
X. Graphische Bestimmung der Achsen

des schielen elliptischen Kegels.

Von J. Ph. Weinmeister.

Mit 3 Abbildungen.

Im folgenden soll die Aufgabe der Achsenbestimmung zunächst

analytisch gelöst und dann das Ergebnis geometrisch gedeutet werden.
Die Basisellipse (Mittelpunkt 0) habe die Halbachsen a

, &, die auf das

Achsensystem der Ellipse bezogenen Koordinaten des Höhenfufspunktes
H seien p, q (beide positiv); endlich sei die Höhe 8II= h. Sind nun
Pv P2 , P3

die gesuchten Spurpunkte der Kegelachsen in der Basisebene, so

hat das Dreieck P
1
P

2
P

3
den Punkt H zum Höhenschnittpunkt, und es ist das

Produkt aus den Abschnitten einer jeden Höhe = li
2

. Man kann daher
auch sagen, dafs P

1
P

2
P

3
ein Polardreieck des Kreises um H mit dem

Radius hi sei. Da es aber aufserdem ein Polardreieck der Basisellipse

ist, so kann man die Aufgabe in folgender Fassung auf die Ebene über-

tragen :

Es soll das gemeinsame Polardreieck der Kurven mit den
Gleichungen

(x—pf -j- (y — q)

2
-\- h2 = 0 un d x2

b
2 + y

2a2 — a2
b
2'= 0

gesucht werden.

Die Koordinaten des einen Punktes P seien x\ y\ Dann müssen
folgende Gleichungen identisch sein:

(1)
* (*' — p) + yW — i)

=p%' + iy'—f — r— w
xx f

b
2 + yy

f

a 1 = a2
b
2

,

oder die Werte x\ y
f müssen folgende Gleichungen befriedigen:

x —

p

y— q px -
f- qy — p

2 — q
2 — h2

xb 2 ya2 a2
b
2

Eliminiert man y ,
so erhält man für x die kubische Gleichung:

/ox x3
e
2
p — x2 \a2 e2 + p

2
(a

2 + e
2
) -f- q

2
(b

2
-f- e

2
) h2

e
2

]

^ + oca
2
p (a

2 + e
2 + p

2
-f- q

2 + h2
)— alp 2 == 0.

Dies wäre die analytische Lösung der Aufgabe. Um nun die

Punkte Pj P
2
P3

durch Zeichnung zu erhalten, suchen wir zwei Kegel-
schnitte, die sie als Kurvenpunkte enthalten. Da sich nun aber zwei
Kegelschnitte in vier Punkten schneiden, so mufs sich aufser den gesuchten
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Punkten noch ein vierter und zwar falscher Schnittpunkt F ergeben. Die
Kegelschnittsgleichungen entnehmen wir aus (2) in der Form

= xye 2

-f- xb
2
q — yct

2
p — 0

(4) $ 2= (x — p) a 2 — x (px + qy—p
2 — q

2 — li
2
)
== 0

==• (y— q.)
b2 - y {px + qy — p

2 — - h*)= 0.

Diese Kurven sind offenbar Hyperbeln und zwar sind

die Koordinaten des Mittelpunktes M von

a2 b
2

(5)

Multiplizieren wir die Gleichungen (4) mit den unbestimmten Parametern

«, ß, y, so erhalten wir in

(6) a^ -f- ß «g) 2 -j- y — 0

die Gleichung eines Netzes von Kegelschnitten, die sämtlich durch die

Punkte P gehen. Von diesen kann man zwei beliebig wählen. Es empfiehlt

sich zunächst = 0 zu nehmen wegen der Einfachheit der Gleichung

und der Abwesenheit der Gröfse h. Als zweiten Kegelschnitt wählen wir

den Kreis ^ = 0. Für denselben ist:

<?>

Man erhält:

: e‘ ß = 1 : p y—l \ q.

(
8

)

®= ar
2 + i/

2 x ~
(p

2 + q- + e‘) + yM(r + «*— «
2
)

rfo»+b*-h*d-.+^iw
\J3 q)

0.

Variiert /&, so beschreibt ^ = 0 ein Kreisbüschel mit der gemeinsamen
OC XI

Sekante — -4- — == 0. Diese Gerade schneidet die Hyperbel © 1
= 0 im

. p q

Koordinatenanfang und im Punkte x—p a2
4- b

2

y — — q
a2

-p b
2

e*
"

Diese Werte befriedigen aufserdem = 0, aber nicht «£) 2 = 0 und —- 0.

Daher ist dieser Punkt der falsche Schnittpunkt F.

a 2 + b
2

(1
—^2 * ^2

(
9

)
Koordinaten des Punktes F: x=p—4^—

, y
—

Fig. 1.
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Zeichnung.

Der Punkt F. H' sei der Spiegelpunkt von H in Beziehung auf

die sc-Achse. Dann liegt F auf OH', und zwar ist

OF : OH' = a2
-f b2 :a2— b

2
.

Die Hyperbel H± — 0. Aus (5) und (9) ergibt sich, dafs ihr Mittel-

punkt M die Verbindungslinie HF halbiert. Die Asymptoten sind den
Koordinatenachsen parallel. Weiter geht die Hyperbel durch die Punkte
H und 0. Es sei bemerkt, dafs sich dies von vornherein ergibt. Ist

nämlich h = 0, so entartet der Kegel, und es fällt seine Spitze S mit H
zusammen. Ist andererseits 7/ = oo, so entartet dieser schiefe elliptische

Kegel zu einem geraden elliptischen Zylinder, und es liegt die Projektion

von S in 0.

Das Kreisbüschel' U = 0 bei variierendem h.

Die gemeinsame Sekante ist OH'. Auf ihr liegt der Schnittpunkt F.
Für den anderen Schnittpunkt G ergibt sich aus dem Absolutglied der

Kreisgleichung OG • OF~ a2 -(- b
2

. Auch ist OG-OH' = e
2

.

Koordinaten des Schnittpunktes G:

(10) x = p
p

2 + q
1

y= — Q
a2 — b

2

p
2

-f- q
2

Man kann das Büschel auch noch auf andere Art bestimmen. Für
li— 0 ergibt sich die eine Kegelachse als das in H auf die Ebene er-

richtete Lot. Die beiden anderen sind die auf einander senkrechten

Harmonikalen des Punktes H. Man erhält sie bekanntlich, indem man
die Winkel der Brennstrahlen dieses Punktes halbiert. Schneidet man
dieselben durch die Polare von H, so erhält man das *Polardreieck für

den Fall h = 0. Der ihm umgeschriebene Kreis ergibt das Büschel.

Der Kreis ^ = 0.

Sucht man die Potenz des Punktes M für diesen Kreis, so erhält

+ 7i
2

)

= — {MW + W) — — MS\

M liegt also innerhalb des Kreises. Man trage auf MH von M aus

die Länge MS2
: MF ab und erhält so den zweiten Schnittpunkt des

Kreises mit FM.

man q
2 aA

i_p
2
b

Die reziproke Polare der Hyperbel = 0 für die Ellipse ist

ein Kegelschnitt, dem sämtliche Polardreiecke, die man durch Variieren

von li erhält, anbeschrieben sind. Da die Hyperbel durch 0 geht, mufs
dieser Kegelschnitt eine Parabel sein. Sie mufs aufserdem die Achsen
berühren, also geht ihre Direktrix durch 0 und ebenso durch H. Der
Brennpunkt liegt auf allen den Dreiecken umgeschriebenen Kreisen, also

ist er einer der Schnittpunkte des Büschels. Er ist Punkt G.

Man setze in die linke Seite der Gleichung (3) im Hinblick auf die

Punkte 0, H, M für x die Werte ein: 0, p*p -f- oo, so erhält man der

Reihe nach — a4
p

2
,

-)- h2
p

2
b
2

,
— a4

b
2
p

2
q
2

: e
4

, + oo.

Hiernach liegen die Punkte P
1
und P

2
auf dem Hyperbelast durch

0 und H, und zwar liegt P
1
zwischen 0 und H, P2

auf der Verlängerung
des Bogens OH über H hinaus. P

3
gehört dem anderen Hyperbelast an.
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Ferner mufs von den drei Punkten einer im Innern der Ellipse liegen,

die beiden anderen liegen aufserhalb.

Ihre Koordinaten seien xv yx ;
x2 , y2 \

a?8 , ys
. Dann gelten die Gleichungen

x
i
x

2
|

Vi V-2 i
x

2
x

s
|

y2 y% i
xs x± i y& y^ i

a2 "t"
b
2 a2 “D h

2 a2 ^ b
2

Hieraus ergibt sich:

X
l) (

X
2
~~ Xl) ^

2/2 2/3 a2

Da nun a 3 >aq, x
2
> x

1 , ?/2 >0, 2/3
< 0, so ist yl_

b
2

d. h. der Punkt P
1

liegt innerhalb der Ellipse.

Wir unterscheiden nun zwei Fälle.

0
,

I. P sei innerhalb der Ellipse gegeben (Fig. 2).

Die Polare von P für die gegebene Ellipse schneide die Hyperbel
= 0 in den Punkten 2 und 3, und zwar gehöre 2 dem Ast durch P

,

3 dem anderen Ast an. Dann sind P, 2 und 3 die Anfangslagen der

Punkte P
x , P2 ,

P
3 ,

d. h. für den Fall h = 0. Wächst nun h bis in das

Unendliche, so durchläuft P
1
den Bogen von P bis 0, während sich P

2

und P
3

im entgegengesetzten Sinn auf ihren Ästen in das Unendliche
bewegen.

II. H sei aufserhalb der Ellipse gegeben (Fig. 3).

Die Polare von H schneide die Hyperbel im Punkt 1* innerhalb der

Ellipse und im Punkt 3 aufserhalb. Dann sind 1, P, 3 die Anfangslagen

der Punkte Pv P2 ,
P

3
. Wächst nun wieder h bis in das Unendliche, so

durchläuft P, den Bogen 1,0; P
2
und P3

bewegen sich im entgegen-

gesetzten Sinn von P, bezw. 3 aus*auf ihren Ästen in das Unendliche.

Der besondere Fall q = 0, d. h. es liege P auf der Haupt-
achse der Ellipse. Alsdann zerfällt |q = 0 in seine Asymptoten:

y— 0 und x —pa2
: e

2
. Dieser Wert von x mufs eine Wurzel der Gleichung (3)

sein. In der Tat verwandelt sich diese für q — 0 in:

(x —p °^j •
[x2 — ~ (p

2 + a2
-f- h

2
) -f-

= 0.

Die hieraus fliefsende quadratische Gleichung läfst sich auch in

folgender Form schreiben:
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(11) (a + x)2
: (a — xf = (a +pf + :

(a — Pf + ^2
.

Die Gleichung für y erhält man aus der Gleichung (3) durch Ver-

tauschung der Werte x, p, a bezw. mit y, q,
b. Sie lautet:

_ ytqe* _ y* W (& - e*) + (a
2 - e

2
)
- e

2
(b

2 + 7*
2
)]^ + yb2

q (p
2 + q

2 + b
2 — e

2 + h2
) — Wq2 = 0.

Setzt man in dieser Gleichung q = 0, so werden alle Glieder zu Null,

mit Ausnahme des Koeffizienten von y
2

. Wir setzen ausdrücklich fest:

p
2 (a

2 — e
2
)^ e

2
(b

2 h2
). Es wird dann eine Wurzel der Gleichung (12)

unendlich grofs, die beiden anderen werden Null.

In der Tat ist in diesem Fall die Ebene durch S und die Ellip’Sen-

hauptachse eine Symmetrie -Ebene des Kegels. Wir erhalten die eine

Achse als Lot in S auf die Ebene (x=pa2 :e2
, y = oo). Die beiden

.anderen Achsen liegen in dieser Symmetrie-Ebene und halbieren die

Winkel der Kegelachsen. Dies stimmt überein mit der Gleichung (11).

Endlich sei q — 0 und p
2

(a
2 — e

2)=e2
(b

2 + h2
).

Dann wird Gleichung (12) identisch, man erhält unendlich viele Achsen,

der gegebene Kegel ist ein Umdrehungskegel. Um für diesen Fall den
•Grt des Punktes S in der Symmetrie -Ebene zu erhalten, setze man in der

zweiten Bedingungsgleichung
01

p = x und h = y.

Die Ortsgleichung für S *vlrd

x2
y
2 _

d. i. eine Hyperbel, die die Ellipsenbrennpunkte zu Scheiteln und die

Ellipsenscheitel zu Brennpunkten hat, ein aus der Dandelinsclien Theorie
wohlbekannter Satz. *

Es sei noch kurz auf die übliche Konstruktion der gemeinsamen
Polaren* zweier Kegelschnitte hingewiesen, wenn diese weder vier reelle

Punkte, noch vier reelle Tan'genten gemeinsam haben.

Sind zwei Kegelschnitte K
±
und K

2
gegeben, so kann man jedem

Punkt P der Ebene ein^n Punkt Q eindeutig zuordnen, indem man fest-

setzt, dafs PQ von K±
harmonisch geteilt werde, und auch von K

2
. Man •

findet hiernach Q , indem man die beiden Polaren von P zum Durchschnitt
bringt. Nun durchlaufe P die Gerade P, deren Pol für K

x
mit A

1
und

für K2
mit A

2
bezeichnet 'gein^möge. Alsdann beschreiben die Polaren

von P zwei projektive Strahlbüschel mit den Scheiteln A
1
und A2 ;

der

Ort des Punkts Q ist somit ein Kegelschnitt durch A
1
und A2 . Es sei

weiter 0 die eine Ecke des beiden Kegelschnitten gemeinsamen Polar-

dreieckes und es schneide seine Gegenseite die Gerade L in dem Punkt P.
Gelangt nun P beim Durchlaufen der Geraden L nach P, so sind seine

Polaren A
±
0 und A

2
0

,
also liegt der Punkt Q in 0, wenn P in P liegt,

d. h. der L zugeordnete Kegelschnitt geht durch die eine Ecke des

gemeinsamen Polardreieckes; natürlich geht er dann auch durch die beiden
anderen Ecken. Sonach entspricht allen Geraden der Ebene ein Netz von
Kegelschnitten, das dem gemeinsamen Polardreieck der beiden gegebenen
Kegelschnitte umgeschrieben ist.

Sind also zwei Kegelschnitte gegeben, und soll deren gemeinsames
Polardreieck bestimmt werden, so nehme man zwei beliebige — oder besser

zwei zweckentsprechende — Gerade und bestimme deren zugeordnete
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Kegelschnitte. Von deren vier Schnittpunkten entspricht der eine dem
Schnittpunkte der beiden Geraden, die übrigen drei sind die Ecken des
gesuchten gemeinsamen Polardreieckes.

Wir wollen nun dies synthetische Ergebnis auf unsere analytische

Lösung übertragen.

Wir wählen die Gleichungen der beiden Polaren (1). Darnach entspricht

jedem Punkt x\ y
' ein Punkt x, y. Letzteren lassen wir die Gerade

xu + yv= w durchlaufen. Dann erhalten wir für den Ort des Punktes xf

,
y'

die Gleichung:

x—p y — q px -\- qy— p
2 — q

2 — Ji
2

xb 2 ya2 a2
b
2 —0

U V w

oder tQjiu — b
2
fQ

2
v -j- = 0.

Hiernach entspricht der Hyperbel «gq die Gerade w = 0, d. h. die

unendlich ferne Gerade, der Hyperbel «£) 2
die Gerade y = 0 (die Ellipsen-

hauptachse) und der Hyperbel die Gerade x = 0 (die Ellipsenneben-

achse). Welche Gerade entspricht nun dem Kreis? Dann ist nach (7)

w = (— 4- : e
2 v — — — u = - es ist also die Gerade

\p q) pb~ _ qa 2

^= Dies ist aber die Polare des Punktes x — 6—^qa J pb 1 pqe
* p

2
-\-

q

2

0 G~y— g—— 2 (10), also entspricht dem Kreis die Ellipsenpolare des
P “r Q.

Punktes G.

Geschichtliches.

' Während man früher in der Geometrie nur den Kreiskegel behandelte,

ist es das Verdienst von Desargues gewesen, zuerst auf den allgemeinen

Kegel zweiten Grades hingewiesen zu haben. Hiermit lag zugleich die

Aufgabe vor, diesen Kegel in einem Kreis zu schneiden, oder, was ziemlich

auf dasselbe herauskommt, seine Achsen zu bestimmen. Man verkannte
• nicht die Schwierigkeit dieses Problems, und somit gelangte dasselbe zu

einer gewissen Berühmtheit. Es wurde zuerst von Descartes gelöst. Die
ersten synthetischen Lösungen aber gab Chasles in seinem Apergu historique,

allerdings ohne Beweis. *

Die erste Lösung von Chasles ist folgende: Man lege durch die

Hauptachse der Ellipse eine zur Ellipsenfläche senkrechte Ebene und
konstruiere in dieser die Hyperbel, die die Ellipsenbrennpunkte zu Scheiteln

und die Ellipsenscheitel zu Brennpunkten hat. Nun stimmt der Kegel,

der diese Hyperbel zur Basis und die Spitze des gegebenen Kegels zur

Spitze hat, in den Achsen mit dem letzteren überein. Zum Beweis sei

folgendes bemerkt: Es ist Chasles’ Verdienst, die Fokaleigenschaften der

Kegelschnitte auf die Flächen zweiten Grades übertragen zu haben. Hat
man z. B. von einem Punkt an zwei konfokale Kegelschnitte die beiden

Tangentenpaare gelegt, so haben die Winkel derselben die Halbierlinien

gemeinsam. Dieser Satz überträgt sich, wie folgt, auf den Raum: Legt
man von einem Punkt an zwei konfokale' Flächen zweiten Grades die

Tangentialkegel, so stimmen diese beiden in den Achsen miteinander

überein. Nun kann man die gegebene elliptische Kegelbasis und die von
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Chasles herangezogene Hilfshyperbel als entartete konfokale Flächen zweiten

Grades auffassen. Alsdann beweist der obige Satz die Konstruktion. Auf
diesen Zusammenhang hat Pelz aufmerksam gemacht.

Bei der zweiten Konstruktion nimmt Chasles den Polarkegel des

gegebenen Kegels zu Hilfe. Dafs diese beiden Gebilde die Achsen gemeinsam
haben, ist wohl ohne Beweis unmittelbar klar.

Chasles hat also in beiden Fällen den imaginären Kreis durch einen

reellen Kegelschnitt ersetzt. Wenn nun aber dieser Kegelschnitt mit der

gegebenen Kegelbasis weder vier Punkte, noch vier Tangenten gemeinsam
hat — was dann? In diesem Fall bringen die Chaslesschen Konstruktionen
keinerlei Vorteil.

Von den weiteren Lösern sei Pelz genannt, der auf rein synthetischem

Weg von der Parabel ausgeht, deren Tangentendreiecke den Punkt H zum
gemeinsamen Höhen -Schnittpunkt haben, er geht von dieser zur gleich-

seitigen Hyperbel, als dem reziprok -polaren Kegelschnitt über und fügt

den Kreis hinzu. Die Pelzsche Darstellung ist in die darstellende Geometrie
von Peschka übergegangen, und zwar ist hierbei Peschka ein Fehler
untergelaufen. Er will nämlich zu drei Punkten eines Kreises den vierten

harmonischen dadurch finden, dafs er von einem der drei Punkte auf die

Sehne der beiden anderen das Lot fällt.

Endlich sei noch der Lösung Solins gedacht, der aus dem Kegel-
schnittsnetz den Kegelschnitt heraussucht, der der gegebenen Basisellipse

ähnlich ist und ähnlich liegt. Auf diese Weise vermag er die Konstruktion
eines besonderen Hilfskegelschnittes zu vermeiden. Diese Lösung findet

sich in der darstellenden Geometrie von Wiener vor.
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