965).
- [5] Kaup, W.: Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Inventiones math. 3, 43–70 (1967).
- [6] Montgomery, D. and Zippin, L.: Topological transformation groups. New York 1955.
- [7] Nagata, M.: Local rings. New York 1962.
- [8] Otte, M.: Beiträge zur Theorie der komplexen Liegruppen. Dissertation Göttingen 1967.

 $^{^1}$ Ist X reduziert, so bedeutet stetiges (bzw. holomorphes) Operieren von G gerade, daß die durch $(g,x)\to g\,x$ definierte Abbildung $G\times X\to X$ stetig (bzw. holomorph) ist; für den allgemeinen Fall vergl. [4].

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der mathematisch-physikalischen</u> Klasse der Bayerischen Akademie der Wissenschaften München

Jahr/Year: 1968

Band/Volume: 1967

Autor(en)/Author(s): Kaup Wilhelm

Artikel/Article: Einige Bemerkungen über Automorphismengruppen von

Stellenringen 43-50