BAYERISCHE AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE # SITZUNGSBERICHTE JAHRGANG 1988 #### MÜNCHEN 1989 VERLAG DER BAYERISCHEN AKADEMIE DER WISSENSCHAFTEN In Kommission bei der C.H. Beck'schen Verlagsbuchhandlung München ## Von Roland Freund and Thomas Huckle in Würzburg Vorgelegt von Joseph Stoer in der Sitzung vom 6. Mai 1988 #### 1. Introduction In this note, we are concerned with Hermitian block Toeplitz matrices, i.e. matrices of the form $$T_{n} = T_{n}(C_{0}, C_{1}, ..., C_{n}) := \begin{pmatrix} C_{0} & C_{1} & ... & ... & C_{n} \\ C_{1}^{H} & C_{0} & C_{1} & & \vdots \\ \vdots & C_{1}^{H} & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & C_{1} \\ C_{n}^{H} & ... & ... & C_{1}^{H} & C_{0} \end{pmatrix}$$ (1) where C_0 , C_1 , ..., C_n are complex $q \times q$ matrices and $C_0 = C_0^H$. In the scalar case q = 1, these matrices were introduced by O. Toeplitz [23] in connection with the class of analytic functions $$f(z) = \sum_{k=0}^{\infty} c_k z^k, \qquad |z| < 1, \tag{2}$$ with $$\operatorname{Re} f(z) \ge 0$$ for all $|z| < 1$. (3) These functions were first studied by C. Carathéodory [4,5] and are nowadays called Carathéodory functions. The classical Carathéodory-Toeplitz theorem states that an analytic function (2) satisfies (3) iff the Toeplitz matrices $T_n(c_0 + \bar{c}_0, c_1, c_2, \ldots c_n)$ are positive semi-definite for $n = 0, 1, \ldots$ Investigations on the coefficients of functions (2), (3) led Carathéodory to the following **Theorem A.** Let c_1, \ldots, c_n be given complex numbers not all zero, $n \ge 1$. There exists a minimal integer t and unique numbers $\varrho_j > 0$, $0 \le \Phi_j < 2\pi$, $j = 1, \ldots t$, such that $$c_k = \sum_{j=1}^t \varrho_j e^{i\Phi_j k}, \qquad k = 1, ..., n.$$ (4) Later on, a number of different proofs of this theorem appeared in the literature (Szegö [21, 22], Akhiezer and Krein [2, p. 24], Cybenko [8], Constantinescu [6]) reflecting the intimate connections between Carathéodory functions and orthogonal polynomials on the unit circle [16], the trigonometric moment problem [1] and positive semi-definite Toeplitz matrices. Recently, an application of Theorem A in signal processing [20] has stimulated some interest in computing the Carathéodory representation (4) numerically [9]. In this context, the proof given in [8] is important, since it gives a means to obtain (4) via solving the eigenvalue problem for a unitary matrix. This approach is based on the fact that any positive semi-definite Toeplitz matrix $T_n(c_0, c_1, \ldots, c_n)$, $c_0 \in \mathbb{R}$, $c_1, \ldots, c_n \in \mathbb{C}$, can be written in the form $$T_n = (b, U b, ..., U^n b)^H (b, U b, ..., U^n b).$$ (5) Here $b \in C^t$, $t = rank \ T_n$ and U is a unitary $t \times t$ matrix. In particular, given c_1, \ldots, c_n , if we choose c_0 such that T_n (c_0, \ldots, c_n) is positive semi-definite, but singular, the eigenvalues of U are just the numbers $e^{i\Phi_j}$ in (4). In this note, we are mainly concerned with factorizations similar to (5) for arbitrary Hermitian block Toeplitz matrices and with generalizations of Theorem A. It turns out that an appropriately generalized factorization is not always possible, and a necessary and sufficient criterion for its existence is presented. Furthermore, we show that the factorization problem for (1) is equivalent to the singular extension problem for T_n and to the existence of T_n -unitary matrices of Frobenius type. A description of all solutions of these three problems is also given. Our main results are stated in Sec. 3 and proved in Sec. 4. The proofs are essentially based on recent results on an extension problem for H-unitary matrices which are recalled in Sec. 2. Here and in the sequel, for a given Hermitian matrix H, a matrix U is called H- unitary, if $U^HHU = H$. Finally, in Sec. 5 we deduce generalizations of Carathéodory's Theorem A. In the last years, extensions of the classical Carathéodory-Toeplitz theorem were given which connect certain meromorphic and/or matrix-valued functions with classes of infinite Hermitian block Toeplitz matrices $T_{\infty} = T_{\infty}(C_0, C_1, \ldots)$ (see Krein and Langer [17, 18, 19], Delsarte, Genin and Kamp [11, 12] and the references quoted therein). Based on this link, methods of complex analysis and operator theory in infinite-dimensional spaces lead to results on the structure of infinite Toeplitz matrices T_{∞} . In contrast to this approach, we are dealing exclusively with finite block Toeplitz matrices, and all our results are obtained using only elementary matrix analysis. ## 2. An extension problem for H-unitary matrices Let H be an Hermitian $n \times n$ matrix, and consider the following extension problem (P): If U_0 is a given $n \times m$ matrix ($0 \le m < n$) such that $$U_0^H H U_0 = A \tag{6}$$ where A is the $m \times m$ leading principal submatrix of H, can U_0 be extended to an H-unitary matrix $U = (U_0 \ U_1)$? Note that for m = 0, U_0 and A are empty matrices and (P) reduces to the problem of finding H-unitary matrices. A complete solution of (P) was given in [13]. The result can be summarized as follows. There exists a nonsingular $n \times n$ matrix $$S = \left(\begin{array}{cc} S_{11} & S_{12} \\ 0 & S_{22} \end{array}\right)^{3m} \tag{7}$$ such that $$S^{H}HS = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \Lambda_{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{k} & 0 & 0 \\ 0 & 0 & I_{k} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{cases} d_{0} \\ h_{0} \\ h_{0} \\ h_{0} \end{cases}$$ (8) where Λ_1 , Λ_2 are real signature matrices, i. e. diagonal matrices with diagonal elements \pm 1, and $$m_0 = rank A$$, $n_0 = rank H$, $d_0 + m_0 + k = m$. We denote by \tilde{H} the nonsingular part of the matrix (8) obtained by deleting the first d_0 and the last d_1 rows and columns. Furthermore, set $$S^{-1}U_{0}S_{11} = \begin{pmatrix} Z_{1} & Z_{2} \\ \tilde{V}_{0} & \tilde{U}_{0} \\ Z_{3} & Z_{4} \end{pmatrix} \begin{cases} d_{0} \\ d_{1} \end{cases}$$ (9) **Theorem B** ([13, Thm. 2]). The extension problem (P) has a solution iff $$\tilde{V}_0 = 0 \text{ and } rank \ \tilde{U}_0 = m_0 + k.$$ (10) Moreover, if (10) holds, there exists an \tilde{H} -unitary matrix $L = (\tilde{U}_0 *)$ and the set of all H-unitary extensions of U_0 is given by $$U = (U_0 \ U_1) = S \left(\begin{array}{c|c} Z_1 & Z_2 & Z_5 & Z_6 \\ 0 & \bar{U}_0 & LM & 0 \\ Z_3 & Z_4 & Z_7 & Z_8 \end{array} \right) S^{-1}$$ (11) where $$M = \begin{pmatrix} N - \frac{1}{2} \stackrel{0}{Y^{H}} \Lambda_{2} Y - \stackrel{0}{Y^{H}} \Lambda_{2} X \\ I & 0 \\ \stackrel{Y}{\underbrace{X}} & \stackrel{X}{\underbrace{X}} \end{pmatrix} \begin{cases} m_{0} \\ k \\ l \end{cases}$$ and N, X, Y, Z_j , j = 5, ..., 8, are arbitrary complex matrices of appropriate dimension with $N = -N^H$ and $X \Lambda_2$ -unitary. **Remarks 1.** In the case m = 0, \tilde{V}_0 and \tilde{U}_0 are empty matrices, $m_0 = k = 0$, and thus (10) is always satisfied. Moreover, one can choose L = I in (11). 2. (P) is solvable, if H is positive semi-definite (13, Corollary 1). In the rest of this paper, we consider problem (P) exclusively for the special case that $H = T_n = T_n (C_0, ..., C_n)$ is an Hermitian block Toeplitz matrix, $A = T_{n-1} (C_0, ..., C_{n-1})$ $(T_{-1} := \text{empty matrix}, rank T_{-1} := 0)$, and U_0 is the shift matrix $$U_0 := \underbrace{\begin{pmatrix} 0 \\ I \end{pmatrix}}_{nq} {}^{3}q \qquad (12)$$ The block Toeplitz structure of T_n yields U_0^H $T_nU_0 = T_{n-1}$, and thus (6) is satisfied. Two solutions $U = (U_0 \ U_1)$ and $U' = (U_0 \ U_1')$ of (P) are said to be equivalent, if in their canonical representation (11) M = M'. The corresponding set of equivalence classes is denoted by $U(T_n)$, and we set $U(T_n) = \emptyset$, if (P) is not solvable. #### 3. Statement of the main results Suppose that we are given integers r, q, $n \ge 1$, an $r \times r$ signature matrix $$\Lambda = \begin{pmatrix} I_{\mu} & 0 \\ 0 & -I_{\nu} \end{pmatrix}, \ \mu + \nu = r, \tag{13}$$ a Λ -unitary matrix W, and an $r \times q$ matrix X such that the block Krylov matrix $$K_n(X, W) := (X, W X, W^2 X, ..., W^n X)$$ has rank r. Obviously, $$T_n = K_n(X, W)^H \Lambda K_n(X, W)$$ (14) is a matrix of type (1) with $C_k = X^H \Lambda W^k X$, k = 0, ..., n, and rank $T_n = r$. For q = 1 and $\Lambda = I$, (14) reduces to (5) and, as mentioned in the introduction, gives a representation of all positive semi-definite Toeplitz matrices. Therefore, it is natural to ask whether any arbitrary Hermitian block Toeplitz matrix admits a factorization (14). From now on it is assumed that $T_n = T_n$ (C_0, \ldots, C_n) is an Hermitian matrix of the form (1) with $n \ge 0$ and block size $q \ge 1$, and we set r = rank T_n . The trivial case $T_n = 0$ is always excluded. We seek factorizations (14) with $X r \times q$ and W an $r \times r \Lambda$ -unitary matrix such that $$rank K_n(X, W) = r. (15)$$ By Sylvester's law of inertia, it follows from (14) and (15) that the matrix Λ in (13) is uniquely determined with μ and ν being the number of positive and negative eigenvalues of T_n , respectively. Two factorizations $$T_n = K_n(X_j, W_j)^H \Lambda K_n(X_j, W_j), j = 1, 2,$$ are said to be equivalent, if $$X_2 = ZX_1, \ W_2 = ZW_1Z^{-1} \tag{16}$$ with Z a Λ -unitary matrix. By $F(T_n)$ we denote the set of equivalence classes of factorizations (14) and set $F(T_n) = \emptyset$, if no such representation exists. By choosing any $q \times q$ matrix C_{n+1} , one obtains an extension $T_{n+1}(C_0, \ldots, C_n, C_{n+1})$ of $T_n(C_0, \ldots, C_n)$. T_{n+1} is called a singular extension of T_n , if $$rank T_{n+1} = rank T_n. (r_{n+1})$$ We denote by $C(T_n)$ the set of all C_{n+1} which yield a singular extension of T_n . The partitions $$T_n = \begin{pmatrix} T_{n-1} B_n \\ B_n^H C_0 \end{pmatrix} = \begin{pmatrix} C_0 D_n^H \\ D_n T_{n-1} \end{pmatrix}$$ (17) with $$B_n = \begin{pmatrix} C_n \\ C_{n-1} \\ \vdots \\ C_1 \end{pmatrix} \text{ and } D_n = \begin{pmatrix} C_1^H \\ C_2^H \\ \vdots \\ C_n^H \end{pmatrix}$$ will be used frequently in the sequel. The condition $$Im(T_{n-1} B_n) = Im(D_n T_{n-1})$$ (I_n) or equivalently $$Ker\begin{pmatrix} T_{n-1} \\ B_n^H \end{pmatrix} = Ker\begin{pmatrix} D_n^H \\ T_{n-1} \end{pmatrix}$$ (18) will play an important role. Note that for n = 0 T_{-1} , B_0 and D_0 are empty matrices, and (I_0) is trivially true. After these preliminaries, we can state our main results. **Theorem 1.** The following conditions are equivalent: - (a) T_n admits a singular extension T_{n+1} , i.e. $C(T_n) \neq \emptyset$. - (b) (In) is satisfied. - (c) The shift matrix U_0 in (12) can be extended to a T_n -unitary matrix $U = (U_0 \ U_1)$, i.e. $U(T_n) \neq \emptyset$. - (d) $F(T_n) \neq \emptyset$, i.e. T_n admits a factorization (14). **Corollary 1.** T_n admits singular extensions and factorizations of the form (14), if one of the following conditions is satisfied: - a) T_n is positive semi-definite. - b) T_{n-1} is nonsingular. - c) T_n is nonsingular. - d) $T_n(C_0, \ldots, C_n)$ is an Hermitian block circulant matrix, i.e. $C_0 = C_0^H$ and $C_j = C_{n+1-j}^H$, $j = 1, \ldots, n$. The sufficiency of condition a) is a consequence of Remark 2. The condition b) as well as c) imply that $(T_{n-1} B_n)$ and $(D_n T_{n-1})$ are of full rank, and thus (I_n) holds. Finally, in case d) $B_n = D_n$ and (I_n) is trivially true. Theorem 1 states that C, U and F are either all empty or all non-empty. There is even a one-to-one correspondence between C, U and F. For any T_n -unitary matrix $U = (U_0 \ U_1)$, where U_0 is the shift matrix (12), we define $$C_{n+1} = \tau(U) := \underbrace{\left(I \underbrace{0}_{q} \underbrace{0}_{nq}\right)}_{q} T_n U_1.$$ (19) For any factorization (14) of T_n , we set $$C_{n+1} = \sigma(X, W) = X^H \Lambda W^{n+1} X.$$ (20) Theorem 2. a) Let (I_n) be satisfied. Then, (19) and (20) define bijective mappings $$\tau: U(T_n) \to C(T_n)$$ and $$\sigma: F(T_n) \to C(T_n).$$ - b) (r_n) implies (I_n) . - c) (r_n) is true iff $C(T_n)$ (and thus $U(T_n)$ and $F(T_n)$) contains precisely one element. From Theorem 1 and parts b), c) of Theorem 2, we immediately obtain the following **Corollary 2.** Let (I_n) be satisfied. Then, T_n can be extended to an infinite block Toeplitz matrix T_{∞} (C_0, C_1, \ldots) such that $$rank T_{n-j} = rank T_n, 0 \le j \le \infty.$$ Moreover, the matrices C_{n+j} , $j \ge 2$, are uniquely determined by T_n and C_{n+1} . C_{n+1} is uniquely determined by T_n iff (r_n) holds. Remarks 3. By means of the mappings τ and σ , the canonical representation (11) of U (T_n) yields a description of all singular extensions and all factorizations (14) of T_n . - 4. Several authors have considered the singular extension problem for special classes of matrices (1) using different techniques. Delsarte, Genin and Kamp [11] treated the problem for scalar (q = 1) Hermitian Toeplitz matrices. Fritzsche and Kirstein [14] solved the positive semi-definite block case completely. Constantinescu [7] studied extensions of $T_0 = C_0$. - **5.** For singular scalar Toeplitz matrices (1), it follows from [13, Thm. 4] that (I_n) and (r_n) are equivalent. In the block case, this is no longer true as the following example for q = 2 and n = 1 shows: $$T_{1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ rank \ T_{1} = 3 \neq rank \ T_{0} = 2.$$ #### 4. Proof of the main results Using the partitions (17), one immediately obtains the following **Lemma 1.** If T_n and T_{n-1} are of the same rank, then $ImB_n \subset ImT_{n-1}$ and $ImD_n \subset ImT_{n-1}$. We now turn to the proof of Theorem 1. Let T_{n+1} be a singular extension of T_n . Lemma 1 (with n replaced by n+1) gives $$Im \ \left(egin{array}{c} C_{n+1} \\ B_n \end{array} ight) \ \subset Im \, T_n \ {\rm and} \ Im \ \left(egin{array}{c} D_n \\ C_{n+1}^H \end{array} ight) \subset Im \, T_n,$$ and using (17), (I_n) follows. Thus (a) implies (b). Now suppose that (I_n) holds. To prove (c), we apply Theorem B with $H = T_n$, $A = T_{n-1}$, U_0 as in (12), and therefore have to verify (10). It follows from (8) and (9) that $$S^{H}T_{n}U_{0}S_{11} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \tilde{H} & 0 \\ 0 & 0 & 0 \end{pmatrix} S^{-1}U_{0}S_{11} = \begin{pmatrix} 0 & 0 \\ \tilde{H}\tilde{V}_{0} & \tilde{H}\tilde{U}_{0} \\ 0 & 0 \end{pmatrix} . (21)$$ We partition $$S_{11} = (\underbrace{R_1}_{d_0 \ m_0 + k})$$ accordingly. Then (7) and (8) yield $T_n \begin{pmatrix} R_1 \\ 0 \end{pmatrix} = 0$, and together with (18) one abtains $$0 = \begin{pmatrix} T_{n-1} \\ B_n^H \end{pmatrix} R_1 = \begin{pmatrix} D_n^H \\ T_{n-1} \end{pmatrix} R_1 = T_n U_0 R_1.$$ Thus $\tilde{H}\tilde{V}_0 = 0$ in (21), and since \tilde{H} is nonsingular, this proves the first part of (10). On the other hand, (7) and (8) show that $$S^{-H} \begin{pmatrix} 0 & 0 \\ \Lambda_1 & 0 \\ 0 & 0 \\ 0 & I_k \\ 0 & 0 \end{pmatrix} = T_n \begin{pmatrix} R_2 \\ 0 \end{pmatrix} = \begin{pmatrix} T_{n-1} \\ B_n^H \end{pmatrix} R_2 =: G,$$ and therefore rank $G = m_0 + k$. In view of (I_n) , this is equivalent to $$rank \quad \binom{D_n^H}{T_{n-1}} R_2 = m_0 + k,$$ and from (21) we deduce rank $\tilde{U}_0 = m_0 + k$. This concludes the proof of " $(b) \Rightarrow (c)$ ". Next we show that (c) implies (d). Assume that $U = (U_0 \ U_1)$ is a T_n -unitary matrix. With $$X^{(j)} := \begin{pmatrix} 0 \\ I \\ 0 \end{pmatrix} \begin{cases} jq \\ 3q \\ j(n-j)q \end{cases}, j = 0, 1, ..., n,$$ one has $U_0 = (X^{(1)} X^{(2)} \dots X^{(n)})$. Thus $U X^{(j)} = X^{(j+1)}, j = 0, \dots, n-1$, and $$I = K_n(X^{(0)}, U). (22)$$ From the eigenvalue decomposition of T_n , we obtain a nonsingular matrix V and an $r \times r$ matrix of the form (13), where $r = rank \ T_n$, such that $$T_n = V^H \tilde{\Lambda} V, \ \tilde{\Lambda} = \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix}.$$ Together with (22) this yields the factorization $$T_n = K_n(\tilde{X}^{(0)}, \ \tilde{W})^H \tilde{\Lambda} \ K_n(\tilde{X}^{(0)}, \ \tilde{W})$$ (23) where $$VX^{(0)} =: \tilde{X}^{(0)} = \left(\begin{array}{c} X \\ \star \end{array}\right) \, ^{\}r} \text{and} \ VUV^{-1} =: \, \tilde{W} = \left(\begin{array}{c} W \ Y \\ \star \end{array}\right) \, ^{\}r}.$$ The T_n -unitary of U leads to the identity $$\tilde{W}^H\tilde{\Lambda}\,\tilde{W}=\tilde{\Lambda}$$ which implies $W^H \Lambda W = \Lambda$ and Y = 0. Then $$\tilde{W}^k = \begin{pmatrix} W^k & 0 \\ \star & \star \end{pmatrix}, k = 0, 1, \dots,$$ and (23) reduces to (14). Thus (d) holds. Part a) of the following lemma shows that (d) implies (a), and this concludes the proof of Theorem 1. #### Lemma 2. - a) $C_{n+1} = \sigma(X, W)$ in (20) defines a singular extension T_{n+1} of T_n . - b) Let $T_n = K_n (X_j, W_j)^H \Lambda K_n(X_j, W_j)$, j = 1, 2, be two given factorizations (14). Then, (16) and $$\sigma(X_1, W_1) = \sigma(X_2, W_2)$$ (24) are equivalent. Proof. a) From (14) and (20) we get $$T_{n+1}(C_0, \ldots, C_{n+1}) = K_{n+1}(X, W)^H \Lambda K_{n+1}(X, W),$$ and, obviously, T_{n+1} is a singular extension of T_n . b) (16) immediately gives (24). Now suppose that (24) holds, i. e. $$\sigma(X_j, W_j) = X_j^H \Lambda W_j^{n+1} X_j =: C_{n+1}, j = 1, 2.$$ Then, in addition to the factorizations $$T_n(C_0, \ldots, C_n) = K_n^{(1)^H} \Lambda K_n^{(1)} = K_n^{(2)^H} \Lambda K_n^{(2)},$$ (25) we have $$T_{n+1}(C_0, \ldots, C_n, C_{n+1}) = K_{n+1}^{(1)^H} \Lambda K_{n+1}^{(1)} = K_{n+1}^{(2)^H} \Lambda K_{n+1}^{(2)}.$$ (26) Here $$K_m^{(j)} := K_m(X_j, W_j), j = 1, 2, m = n, n + 1.$$ Since K_n has full rank r, one can choose a nonsignular $r \times r$ submatrix R_1 of $K_n^{(1)}$, and let R_2 be the corresponding submatrix of $K_n^{(2)}$. (25) implies $$R_1^H \Lambda R_1 = R_2^H \Lambda R_2;$$ therefore R_2 ist nonsingular and $Z := R_2 R_1^{-1}$ is Λ -unitary. R_j is also a submatrix of $K_{j+1}^{(j)}$ for j = 1, 2, respectively, and by using (26) we get $$0 = R_1^H \Lambda K_{n+1}^{(1)} - R_2^H \Lambda K_{n+1}^{(2)} = R_1^H \Lambda (K_{n+1}^{(1)} - Z^{-1} K_{n+1}^{(2)}).$$ It follows that $K_{n+1}^{(2)} = Z K_{n+1}^{(1)}$, and since $$K_{n+1}^{(j)} = (X_j \ W_j K_n^{(j)}), j = 1, 2,$$ one obtains $$X_2 = ZX_1$$ and $W_2 K_n^{(2)} = ZW_1 K_n^{(1)}$. By considering the submatrices R_i of $K_n^{(i)}$, the second identity yields $$W_2 = (W_2 R_2) R_2^{-1} = (Z W_1 R_1) R_2^{-1} = Z W_1 Z^{-1}.$$ Thus both conditions in (16) are satisfied. In the rest of this section, we prove Theorem 2. Part b) is an immediate consequence of Lemma 1. Now we turn to part a) and assume that (I_n) holds. Note that Theorem 1 guarantees that U, C and F are not empty. First we show that $\sigma: F(T_n) \to C(T_n)$ is bijective. By part a) of Lemma 2 $\sigma(X, W) \in C(T_n)$ for each factorization (14); moreover, by part b) two (non-)equivalent factorizations lead (not) to the same singular extension. Thus (20) defines an injective mapping on $F(T_n)$. Let $C_{n+1} \in C(T_n)$ be given. Then $T_n(C_0, \ldots, C_n)$ and $T_{n+1}(C_0, \ldots, C_{n+1})$ satisfy (r_{n+1}) and hence (I_{n+1}) by part b) of Theorem 2. In view of Theorem 1, there exists a factorization of type (14) for T_{n+1} : $$T_{n+1} = K_{n+1}(X, W)^{H} \Lambda K_{n+1}(X, W).$$ In particular, $$T_n = K_n(X, W)^H \Lambda K_n(X, W)$$ and $C_{n+1} = \sigma(X, W)$. This shows the surjectivity of σ , and in all the mapping σ is one-to-one. Next we consider τ . From (12) and the first partition in (17), it follows that $U = (U_0 \ U_1)$ is T_n -unitary iff $$B_n = (\underbrace{0 \ I}_{q \ nq}) \ T_n U_1 \text{ and } C_0 = U_1^H \ T_n U_1. \tag{27}$$ Now let $U = (U_0 \ U_1)$ and $U' = (U_0 \ U_1')$ be two T_n -unitary matrices with canonical representations (11). From (7), (8) and (11), we get $$T_n(U_1 - U_1') = S^{-H} \begin{pmatrix} 0 & 0 \\ \tilde{H}L(M - M') & 0 \\ 0 & 0 \end{pmatrix} S_{22}^{-1}$$ where $\tilde{H}L$ is nonsingular. Thus U and U' are equivalent iff $$T_n U_1 = T_n \ U_1'. (28)$$ However, by the first relation in (27), the last nq equations in (28) are always fulfilled. Thus, by (19), (28) is equivalent to $\tau(U) = \tau(U')$. This shows that (19) defines an injective mapping on $U(T_n)$. To prove $C_{n+1} = \tau(U) \in C(T_n)$, we note that by (19) and (27), $$T_{n+1}(C_0, \ldots, C_{n+1}) = \begin{pmatrix} T_n & B_{n+1} \\ B_{n+1}^H & C_0 \end{pmatrix} = \begin{pmatrix} T_n & T_n U_1 \\ U_1^H & T_n & U_1^H & T_n U_1 \end{pmatrix}.$$ Hence $$T_{n+1}(C_0, \ldots, C_{n+1}) = \begin{pmatrix} I & 0 \\ U_1^H & I \end{pmatrix} \begin{pmatrix} T_n & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I & U_1 \\ 0 & I \end{pmatrix}$$ (29) is a singular extension of T_n . Conversely, if $C_{n+1} \in C(T_n)$ is given, Lemma 1 (with n replaced by n+1) ensures the existence of a matrix U_1 such that $$B_{n+1} = \begin{pmatrix} C_{n+1} \\ B_n \end{pmatrix} = T_n U_1,$$ i.e. $U = (U_0 \ U_1)$ statisfies (19) and the first identity of (27). Moreover, from $rank \ T_{n+1} = rank \ T_n$ we deduce that (29) holds. This implies $C_0 = U_1^H \ T_n U_1$, and, in view of (27), U is T_n -unitary. Thus τ is surjective, and the proof of a) is complete. It remains to prove part c) of Theorem 2. We show that (r_n) is equivalent to $|U(T_n)| = 1$. Note that, by part b) of Theorem 2 and Theorem 1, (r_n) guarantees $U(T_n) \neq \emptyset$. From the canonical representation (11) we see that $U(T_n)$ consists of precisely one equivalence class iff k = l = 0 in (8) (with $H = T_n$, $A = T_{n-1}$). This is equivalent to the rank condition (r_n) . ## 5. Generalizations of Carathéodory's theorem Let $T_n(C_0, \ldots, C_n)$ be an Hermitian block Toeplitz matrix (1) of rank r and Λ be the signature matrix (13) where μ and ν is the number of positive and negative eigenvalues of T_n , respectively. Each factorization of the form (14) with $X r \times q$ and W an $r \times r \Lambda$ -unitary matrix is equivalent to the representation $$C_k = X^H \Lambda W^k X, k = 0, ..., n,$$ (30) of the blocks of T_n . By transforming Λ and W to a certain normal form, we now deduce from (30) generalizations of Carathéodory's Theorem A. First, some needed results from the theory of H-unitary matrices (e. g. Gohberg, Lancaster and Rodman [15]) are briefly recalled. Let H be a nonsingular Hermitian matrix and U H-unitary. The spectrum of U is symmetric relative to the unit circle; i. e. if λ is an eigenvalue, so is $\bar{\lambda}^{-1}$, and Jordan blocks corresponding to symmetric pairs are of the same size [15, p. 26]. Thus U has Jordan normal form $$J = diag(J_{d_1}(\lambda_1), \dots, J_{d_{\alpha}}(\lambda_{\alpha}), J_{d_{\alpha+1}}(\lambda_{\alpha+1}), J_{d_{\alpha+1}}(\bar{\lambda}_{\alpha+1}^{-1}), \dots, J_{d_{\alpha+\beta}}(\lambda_{\alpha+\beta}), J_{d_{\alpha+\beta}}(\bar{\lambda}_{\alpha+\beta}^{-1}))$$ (31) where $$J_{I}(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & \lambda \end{pmatrix}$$ denotes the $l \times l$ Jordan block and $$\lambda_{j} = \begin{cases} e^{i\Phi_{j}}, j = 1, \dots, \alpha \\ s_{j}e^{i\Phi_{j}}, 0 < s_{j} < 1, j = \alpha + 1, \dots, \alpha + \beta, \end{cases}$$ (32) and we always assume $0 \le \Phi < 2\pi$. From (31) results a corresponding normal form of the pair(U, H) composed of upper triangular Toeplitz matrices of the types $$N_{l} = \begin{pmatrix} 1 & 2i & 2i^{2} \dots 2i^{l-1} \\ 0 & 1 & 2i & \ddots & \vdots \\ \vdots & \ddots & 1 & \ddots & 2i^{2} \\ \vdots & \ddots & \ddots & 2i \\ 0 & \dots & 0 & 1 \end{pmatrix}$$ (33 a) $$N_{l}(\lambda) = \begin{pmatrix} 1 & \varkappa_{1} & \varkappa_{2} & \dots & \varkappa_{l-1} \\ 0 & 1 & \varkappa_{1} & \ddots & \vdots \\ \vdots & \ddots & 1 & \ddots & \varkappa_{2} \\ \vdots & \ddots & \ddots & \varkappa_{1} \\ 0 & \dots & 0 & 1 \end{pmatrix}, N'_{l}(\lambda) = \begin{pmatrix} 1 & \chi_{1} & \chi_{2} & \dots & \chi_{l-1} \\ 0 & 1 & \chi_{1} & \ddots & \vdots \\ \vdots & \ddots & 1 & \ddots & \chi_{2} \\ \vdots & \ddots & \ddots & \chi_{1} \\ 0 & \dots & 0 & 1 \end{pmatrix}, (33b)$$ where for $\lambda \neq 0, j = 1, 2, ..., l-1$ $$\chi_j = q_1^{j-1}(q_1 - \bar{q}_2), \quad \chi_j = q_1^{j-1}(q_2 - \bar{q}_1)$$ with $$q_1 = \frac{i}{2} (1 + \lambda), \quad q_2 = \frac{i}{2} (1 + \bar{\lambda}^{-1}),$$ and of $l \times l$ anti-identity matrices $$P_{l} = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & \ddots & 1 & 0 \\ 0 & \ddots & \ddots & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$$ $$(34)$$ Note that N_l is P_l -unitary and diag $(N_l(\lambda), N'_l(\lambda))$ is unitary with respect to P_{2l} ; moreover, $N'_l(\lambda) = \tilde{N}_l^{-1}$ where \tilde{N}_l denotes the matrix whose entries are the complex conjugates of those of N_l [15, p. 26]. **Theorem C** ([15, Thm. 4.1]). Let H be a nonsingular Hermitian matrix and U be H-unitary with Jordan normal form J arranged as in (31), (32). Then, there exists a nonsingular matrix S and an ordered set $E = \{E_1, \ldots, E_n\}$ of signs $E = \{E_1, \ldots, E_n\}$ of signs $E = \{E_n\}$ such that $$U = S^{-1} N_I S$$ and $H = S^H P_{\epsilon, I} S$ where $$N_{J} = diag(N_{d_{1}}, \ldots, N_{d_{\alpha}}, N_{d_{\alpha+1}}(\lambda_{\alpha+1}), N'_{d_{\alpha+1}}(\bar{\lambda}_{\alpha+1}^{-1}), \ldots, N_{d_{\alpha+\beta}}(\lambda_{\alpha+\beta}), N'_{d_{\alpha+\beta}(\bar{\lambda}_{\alpha+\beta}^{-1})})$$ (35) and $$P_{\epsilon, J} = diag (\epsilon_1 P_{d_1}, \dots, \epsilon_{\alpha} P_{d_{\alpha}}, P_{2d_{\alpha+1}}, \dots, P_{2d_{\alpha+\beta}}).$$ (36) Remark that N_I is $P_{\epsilon,I}$ -unitary. We now apply Theorem C to the Λ -unitary matrix W, and thus from (30) one obtains $$C_k = Y^H P_{\epsilon, J} N_J^k Y, k = 0, ..., n,$$ (37) where Y := S X. Partitioning $$Y = (Y_1^H, Y_2^H, \dots, Y_{\alpha}^H, Y_{\alpha+1}^H, (Y_{\alpha+1}')^H, \dots, Y_{\alpha+\beta}^H, (Y_{\alpha+\beta}')^H)^H$$ (38) in conformity with (35) and rewriting of (37) in terms of the blocks of (35) and (36), then leads to the following Carathéodory type representation: For $k = 0, \ldots n$ $$C_k = \sum_{j=1}^{a} \epsilon_j e^{i\Phi_j k} \varrho_j^{(k)} + \sum_{j=a+1}^{a+\beta} e^{i\Phi_j k} (s_j^k \Psi_j^{(k)} (s_j e^{i\Phi_j}) + s_j^{-k} \Omega_j^{(k)} (s_j e^{i\Phi_j})). \tag{39}$$ Here the abbreviations $$\varrho_{i}^{(k)} = Y_{j}^{H} P_{d_{i}} N_{d_{i}}^{k} Y_{j}, \quad \Psi_{j}^{(k)} (\lambda) = (Y_{j}^{\prime})^{H} P_{d_{i}} N_{d_{i}}(\lambda)^{k} Y_{j}, \tag{40a}$$ $$\Omega_{j}^{(k)}(\lambda) = Y_{j}^{H} P_{d_{i}} N_{d_{i}}'(\lambda)^{k} Y_{j}'$$ (40b) are used. Note that $$(d:=)\sum_{j=1}^{\alpha+\beta}d_j=rank\ T_n. \tag{41}$$ Conversely, if a representation (39) is given, by defining N_J , $P_{\epsilon,J}$ and Y via (35), (36) and (38), we arrive at the factorization $$T_n(C_0, \ldots C_n) = K_n(Y, N_J)^H P_{\epsilon, J} K_n(Y, N_J).$$ (42) This shows that a representation (39) with $d < rank T_n$ is not possible. Moreover, if (41) holds, then (42) can easily be transformed into a factorization (14). Thus, in view of Theorem 1, we have proved the following **Theorem 3.** Let $T_n(C_0, \ldots, C_n)$ be an Hermitian block Toeplitz matrix. Then, there are equivalent: - (a) (In) is satisfied. - (b) There exists a representation (39), (40) of the blocks C_0, \ldots, C_n with $0 \le \Phi_j < 2\pi, j = 1, \ldots, \alpha + \beta, 0 < s_j < 1, j = \alpha + 1, \ldots, \alpha + \beta,$ and components of type (33), (34), and the additional requirement (41) is satisfied. The representation (39) simplifies considerably if the associated Jordan normal form (31) is a diagonal matrix, and one obtains the following **Theorem 4.** Let $T_n(C_0, \ldots, C_n)$ be an Hermitian block Toeplitz matrix with $r := rank \ T_n > 0$. a) If T_n has a factorization (14) with an $r \times r$ diagonalizable Λ -unitary matrix W, then the blocks of T_n can be represented in the form $$C_{k} = \sum_{j=1}^{t_{1}} e^{i\Phi_{j}k} \varrho_{j} - \sum_{j=t_{1}+1}^{t_{2}} e^{i\Phi_{j}k} \varrho_{j} + \sum_{j=t_{2}+1}^{t_{3}} {}^{i\Phi_{j}k} (s_{j}^{k} \Psi_{j} + s_{j}^{-k} \Psi_{j}^{H}),$$ $$k = 0, \dots, n,$$ $$(43)$$ where $$0 \le \Phi_1 < \Phi_2 < \ldots < \Phi_{t_1} < 2\pi,$$ $0 \le \Phi_{t_1 + 1} < \Phi_{t_1 + 2} < \ldots < \Phi_{t_2} < 2\pi,$ $0 \le \Phi_j < 2\pi, 0 < s_j < 1 \text{ and all } s_j e^{i\Phi_j} \text{ are distinct, } j = t_2 + 1, \ldots, t_3,$ and the matrices ϱ_j , $j = 1, ..., t_2$, are Hermitian and positive semi-definite, and $$\mu := \sum_{j=1}^{t_1} rank \ Q_j + \sum_{j=t_2+1}^{t_3} rank \ \Psi_j$$ (44a) and $$\nu := \sum_{j=t_1+1}^{t_2} rank \ \varrho_j + \sum_{j=t_2+1}^{t_3} rank \ \Psi_j$$ (44b) are just the numbers of positive and negative eigenvalues of T_n , respectively. Moreover, there are no representations (43) with $\mu + \nu < r$. b) If T_n is positive semi-definite, there exists an integer t, numbers $0 \le \Phi_1 < \Phi_2 < \ldots < \Phi_t < 2\pi$, and positive semi-definite Hermitian matrices ϱ_j , $j = 1, \ldots t$, such that $$C_k = \sum_{j=1}^t e^{i\Phi_{jk}} \varrho_j, \quad k = 1, ..., n,$$ (45) and $$r = \sum_{j=1}^{l} rank \, \varrho_j.$$ The representation (45) is unique iff the rank condition (r_n) is satisfied. **Proof.** a) Let (39) be the representation induced by the diagonalizable Λ -unitary matrix W. Then, $d_j = 1, j = 1, ..., \alpha + \beta$, and since $P_1 = N_1 = N_1(\lambda) = N_1'(\lambda) = (1)$ the matrices (40) are independent of k and λ . Moreover, $\varrho_j^{(k)} = Y_j^H Y_j$ is positive semi-definite, $j = 1, ..., \alpha$, and $\Omega_j^{(k)} = (\Psi_j^{(k)})^H$, $j = \alpha + 1, ..., \alpha + \beta$. By collecting terms in (39) with coinciding ϵ_j and Φ_j , $j = 1, ..., \alpha$, and coinciding numbers $s_j e^{i\Phi_j}$, $j = \alpha + 1, ..., \alpha + \beta$, respectively, and by a possible renumbering, we obtain a representation (43). Since Λ and $P_{\epsilon,j}$ have the same signature, one gets $\mu \le \mu_+$ and $v \le v_-$. Here, μ and v are defined by (44), and μ_+ (v_-) denotes the number of positive (negative) eigenvalues of T_n . It remains to show that $\mu + v < r$ is impossible. Assume that (43) is given. There exist matrices Y_j and Y'_j of full column rank such that $$\varrho_j = Y_j^H Y_j, j = 1, \ldots, t_2, \quad \Psi_j = (Y_j')^H Y_j, \quad j = t_2 + 1, \ldots, t_3,$$ and define *Y* via (38) ($\alpha = t_2$, $\beta = t_3 - t_2$). Note that *Y* has $\mu + \nu$ rows. It is easily verified that (43) can be rewritten as a factorization of type $$T_n = K_n(Y, D)^H P K_n(Y, D),$$ (46) and this implies $\mu + \nu \ge r$. b) Let T_n be positive semi-definite. By Corollary 1, T_n admits a factorization (14) with $\Lambda = I$ and W a unitary matrix. Hence, W is diagonalizable, and there exits a representation (43) which, in view of (44), reduces to (45). It remains to show that the representation (45) is unique iff (r_n) holds. To this end, recall that (45) is equivalent to the factorization (46) with P = I and $$D = diag(e^{i\Phi_1} I_{l_1}, \ldots, e^{i\Phi_l} I_{l_l})$$ where $l_j = rank \ Q_j = rank \ Y_j$, j = 1, ..., t. As a simple calculation shows, the representation (45) is unique iff these factorizations are equivalent in the sense of (16). By part c) of Theorem 2 this is equivalent to (r_n) . Remarks 6: For the special case of scalar Toeplitz matrices, the representation (43) was already derived by Delsarte and Genin [10] using a technique different from our approach. 7. (44) can be rewritten in the form $$C_k = \int_0^{2\pi} (e^{i\Phi})^k d\varrho(\Phi), \quad k = 0, \dots, n,$$ with ϱ defined by $$\varrho(\Phi) := \sum_{j=1}^{l} \varrho_j \text{ for } \Phi_l \leq \Phi < \Phi_{l+1}, \quad l = 0, \ldots, t,$$ $(\Phi_0 := 0, \Phi_{t+1} := 2\pi)$. The matrix-valued function $\varrho(\Phi)$ is Hermitian and nondecreasing in the sense that $\varrho(\Phi') - \varrho(\Phi)$ is positive semi-definite for $\Phi' \ge \Phi$. Thus, as a by-product, we have obtained an elementary proof of the solvability of the truncated trigonometric moment problem for matrix-valued measures. This problem (for the more general operator version) was first solved by Ando [3] using the Naimark Dilation Theorem. **8.** In general, (I_n) does not imply that T_n admits a representation (43). Consider the scalar Toeplitz matrix $$T_2(c_0, c_1, c_2)$$ with $c_k = ki$, $k = 0, 1, 2$, $i^2 = -1$. It is easily verified that a representation (43) is not possible. However (I_2) holds, and the entries of T_2 can be written in the form (39): For k = 0, 1, 2 $$c_k = Y_2^H P_2 N_2^k Y_2, \ Y := \left(\begin{array}{c} i \\ 1/\sqrt{2} \end{array} \right) \ .$$ Finally, we state an extension of Carathéodory's Theorem A for the representation of arbitrary complex matrices. **Corollary 3.** Let C_1, \ldots, C_n be given complex $q \times q$ matrices not all zero, $n \ge 1$. Then, to each Hermitian positive definite $q \times q$ matrix Σ , there exists a minimal integer r, an integer t = t(r), numbers Φ_j with $$0 \le \Phi_1 < \Phi_2 < \ldots < \Phi_r < 2\pi,$$ Hermitian positive semi-definite matrices ϱ_j , j = 1, ..., t, and a number $\sigma > 0$ such that $$C_k = \sum_{j=1}^t e^{i\Phi_{jk}} \varrho_j, \quad k = 1, \dots n,$$ (47) and $$\sigma \Sigma = \sum_{j=1}^{t} \varrho_j, \quad r = \sum_{j=1}^{t} rank \varrho_j. \tag{48}$$ Moreover, $r = rank \ T_n(\sigma \Sigma, C_1, \ldots, C_n)$ and the representation (47), (48) is unique iff T_n satisfies the rank condition (r_n) . This corollary follows immediately from part b) of Theorem 4 applied to $T_n(C_0, \ldots, C_n)$. Here $C_0 = \sigma \Sigma$ where $\sigma > 0$ is the uniquely determined number such that $T_n(\sigma \Sigma, C_1, \ldots, C_n)$ is positive semi-definite, but singular. #### References - [1] Akhiezer, N. I.: The classical moment problem. London: Oliver and Boyd 1965 - [2] Akhiezer, N. I., Krein, M. G.: Some questions in the theory of moments. Providence: American Mathematical Society 1962 - [3] Ando, T.: Truncated moment problems for operators. Acta Sci. Math. 31, 319-334 (1970) - [4] Carathéodory, C.: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64, 95–115 (1907) - [5] Carathéodory, C.: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911) - [6] Constantinescu, T.: On the structure of positive Toeplitz forms. In: Dilation theory, Toeplitz operators and other topics, pp. 127–149. Basel: Birkhäuser 1983 - [7] Constantinescu, T.: Schur analysis for matrices with a finite number of negative squares. In: Operator Theory: Advances and Applications, Vol. 17, pp. 87–108. Basel: Birkhäuser 1986 - [8] Cybenko, G.: Moment problems and low rank Toeplitz approximations. Circuits, Systems, Signal Process. 1, 345–366 (1982) - [9] Cybenko, G.: Computing frequency estimates. In: Proceedings of the Princeton Conference on Information Science and Systems, pp. 587–591. Department of Electrical Engineering, Princeton 1985 - [10] Delsarte, P., Genin, Y.: Spectral properties of finite Toeplitz matrices. In: Proc. 1983 Int. Symp. Math. Theory of Networks and Systems, pp. 194–213. Lecture Notes in Comput. Sci. 58. Berlin, New York: Springer 1984 - [11] Delsarte, P., Genin, Y., Kamp, Y.: Pseudo-Carathéodory functions and Hermitian Toeplitz matrices. Philips J. Res. 41, 1–54 (1986) - [12] Delsarte, P., Genin, Y., Kamp, Y.: Orthogonal polynomial matrices on the unit circle. IEEE Trans. Circuits and Systems CAS-25, 149-160 (1978) - [13] Freund, R., Huckle, Th.: An extension problem for H-unitary matrices with applications to Hermitian Toeplitz matrices. Preprint Nr. 153, Institut für Angewandte Mathematik und Statistik der Universität Würzburg. To appear in Linear Algebra Appl. - [14] Fritzsche, B., Kirstein, B.: An extension problem for non-negative Hermitian block Toeplitz matrices. Math. Nachr. 130, 121–135 (1987) - [15] Gohberg, I., Lancaster, P., Rodman, L.: Matrices and indefinite scalar products. Basel: Birkhäuser 1983 - [16] Grenander, U., Szegö, G.: Toeplitz forms and their applications. Berkeley: University of California Press 1958 - [17] Krein, M.G., Langer, H.: Über die verallgemeinerten Resolventen und die charakteristische Funktion eines isometrischen Operators im Raume Π_{χ} . In: Colloquia Math. Soc. J. Bolyai 5. Hilbert space operators and operator algebras, Tihany (Hungary), 1970, pp. 353–399 - [18] Krein, M.G., Langer, H.: Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Π_{χ} zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen. Math. Nachr. 77, 187–236 (1977) - [19] Krein, M. G., Langer, H.: Some propositions on analytic matrix functions related to the theory of operators in the space Π_γ. Acta Sci. Math. 43, 181–205 (1981) - [20] Pisarenko, V.F.: The retrieval of harmonics from a covariance function. Geophys. J. R. Astr. Soc. 33, 347–366 (1973) - [21] Szegö, G.: Über einen Satz des Herrn Carathéodory. Jahresbericht der Deutschen Mathematiker-Vereinigung 28, 131–137 (1919) - [22] Szegö, G.: On a theorem of C. Carathéodory. In: Studies in mathematics and mechanics, presented to Richard von Mises, pp. 62–66. New York: Academic Press 1954 - [23] Toeplitz, O.: Über die Fourier'sche Entwickelung positiver Funktionen. Rend. Circ. Mat. Palermo 32, 191–192 (1911) # **ZOBODAT - www.zobodat.at** Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: <u>Sitzungsberichte der mathematischphysikalischen Klasse der Bayerischen Akademie der</u> Wissenschaften München Jahr/Year: 1989 Band/Volume: 1988 Autor(en)/Author(s): Freund Roland, Huckle Thomas Artikel/Article: On hermitian block Toeplitz matrices and generalizations of the theorem of C. Carathéodory 41-61