Two new Curvularia species from northern Thailand

D. S. Manamgoda ${ }^{1,2,3 *}$, L. Cai ${ }^{3}$, E. H. C. McKenzie ${ }^{4}$, E. Chukeatirote ${ }^{1,2}$ \& K. D. Hyde ${ }^{1,2}$
${ }^{1}$ Institute of Excellence in Fungal Research, ${ }^{2}$ School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
${ }^{3}$ State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
${ }^{4}$ Landcare Research, Private Bag 92170, Auckland, New Zealand

Manamgoda D. S., Cai L., McKenzie E. H. C., Chukeatirote E. \& Hyde K. D. (2012) Two new Curvularia species from northern Thailand. - Sydowia 64 (2): 255-266.

A multi-locus phylogeny based on combined sequences of rDNA ITS, EF1- α, GPDH and LSU revealed two new saprobic Curvularia species from grasses and dead wood in northern Thailand. The novel species, Curvularia alcornii and C. asianensis are introduced, fully described, illustrated, and compared to similar taxa in the genus.

Keywords: pathogen, phylogeny, taxonomy, saprobe.
Species of Curvularia Boedjin (1933) are pathogens, saprobes and endophytes mostly on grasses, but they can also be found on other hosts. Manamgoda et al. (2012) established a multi-locus phylogeny for the Bipolaris/ Cochliobolus/Curvularia complex, showing this group to comprise two major clades. They maintained Bipolaris and Curvularia for these clades and amended the genera based on new phylogenetic data and conidial characteristics. Nine Bipolaris species were transferred to Curvularia as a result of this study. Conidia of Curvularia tend to be shorter than those of Bipolaris (in most species less than $100 \mu \mathrm{~m}$) and often curved. The conidia often have intermediate cells which are inordinately enlarged and results in their characteristic curvature. The conidia of Bipolaris species are usually larger and have more septa than those of Curvularia and can be straight or gently curved. Stromata may form below the ascoma body in the sexual state of Curvularia; such formation is not found in Bipolaris.

Accurate species identification in Curvularia is difficult. Many species have vague descriptions without illustrations (Hosokawa et al. 2003). Conidial characters often vary in colour and degree of curvature and this may depend on environmental conditions, host, substrate and media (Upsher 1975; Tsuda \& Ueyama 1982, 1983; Tsuda 1992; Hosokawa et al. 2003). With the application of molecular methods, cryptic species which cannot be distinguished by morphological characters are resolved (Cai et al. 2011); thus it

[^0]is essential to use molecular techniques in species identification of Curvularia. In the present study we carried out a phylogenetic analysis of 23 isolates of Curvularia and 13 Curvularia type cultures using rDNA ITS (internal transcribed spacer), GPDH (glyceraldehyde 3-phosphate dehydrogenase), LSU (large subunit of nuclear ribosomal DNA) and EF1- α (translation elongation factor $1-\alpha$). Two new species of Curvularia were revealed from the combined data analyses and are introduced, described and illustrated.

Materials and methods

Isolation and morphological studies
Plant-pathogenic and saprobic strains of Curvularia were collected in field surveys from various hosts in Chiang Rai and Chiang Mai Provinces of northern Thailand (Tab. 1). Fresh specimens were incubated for 24 to 48 hours in a moist chamber before isolation. Specimens were observed under a stereo microscope and conidia were taken from the sporulating samples for single-spore isolation by a modified spore suspension method as described for different fungal groups (Choi et al. 1999, Chomnunti et al. 2011, Liu et al. 2011). Conidia were placed in $400 \mu \mathrm{l}$ sterilized water on a sterilized glass slide. The spore suspension was then transferred to water agar (WA) plates using a sterilized pipette tip. The WA plates were incubated overnight (12 h) to allow spores to germinate and germinated spores were then individually transferred to PDA. All fresh cultures and herbarium material were deposited in Mae Fah Luang University Culture Collection (MFLUCC) and MFLU herbarium, respectively. Duplicate cultures were deposited in BCC. Details of nomenclatural novelties were added to MycoBank (Crous et al. 2004). Details of all ex-type strains and fresh strains used are listed in Tab. 1.

Morphological observations

Morphological characters of species including conidial length, width, conidial septation, conidiophore length and width and attachment of conidia to the conidiophores were determined from the host substrate and on PDA media using a compound light microscope (Nikon Eclipse 80i). A slide culture technique was used to observe conidiophores and attachment of conidia (Riddell et al. 1950, Su et al. 2012). More than 30 conidia of each isolate were measured. Conidial colour was compared using colour charts (Rayner 1970). Three duplicate cultures of each isolate were used for determining colony characters on potato-dextrose agar (PDA, Difco) at $25^{\circ} \mathrm{C}$ in the dark. Growth rate, colony colour and zonation were recorded from three replicates of 7 day-old cultures grown on PDA at $25^{\circ} \mathrm{C}$.

DNA extraction, PCR and phylogenetic analysis

DNA was extracted from the fresh mycelium, PCR amplification and sequencing were conducted as described in Manamgoda et al. (2012). Sequences of ITS, GPDH, EF1- α and LSU gene regions were combined and the
Tab. 1. Details of isolates subjected to multigene DNA sequence analysis; ex type cultures and sequences are bold.

Species	Accession No.	Host	Location	GenBank No.				Reference
				ITS	GPDH	LSU	EF1- α	
Bipolaris chloridis	CBS 242.77	Chloris gayana	Australia	JN192372	JN600961	-	-	Manamgoda et al. 2011
Curvularia alcornii	$\begin{gathered} \text { MFLUCC } \\ 10-0703 \end{gathered}$	Zea mays	Thailand	JX256420	JX276433	JX256387	JX266589	Manamgoda et al. 2012
	$\begin{gathered} \text { MFLUCC } \\ 10-0705 \end{gathered}$	Panicum sp.	Thailand	JX256421	JX276434	JX256388	JX266590	Manamgoda et al. 2012
Curvularia asianensis	$\begin{gathered} \text { MFLUCC } \\ 10-0687 \end{gathered}$	Oryza sativa	Thailand	JX256422	JX276435	JX256389	JX266591	Manamgoda et al. 2012
	$\begin{gathered} \text { MFLUCC } \\ 10-0704 \end{gathered}$	Bamboo	Thailand	JX256423	-	JX256390	JX266592	Manamgoda et al. 2012
	$\begin{gathered} \text { MFLUCC } \\ 10-0711 \end{gathered}$	Panicum sp .	Thailand	JX256424	JX276436	JX256391	JX266593	Manamgoda et al. 2012
	$\begin{gathered} \text { MFLUCC } \\ 10-0685 \end{gathered}$	Sacccharum officinarum	Thailand	JX256425	JX276437	JX256392	JX266594	Manamgoda et al. 2012
Curvularia australiensis	CBS 172.57	Oryza sativa	Vietnam	JN61026	JN61036	JN600981	JN601003	Manamgoda et al. 2011
Curvularia coicis	CBS 192.29	Coix lacrymajobi	Japan	AF081447	AF081410	JN600984	JN601006	Manamgoda et al. 2011 Berbee et al. 1999
Curvularia ellisii	CBS 193.62	Air	Pakistan	JN192375	JN600963	JN600985	JN601007	Manamgoda et al. 2011
Curvularia gladioli	ICMP 6160	Gladiolus sp.	New Zealand	JX256426	JX276438	JX256393	JX266595	Manamgoda et al. 2012
Curvularia graminicola	BRIP 23186		Australia	JN192376	JN600964	JN600986	JN601008	Manamgoda et al. 2011
Curvularia hawaiiensis	BRIP 15933	Chloris gayana	Australia	JN601028	JN600965	JN600987	JN601009	Manamgoda et al. 2011

Species	Accession No.	Host	Location	GenBank No.				Reference
				ITS	GPDH	LSU	EF1- α	
Curvularia heteropogonis	CBS 284.91	Heteropogon contortus	Australia	JN192379	JN600969	JN600990	JN601013	Manamgoda et al. 2011
Curvularia ischaemi	ICMP 6172	Ischaemum indicum	New Zealand	JX256428	JX276440	JX256395	-	Manamgoda et al. 2012
Curvularia lunata	CBS 730.96	human lung biopsy	USA	JX256429	JX276441	JX256396	JX266596	Manamgoda et al. 2012
	CBS 157.34	Unknown	Indonesia	JX256430	JX276442	JX256397	JX266597	Manamgoda et al. 2012
Curvularia ovariicola	CBS 470.90	Eragrostis interrupta	Australia	JN192384	JN600976	JN600998	JN601020	Manamgoda et al. 2011
Curvularia perotidis	CBS 350.90	Perotis rara	Australia	JN192385	-	JN600999	JN601021	Manamgoda et al. 2011
Curvularia ravenelii	BRIP 13165	Sporobolus fertilis	Australia	JN192386	JN600978	JN601001	JN601024	Manamgoda et al. 2011
Curvularia spicifera	CBS 274.52	Soil	Spain	JN192387	JN600979	JX256400	JN601023	Manamgoda et al. 2011
Curvularia tripogonis	BRIP 12375	Unknown	Australia	JN192388	JN600980	JN601002	JN601025	Manamgoda et al. 2011
Curvularia tuberculata	CBS 146.63	Zea mays	Rajasthan	JX256433	JX276445	JX256401	JX266599	Manamgoda et al. 2012
Curvularia trifolii	ICMP 6149	Setaria glauca	New Zealand	JX256434	JX276457	JX256402	JX266600	Manamgoda et al. 2012

sequences were aligned with Clustal X (Thompson et al. 1997) and optimized by the online sequence alignment tool MAFFT (Katoh et al. 2009). Parsimony analyses were performed in PAUP v4.0b10 (Swofford 2002) to obtain phylogenetic trees. Trees were inferred using the heuristic search option with 1000 random sequence additions. Descriptive tree statistics for parsimony (Tree Length [TL], Consistency Index [CI], Retention Index [RI], Related Consistency Index [RC] and Homoplasy Index [HI]) were calculated. Trees were figured in Treeview (Page 1996). We analyzed the newly generated sequences with all available type-derived sequences listed in Manamgoda et al. (2011, 2012); a sub-set of taxa was selected to infer the combined phylogenetic tree presented here (Fig 1).

Results

Phylogenetic analysis of combined ITS, GPDH, LSU and EF1- α
The combined data matrix contains 24 taxa including the outgroup. The statistics for the parsimony analysis revealed that from the 2674 characters, 2390 characters are constant (135 characters are excluded), 149 characters are parsimony-informative, while 135 variable characters are parsimonyuninformative. The best tree resulting from the parsimony analysis of the combined dataset is presented here (Fig. 1) ($\mathrm{TL}=507, \mathrm{CI}=0.651, \mathrm{RI}=0.607$, $\mathrm{RC}=0.395, \mathrm{HI}=0.332$). Two distinct species were resolved based on phylogeny coupled with morphological characters and are described below.

Taxonomy

Curvularia alcornii Manamgoda, L. Cai \& K. D., Hyde, sp. nov. - Fig. 2 MycoBank: MB 800665

Holotype.- MFLU 12-0397.
Description. - Colonies on PDA. Conidiophores (25)30-300(305) $\mu \mathrm{m}$ long, simple or branched, septate, sometimes geniculate at the apex, rust (39) to chestnut (40) coloured, with integrated conidiogenous cells, $2-3 \mu \mathrm{~m}$ wide at the base and widening to $5-7 \mu \mathrm{~m}$ at the apex. Conidia usually straight, rarely slightly curved, inequilateral, ellipsoidal or clavate, (19)21-26 (26.7) \times (8.2)9-11(12) $\mu \mathrm{m}(\mathrm{n}=32), 3$-4-distoseptate, third cell from the base usually larger than the other cells, rust (39) to chestnut (40) coloured when mature, apical and basal cells hyaline or slightly brown, with a distinctly protuberant basal hilum. Colonies slightly convex, velvety, whitish and becoming pale olivaceous grey (120) when mature, growing slowly, reaching $4-5 \mathrm{~cm}$ diam. within 10 days at $25{ }^{\circ} \mathrm{C}$ in the dark. After 3-4 weeks colonies form black thickened hypae (Fig. 2 b) up to $2-3 \mathrm{~cm}$ long. Mycelium on host superficial, hyphae hyaline, septate, smooth-walled and $2-3 \mu \mathrm{~m}$ wide.

Etymology. - A tribute to J. L. Alcorn for his work on the generic complex.

Habitat and host. - Found as a saprobe on Zea mays and Pennisetum clandestinum.

Fig. 1. Phylogram of Curvularia spp. generated from parsimony analysis based on combined genes of ITS, GPDH, LSU and EF1- α sequence data derived from ex-type and isolates from northern Thailand. The tree is rooted with Bipolaris chloridis CBS 242.77. Bootstrap values of more than 50 are shown in the tree. The two new species are highlighted; ex-type cultures are in bold.

Fig. 2. Morphology of Curvularia alcornii (holotype). a Colonies on a dried husk of Zea mays; \mathbf{b} Thickened hypae produced on PDA; c-f Conidia attached to conidiophores; $\mathbf{h}-\mathbf{j}$ conidia; bars: $\mathbf{a} 5 \mathrm{~cm}, \mathbf{b} 1 \mathrm{~cm}, \mathbf{c} 35 \mu \mathrm{~m}, \mathbf{d}, \mathbf{e}, \mathbf{j} 20 \mu \mathrm{~m}, \mathbf{f} 15 \mu \mathrm{~m}, \mathbf{g}, \mathbf{h}, \mathbf{i} 10 \mu \mathrm{~m}$.

Distribution.- Northern Thailand.
Material examined. - THAILAND, Chiang Rai Province, Muang District, Thasud Sub district, roadside in front of Mae Fah Luang University, N $18^{\circ} 05^{\prime} 59^{\prime \prime}$, E $102^{\circ} 40^{\prime} 02^{\prime \prime}$, elevation $480 \mathrm{~m}, 15$ May 2010, saprobic on Zea mays, D. S. Manamgoda MDM0047 (MFLU12-0397, holotype), culture = MFLUCC 10-0703; ibid., on dead leaf of Pennisetum clandestinum, 27 Apr 2010, D. S. Manamgoda MFU0048 (MFLU12-0398 isotype), culture = MFLUCC 10-0705.

Other material examined. - Curvularia lunata (Wakker) Boedijn: USA on Hordeum vulgare A 16M40 (BPI 626381 holotype); USA, Human lung biopsy (CBS 730.96 neotype).

Notes.- Curvularia alcornii has conidial dimensions similar to C. lunata but differs phylogenetically from the neotype of C. lunata CBS 730.96 (Fig. 1). Formation of stromatal hyphae is a character of C. lunata var. aeria (Bat., J.A. Lima \& C.T. Vasconc.) M.B. Ellis which produces large, black, simple or branched stromatal hyphae abundantly on rice grains (Sivanesan 1987). Because of the morphological differences between C. lunata and C. lunata var. aeria, Nakada et al. (1994) suggested that they were separate species. We compared the ITS sequences of the ex-type strain of Curvularia lunata var. aeria (CBS 294.61) with that of C. alcornii. Curvularia lunata var. aeria does not cluster with C. alcornii. Curvularia lunata var. aeria is not included in the combined phylogenetic tree as only the ITS sequence was available for this species. As C. alcornii is phylogenetically different from the type of C. lunata and C. lunata var. aeria we propose it as a new species.

Based on a blast search of NCBI's GenBank nucleotide database, the closest matches for the ITS sequence of C. alcornii were two strains identified as an undescribed Curvularia species (IPL2) isolated from Ipomoea carnea in India (JQ765410; identities $=477 / 477,100 \%$) and an endophytic Dothideomycete sp. (mx125) isolated from the sapwood of Hevea brasiliensis $(J Q 905818$; identities $=477 / 477,100 \%)$

Curvularia asianensis Manamgoda, L. Cai \& K. D. Hyde, sp. nov. - Fig. 3 MycoBank: MB 800646

Holotype.-MFLU12-0393.
Description. - Colonies on PDA. Conidiophores highly variable in length, (75-)100-700(-708) $\mu \mathrm{m}$, simple or branched, septate, sometimes geniculate at the apex, with terminal, integrated conidiogenous cells, $2-3 \mu \mathrm{~m}$ wide at the base and widening to $4-5 \mu \mathrm{~m}$ at the apex. Conidia straight or slightly curved, very rarely strongly curved, ellipsoidal, (11)15-23(23.6) \times (6.1) 8-12(13.2) $\mu \mathrm{m}(\mathrm{n}=31) 3-4$ distoseptate, apical cell hyaline, other cells umber (9) to rust (39) coloured, with a distinctly protuberant basal hilum, sometimes producing 4 -septate Y-shaped conidia. The conidia on the host differed from those in culture by having a hyaline apical cell with warted ornamentation (Fig. 3 b). Colonies convex, velvety, pale olivaceous grey to olivaceous grey (120, 121), growing sparsely, reaching $5-6 \mathrm{~cm}$ diam. within five days at $25^{\circ} \mathrm{C}$ in dark. Mycelium on host superficial, hyphae hyaline, septate, smooth-walled and $2-3 \mu \mathrm{~m}$ wide.

Fig. 3. Morphology of Curvularia asianensis (holotype). a Conidia and conidiophores produced on Panicum sp. leaf; \mathbf{b} conidia produced on host; \mathbf{c} germinating conidia on host; \mathbf{d}, \mathbf{e} conidiophores and conidia produced on PDA; \mathbf{f} an Y shaped conidium attached to conidiophores found on PDA; g-i conidia produced on PDA; bars: a $200 \mu \mathrm{~m}, \mathbf{b}, \mathbf{g}-\mathbf{i} 5 \mu \mathrm{~m}$; $\mathbf{c}-\mathbf{f} 10 \mu \mathrm{~m}$.

Etymology.-asianensis in reference to the continent where the species was found.

Habitat and host. - Saprobic on Panicum spp., leaves of Saccharum officinarum (sugarcane), grains of Oryza sativa (rice).

Distribution. - Northern Thailand.
Material examined.-THAILAND, Chiang Rai Province, Muang district, Thasud subdistrict, Mae Fah Luang University Park, N $18^{\circ} 05^{\prime} 59.1^{\prime \prime}$, E $102^{\circ} 40^{\prime} 02.9^{\prime \prime}$, elevation

488 m, 25 May 2010, on dried Panicum sp. leaf , D. S. Manamgoda MFU0058 (MFLU12-0393 holotype), culture = MFLUCC 10-0711; ibid., on dead wood, 8 Jun 2010, Dhanushka Udayanga MDN0050 (MFLU12-0395), culture = MFLUCC 10-0704; THAILAND, Chiang Rai Province, Muang district, Thasud subdistrict, Roadside paddy field $20^{\circ} 02^{\prime} 36.51^{\prime \prime} \mathrm{N} 99^{\circ} 53^{\prime}$ $35.98 "$ E, elevation 572 m , on seed of Oryza sativa, 25 May 2010, D. S. Manamgoda MCM0025 (MFLU12-0394 isotype), culture: = MFLUCC-10-0687; Chiang Rai Province, Muang district, Thasud subdistrict, on Saccharum officinarum, 7 May 2010 N. F. Wulandari MNL0023 (MFLU12-0396), culture $=$ MFLUCC 10-0685 THAILAND, Tambon Huay Chompoo, Muang District, paddy field near Khun Korn Waterfall natural park, N $19^{\circ} 51-54^{\prime}$, E $99^{\circ} 35^{\prime} .39^{\prime \prime}$, elevation 1208 m, on seed of Oryza sativa, 28 April 2010, D. S. Manamgoda MKH0030 (living culture: MFLUCC 10-0717).

Other material examined. - Curvularia geniculata (Tracy \& Earle) Boedijn cultured on barley seeds embedded in Sachs agar, R. R. Nelson (BPI 626383).

Notes.-The species was collected as a saprobe on three grass hosts on different occasions. Based on a blast search of GenBank nucleotide database, the closest matches for the ITS sequence of C. asianensis were C. geniculata isolated from sugar cane (JQ783058; identities = 505/505, 100\%), C. fallax Boedijn (HNHY001) isolated from rice (JQ360963; identities $=505 / 505$, 100%) and C. affinis Boedijn (ZXL07096A1) isolated from Setaria viridis (GU073105; identities $=505 / 505,100 \%)$.

The isolates giving the best blast matches are not type cultures and may be wrongly named. However the conidial length \times width measurements of C. fallax and C. affinis are (24)30.6(38) $\times(10) 12.2(16) \mu \mathrm{m}$ and (27)32(49) \times (8)10(13) $\mu \mathrm{m}$, respectively, and longer than those of C. asiatica. Curvularia geniculata shows a greater conidial length range in culture (18-37 $\mu \mathrm{m}$). Curvularia asiatica produces longer conidiophores than C. geniculata. Also C. geniculata usually produces distinctly curved conidia whereas C. asiatica produces both curved and straight conidia. Conidia of C. geniculata, C. fallax and C. affinis are almost always reported as 4 -septate, but in C. asiatica they are always 3- and 4-septate in culture and on the host. Based on these data it is concluded that C. asianesis is a new species.

Discussion

Manamgoda et al. $(2011,2012)$ showed that ITS, GPDH, EF1- α, LSU are useful markers in species delimitation within the genus Curvularia and the sister genus Bipolaris. There is a need for taxonomic assessment of this Curvularia based on worldwide collections. Identification of the two new species as saprobes based on grass and wood hosts shows that there is a high diversity of saprobic Curvularia species in the tropics.

Curvularia alcornii and C. asianensis may have a wider host range. Many saprobic Curvularia species have been found in association with a wide range of hosts (Sivanesan et al. 1987, Berbee et al. 1999, Manamgoda et al. 2011) and they sometimes also occur as pathogens and endophytes. Morphological species identification in the genus Curvularia is challenging as the conidia and conidiophore dimensions often overlap.

Acknowledgements

Amy Y. Rossman and Shannon Dominick are thanked for the loan of BPI herbarium specimens. Hugo Madrid provided the ITS sequence of CBS 294.61. Samantha C. Karunarathne, Dhanushka Udayanga and Nilam F. Wulandari are thanked for providing specimens and cultures. Fang Liu is thanked for the technical assistance.

References

Berbee M., Pirseyedi M., Hubbard S. (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91: 964-977.
Cai L., Giraud T., Zhang N., Begerow D., Cai G., Shivas R. G. (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Diversity 50: 121-133. doi: 10.1007/s13225-011-0127-8.
Choi Y. W., Hyde K. D., Ho W. (1999) Single spore isolation of fungi. Fungal Diversity 3: 29-38.
Chomnunti P., Schoch C. L., Aguirre-Hudson B., Ko Ko T. W., Hongsanan S., Jones E. B. G., Kodsueb R., Phookamsak R., Chukeatirote E., Bahkali A. H. (2011) Capnodiaceae. Fungal Diversity 51: 103-134. Doi: 10.1007/s13225-011-0145-6.
Crous P. W., Gams W., Stalpers J. A., Robert V., Stegehuis G. (2004) MycoBank: an online initiative to launch mycology into the 21st century. Studies of Mycology 50: 19-22.
Hosokawa M., Tanaka C., Tsuda M. (2003) Conidium morphology of Curvularia geniculata and allied species. Mycoscience 44: 227-237. Doi: 10.1007/s10267-003-0103-6.
Katoh K., Asimenos G., Toh H. (2009) Multiple alignment of DNA sequences with MAFFT Methods. Molecular Biology 537: 39-64. Doi: 10.1007/978-1-59745-251-9-3.
Liu J. K., Phookamsak R., Jones E. B. G., Zhang Y., Ko Ko T. W., Boonmee S., Doilom M., Chukeatirote E., Bahkali A. H., WangY. (2011). Astrosphaeriella is polyphyletic, with species in Fissuroma gen. nov., and Neoastrosphaeriella gen. nov. Fungal Diversity 51: 135-154.
Manamgoda D. S., Cai L., Bahkali A. H., Chukeatirote E., Hyde K. D. (2011) Cochliobolus: an overview and current status of species. Fungal Diversity 51: 3-42. Doi: 10.1007/ s13225-011-0139-4.
Manamgoda D. S., Cai L., McKenzie E. H. C., Crous P. W., Madrid H., Chukeatirote E., Shivas R. G., Tan Y. P., Hyde K. D. (2012) A phylogenetic and taxonomic re-evaluation of the Bipolaris - Cochliobolus - Curvularia Complex. Fungal Diversity 56: 131-144. Doi: 10.1007/s13225-012-0189-20.

Nakada M.,Tanaka C.,Tsunewaki K., Tsuda M. (1994) RFLP analysis for species separation in the genera Bipolaris and Curvularia. Mycoscience 35: 271-278 Doi: 10.1007/ BF02268449.
Page R. D. M. (1996) TreeView. An application to display phylogenetic trees on personal computers. ComputerApplications in Biological Sciences 12: 357-358.
Rayner R. W. (1970) Mycological colour chart. Commonwealth Mycological Institute, Kew.
Riddell R.W. (1950) Permanent stained mycological preparations obtained by slide culture. Mycologia 42: 265-270.
Sivanesan A. (1987) Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Mycological Papers 158: 1-261.
SuY.Y., QiY. L., Cai L. (2012) Induction of sporulation in plant pathogenic fungi. Mycology: DOI:10.1080/21501203.2012.719042.
Swofford D. (2002) PAUP 4.0 b10: Phylogenetic analysis using parsimony. Sinauer Associates, Sunderland, MA, USA.
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence align-
ment aided by quality analysis tools. Nucleic Acids Research 25: 4876-4882. Doi: 10.1093/nar/25.24.4876.

Tsuda M. (1992) Identification of graminicolous Helminthosporium sensu lato and Curvularia species in Japan. 3. Bipolaris and Curvularia (in Japanese). Journal of Antibacterial and Antifungal Agents 20: 437-448.
Tsuda M., Ueyama A. (1982) Pseudocochliobolus verruculosus and variability of conidium morphology. Mycologia 74: 563-568.
Tsuda M., Ueyama A. (1983) Pseudocochliobolus pallescens and variability of conidium morphology. Memoirs of the College of Agriculture, Kyoto University 122: 85-91.
Upsher F.J. (1975) Fungal biological flora. 3. Curvularia Boedijn. International Biodeterioration Bulletin 11: 24-30.
(Manuscript accepted 5 Nov 2012; Corresponding Editor: I. Krisai-Greilhuber)

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database
Digitale Literatur/Digital Literature
Zeitschrift/Journal: Sydowia
Jahr/Year: 2012
Band/Volume: 64
Autor(en)/Author(s): Manamgoda D.S., Cai Lei, McKenzie Eric H. C., Chukeatirote Ekachai, Hyde Kevin D.

Artikel/Article: Two new Curvularia species from northern Thailand. 255-266

[^0]: * e-mail: dsmanamgoda@gmail.com, kdhyde3@gmail.com

