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1. Introduction 

In this note, we are concerned with Hermitian block Toeplitz ma- 
trices, i.e. matrices of the form 

T„ — Ci, ..C„):: 
(1) 

/Co Ci  C„ 
c? c0 c, : 

; cf \ \ ; 
: \ \ c, 

\c»  cf Co 
where Co, Cj, . . C„ are complex q X q matrices and Co = CQ. In 
the scalar case q = 1, these matrices were introduced by O. Toeplitz 
[23] in connection with the class of analytic functions 

m 2 ckz\ 
k = 0 

Izl < 1, (2) 

with 

Ref(z) > 0 for all Izl < 1. (3) 

These functions were first studied by C. Carathéodory [4,5] and are 
nowadays called Carathéodory functions. The classical Carathéo- 
dory-Toeplitz theorem states that an analytic function (2) satisfies (3) 
iff the Toeplitz matrices T„(c0 + c0, Ci, c2, ... c„) are positive semi- 
definite for n = 0, 1, ... . 

Investigations on the coefficients of functions (2), (3) led 
Carathéodory to the following 
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Theorem A. Let C], . . c„ be given complex numbers not all zero, n > 1. 
There exists a minimal integer t and unique numbers Qj > 0, 0 <<£>.< 2 JI, 

j = 1, .. . t, such that 

ck= 2 fe=l(4) 
;=i 

Later on, a number of different proofs of this theorem appeared in 
the literature (Szegö [21, 22], Akhiezer and Krein [2, p. 24], Cybenko 
[8], Constantinescu [6]) reflecting the intimate connections between 
Carathéodory functions and orthogonal polynomials on the unit cir- 
cle [16], the trigonometric moment problem [1] and positive semi- 
definite Toeplitz matrices. Recently, an application of Theorem A in 
signal processing [20] has stimulated some interest in computing the 
Carathéodory representation (4) numerically [9]. In this context, the 
proof given in [8] is important, since it gives a means to obtain (4) via 
solving the eigenvalue problem for a unitary matrix. This approach 
is based on the fact that any positive semi-definite Toeplitz ma- 
trix T„(co, C\, ... c„), CQ e R, C\, . .cn e C, can be written in the form 

T„ = (b, U b, ..., U'b) H (b,Ub, U'b). (5) 

Here b e C\ t = rank T„ and U is a unitary t X t matrix. In particular, 
given ci, ... c„, if we choose Co such that T„ (CQ, . . ., c„) is positive 
semi-definite, but singular, the eigenvalues of U are just the numbers 
e'*’ in (4). 

In this note, we are mainly concerned with factorizations similar to 
(5) for arbitrary Hermitian block Toeplitz matrices and with 
generalizations of Theorem A. It turns out that an appropriately 
generalized factorization is not always possible, and a necessary and 
sufficient criterion for its existence is presented. Furthermore, we 
show that the factorization problem for (1) is equivalent to the singu- 
lar extension problem for T„ and to the existence of T„-unitary ma- 
trices of Frobenius type. A description of all solutions of these three 
problems is also given. 

Our main results are stated in Sec. 3 and proved in Sec. 4. The 
proofs are essentially based on recent results on an extension problem 
for H-unitary matrices which are recalled in Sec. 2. Here and in the 
sequel, for a given Hermitian matrix H, a matrix U is called H- 
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unitary, if UHHU = H. Finally, in Sec. 5 we deduce generalizations 
of Carathéodory’s Theorem A. 

In the last years, extensions of the classical Carathéodory-Toeplitz 
theorem were given which connect certain meromorphic and/or 
matrix-valued functions with classes of infinite Hermitian block 
Toeplitz matrices Tœ = Tœ(C0, Cu .. .) (see Krein and Langer [17, 
18, 19], Delsarte, Genin and Kamp [11, 12] and the references quoted 
therein). Based on this link, methods of complex analysis and 
operator theory in infinite-dimensional spaces lead to results on the 
structure of infinite Toeplitz matrices T„. In contrast to this 
approach, we are dealing exclusively with finite block Toeplitz ma- 
trices, and all our results are obtained using only elementary matrix 
analysis. 

2. An extension problem for H-unitary matrices 

Let H be an Hermitian n X n matrix, and consider the following 
extension problem (P): If {JQ is a given n X m matrix (0 < m < n) such 
that 

UtfHUo = A (6) 

where A is the m X m leading principal submatrix of H, can UQ be 
extended to an H-unitary matrix U = (Ho Ui)? Note that for m = 0, 
Uo and A are empty matrices and (P) reduces to the problem of 
finding H-unitary matrices. 

A complete solution of (P) was given in [13]. The result can be 
summarized as follows.There exists a nonsingular n X n matrix 

such that 

ShHS 

S = Sn Si2 \ }tn 

0 

in 

'0 0 0 
0 A, 0 
0 0 0 

0 0 0s 
0 0 0 

h 0 0 

0 0 /, 
0 0 0 
0 0 0 

0 0 0 
0 A2 0 
0 0 0J 

K 
}'»0 

}n0 - m0 -2k=:l 

M 

(7) 

(8) 
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where Aj, A2 are real signature matrices, i. e. diagonal matrices with 
diagonal elements ± 1, and 

mo = rank A, no — rank H, d0 + mo + k = m. 

We denote by H the nonsingular part of the matrix (8) obtained by 
deleting the first do and the last dj rows and columns. Furthermore, 
set 

/Z, Z2\ }d0 

S-'UoSn = Vo Ü0 }«0. (9) 
\Z3 Zj }dt 

do m0 + k 

Theorem B ([13, Thm. 2]). The extension problem (P) has a solution iff 

VQ = 0 and rank L/0 = m0 + k. (10) 

(L/Q *) and Moreover, if (10) holds, there exists an H-unitary matrix L 
the set of all H-unitary extensions o/Uo is given by 

U=(U0Ui) 

where 

1 
0 0 

M = 
'N-±Y

H
A2Y- Y

H
A2X 

/ 0 
y 

k 

x 
i 

(li) 

and N, X, Y, Zj,j = 5, . . 8, are arbitrary complex matrices of appropri- 

ate dimension with N = — NH and X An-unitary. 

Remarks 1. In the case m = 0, VQ and LJQ are empty matrices, mo = k 
= 0, and thus (10) is always satisfied. Moreover, one can choose L = 
I in (11). 

2. (P) is solvable, if H is positive semi-definite (13, Corollary 1). 
In the rest of this paper, we consider problem (P) exclusively for 

the special case that H = T„ = T„ (Co, . . ., Cn) is an Hermitian block 
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Toeplitz matrix, A = T„-t (Co, . . ., Cn_i) (T_i := empty matrix, 
rank T_i := 0), and Co is the shift matrix 

Co : = }? 

W 
(12) 

The block Toeplitz structure of T„ yields UQ T„U0 = T„-h and thus 
(6) is satisfied. Two solutions U = (U0 Ui) and C' = (C0 U\) of (P) 
are said to be equivalent, if in their canonical representation (11) M — 

M'. The corresponding set of equivalence classes is denoted by 
U (T„), and we set U (T„) = 0, if (P) is not solvable. 

3. Statement of the main results 

Suppose that we are given integers r, q, n > 1, an r X r signature 
matrix 

Ho-0/J-',+v=r' (i3) 

a A-unitary matrix W, and an r X q matrix X such that the block 
Krylov matrix 

K„(X,W):= (X, WX, W2X, . . ., W"X) 

has rank r. Obviously, 

T„ = K„(X, W)H A K„(X, W) (14) 

is a matrix of type (1) with Q, = XH A WAX, k = 0and rank 

T„ = r. For q = 1 and A = I, (14) reduces to (5) and, as mentioned in 
the introduction, gives a representation of all positive semi-definite 
Toeplitz matrices. Therefore, it is natural to ask whether any arbi- 
trary Hermitian block Toeplitz matrix admits a factorization (14). 

From now on it is assumed that T„ = T„ (Co, . .., C„) is an Hermi- 
tian matrix of the form (1) with n> 0 and block size q > 1, and we set 
r = rank T„. The trivial case T„ = 0 is always excluded. We seek 
factorizations (14) with X r X q and IV an r X r A-unitary matrix such 
that 

rank K„(X, W) = r. (15) 
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By Sylvester’s law of inertia, it follows from (14) and (15) that the 
matrix A in (13) is uniquely determined with fx and v being the 
number of positive and negative eigenvalues of T„, respectively. 
Two factorizations 

T„ = K„ (Xj, Wj)H A K„(Xj, Wj)J =1,2, 

are said to be equivalent, if 

X2 = ZXi, W2 = ZWXZ~X (16) 

with Z a A-unitary matrix. By F(T„) we denote the set of equiva- 
lence classes of factorizations (14) and set F(T„) = 0, if no such 
representation exists. 

By choosing any q X q matrix C„+1, one obtains an extension 

T„+i(Q>, ..., C,„ Cn+1) of T„(C0, .. ., C„). T„+1 is called a singular 
extension of T,„ if 

rank T,l + 1 = rank T„. (r„+1) 

We denote by C(T„) the set of all C„+i which yield a singular exten- 
sion of T„. 

The partitions 

with 

T J »1 

/ "Fii-i Bu \ _ / Co D\! \ 

\ B“ C0) - {D„ T„_, ) 
(17) 

will be used frequently in the sequel. The condition 

or equivalently 

B„) = Iw(D„ T„_,) (Q 

Ker I T"'1 ) = Ker ( 
B" T„_i 

(18) 
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will play an important role. Note that for « = 0 L|, B0 and D0 are 
empty matrices, and (Fo) is trivially true. 

After these preliminaries, we can state our main results. 

Theorem 1. The following conditions are equivalent: 

(a) T„ admits a singular extension T„+], i.e. C(Tn) =£ 0. 
(b) (I„) is satisfied. 

(c) The shift matrix U0 in (12) can be extended to a T„-unitary matrix U 

= (U0 U,), i.e. U (T„) A 0. 
(d) F (T„) 0, i.e. T„ admits a factorization (14). 

Corollary 1. T„ admits singular extensions and factorizations of the form 

(14), if one of the following conditions is satisfied: 

a) T„ is positive semi-definite. 

b) T„-1 is nonsingular. 

c) T„ is nonsingular. 

d) T„(Co, . .., C„) is an Hermitian block circulant matrix, i.e. Co = CQ 

and Cj = C"+w, j = 1, . . ., n. 

The sufficiency of condition a) is a consequence of Remark 2. The 
condition b) as well as c) imply that (T„_, B„) and (D„ T„_ 0 are of 
full rank, and thus (/„) holds. Finally, in case d) B„ = D„ and (/„) is 
trivially true. 

Theorem 1 states that C, U and F are either all empty or all non- 
empty. There is even a one-to-one correspondence between C, U and 
F. For any T„-unitary matrix U = (U0 Ui), where U0 is the shift 
matrix (12), we define 

Cn+1 = T(U) :=(J^0J T„Uh (19) 

q nq 

For any factorization (14) of T,„ we set 

C„+1 = a(X, W) = XH A W"+] X. (20) 

Theorem 2. 
a) Let (I„) be satisfied. Then, (19) and (20) define bijective mappings 

r:U(T„)^C(T„) 

and 

F(T’n) —* C(T„). 
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b) (r„) implies (/„). 
c) (r„) is true iff C(Tn) (and thus U(T„) and F (T„)) contains precisely one 

element. 

From Theorem 1 and parts b), c) of Theorem 2, we immediately 
obtain the following 

Corollary 2. Let (I„) be satisfied. Then, T„ can be extended to an infinite 

block Toeplitz matrix T„ (Co, C\, . . .) such that 

rank T„-j = rank T„, 0 < j < °o. 

Moreover, the matrices Cn+j, j > 2, are uniquely determined by T„ and 

C„+ ). C„+i is uniquely determined by T„ iff (r„) holds. 

Remarks 3. By means of the mappings r and o, the canonical rep- 
resentation (11) of U (T„) yields a description of all singular exten- 
sions and all factorizations (14) of T„. 

4. Several authors have considered the singular extension problem 
for special classes of matrices (1) using different techniques. Delsarte, 
Genin and Kamp [11] treated the problem for scalar (q = 1) Hermi- 
tian Toeplitz matrices. Fritzsche and Kirstein [14] solved the positive 
semi-deflnite block case completely. Constantinescu [7] studied 
extensions of T0 = CQ. 

5. For singular scalar Toeplitz matrices (1), it follows from [13, 
Thm. 4] that (/„) and (r„) are equivalent. In the block case, this is no 
longer true as the following example for q = 2 and n = 1 shows: 

T\ = rank T\ = 3 # rank T0 = 2. 

4. Proof of the main results 

Using the partitions (17), one immediately obtains the following 

Lemma 1. If T„ and T„_j are of the same rank, then 

ImB„ c. ImT„-\ and IniD„ c ImT„-\. 
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We now turn to the proof of Theorem 1. Let T„+1 be a singular 
extension of T„. Lemma 1 (with n replaced by n + 1) gives 

Im ( ^" + 1 ] c ImT„ and Im ( \ cz ImT„, 
\ B„ I \ C„+1 / 

and using (17), (/„) follows. Thus (a) implies (b). 
Now suppose that (/„) holds. To prove (c), we apply Theorem B 

with H = T,„ A = T„-1, U0 as in (12), and therefore have to verify 
(10). It follows from (8) and (9) that 

/0 0 0\ / 0 0 \ 
SHT„U0Sn = OHO S_1U0Sn = HK0 H0„ .(21) 

\0 0 0/ \ 0 0 / 

We partition 

S„ = (J^ i?2 ,) 

d0 m0 + k 

accordingly. Then (7) and (8) yield T„ ( M = 0, and together with 
(18) one abtains ' ' 

°={
T

Bï)
R

-={Z)
r'= R[' 

Thus HVo = 0 in (21), and since H is nonsingular, this proves the 
first part of (10). On the other hand, (7) and (8) show that 

and therefore rank G = nto + k. In view of (/„), this is equivalent to 

rank ( ) R2 = m0 + k, 
\ Tn-1 / 

and from (21) we deduce rank ÜQ = >«o + k. This concludes the proof 

o f“(6)=>(f)”. 
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Next we show that (c) implies (d). Assume that U = (I/o U\) is a 
7,,-unitary matrix. With 

/o\ }jq 

X®: = I / }<? -7 = 0, 1, 
\0/ }(« -j)q 

one has l/0 = (X(1) X<2> . . . X<">). Thus U X« = X®+1), j = 0 
1, and 

I = K„(X{0\ U). (22) 

From the eigenvalue decomposition of T„, we obtain a nonsingular 
matrix F and an r X r matrix of the form (13), where r = rank T,„ 

such that 

T„ = VHAV, A = 
I A 0 

\ 0 0 

Together with (22) this yields the factorization 

T„ = K„{X{0\ W)H A K„(X(0), W) (23) 

where 

V X(0) =: X<°> }r and VUV~' =:W = 
W Y 
  

}r 

r 

The T,-unitary of U leads to the identity 

WHAW = A 

which implies WHAW = A and Y = 0. Then 

W* = 
If* 0 

  
, fe = 0, 1  

and (23) reduces to (14). Thus (d) holds. 
Part a) of the following lemma shows that (d) implies (a), and this 

concludes the proof of Theorem 1. 
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Lemma 2. 

a) C„ +1 = o(X, W) in (20) defines a singular extension T„+1 of T„. 

b) Let T„ = K„ (Xj, W()H A Kt,(Xj, Wj),j = 1,2, ie two given factoriza- 

tions (14). Then, (16) and 

o(Xh Wx) = o(X2, W2) (24) 

are equivalent. 

Proof, a) From (14) and (20) we get 

T^+i (O,, ..C„+1) = K„+x(X, W)H A X„+1(X, W), 

and, obviously, T„ + i is a singular extension of T„. 

b) (16) immediately gives (24). Now suppose that (24) holds, i. e. 

o(Xj, Wj) = Xj1 A W‘ + ' Xj =: Cn+i,j = 1, 2. 

Then, in addition to the factorizations 

T„ (C0, ..., Cn) = X),')'' A Iff = K<
2

>
H A Kï,2), (25) 

we have 

Tn+\ (Co, ..., C„, C„+i) = X$" AKff = A «2?i. (26) 

Here 

X« := X„,(X„ »}),; = 1, 2, m = «, « + 1. 

Since X„ has full rank r, one can choose a nonsignular r X r submatrix 

R1 of Iff, and let R2 be the corresponding submatrix of iff. (25) 

implies 

X?A X, = R2 A R2; 

therefore R2 ist nonsingular and Z: = X2Xf 1 is A-unitary. X, is also a 

submatrix of Xj| i for j = 1, 2, respectively, and by using (26) we get 

0 = X? A A$i - X? A X$. = X? A (Kfl, - Z~’ XJ5,). 

It follows that Kff = Z X^î^i, and since 

Kf+l = (Xj WjKf>)J= 1,2, 

one obtains 

X2 = ZX, and 1T2 = ZW, iff. 
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By considerung the submatrices Rj of Kjl\ the second identity yields 

W2 = {W2R2)Rï
1
 = {ZW\R\) R2

X = ZBfiZ-1. 

Thus both conditions in (16) are satisfied. 
In the rest of this section, we prove Theorem 2. Part b) is an 

immediate consequence of Lemma 1. Now we turn to part a) and 
assume that (/„) holds. Note that Theorem 1 guarantees that U, C and 
F are not empty. First we show that a: F(T„) —» C (T„) is bijective. By 
part a) of Lemma 2 o(X, W) e C (T„) for each factorization (14); 
moreover, by part b) two (non-)equivalent factorizations lead (not) 
to the same singular extension. Thus (20) defines an injective map- 
ping on F(T„). Let C„+i e C(T„) be given. Then T„(C0, . . ., Cn) and 
T„+1(C0, ..., C„+i) satisfy (r„+1) and hence (/„+,) by part b) of 
Theorem 2. In view of Theorem 1, there exists a factorization of type 
(14) for T„+1: 

T„+i = K„+i(X, W)H A K„+] (X.W). 

In particular, 

T„ = K„(X, W)H A K„(X, W) and C„+1 = a(X, W). 

This shows the surjectivity of o, and in all the mapping o is one-to- 
one. 

Next we consider r. From (12) and the first partition in (17), it 
follows that U = (UQ UJ) is T„-unitary iff 

B„ = ( _0J_) TnU, and C0 = Uf TnU,. (27) 

Now let U = (U0 U{) and U' = (U0 U[) be two T„-unitary matrices 
with canonical representations (11). From (7), (8) and (11), we get 

/ 0 0\ 
T„(L/, - (7Î) = S“H \HL(M — M') 0 ST1 

\ 0 0/ 

where HL is nonsingular. Thus L7 and U' are equivalent iff 

TnU1 = T„ U[. (28) 

However, by the first relation in (27), the last ng equations in (28) are 
always fulfilled. Thus, by (19), (28) is equivalent to x{U) = T(U'). 
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This shows that (19) defines an injective mapping on C(T„). To 
prove C„+1 = T(U) e C(T„), we note that by (19) and (27), 

T„+\(Co, ..., C„+i) — 
T„ Bn+ J 

B"+1 Co 

/ Tn TnUi \ 

\C? T„ U? T„cJ' 

Hence 

T,I+i(Co, . .., C„+i) = 

is a singular extension of T„. Conversely, if C„+i 6 C(T„) is given, 
Lemma 1 (with n replaced by n + 1) ensures the existence of a matrix 
Ui such that 

B„+i = ( C"+1 ] = T„UU 
\ Bn I 

i. e. U = (Co U\) statisfies (19) and the first identity of (27). 
Moreover, from rank T„+) = rank Tn we deduce that (29) holds. This 
implies Co = Cf Tn U,, and, in view of (27), C is T„-unitary. Thus r 
is surjective, and the proof of a) is complete. 

It remains to prove part c) of Theorem 2. We show that (r„) is 
equivalent to IU(T„)I =1. Note that, by part b) of Theorem 2 and 
Theorem 1, (r„) guarantees U(T„) =£ 0. From the canonical represen- 
tation (11) we see that U(T„) consists of precisely one equivalence 
class iff k = / = 0 in (8) (with H = Tm A = T„_!). This is equivalent 
to the rank condition (r„). 

5. Generalizations of Carathéodory’s theorem 

Let T„(Co, .  ., Cn) be an Hermitian block Toeplitz matrix (1) of 
rank r and A be the signature matrix (13) where /x and v is the number 
of positive and negative eigenvalues of T,„ respectively. Each factori- 
zation of the form (14) with X r X q and W an r X r A-unitary matrix 
is equivalent to the representation 

Cfc = XH A W^X, k = 0,...,«, (30) 

of the blocks of T„. By transforming A and IT to a certain normal 
form, we now deduce from (30) generalizations of Carathéodory’s 
Theorem A. 
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First, some needed results from the theory of H-unitary matrices 
(e. g. Gohberg, Lancaster and Rodman [15]) are briefly recalled. Let 
H be a nonsingular Hermitian matrix and U H-unitary. The spec- 
trum of U is symmetric relative to the unit circle; i. e. if A is an 
eigenvalue, so is A-1, and Jordan blocks corresponding to symmetric 
pairs are of the same size [15, p. 26]. Thus U has Jordan normal form 

J ~ diag(Jdfo\),   , Jda (Aa), Jj" + t (Aa + i), Jda+I (4t +1)> • •  » Jda +fj (A,f +ß), 
jäa+ß r+js)) (3i) 
where 

'A 1 0 
0 A 1 

m = 

,0 

denotes the / X / Jordan block and 

A,= 
sje'0’, 0 < sj < 1, j = a + 1, ..., a + ß, 

(32) 

and we always assume 0 < 0 < 2K. From (31) results a correspond- 
ing normal form of the pair((J, H) composed of upper triangular 
Toeplitz matrices of the types 

N,= (33rt) 

N,( A) 

• -Xi-A 

(33 b) 

where for A ¥= 0, j = 1, 2, . . ., 1— 1 

xj = 4\ 1 (<7i “ 4a)> Xi = 4\ ' (?2 - 4i) 



On Toeplitz Matrices and a Theorem of C. Carathéodory 55 

with 

?i = — (1 + A), q2 = — (1 + Â“1), 

and of / X I anti-identity matrices 

Note that N( is Prunitary and diag (N((A), N[(A)) is unitary with 

respect to PJU moreover, Nj (A) = Nj-1 where N; denotes the matrix 

whose entries are the complex conjugates of those of N( [15, p. 26], 

Theorem C ([15, Thm. 4. ?]). Let H be a nonsingular Hermitian matrix 

and U be H-unitary with Jordan normal form J arranged as in (31), (32). 

Then, there exists a nonsingular matrix S and an ordered set e = {eu ..., 
ea} of signs ± 1 such that 

U = S~' NjS and H = SH Pe,j S 

where 

Nj = diag(Nd], . . ., N^, N^, (Aa + 1), N^ + | (A“|,), . . ., N^ß (Aa+^), 

(l~+'ß)) (35) 

and 

Pe.j = diag (£1 Pdi, . . ., €a Pda, Pzda + ,,   • > Pida+J- (36) 

Remark that Nj is Pe j-unitary. 

We now apply Theorem C to the A-unitary matrix W, and thus 

from (30) one obtains 

Ck = YH Pe j NjY,k = 0,...,n, (37) 

where Y : = SX. Partitioning 

y = (Yf Y..., Yf, y"+1, (y;+1)H,..., y^, (y^)H)H (38) 

in conformity with (35) and rewriting of (37) in terms of the blocks 

of (35) and (36), then leads to the following Carathéodory type rep- 

resentation: For k = 0, ... n 
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Cfe = 2 ejé^Q^ + “s’ ei0iktfWf){sje
i0t)+sjkQ(jt\sjei0’')). (39) 

j=1 7=0+1 

Here the abbreviations 

É»f = if Pdl M; V/, (A) = (V/)" ^ N,, (A)1' Yj, (40a) 

Of (A) = Y?Pd.N'i.(X)kY'j (40 6) 

are used. Note that 

(d :=) 2 d, = rank T„. (41) 
j-1 

Conversely, if a representation (39) is given, by defining Nj, Pe j 
and Y via (35), (36) and (38), we arrive at the factorization 

T„ (C0, ... C„) = K„ (Y, NJ)
H PeJ K„ ( Y, Nj). (42) 

This shows that a representation (39) with d < rank T„ is not possible. 
Moreover, if (41) holds, then (42) can easily be transformed into a 
factorization (14). Thus, in view of Theorem 1, we have proved the 
following 

Theorem 3. Let 7),(C{), ..., C„) be an Hermitian block Toeplitz mat- 

rix. Then, there are equivalent: 

(a) (I„) is satisfied. 

(b) There exists a representation (39), (40) of the blocks Co, ..., C„ with 
Os <P, < 2 jc,j = 1, ..a + ß, 0 < sj < 1 ,j = a+ 1, ..a + ß, 

and components of type (33), (34), and the additional requirement (41) 

is satisfied. 

The representation (39) simplifies considerably if the associated 
Jordan normal form (31) is a diagonal matrix, and one obtains the 
following 

Theorem 4. Let T„(CQ, .. ., C„) be an Hermitian block Toeplitz matrix 

with r : = rank T„ > 0. 
a) If T„ has a factorization ( 14) with an r X r diagonalizable A-unitary 

matrix W, then the blocks of T„ can be represented in the form 

Cfc= 2 e^Qj- 2 e'^Q, + 2 '^(s* Vj + sfk V"), 
j— 1 j=f]+l J + 1 

k = 0, .... H, (43) 
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where 

0 < 0, < 02 <    < 0,x < 2n, 

0 < + , < <Pti + 2 < . . . < 0,2 < 2JT, 

0 < <Pj < 2n, 0 < Sj < 1 and all Sje,<Pi are distinct, j = 

t2 + 1, . . t3, 

and the matrices Qj, j = 1, . . t2, are Hermitian and positive semi-definite, 

and 

*1 *3 

p : = 2 rank Qj + 2 rank Wj (44a) 
j=1 y=<2+) 

and 

12 ti 

v : = 2 rank Qj + 2 rank Wj (44b) 
j — t\+\ j=t 2+1 

are just the numbers of positive and negative eigenvalues ofT„, respectively. 

Moreover, there are no representations (43) with p + v < r. 

b) If T„ is positive semi-definite, there exists an integer t, numbers 0 < <Pj 

<02 <•..<<?(< 2JT, and positive semi-definite Hermitian matrices Qj,j 
= 1, t, such that 

Q= 2 fc=l(45) 
j= 1 

and 

t 

r = 2 ra«/e p,. 
j=i 

The representation (45) is unique iff the rank condition (r„) is satisfied. 

Proof, a) Let (39) be the representation induced by the diagonaliz- 

able A-unitary matrix W. Then, d, = 1, j = 1, . .a + ß, and since Pj 

= iV] = Ni(A) = iVJ(A) = (1) the matrices (40) are independent of k 

and A. Moreover, = YfYj is positive semi-definite, j = 1, . . ., a, 

and Qik) = (W}k^)H,j = a + 1, . . ., a + ß. By collecting terms in (39) 

with coinciding e; and <f>, j = 1, . . ., a, and coinciding numbers 

Sjéj = a + 1, .. a + ß, respectively, and by a possible renum- 

bering, we obtain a representation (43). Since A and P£ j have the 
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same signature, one gets Q < and v < v_. Here, Q and v are 
defined by (44), and /.t+ (v_) denotes the number of positive (nega- 
tive) eigenvalues of T„. It remains to show that ji + v < r is imposs- 
ible. 

Assume that (43) is given. There exist matrices Yj and Y' of full 
column rank such that 

Qj = Vf YjJ = 1 h, Wj = {Y'j)H Y,, j=t2+ 1, ..., t3, 

and define Y via (38) (a = f2, ß = t2 — t2). Note that Y has Q + vrows. 
It is easily verified that (43) can be rewritten as a factorization of type 

T„ = K„(Y, D)H P Kn(Y, D), (46) 

and this implies Q + v > r. 

b) Let T„ be positive semi-definite. By Corollary 1, T„ admits a 
factorization (14) with A = I and W a unitary matrix. Hence, W is 
diagonalizable, and there exits a representation (43) which, in view of 
(44), reduces to (45). It remains to show that the representation (45) is 
unique iff (r„) holds. To this end, recall that (45) is equivalent to the 
factorization (46) with P = / and 

D = diag(ei<p' ei#' I,) 

where lj = rank Qj = rank Yj, j = 1, . . ., t. Asa simple calculation 
shows, the representation (45) is unique iff these factorizations are 
equivalent in the sense of (16). By part c) of Theorem 2 this is 
equivalent to (r„). 

Remarks 6: For the special case of scalar Toeplitz matrices, the 
representation (43) was already derived by Delsarte and Genin [10] 
using a technique different from our approach. 

7. (44) can be rewritten in the form 

2JI 

Ck = f (e"*)kdQ(<P), k = 0 

with g defined by 

I 

g(>P) := 2 Qj for <P,< <P < <2>/+1, / = 0, . . ., t, 
i= 1 
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(<P0 : = 0, <P,+i := 2n). The matrix-valued function g(<P) is Hermi- 
tian and nondecreasing in the sense that p(0') — p(<f>) is positive 
semi-definite for <f>' > <f>. Thus, as a by-product, we have obtained 
an elementary proof of the solvability of the truncated trigonometric 
moment problem for matrix-valued measures. This problem (for the 
more general operator version) was first solved by Ando [3] using 
the Naimark Dilation Theorem. 

8. In general, (/„) does not imply that T„ admits a representation 
(43). Consider the scalar Toeplitz matrix 

T2{CO, CI, c2) with Ck = ki, k = 0, 1, 2, ? — — 1. 

It is easily verified that a representation (43) is not possible. However 
(f2) holds, and the entries of T2 can be written in the form (39): For k 
= 0, 1, 2 

ck = y?p2My2, y := f ' ) . 
I 1/V2 / 

Finally, we state an extension of Carathéodory’s Theorem A for 
the representation of arbitrary complex matrices. 

Corollary 3. Let C\, . . ., C„ be given complex q X q matrices not all 

zero, n > 1. Then, to each Hermitian positive definite q X q matrix 

there exists a minimal integer r, an integer t = t(r), numbers <t>j with 

0 < 0i < 02 < . . . < <Pt < 2JT, 

Hermitian positive semi-definite matrices a, j = 1, . . ., t, and a number o 
> 0 such that 

Ck= 2 e?**Qj, k=\,...n, (47) 
j= 1 

and 

01 = 2 Qj, r = 2 g.. (48) 
y=i ;=i 

Moreover, r = rank T„(oH, C\, . . ., C„) and r/ie representation (47), 
(48) is unique iff T„ satisfies the rank condition (r„). 
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This corollary follows immediately from part b) of Theorem 4 
applied to T„(Co, . . Cn). Here C0 = oZ where o > 0 is the uniquely 
determined number such that T„(oZ, Cu   ., C„) is positive semi- 
definite, but singular. 

References 

[1] Akhiezer, N. I.: The classical moment problem. London: Oliver and Boyd 1965 
[2] Akhiezer, N. I., Krein, M. G.: Some questions in the theory of moments. Provi- 

dence: American Mathematical Society 1962 
[3] Ando, T.: Truncated moment problems for operators. Acta Sei. Math. 31, 319— 

334 (1970) 
[4] Carathéodory, C.: Über den Variabilitätsbereich der Koeffizienten von Potenz- 

reihen, die gegebene Werte nicht annehmen. Math. Ann. 64, 95-115 (1907) 
[5] Carathéodory, C.: Über den Variabilitätsbereich der Fourierschen Konstanten 

von positiven harmonischen Funktionen. Rend. Cire. Mat. Palermo 32, 193-217 
(1911) 

[6] Constantinescu, T.: On the structure of positive Toeplitz forms. In: Dilation 
theory, Toeplitz operators and other topics, pp. 127-149. Basel: Birkhäuser 1983 

[7] Constantinescu, T.: Schur analysis for matrices with a finite number of negative 
squares. In: Operator Theory: Advances and Applications, Vol. 17, pp. 87-108. 
Basel: Birkhäuser 1986 

[8] Cybenko, G.: Moment problems and low rank Toeplitz approximations. Cir- 
cuits, Systems, Signal Process. 1, 345-366 (1982) 

[9] Cybenko, G.: Computing frequency estimates. In: Proceedings of the Princeton 
Conference on Information Science and Systems, pp. 587-591. Department of 
Electrical Engineering, Princeton 1985 

[10] Delsarte, P., Genin, Y.: Spectral properties of finite Toeplitz matrices. In: Proc. 
1983 Int. Symp. Math. Theory of Networks and Systems, pp. 194—213. Lecture 
Notes in Comput. Sei. 58. Berlin, New York: Springer 1984 

[11] Delsarte, P., Genin, Y., Kamp, Y.: Pseudo-Carathéodory functions and Hermi- 
tian Toeplitz matrices. Philips J. Res. 41, 1-54 (1986) 

[12] Delsarte, P., Genin, Y., Kamp, Y.: Orthogonal polynomial matrices on the unit 
circle. IEEE Trans. Circuits and Systems CAS-25, 149-160 (1978) 

[13] Freund, R., Huckle, Th.: An extension problem for H-unitary matrices with 
applications to Hermitian Toeplitz matrices. Preprint Nr. 153, Institut fur 
Angewandte Mathematik und Statistik der Universität Würzburg. To appear in 
Linear Algebra Appl. 

[14] Fritzsche, B., Kirstein, B.: An extension problem for non-negative Hermitian 
block Toeplitz matrices. Math. Nachr. 130, 121-135 (1987) 

[15] Gohberg, I., Lancaster, P., Rodman, L.: Matrices and indefinite scalar products. 
Basel: Birkhäuser 1983 

[16] Grenander, U., Szegö, G.: Toeplitz forms and their applications. Berkeley: Uni- 
versity of California Press 1958 

t 



On Toeplitz Matrices and a Theorem of C. Carathéodory 61 

[17] Krein, M. G., Langer, H.: Uber die verallgemeinerten Resolventen und die 
charakteristische Funktion eines isometrischen Operators im Raume IL,. In: Col- 

loquia Math. Soc. J. Bolyai 5. Hilbert space operators and operator algebras, 
Tihany (Hungary), 1970, pp. 353-399 

[18] Krein, M.G., Langer, H.: Über einige Fortsetzungsprobleme, die eng mit der 
Theorie hermitescher Operatoren im Raume IX, Zusammenhängen. I. Einige 
Funktionenklassen und ihre Darstellungen. Math. Nachr. 77, 187—236 (1977) 

[19] Krein, M. G., Langer, H.: Some propositions on analytic matrix functions related 
to the theory of operators in the space FL,. Acta Sei. Math. 43, 181—205 (1981) 

[20] Pisarenko, V.F.: The retrieval of harmonics from a covariance function. Geo- 
phys. J. R. Astr. Soc. 33, 347-366 (1973) 

[21] Szegö, G.: Über einen Satz des Herrn Carathéodory. Jahresbericht der Deutschen 
Mathematiker-Vereinigung 28, 131—137 (1919) 

[22] Szegö, G.: On a theorem of C. Carathéodory. In: Studies in mathematics and 
mechanics, presented to Richard von Mises, pp. 62—66. New York: Academic 
Press 1954 

[23] Toeplitz, O.: Über die Fourier’sche Entwickelung positiver Funktionen. Rend. 
Cire. Mat. Palermo 32, 191-192 (1911) 



ZOBODAT - www.zobodat.at
Zoologisch-Botanische Datenbank/Zoological-Botanical
Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Sitzungsberichte der mathematisch-
physikalischen Klasse der Bayerischen Akademie der
Wissenschaften München

Jahr/Year: 1989

Band/Volume: 1988

Autor(en)/Author(s): Freund Roland, Huckle Thomas

Artikel/Article: On hermitian block Toeplitz matrices and
generalizations of the theorem of C. Carathéodory 41-61

https://www.zobodat.at/publikation_series.php?id=20955
https://www.zobodat.at/publikation_volumes.php?id=56377
https://www.zobodat.at/publikation_articles.php?id=373361

