The genus *Neozygites* (Zygomycetes, Entomophthorales) with special reference to species found in tropical regions

Siegfried Keller

Federal Research Station for Agroecology and Agriculture, Reckenholzstrasse 191, CH-8046 Zurich

Several collections of mites (Acari: Tetranychidae, Phytoseiidae), mealybugs (Homoptera: Pseudococcidae) and aphids (Homoptera: Aphididae, Lachnidae) infected with Entomophthorales mainly from West Africa, South America and the Philippines were examined. All fungi found on Tetranychidae including the green cassava mite, *Mononychellus tanajoa*, were assigned to *N. floridana*. Species found on the phytoseiid *Euseius citrifolius* were identified as *N. acaricida* comb. nov. and *N. cf. acaridis*, respectively. All material from mealybugs (*Rastrococcus invadens* and *Coccidohystrix insolita*) was identified as *N. fumosa*. An emended description of this species is given. The fungi from *Aphis craccivora* and *A. fabae* were identified as *N. fresenii*. A new species, *N. cinarae* attacking the lachnid *Cinara pilicornis*, is described. The life-cycles of *N. floridana* and *N. fresenii* are described and compared. A key to all known species and a short characterisation is provided.

Keywords: *Neozygites*, taxonomy, life cycle, entomopathogens, Entomophthorales, Acari, Homoptera, Aphidae, Pseudococcidae, tropics.

The genus *Neozygites* Witlaczil (1885) includes species with spherical or rod-shaped hyphal bodies; unbranched conidiophores; spherical to obovate primary conidia with 3–8 nuclei; presence of capilliconidia with typically bent capillary tubes; spherical or ellipsoidal, binucleate, dark brown to black zygospores, rarely azygospores; cystidia always absent, rhizoids normally absent.

The nuclear structure and the nuclear behaviour during mitosis of *Neozygites* differs from the other Entomophthorales (Butt & Heath, 1988; Butt & Humber, 1989). Therefore the genus was placed in a distinct family, Neozygitaceae Ben-Ze’ev & Kenneth (Ben-Ze’ev & al., 1987).

Neozygites consists of a homogenous group of fungi attacking small pterygote insects (Homoptera, Thysanoptera) and mites. Recently, another species was discovered attacking the apterygote springtail Sminthurus viridis L. (Keller & Steenberg, 1997).

Members of Neozygites have recently been recognised as important natural control agents of the cassava green mite, Mononychellus tanajoa (Bondar), and as potential mycoinsecticides to control mites and thrips. It was mainly the work in the cassava ecosystem in Brazil and in West Africa which resulted in several collections of Neozygites from phytophagous and predatory mites and from mealybugs. The species attacking M. tanajoa has been referred to as Neozygites sp. (e.g. Delalibera & al., 1992) or more recently as N. cf. floridana (e.g. Oduor, 1995, Yaninek & al., 1996).

Several collections originating from different species of mites, mealybugs and aphids were sent to the author for identification, the results of which are presented here. Data on the biology of these species are compared and discussed with respect to their systematic and taxonomic relevance and a key to all described species is provided.

Material and methods

The fungal material examined is listed in Tab. 1. It was sent either prepared and mounted on slides, stored in ethanol, as exsicata, or in a living air-dried state allowing the induction of sporulation.

The fungal material was mounted on lactophenol-cotton blue (LPCB) or in lactophenol-aceto-orcein (LPAO) as described by Keller (1987). A sample of mites stored in ethanol was stained with 4,6-diamidino-2-phenylindol (DAPI) to confirm the nuclear counts (Butt & Humber, 1989; Butt & al. 1989). All measurements and counts were based, if not otherwise stated, on 50 objects per individual host, designated as one series. From each fungus species and origin, usually more than one series was studied to assess variation. The number of series is given after the range of the mean values, the range of the extreme values (in brackets) and the ratio length/diameter (L/D).

Taxonomy

Neozygites acaricida

The GJM/unid collection consisted of mites (Euseius citrifolius Denmark & Muma) mounted for acarological studies including removal of cytoplasmic content of both host and pathogen. It contained four mites with spherical to subspherical, hyaline, thick-walled, resting spores with diameters varying between 11.5 and 13 μm. They are slightly larger than those given by Milner (pers. comm.).
Tab. 1. - Material of Neozygites examined.

<table>
<thead>
<tr>
<th>Species</th>
<th>Origin of the material</th>
<th>Collection (designation)</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>cf. acaricida</td>
<td>G. J. de Moraes, Brazil, Euseius citrifolius</td>
<td>GJM/Ec2</td>
<td>1995-96</td>
</tr>
<tr>
<td>cf. acaridis</td>
<td>G. J. de Moraes, Brazil, E. citrifolius</td>
<td>GJM/Ec1</td>
<td>1995</td>
</tr>
<tr>
<td>floridana</td>
<td>M. H. Muma (paratype material), Florida, USA. Eutetranychus banksi</td>
<td>MHM/Eb</td>
<td>1963-64</td>
</tr>
<tr>
<td>floridana</td>
<td>J. Weiser (paratype material), Florida, USA. E. banksi</td>
<td>JW/Eb</td>
<td>1963-64</td>
</tr>
<tr>
<td>floridana</td>
<td>D. R. Smitley, Carolina, USA. Tetranychus urticae</td>
<td>DRS/Tu</td>
<td>1982</td>
</tr>
<tr>
<td>floridana</td>
<td>S. Keller. Switzerland, T. urticae</td>
<td>SK/Tu</td>
<td>1983-86</td>
</tr>
<tr>
<td>cf. floridana</td>
<td>I. Delalibera. Brazil, Mononychellus tanajoa</td>
<td>ID/Mt</td>
<td>1994</td>
</tr>
<tr>
<td>cf. floridana</td>
<td>J. S. Yaninek. Benin, M. tanajoa</td>
<td>JSY/Mt</td>
<td>1994-96</td>
</tr>
<tr>
<td>cf. floridana</td>
<td>J. S. Yaninek. Benin, T. urticae</td>
<td>JSY/Tu</td>
<td>1996</td>
</tr>
<tr>
<td>cf. floridana</td>
<td>L. Smith, Colombia, M. tanajoa</td>
<td>LS/Mt</td>
<td>1996</td>
</tr>
<tr>
<td>cf. floridana</td>
<td>L. Smith, Colombia, T. urticae</td>
<td>LS/Tu</td>
<td>1996</td>
</tr>
<tr>
<td>cf. floridana</td>
<td>S. L. Elliot, Brazil, M. tanajoa</td>
<td>SLE/Mt</td>
<td>1995</td>
</tr>
<tr>
<td>cf. floridana</td>
<td>S. L. Elliot, Brazil, T. urticae</td>
<td>SLE/Tu</td>
<td>1995</td>
</tr>
<tr>
<td>fresnii</td>
<td>S. Keller, Switzerland, Aphis spp.</td>
<td>SK/Aspp</td>
<td>1985</td>
</tr>
<tr>
<td>cf. fresnii</td>
<td>S. Keller, Benin, A. craccivora</td>
<td>SK/Ac</td>
<td>1996</td>
</tr>
<tr>
<td>cf. fresnii</td>
<td>L. T. Villacarlos, Philippines, A. craccivora, A. fabae</td>
<td>LTV/Ac</td>
<td>1995</td>
</tr>
<tr>
<td>cf. fresnii</td>
<td>P. Wyss, Egypt, Aphis gossypii</td>
<td>PW/Ag</td>
<td>1996</td>
</tr>
<tr>
<td>fumosa</td>
<td>A. T. Speare (holotype), Florida, USA</td>
<td>BPI</td>
<td>1923</td>
</tr>
<tr>
<td>fumosa</td>
<td>Pseudococcus citri; nrs. 737879 and 737880</td>
<td>BLR/Pm</td>
<td>1986</td>
</tr>
<tr>
<td>fumosa</td>
<td>B. Le Rù, Congo-Brazzaville, Phenacoccus manthoti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. fumosa</td>
<td>C. J. Lomer, Benin, Rastrococcus invadens</td>
<td>CIL/Ri</td>
<td>1996</td>
</tr>
<tr>
<td>cf. fumosa</td>
<td>L. T. Villacarlos, Philippines, mealybug</td>
<td>LTV/unid</td>
<td>1996</td>
</tr>
<tr>
<td>tetranychi</td>
<td>J. Weiser, Czechoslovakia, paratype, Tetranychus spp.</td>
<td>JW/Tspp</td>
<td>1966</td>
</tr>
<tr>
<td>unidentified</td>
<td>G. J. de Moraes, Brazil, E. citrifolius</td>
<td>GJM/unid</td>
<td>1995</td>
</tr>
</tbody>
</table>

The same collection contained several other mites with spherical, hyaline, thin-walled structures with an average diameter of 10.0 μm (8–11 μm) (1 series) considered as hyphal bodies (Plate 1, Figs. 8–9). Some of the hyphal bodies germinated to produce a single conidium of similar shape on a short germ tube. Undetached conidia measured 10.6 × 7.3 μm (10–12 × 6–8 μm) (1 series, n = 10). The GJM/Ec2 col-

The collection consisted of mites stored in ethanol infected with the same fungus. Hyphal bodies measured 9.1–10.1 μm (8–12 μm) (3 series) and contained 3 or more frequently 4 nuclei. The nuclei stained indistinctly in LPAO but very clearly in DAPI. Undetached primary conidia were ovoid and measured 11.3 × 7.1 μm (11–12 × 6–7.5 μm) (1 series, n = 8).

Measurements for hyphal bodies and conidia match the description of *Empusa acaricida* Petch (1940) from *Hylotydeus destructor* (Tucker) and it is concluded that the two fungi are identical. The structures closely resemble those recently described for *N. sminthuri* (Keller & Steenberg, 1997) and, therefore, attributed to *Neozygites*. This is in agreement with Milner who collected *E. acaricida* on two mite species in Australia, including the original host, and considered it another species of *Neozygites* lacking capilliconidia (Milner, 1985 and pers. comm.).

Neozygites cf. acaridis

The collection GJM/Ec1 consisted of several mites mounted for acarological studies including removal of the cytoplasmatic content of both host and pathogen. Some mites contained hyaline, spherical to slightly subspherical structures considered as hyphal bodies. They measured 12.6–12.9 μm × 12.2–12.5 μm (11–14 × 10–13 μm) (2 series). One mite contained spherical, dark brown resting spores with a diameter of 15.9 μm (14–17 μm) (1 series) including the episporium and 14.1 μm (13–16 μm) without episporium. Another mite contained the same type of resting spore measuring 15.7 μm (14–17 μm) (1 series) together with spherical hyphal bodies with a diameter of 11.0 μm (10–12 μm) (1 series). The resting spores in both mites had a distinct hylum and the episporium had finely pointed ornamentation (Plate 1, Figs. 6–7).

The dimensions of the resting spores match the description of *N. acaridis* given by Milner (1985) but the hyphal bodies are distinctly smaller. Although hyphal bodies producing conidia are larger than those producing zygospores, it cannot be concluded with certainty that this fungus is identical with *N. acaridis*.

Neozygites floridana

No holotype material was available, but material identified by the authors of the original description (collections MHM/Eb and JW/Eb, Tab. 1), which must be considered as paratype material. It consisted of slides with mounted mites. In most slides the mounting fluid had partly evaporated and partly condensed. It was not possible to remount the material and no new measurements could be
Tab. 2. - Data of fungal structures on *N. floridana* and fungi attributed to this species. Measurements in µm; n = number of series of 50 measurements each. PC = primary conidia, SCII = secondary conidia type II (capilliconidia), Cap = Length of capillary tube, RS = resting spores.

<table>
<thead>
<tr>
<th>Fungal structure</th>
<th>Collection</th>
<th>n</th>
<th>Length L, x, min–max</th>
<th>Diameter D, x, min–max</th>
<th>L/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>orig. descr.</td>
<td>1</td>
<td>15</td>
<td>13–18</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>MHM/Eb</td>
<td>2</td>
<td>12.5–12.7</td>
<td>9–16</td>
<td>10.0–10.3</td>
</tr>
<tr>
<td></td>
<td>JW/Eb</td>
<td>1</td>
<td>13.7</td>
<td>11–16</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>SK/Tu</td>
<td>5</td>
<td>13.9–14.8</td>
<td>12–18</td>
<td>11.4–12.7</td>
</tr>
<tr>
<td></td>
<td>ID/Mt</td>
<td>6</td>
<td>13.7–15.3</td>
<td>12–18</td>
<td>11.6–12.4</td>
</tr>
<tr>
<td></td>
<td>JSY/Mt</td>
<td>6</td>
<td>13.3–14.9</td>
<td>12–16</td>
<td>10.4–12.4</td>
</tr>
<tr>
<td></td>
<td>JSY/Tu</td>
<td>3</td>
<td>13.8–14.1</td>
<td>12–16</td>
<td>11.3–11.8</td>
</tr>
<tr>
<td></td>
<td>LS/Mt</td>
<td>2</td>
<td>13.9–14.2</td>
<td>12–16</td>
<td>12.0–12.1</td>
</tr>
<tr>
<td></td>
<td>LS/Tu</td>
<td>2</td>
<td>13.2–13.3</td>
<td>12–14</td>
<td>11.2–11.5</td>
</tr>
<tr>
<td></td>
<td>SLE/Tu</td>
<td>1</td>
<td>14.1</td>
<td>13–16</td>
<td>12.1</td>
</tr>
<tr>
<td>SCII</td>
<td>orig. descr.</td>
<td>1</td>
<td>14.5</td>
<td>11–17</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>MHM/Eb</td>
<td>1</td>
<td>18.2</td>
<td>17–19</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>DRS/Tu</td>
<td>1</td>
<td>17.2–18.9</td>
<td>15–22</td>
<td>8.3–9.3</td>
</tr>
<tr>
<td></td>
<td>ID/Mt</td>
<td>5</td>
<td>15.2–18.5</td>
<td>13–22</td>
<td>9.2–10.8</td>
</tr>
<tr>
<td></td>
<td>JSY/Mt</td>
<td>2</td>
<td>15.3–16.8</td>
<td>13–19</td>
<td>8.3–8.6</td>
</tr>
<tr>
<td></td>
<td>LS/Tu</td>
<td>1</td>
<td>18.5</td>
<td>16–21</td>
<td>8.7</td>
</tr>
<tr>
<td>Cap</td>
<td>orig. descr.</td>
<td>1</td>
<td>58.7</td>
<td>42–70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRS/Tu</td>
<td>2</td>
<td>42.7–48.8</td>
<td>25–65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID/Mt</td>
<td>4</td>
<td>45.0–50.0</td>
<td>28–69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JSY/Mt</td>
<td>2</td>
<td>47.0–52.8</td>
<td>27–77</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>orig. descr.</td>
<td>1</td>
<td>22.2–26</td>
<td>20–24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRS/Tu</td>
<td>3</td>
<td>19.6–22.1</td>
<td>18–27</td>
<td>14.6–16.6</td>
</tr>
<tr>
<td></td>
<td>SK/Tu</td>
<td>8</td>
<td>19.3–23.1</td>
<td>16–25</td>
<td>18.4–21.1</td>
</tr>
<tr>
<td></td>
<td>SLE/Mt</td>
<td>3</td>
<td>22.9–24.1</td>
<td>18–28</td>
<td>21.4–22.5</td>
</tr>
</tbody>
</table>

1 Weiser & Muma (1966)
2 including 2 series with 30 and 34 measurements
3 including 2 series with 41 and 43 measurements

made by the author. The primary conidia especially in the JW/Eb collection looked slightly deformed giving them a narrow appearance with protruded, sometimes strangled papillae. This might be the reason for their smaller size, in particular the diameter, as compared to the other collections (Tab. 2). However, there is an overlap between them and the overall appearance of the fungus was the same as in all examined collections. In addition to the data listed in Tab. 2, more structures in the type material were measured. The

The data of the examined fungal structures of the other collections of *N. floridana* and the fungi attributed to this species are summarized in Tab. 2. In general, there is a good agreement of all collections with the original description. This is especially true for the species collected in Brazil and Benin on *M. tanajoa* (Plate 1, Figs. 1–5). Resting spores from *T. urticae* and *M. tanajoa* had the same rough surface structure (Plate 4, Figs. 4–5). Based on the morphological data the examined material is identical to *N. floridana*. According to the original description, this species has 4-nucleate conidia. Several studies showed that the number of nuclei in conidia, conidiophores or hyphal bodies varied between 3 and 5 but the 4-nucleate structures were dominant. Previously unpublished data from the SK/Tu collection demonstrate the inconsistency of nuclear numbers. In four individuals the nuclei were counted in 50 hyphal bodies each. 14%, 0%, 0% and 100% of them contained 3 nuclei; 38%, 24%, 100% and 0% contained 4 nuclei and 48%, 76%, 0% and 0% contained 5 nuclei. From 25 primary conidia 4, 9 and 12 contained 3, 4 and 5 nuclei respectively.

In addition to the data listed in Tab. 2, more structures were measured and counted in a few specimens. In the JSY/Mt collection 7 capilliconidia measuring on average 15.9 × 9.7 μm and 15 capillary tubes with a mean length of 54.3 μm (39–65 μm) were found. The hyphal bodies contained 3 (26%) or 4 (74%) nuclei (n = 19). The ID/Mt material contained a mite with mainly ruptured dark brown resting spores. Six apparently intact spores had a diameter of 23–27 μm. Nuclei in hyphal bodies or young conidiophores had a mean diameter of 2.9 μm (2.5–3.5 μm) (n = 25). In the JSY/Tu collection more than 90% of the hyphal bodies contained 4 nuclei (2 series, n = 50 and n = 25) with a mean diameter of 2.6 μm (2.5–3.0 μm) (1 series). The SLE/Mt collection contained cadavers with resting spores as well as rhizoids. This has already been reported for *N. floridana* infecting *Tetranychus urticae* (Keller & Wuest, 1983) and has hitherto not been recorded from other species of this genus.

Neozygites fresenii

(15–25 × 10–15 µm), L/D = 1.56–1.92 (2 series) and those of PW/Ag 20.7 × 12.9 µm (16–25 × 10–16 µm), L/D = 1.60 (1 series). The capillary tube in the SK/Ac and the LTV/Ac material had a mean length of 21.3 (12–46) µm and 16.9 (10–29) µm respectively (1 series each). Conidiogenous hyphal bodies in the LTV/Ac material had a mean diameter of 16.3 (15–18) µm (1 series).

These data generally match the description given for this species by Keller (1991), except the capillary tubes are shorter, and the primary conidia from the LTV/Ac material are slightly smaller, but overlap with measurements given by Silvie & Papierok (1991) for material collected in Tchad.

Neozygites fumosa

The type material of *N. fumosa* consisted of two envelopes with a limited number of diseased *Pseudococcus citri* with primary conidia only. They measured 18.6–19.2 × 11.0–11.1 µm (Tab. 3). The length matches the original description whereas the diameter is slightly larger. Since no other structures were found, additional data given by Speare (1922) could not be verified. However, the dimension given by him for the capilliconidia must be considered doubtful as they are far outside the size relation with primary conidia usual for this genus.

The measurements of the examined fungal structures of *N. fumosa* and of the fungi attributed to this species vary widely (Tab. 3). Primary conidia of CJL material matches the original description while those of BLR and LTV/unid (collected from the weed *Sida* sp.) material are slightly smaller and those of LTV/Ci material are distinctly smaller. The latter also has smaller conidiogenous hyphal bodies than the other material. BLR, CJL and LTV/unid material can be considered as identical with *N. fumosa*, whereas the LTV/Ci material is too limited to draw conclusions on identity or distinctness. Nuclei were counted in CJL/Ri material where no resting spores were present. From 3 series of protoplasts 8%, 4% and 10% were binucleate, 44%, 96% and 80% were trinucleate and 48%, 0% and 10% were quadrinucleate. From 4 series of hyphal bodies 8%, 6%, 0% and 0% were binucleate, 92%, 94%, 2% and 100% were trinucleate and 0%, 0%, 98% and 0% were quadrinucleate. In a series of conidiophores 2% were binucleate and 98% trinucleate. More than 4 nuclei were never found.

Based on the material examined (except LTV/Ci) an amended description of *N. fumosa* is given (Plate 2, Figs. 1–10).

Protoplasts irregularly rounded with 3 (2–4) nuclei with a diameter of 2.7–2.9 µm (2.5–3.5 µm) (2 series). Hyphal bodies spherical to slightly subspherical. The spherical ones measure on
Tab. 3. - Data of fungal structures of *N. fumosa* and fungi attributed to this species. Measurements in μm. n = number of series with 50 measurements each. PC = primary conidia, SCCII = secondary conidia type II (capilliconidia), Cap. = length of capillary tube, RS = resting spores, HBco = conidiogenous hyphal bodies, HBsp = zygosporogenous hyphal bodies.

<table>
<thead>
<tr>
<th>Fungal Collection structure</th>
<th>Collection orig. descr.</th>
<th>n</th>
<th>Length L x min–max</th>
<th>Diameter D x min–max</th>
<th>L/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>orig. descr. 1</td>
<td></td>
<td>16–20</td>
<td>8–10</td>
<td></td>
</tr>
<tr>
<td>BPI</td>
<td>3²</td>
<td>18.6–19.2</td>
<td>15–24</td>
<td>11.0–11.1</td>
<td>8–13</td>
</tr>
<tr>
<td>BLR/Pm</td>
<td>3</td>
<td>16.9–17.6</td>
<td>16–21</td>
<td>10.2–11.3</td>
<td>8–13</td>
</tr>
<tr>
<td>CJL/Ri</td>
<td>4</td>
<td>19.4–20.8</td>
<td>16–24</td>
<td>9.8–11.7</td>
<td>8–13</td>
</tr>
<tr>
<td>LTV/Ci</td>
<td>1</td>
<td>14.8</td>
<td>13–16</td>
<td>7.9</td>
<td>7–9</td>
</tr>
<tr>
<td>LTV/unid</td>
<td>5</td>
<td>17.1–18.2</td>
<td>15–21</td>
<td>8.2–8.9</td>
<td>7–10</td>
</tr>
<tr>
<td>SCCII</td>
<td>orig. descr. 1</td>
<td>8</td>
<td>13–19</td>
<td>8.5–9.1</td>
<td>7–11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13–14.8</td>
<td>11–18</td>
<td>6.7–7.3</td>
<td>5–8</td>
</tr>
<tr>
<td>Cap</td>
<td>BLR/Pm</td>
<td>1</td>
<td>46.2</td>
<td>27–75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJL/Ri</td>
<td>2</td>
<td>57.7–67.2</td>
<td>34–86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LTV/unid</td>
<td>2³</td>
<td>74.1–85.8</td>
<td>45–139</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>orig. descr. 1</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLR/Pm</td>
<td>4</td>
<td>17.3–19.4</td>
<td>15–23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LTV/unid</td>
<td>1</td>
<td>17.8</td>
<td>16–18</td>
<td></td>
</tr>
<tr>
<td>HBco</td>
<td>BLR/Pm</td>
<td>1</td>
<td>12.0</td>
<td>10–13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJL/Ri</td>
<td>5</td>
<td>11.2–12.8</td>
<td>10–16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LTV/Ci</td>
<td>1</td>
<td>10.1</td>
<td>8–12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LTV/unid</td>
<td>4</td>
<td>10.6–11.4</td>
<td>8–13</td>
<td></td>
</tr>
<tr>
<td>HBsp</td>
<td>BLR/Pm</td>
<td>2</td>
<td>11.5–11.6</td>
<td>11–13</td>
<td></td>
</tr>
</tbody>
</table>

¹ Speare (1922)
² including 1 series with n = 27
³ n = 21 and 41

average 10.6–12.8 μm (12 series). The conidiogenous ones usually contain 3 or 4, sometimes 2 nuclei, with a diameter of 2.4–2.7 μm (2–3.5 μm) (4 series). They germinate to form a single, unbranched conidiophore. – Primary conidia on average 16.9–20.8 x 8.2–11.7 μm (15–24 x 7–13 μm), L/D = 1.55–2.13 (15 series), usually spindle shaped with the largest diameter in the apical half, papilla distinct, narrow;

Plate 2. – Figs. 1–8: *N. fumosa* from *Rastrococcus invadens*. – 1. Protoplasts. – 2. Protoplasts turning to hyphal bodies. – 3. Hyphal bodies with nuclei. – 4. Details of trinucleate hyphal bodies. – 5–6. Primary conidia, two of them are atypically rounded and have broad papilla (arrowhead). – 7. Primary conidia and capilliconidium. – 8. Primary conidia, capillary tube and detached capilliconidium. – 9–10: *N. fumosa* from *Phenacoccus manihoti*. – 9. Conjugating hyphal bodies with developing zygospore. – 10. Mature zygospores with zwo nuclei. – Bar in Fig. 7 = 50 μm. 1–3, 5–10 same magnification; bar in Fig. 4 = 10 μm.
rarely ovoid with broad rounded papilla; smoke-coloured. — Capilliconidia 13.8–16.3 × 8.5–9.1 μm (11–19 × 7–11 μm), L/D = 1.74–2.13 (7 series), resembling the primary ones, but with the largest diameter in basal half; the outline is more rounded and has a concave detaching point instead of a papilla; tapering towards the apex, mature capilliconidia with apical haptor. — Capillary tube 46–86 μm (27–140 μm) typically bent near the apical end. — Resting spores 17.3–19.4 μm (15–23 μm) (5 series), binucleate, spherical, brown to black, episporium slightly rough to finely granulated (Plate 4, Fig. 3), produced by fusion of two hyphal bodies. The hylum has a diameter of 2.5–3 μm (2 series). — Cystidia, rhizoids and secondary conidia of type I absent.

Neozygites tetranychi

Type material was made available by J. Weiser. It consisted of a slide with a single *Tetranychus althaeae* (type host) and many dead mites on corrugated cardboard provisionally identified as *T. urticae*. The latter were used for measurements. Primary conidia measure 15.1–16.9 × 12.4–14.3 μm (13–19 × 11–17 μm), L/D = 1.18–1.21 (3 series). Capilliconidia measure 19.5–22.9 × 9.7–11.3 μm (17–28 × 9–13 μm), L/D = 1.94–2.09 (5 series). The capillary tubes have a length of 34.6–39.1 μm (25–61 μm) (2 series, n = 25 each). The resting spores are subspherical to slightly ellipsoid, rarely spherical or short pyriform and light brown to brown. They measure 22.8–25.0 × 21.1–22.1 μm (18–29 × 16–25 μm), L/D = 1.08–1.15 (5 series). Their surface is rough without distinct ornamentation. The formation of resting spores, which are described to be azygospores, was not observed. A few secondary conidia of type I were present.

The dimensions of the primary conidia matches exactly those given in the original description, whereas those of the capilliconidia are smaller and those of the resting spores are larger. The species is closely related with *N. floridana* from which it is distinguished by the slightly larger structures, the shape of the resting spores and, in particular, their mode of formation. Further, a single infected mite usually contains both resting spores and conidia, in contrast to *N. floridana*.

Biology

The material available allowed detailed studies on *N. floridana*, *N. fresenii*, *N. fumosa*, *N. microlophii*, *N. parvispora* and *N. turbinata*. There is strong evidence that *N. floridana* and *N. fresenii* infect only through capilliconidia (Brobyn & Wilding, 1977; Oduor, 1995; Smitley & Kennedy, 1986) which may also be true for other species producing this type of conidia.

The biology of *N. fresenii* and of *N. microlophii* can be considered identical and is as follows (Fig. 1): First sign of an infection are 3-5 nucleate, asymmetrically rounded or comma-like shaped protoplasts (B) which multiply by binary fission (C). In the asexual or

Neozygites fresenii

Fig. 1. - Biology of *N. fresenii*. – A–K: Asexual cycle. – A: Detached capilliconidium with haptor and germ tube to penetrate host’s cuticule; B: Protoplast; C: Binary fission of a protoplast; D: Hyphal body; E: Young conidiophore stunting below the host’s cuticle; F: Conidiophore after penetration of host’s cuticle with primary conidium; G: Projected primary conidium; H: Primary conidium with capilliconidium (secondary conidium of type II); J: Primary conidium with secondary conidium of type Ia; K: Type Ia secondary conidium with tertiary capilliconidium. – L–R: Sexual cycle. – L: Hyphal body; M: Hyphal body with number of nuclei doubled; N: Conjugating hyphal bodies; O: Developing zygospore; P: Young zygospore with adhering shells of hyphal bodies containing degenerating nuclei; Q: Fully developed zygospore; R: Zygospore germinated with a capillary germ conidium. Structures with dotted outline are free of cytoplasm. – The formation of tertiary and higher orders of conidia is omitted.

130
conidial cycle they develop to spherical hyphal bodies (D) which soon start to form a single unbranched conidiophore (E). The host dies between the stages D and E; its body is filled with ungerminated or germinated hyphal bodies. The developing conidiophores first stunt below the host cuticle (E), but then rupture it by mechanical pressure. The following process takes place outside the host’s body: The conidiophores fully develop and form a single primary conidia at the tip (F) which is actively projected. The primary conidia (G) form secondary conidia either on a short, thick conidiophore resembling the primary ones (type Ia) (J) which is projected too, or an almond- or falciform one on a long and slender capillary tube (capilliconidia or secondary conidia of type II) (H), which is passively detached. Type Ia secondary conidia can form either type Ia or type II tertiary conidia (K), but type II secondary can form only type II tertiary conidia. Conidia of higher orders can be produced. Capilliconidia attach to a passing host with their drop-like, sticky end (haptor), detach from the capillary tube (A) and eventually penetrate the host cuticle to restart the infection process.

In the sexual or resting spore cycle the protoplasts develop to 3–5 nucleate hyphal bodies (L) which subsequently double their nuclear numbers (M) and conjugate with a suitable partner body (N). Often two protoplasts remain together and develop into conjugated hyphal bodies with a doubled number of nuclei. From the conjugation bridge formed between the conjugated hyphal bodies the young zygospores develop by budding. As it grows a nucleus of each hyphal body enters and the zygospore becomes binucleate (O). When all cytoplasm has entered the ellipsoidal zygospore a thick cell wall is formed. The nuclei remaining in the shells of the hyphal bodies collapse or disintegrate (P). Usually the host dies at this stage. The mature resting spore is surrounded by a dark brown to black epi-
sporium (Q). Generally the resting spores germinate with a single unbranched capillary germ tube forming a capillary germ conidium at the tip. This is able to form at least two further orders of capilliconidia. Capillary germ conidia of any order are supposed to infect new hosts. Photographic illustrations are given by Keller (1991).

The biology of *N. floridana* (Fig. 2) is considered to be identical with that of *N. parvispora*. It differs slightly from that of *N. fresenii* and *N. microlophii*. Protoplasts have never been observed. The first sign of infection is the presence of rod-like hyphal bodies (B, K) or short filamentous structures. In the asexual cycle the hyphal bodies multiply by binary fission (C) until nutrient sources from the host are used and the host dies. Hyphal bodies germinate with a single germ tube which stunt below the host’s cuticle (D) and finally rupture it by pressure. Formation of primary (E, F) and secondary conidia (G, H, J) corresponds to that of *N. fresenii*. 131
Fig. 2. – Biology of *N. floridana*. – A–J: Asexual cycle. – A: Detached capilliconidium with haptor and germ tube to penetrate host cuticle; B: Hyphal body; C: Hyphal bodies multiplying by binary fission; D: Young conidiophore stunting below host’s cuticle; E: Conidiophore after penetration of host cuticle with primary conidium; F: Projected primary conidium; G: Primary conidium with capilliconidium; H: Primary conidium with secondary conidium of type Ia; J: Type Ia secondary conidium with tertiary capilliconidium. – K–R: Sexual cycle. – K: Hyphal body; M: Conjugating hyphal bodies, number of nuclei doubled; N: Developing zygospore; O: Young zygospore with adhering shells of hyphal bodies containing degenerating nuclei; P: Fully developed zygospore; Q: Zygospore germinated with a rounded germ conidium on thick germ tube; R: Rounded germ conidium with capilliconidium. – Structures with dotted outline are free of cytoplasm. Only the 4-nucleate variant is drawn. The formation of tertiary and higher orders of conidia is omitted.

The sexual cycle starts with the conjugation of two rod-shaped hyphal bodies which obviously induces the doubling of the number of nuclei (M). The conjugation bridge is formed laterally in the terminal part. The zygote develops by budding from the conjugation bridge (N). During its early development a nucleus of each hyphal body enters (O). The growth of the young zygospore is completed when all cytoplasm from the hyphal bodies has joined it. Subsequently a thick wall is formed and the shells of the hyphal bodies with the remaining nuclei collapses and disintegrate. The mature zygospore is spherical to slightly subspherical and surrounded with a brown to black, slightly (*N. floridana*) or distinctly ornamented (*N. parvispora*) episporium. Resting spores of *N. floridana* germinate with a single thick germ tube to form a single rounded primary germ.

Conidium. This remains attached and forms a single, capillary secondary germ conidium, which is supposed to infect new hosts. The mode of germination of *N. parvispora* is unknown. Photographic illustrations are given by Keller (1991).
The biology of other known species of this genus can be classified as either the \(N. \) fresenii-type or to the \(N. \) floridana-type. There are, however, exceptions. \(N. \) turbinata lack any type of secondary conidia but the resting spores germinate with capilliconidia (Keller, 1991). \(N. \) tetranychi forms azygospores (Weiser, 1968) which is unique in this genus and needs confirmation. The fungi from earth and predatory mites and from Collembola are incompletely known and cannot be attributed to any of these two life cycles. They probably form a distinct group.

Several steps in the biology are not yet understood. This includes host recognition and specificity, factors determining the asexual or sexual cycle (in an individual host, either conidia or resting spores are formed, \(N. \) tetranychi being an exception), nuclear processes in the zygospore and during the doubling of the nuclei in the hyphal bodies prior to zygospore formation which halves the volume of the nuclei, and conditions inducing resting spore germination. There are indications that \(N. \) fresenii might be heterothallic (Villacarlos & Pell, pers. comm.).

The genus Neozygites

Protoplasts spherical to subspherical. – Hyphal bodies regular, spherical or rod-shaped. – Nuclei 3–8 \(\mu \)m, do not stain or stain either poorly or distinctly with LPAO, but stain distinctly with DAPI. – Conidiophores unbranched with more or less distinct terminal enlargement. – Primary conidia unitunicate, spherical, pyriform, ovoid, or in the shape of a hot air balloon, hyaline or light brown, papilla tunicate, cylindrical or conical, small, usually 3–8 nuclei, not or indistinctly staining in LPAO. – Secondary conidia like primary, produced on short lateral secondary conidiophores, or capilliconidia produced on long, slender capillary, amygdaliform to cucumber-like, light brown with terminal droplet or haptor. – Resting spores zygospores produced by conjugation of two hyphal bodies, binucleate with a nucleus from each hyphal body, rarely azygospores, spherical or ellipsoidal; episporium brown or black, smooth, rough or typically ornamented, rarely absent. – Germ conidia correspond to one of the two types of secondary conidia: spherical, hyaline on short thick germ tube or amygdaliform, smoky capilliconidia on long, slender capillary. – Cystidia always absent,
rhizoids usually absent. – Protoplasts, resting spores, type I and/or type II secondary conidia unknown in some species. – Pathogens of Acari, Collembola, Thysanoptera and Homoptera. – No growth on standard media.

Type species: Neozygites fresenii (Nowak.) Remaud. & S. Keller, Mycotaxon 11: 331(1980).

Key to species

1 Pathogen of mites ... 2
1* Pathogen of pterygote or apterygote insects 5
2 Hyphal bodies spherical. On predatory or earth mites (Gamasida and Actinedida) ... 3
2* Hyphal bodies rod-shaped, primary conidia 12–17 x 10–15 µm; resting spores spherical to slightly subspherical, 19–26 x 18–24 µm. On Tetranychidae ... 4
3 Hyphal bodies 8–11 µm; primary conidia 9–12 x 5–8 µm; resting spores spherical, hyaline, 10–13 µm N. acaricida (1)
3* Hyphal bodies 15–20 µm; primary conidia 17–23 x 13–18 µm; resting spores spherical, dark brown 14–18 µm ... N. acaridis (2)
4 Primary conidia 12–16 x 10–13 µm; capilliconidia 14–19 x 8–11 µm; resting spores zygospor, 19–25 x 15–22 µm

... N. floridana (5)
4* Primary conidia 16 (15–17) x 13 (12–15) µm; capilliconidia 25–28 x 8–11 µm; resting spores azygospor, 20–23 x 16–19 µm N. tetranychi (14)
5 Pathogen of Collembola. Hyphal bodies spherical, 12–15 µm; primary conidia 13–15 x 8–10 µm. On Sminthurus viridis

... N. sminthuri (13)
5* Pathogen of pterygote insects ... 6
6 Pathogen of Thysanoptera Thripidae 7
6* Pathogen of Homoptera ... 8
7 Hyphal bodies 14–26 x 6–9 µm; primary conidia 13–16 x 11–14 µm; capilliconidia ovoid to subellipsoid, 17–20 x 7–10 µm, L/D = 1.8–2.1; resting spores 15–21 µm, spherical to subspherical, episporium irregularly grooved and ridged, dark brown to black .. N. parvispora (12)
7* Hyphal bodies 28–40 x 7–9 µm; primary conidia globose, 14–16 µm; capilliconidia cucumber shaped, 25–30 x 8–10 µm, L/D = 2.5–3.5; resting spores 20–23 µm, spherical to subspherical, episporium unevenly rough, dark brown N. cucumeriformis (4)
8 Pathogen of Aphididae .. 9
8* Pathogen of other Homoptera ... 10
9 Hyphal bodies spherical to subspherical, 14–17 μm; primary conidia 18–22 × 14–18 μm, predominantly with 4 nuclei; capilliloconia 20–27 × 11–14 μm, L/D = 1.5–2.4; capillary tube on average 17–35 μm, resting spores ellipsoid, 30–41 × 18–23 μm, dark brown to black. On Aphis spp., Rhopalosiphum padi, Brevicoryne brassicae .. N. fresenii (6)
9* Hyphal bodies spherical to subspherical, 17–22 μm; primary conidia 24–26 × 18–19 μm with predominantly 5 nuclei; capilliloconia 30–34 × 12–15 μm, L/D = 2.3–2.6; capillary tube on average 150–170 μm; resting spores ellipsoid, 35–43 × 20–23 μm, dark brown to black. On Microlophium spp. N. microlophi (11)
9** Primary conidia 28–32 × 17–22 μm; capilliloconia 29–35 × 16–18 μm. On Myzocallis coryli and unidentified species N. lageniformis (8)
10 On Lachnidae .. 11
10* On other Homoptera .. 12
11 Hyphal bodies spherical to subspherical, 15–24 μm; primary conidia 19–23 × 12–17 μm with 8 nuclei on average; resting spores ellipsoid, 32–35 × 21–22 μm, brown to black. On Pterochloroides persicae and Tuberolachnus salignus N. turbinata (15)
11* Hyphal bodies spherical 20–22 μm; primary conidia 24–31 × 18–21 μm with predominantly 4 nuclei; capilliloconia 32–34 × 14–17 μm, L/D = 2.0–2.5; resting spores ellipsoid, 34–36 × 23–24 μm, dark brown to black. On Cinara pilicornis N. cinarae (3)
12 On Psyllidae. Hyphal bodies spherical to subspherical, 10–13 μm; primary conidia 22–30 × 9–11 μm, L/D = 2.5–3.0; capilliloconia 17–20 × 8–10 μm. On Heteropsylla cubana N. heteropsyllae (8)
12* On Lecaniidae. Hyphal bodies spherical; primary conidia 18 × 9–10 μm; capilliloconia 12–20 × 5–10 μm; resting spores subspherical to broad ovoid, dark. On Lecanium viride N. lecanii (10)
12** On Pseudococcidae. Hyphal bodies spherical, 10–12 μm; primary conidia 15–21 × 8–12 μm, capilliloconia 13–17 × 7–9 μm; resting spores spherical, 15–19 μm, dark. On several species of mealybugs .. N. fumosa (7)

1. Neozygites acaricida (Petch) S. Keller & Milner, comb. nov.

The species was originally described from the red legged earth mite, Hylotydeus destructor (Tuck.), from western Australia. Petch (1940) mentioned two types of primary conidia, an oval one 9–12 × 5–
7 μm and a subglobose one 8 × 6 μm. He observed secondary conidia of similar shape, but no capilliconidia. Milner (1985 and pers. comm.) collected the same fungus on two mite species, the original host and _Penthaeleus major_ (Duges). The resting spores were 10–12 μm, capilliconidia and rhizoids were absent. Material from _Euseius citrifolius_ Denmark & Muma collected in Brazil and attributed to this species had slightly broader conidia (6–8 μm) and spherical hyphal bodies with a diameter of 8–11 μm. The resting spores were 11–13 μm.

The species was originally found in Great Britain on the preditory mite _Pergamasus crassipes_ (L.). Milner (1985) collected the species in Australia on the predatory mite _Macrocheles penetrans_ Krantz and provided an amended description. Some structures are still unknown. Resting spores of a fungus collected in Brazil on the phytoseiid mite _Euseius citrifolius_ are supposed to belong to this species (Keller, this paper).

3. **N. cinarae** S. Keller, sp. nov. – Pl. 1, Figs. 1–9.

In Cinara pilicorni (Hartig) (hospite typico) (Homoptera: Lachnidae).

Rhizoids absent. – Hyphal bodies spherical, 20.5–22(18–25) μm (2 series) or slightly subspherical with usually 4, sometimes 5 nuclei (Fig. 1–2). Diameter of nuclei 3.3–3.6(3–4.5) μm (3 series). – Conidiophores unbranched (Fig. 3) with 4, rarely 5 nuclei. – Primary conidia 24–31 × 18.5–21 μm (22–35 × 16–25 μm), L/D = 1.27–1.50 (5 series), ovoid to pyriform, papilla distinct, truncate or slightly rounded (Figs. 4–5). – Capilliconidia 32–34.5 × 13.5–17 μm (25–41 × 12–23 μm), L/D = 1.96–2.52 (4 series), short almond-shaped, brownish, produced on slender capillary 68–108(35–133) μm long (2 series) (Figs. 6–7). – Resting spores 34–36 × 23–24 μm (30–42 × 21–28 μm), L/D = 1.45–1.51 (4 series), ellipsoid, black, produced by fusion of two hyphal bodies (Figs. 8–9), smooth surface (Plate 4, Fig. 7). – Cystidia and secondary conidia of type I not observed.
Host. – Homoptera, Lachnidae: *Cinara pilicornis* (Hartig) (type host).

Symptoms. – Diseased aphids with probosces fixed in the colonies on the underside of branches of young fir trees; brown or black when filled with resting spores.

Distribution. – Switzerland: Watt-Regensdorf (ZH) (type locality).

Etymology of specific epithet. – Suggesting the genus of the host from which the fungus was collected.

The species was collected in 1991 and 1995 between the end of June and the beginning of July in a plantation of about 10 years old *Picea abies*. It infected nymphs and adults (both alates and apterae).

Neozygites cinarae is closely related to *N. fresenii* and *N. microlophii*. It can be separated from *N. fresenii* mainly by the larger conidia and from *N. microlophii* mainly by the number of nuclei, the dimensions of the resting spores, the length of the capillary tube and the host species. Type Ia secondary conidia were not found. The nuclear number in 4 series of hyphal bodies (50 each) of *N. cinarae* was counted. 60%, 86%, 90% and 98% were 4-nucleate. 88% of conidiophores (1 series) were also 4-nucleate. In *N. microlophii* between 70% and 95% of hyphal bodies and conidiophores were 5-nucleate. The resting spores have the same surface structure as those of *N. fresenii* and *N. microlophii* (Plate 4, Figs. 7–9).

The species is known only from Poland attacking *Drepanothrips reuteri* (Uzel.) on *Vicia* sp. It is characterised by the typical shape of the capilliconidia.

The species is known from several species of the mite family Tetranychidae. It is a cosmopolitan species and reported from the United States (e.g. Smitley & Kennedy, 1986; Weiser & Muma, 1966), Central and South America including Cuba and Trinidad (Delalibera & al. 1992, Smith, pers. comm.), Europe (Balazy, 1993; Keller, 1991),
Israel (Kenneth & al., 1972), India (Ramaseshiah, 1971), Japan (Nemoto & Aoki, 1975), China and Indonesia (Smith, pers. comm.) and East and West Africa (Bartkowski & al., 1988; Yaninek & al., 1996). The morphology and biology of the species is well known (Carner, 1976; Keller, 1991; this paper; Selhime & Muma, 1966). Rhizoids in Neozygites are only known from this species. They are sometimes formed in the presence of resting spores and are known from two host species, T. urticae (Keller & Wuest, 1983) and M. tanajoa (Elliot, pers. comm.). Several studies on abiotic factors and on epizootiology have been reported. The literature has recently been reviewed by Oduor (1995). It is considered to be an important mortality factor and able to induce epizootics especially among the oligophagous common spider mite T. urticae and the monophagous green cassava mite Mononychellus tanajoa (Delalibera & al., 1992; Klubertanz & al., 1991; Smitley & Kennedy, 1986).

The species was identified from Aphis craccivora, A. fabae, A. gossypii, A. rumicis, A. urticata, Brevicoryne brassicae, Microlophium evansi, Myzus persicae and Rhopalosiphum padi as well as several unidentified aphids. It is known from all continents including the South Pacific region and considered the most common aphid pathogen in tropical regions (Remaudière, 1977; Remaudière & al., 1981). The morphology and biology of this species is well known (Keller, 1991; this paper; Soper & MacLeod, 1963).

The species attacks Pseudococcus citri, Phenococcus manihotii, P. herreni, Phenococcus sp. (Speare, 1922; Le Rü & al., 1985, Delalibera & al. 1996) and Rastrococcus invadens (Lomer, pers. comm.). It is known from southeastern USA, Brazil, Central and West Africa. New hosts, Coccidohystrix insolita (Green) from eggplant and an unidentified mealybug species from the weed Sida sp., are reported from The Philippines (Villacarlos, pers. comm.). The fungus from C. insolita from eggplant has smaller structures (Tab. 3), but our present knowledge does not allow it to be considered a distinct species. Neozygites fumosa is considered to be a significant mortality factor of economically important mealybugs like P. manihotii on cas-
sava (Le Rü & Iziquel, 1990) and R. invadens on mango in West Africa (Lomer, pers. comm.).

The species is known only from The Philippines attacking *Heteropsylla cubana* previously introduced from Central America. Its primary conidia are unusually elongate and the number of nuclei varies between 2 and 8. The resting spores are unknown.

The species is incompletely described. The available data are compiled by Bałazy (1993). It is known from the USA and Chile.

The species is incompletely described and known only from South East Asia. The available data are compiled by Bałazy (1993).

The species differs from the very similar *N. fresenii* by the distinctly larger structures. It was found in Switzerland and Poland (Bałazy, 1993) on *Microlophium carnosum* Buckton (= *M. evansi* Theobald). Some collections identified as *N. fresenii*, especially from larger aphids, eventually belong to this species.

The species is known from Europe mainly as a pathogen of the economically important *Thrips tabaci* Lind., but also attacks the barley thrip *Limothrips denticornis* Haliday (Nielsen & al., 1996) and other unidentified thrips. Morphology and biology is well known (Keller, 1991; this paper). The resting spores are characterised by a
striking ornamentation. After detachment the conjugating hyphal bodies leave two clearly visible scars (Plate 4, Figs. 1–2).

This is the first entomophthoralean species clearly documented as a pathogen of an apterygote insect. It is known only from Denmark from the lucerne flea, *Sminthurus viridis*, in lucerne and clover fields (Steenberg & al., 1996). Morphology and biology is incompletely known.

The species is known only from the former Czechoslovakia, attacking *Tetranychus althaeae* and *T. urticae*. It is closely related to *N. floridana*. The most striking differences are the presence of azygospores, which are unique in this genus, and the dimensions of the capilliconidia. The confirmation of the presence of azygospores needs fresh material or the demonstration of the presence of a single scar on the hylum. However, the latter was not seen with the available material (Plate 4, Fig. 6). The surface structure of the resting spores is comparable with that of *N. floridana* (Plate 4, Figs. 4–6).

This species is known from Israel and Europe. It attacks *Pterochloroides persicae* and *Tuberolachnus salignus*. Secondary conidia of type I and type II (capilliconidia) are unknown; the resting spores, however, germinate with a capilliconidium. Morphology and biology is well known (Keller, 1991).

Discussion

The genus *Neozygites* was recently reviewed by Balazy (1993). Since then four species have been added so that 15 species are currently recognized. Furthermore, the knowledge on morphology and life cycles of some previously described species was elucidated.
For a time the genus was considered as consisting of a homogenous group of fungi with four nuclei in all structures present in the asexual cycle. Consequently, the discovery of a species with 8 nuclei and an absence of capilliconidia led to the erection of a new genus, *Thaxterosporium*, to include *N. turbinata* (Ben-Ze'ev & al., 1987). However, studies showed that the so-called 4-nucleate species were not restricted to only 4 nuclei but could vary between 3 and 5. There was also variation between host individuals infected with the same species of *Neozygites* within the same collection. *Neozygites floridana*, for example, has predominantly 3-nucleate structures in some infected hosts and 4-nucleate structures in others. This fact may demonstrate differences in strains, ecotypes or subspecies. On the other hand, *N. fresenii* has predominantly 4-nucleate structures while *N. microlophii* has 5-nucleate ones. In the sexual cycle, the latter species has the same number of nuclei as *N. turbinata*, possibly representing a species intermediate between the 4-nucleate group and the 8-nucleate *N. turbinata*. The recently described *N. heteropsyllae* has 2–8 nuclei in the asexual cycle, definitely demonstrating that a separation between 4- and 8-nucleate groups is no longer tenable. Also, the lack of structures such as capilliconidia or resting spores is no longer something extraordinary but a part of the variability within the genus.

Nevertheless, species of this genus can be placed into groups on the basis of their morphology and life cycle. The *N. fresenii*-group is characterised by the presence of protoplasts, spherical to subspherical hyphal bodies, ellipsoidal zygospores and currently also known to have capillary germ conidia (Fig. 1). The following species can be ascribed to this group: *N. cinarae*, *N. fresenii*, *N. microlophii*, *N. turbinata* and probably *N. lageniformis*. Another group is the *N. floridana*-group, defined by the absence of protoplasts (i.e. protoplasts were never found *in vivo*), presence of rod-shaped hyphal bodies, spherical to subspherical resting spores and, as far as is known, globose germ conidia on a thick germ tube producing capilliconidia (Fig. 2). The following species can be ascribed to this group: *N. cucumeriformis*, *N. floridana*, *N. parvispora* and *N. tetranychii*.

Neozygites fumosa and *N. lecanii* seem to be closer related to the *N. fresenii*-group than to the *N. floridana*-group. They have, however, spherical to subspherical resting spores and some structures are unknown which makes it impossible at present to attribute them to either group. The position of *N. heteropsyllae* is uncertain due to missing structures, whilst *N. acaricida*, *N. acaridis* and *N. sminthuri* seem to be closely related but also different from the other members of the genus. Improved knowledge of their morphology, cytology and biology eventually may lead to the erection of a separate genus to include these latter three species.
Given the present state of knowledge of arthropod-pathogenic genera of Entomophthorales, *Neozygites* seems to be the best adapted one to tropical conditions. Five of the 15 species are found in the tropics, 3 species (*N. fumosa, N. heteropsyllae* and *N. lecanii*) are exclusively found in the tropics, although these regions are still poorly explored with respect to species of *Neozygites* and other member of the Entomophthorales.

Recently, species of *Neozygites* have gained attention as natural control agents of the cassava green mite (*Mononychellus tanajoa*) the mango mealybug (*Rastrococcus invadens*) and Thysanoptera including *Thrips tabaci*. Several projects are studying their potential as classical biological control agents or mycoinsecticides (Smith, 1996; Yaninek, 1994; Yaninek & al., 1996; Lomer, pers. comm.). It is still impossible, however, to cultivate species of these genus *in vitro*. There are only a few reports of successful isolations in complex media, but with growth limited to the protoplast or hyphal body stage (Butt & Humber, 1989; Delalibera, 1996; Leite & al. 1996; Smith, pers. comm.; Grundschöber, pers. comm.). A report on successful cultivation on egg yolk must be considered doubtful (Kenneth & al., 1972).

The identification of these fungi is a prerequisite for biological control projects, but current methods based on morphology cannot convey information on aspects such as virulence, strain characterisation or origin. Other techniques based on biochemistry and molecular characteristics need to be applied. It is desirable that fungal strains released in biocontrol programs can be identified either by preexisting or introduced genetic markers to follow their fate in the field and to distinguish them from naturally occurring conspecific fungi.

Acknowledgments

Part of this study was carried out at the International Institute of Tropical Agriculture/Plant Health Management Division, Cotonou, Republic of Benin. The author is greatly indebted to Drs. P. Neuenschwander, C. Lomer and S. Dara for their support. The author further thanks the following colleagues for providing material: I. Delalibera, G. J. de Moraes, I. P. Furtado, S. L. Elliot, L. Smith, C. J. Lomer, J. S. Yaninek, S. Dara, B. Le Rü, D. R. Smitley, L. T. Villacarlos and J. Weiser; the curator of BPI for providing type material of *N. fumosa*, V. Calilung for identifying *Coccidohystrix insolita*; R. Hermann and U. Tuor for providing scanning electron micrographs; J. S. Yaninek and P. A. Shah for critically reviewing the manuscript and O. Petrini for correcting the Latin diagnosis.

References

145

(Manuscript accepted 31st march 1997)