Low shrub cover in alvar grasslands increases small-scale diversity by promoting the occurrence of generalist species

Leichte Verbuschung von Alvar-Kalkmagerrasen hat einen positiven Effekt auf die Artenvielfalt durch die Förderung generalistischer Arten

Liis Kasari¹,*, Antonio Gazol¹, Jesse M. Kalwij¹,², Aveliina Helm¹

1Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, EE-51005 Tartu, Estonia
2Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
*Corresponding author, e-mail: kasari@ut.ee

Abstract

Dry calcareous grasslands in Europe are renowned for their high plant diversity. However, declining habitat areas and highly fragmented distribution threaten the long-term persistence of this valuable habitat type. In Estonia the decline of traditional grassland management and subsequent encroachment of shrubs has resulted in a substantial loss of alvar grasslands – a particularly rare and species-rich type of calcareous grassland. It is known that a shrub cover of more than 70% decreases the alvar grassland species richness. At the same time, a shrub cover of 30% is considered optimal for alvar grasslands and thus a target state for habitat restoration. However, very little is known about the effect of low shrub cover on environmental conditions and species composition of alvar grasslands. Our aim was to detect to what extent the small-scale plant diversity and species composition is influenced by low shrub cover (less than 30%). We hypothesized that even a low shrub cover can have an effect on the environmental conditions of alvar grasslands.

We sampled small-scale plant species richness, shrub cover and abiotic environmental conditions such as light, soil moisture, soil pH and soil depth in 10 metre long transects (n = 33) subdivided into 10 cm × 10 cm plots in Estonian alvar grasslands. Structural equation modelling was used to quantify the direct and indirect effects of shrub cover on the richness of characteristic alvar species and on the richness of generalist species.

We found that low shrub cover of up to 30% increased total and generalist species richness directly and indirectly by increasing the light heterogeneity. Alvar characteristic species richness was not related to low shrub cover values. This suggests that when estimating the effects of shrub cover on species richness and on conservation needs of grasslands, habitat specificity of species needs to be taken into account.

Keywords: alvar grassland, grassland conservation, species richness, structural equation modelling, woody plants

Erweiterte deutsche Zusammenfassung am Ende des Textes
1. Introduction

Temperate, oligo- to mesotrophic, semi-natural grasslands have the highest small-scale plant species richness in the world (Wilson et al. 2012), yet these habitat types are globally endangered (Ceballos et al. 2010). In Europe most of the historically developed semi-natural grasslands have either been abandoned or the traditional extensive grassland management has been replaced by intensive agricultural practices during the past century (Rothenhal et al. 2012, Strijker 2005). Both types of land use change resulted in shrub encroachment in grasslands and in changed environmental parameters and species composition (Aavik et al. 2008, Petrik et al. 2011, Philgren & Lennartsson 2008, Paar & Helm 2007, Paar et al. 1999a), ultimately leading to large decreases in grassland habitat area (Poschloed et al. 2005). Shrub encroachment in grassland is often followed by a decline in characteristic grassland species richness (Grime 2002, Limb et al. 2010, Paar & Helm 2007, Ockinger et al. 2006). At the same time, shrub encroachment can facilitate the establishment of species that are better adapted to these new conditions, e.g. generalist species or species from other habitat types (Kiviniemi & Eriksson 2002). The mechanisms by which shrub cover influences grassland species composition includes a reduction in light availability (Limb et al. 2010), a shift in soil nutrient and water availability (Huxman et al. 2005, Miwa & Reuter 2010), and a decrease in soil pH (Jobbagy & Jackson 2003).

Environmental changes related with shrub encroachment not only modify the quantity and quality of different parameters, but also their spatial heterogeneity (Paar & Helm 2007). Spatial environmental heterogeneity is caused by a patchy distribution of resources in space (Wiens 2000). Paar & Helm (2007) found that small-scale environmental factors such as soil moisture and nutrient content varied notably more in forests than in grasslands. This is because the extensive root systems of woody plants use resources patchily, and relatively homogeneous grassland environments will become more heterogeneous after shrub encroachment (Bekele & Hudnall 2006, Liu et al. 2011, Paar & Helm 2007). Habitat heterogeneity can also have influence on the species diversity (Clark et al. 1998). At larger scales the influence of environmental heterogeneity on plant diversity is usually presumed to be positive according to niche theory (Clark et al. 1998, Tilman 1982); at smaller scales, however, the influence can also be negative (Laanisto et al. 2012, Paasas & Austin 2001, Tamme et al. 2010).

In this study we focus on the effect of low-cover shrub encroachment on alvar grassland plant species richness and composition. Alvars are calcareous species-rich semi-natural grasslands, mostly occurring on the outcrops of Ordovician or Silurian limestone (Laanimer 1965). Alvar grasslands are characterised by very shallow (< 20 cm) soils and a distinctive species composition consisting of calciphilous, light-demanding species (Laanimer 1965, Paal 1997). Distribution of alvar grasslands is very limited: they mostly occur in Sweden and Estonia, and to lesser extent a similar habitat type is also present in Canada and Russia (Schaeffer & Larson 1997, Znamenskii et al. 2006). For centuries alvar grasslands have been more or less continuously mown and grazed, which has kept the shrub cover low or even entirely absent (Laanimer 1965, Poska & Saarse 2002; Fig. 1). In Estonia alvar grasslands are currently mostly abandoned and rapidly overgrown by pine (Pinus sylvestris) and juniper (Juniperus communis) (Fig. 2). Since the 1930s the surface area of alvars has decreased from 43,500 hectares to approx. 5000 hectares (Helm et al. 2006). Without large-scale restoration measures, their further persistence in Estonia is doubtful (Helm et al. 2006, Paar & Helm 2007).
Fig. 1. Rajametsa alvar grassland in western Estonia. One of the few well-preserved and currently continuously grazed alvar grassland (photo: A. Helm).

Fig. 2. Abandoned and highly overgrown (mostly by pines and junipers) Pivarootsi alvar grassland in western Estonia (photo: L. Saar).

Alvar grasslands with a shrub cover of 30% are considered to be in the best condition, and this cover is also recommended as a desirable state following habitat restoration (Helm 2011). However, although several studies have shown that a shrub cover of more than 70% rapidly decreases alvar grassland species richness (Parrello et al. 1999b, Rejmánek & Rosén 1988), little is known of how a low shrub cover (up to 30%) influences the environmental conditions and species richness of alvar grasslands. The influence of woody species cover on herbaceous vegetation is most pronounced at small scales (Rejmánek & Rosén 1992). It is also important to take into account that habitat characteristic species and more widespread generalist species may be differently related to low shrub cover due to the possibly differing requirements for habitat conditions (Pykalä et al. 2005, Rejmánek & Rosén 1992).

The aim of this study is to detect the extent to which shrub encroachment affects plant species richness and composition in currently open and visually well-preserved habitat patches. We hypothesize that even a low cover of shrubs (up to 30%) influences the small-scale richness of grassland plants via altering the environmental conditions or increasing environmental heterogeneity. More specifically we test whether the richness of alvar characteristic species and generalist species are influenced differently by environmental changes triggered by low shrub cover.

2. Material and methods

A total of 33 alvar grasslands (EC Habitats Directive habitat type 6280* “Nordic alvar and precambrain calcareous flatrocks”) on the Estonian islands of Saaremaa and Muhu (Fig. 3; ca. 58º N, 22–23º E) were visited during August 2010. Each grassland belonged to the “Avenetum alvarense” type (Parrello et al. 1999a) – however, this name is illegitimate according article 34a ICPN (Weber et al. 2000) but is given here because no legitimate name exists so far (for further details on dry grassland communities of Saaremaa see Boch & Dengler (2006)). The sampled grasslands represented almost all of the best-preserved alvar grasslands in Estonia. The climate on these islands is maritime with a mean temperature of 21 ºC in July (summer), -8.2 ºC in January (winter), and a mean annual precipitation of 679 mm (EMHI 2011).

To collect data describing the small-scale species richness and environmental parameters, we established a single transect of 0.1 m × 10 m in each alvar grassland. Transects were located in the open areas of grassland patches to represent the typical environmental conditions of good-quality (i.e. not overgrown) alvar grasslands. Each transect was divided into 100 plots of 10 cm × 10 cm. In each plot we recorded the vascular plants and measured soil pH, soil temperature, soil moisture, relative light availability, and soil depth in 2010. All measurements of abiotic variables were carried out during the shortest possible time span once in each grassland site in the beginning of August.

Soil pH was measured using a HI-99121 pH meter in combination with a HI-1292D electrode (Hanna Instruments, Padova, Italy). Soil temperature and moisture were measured with a Delta-T WET-2 sensor (Delta-T Devices, Cambridge, UK). Soil pH, temperature, and moisture were measured at 10 cm below soil surface at a central point in each plot. Light availability was measured using a LiCor (Lincoln, Nebraska, USA) LI-250 Light Meter and LI-190SA Quantum Sensor. To minimise between-plot variation of light availability, we calculated relative light availability (below-grass light availability/above-grass light availability). Soil depth was measured using a thin metal rod in the centre and in all four corners of each plot to a maximum depth of 40 cm and subsequently averaged per plot.

To study the influence of low-cover shrub encroachment on small-scale species richness and on environmental parameters, we mapped the position and canopy cover of all shrubs around transects on gridded paper by using measuring tape. Juniper (Juniperus communis) and pine (Pinus sylvestris) were dominant woody plant species. Common buckthorn (Rhamnus cathartica) and alder buckthorn (Frang-
gula alnus) were also present, but to a much lesser extent. After sampling we digitised the data and calculated the percentage of shrub cover around transects within one meter radius using the geographic information system ArcGIS 9.2 (ESRI 2004).

In addition to total species richness, we distinguished the characteristic and generalist species. We defined characteristic species as species that grow preferably on calcareous alvar grasslands and are rarely present in other communities. Generalist species were defined as species occurring predominantly in other habitat types. Most of the species considered generalists were widespread species inhabiting open habitat types, but also some forest and ruderal species (see Appendix 1 for species lists). To categorise species as characteristic or generalist species, we used lists of the Estonian alvar grassland classification (PÄRTEL et al. 1999a), main habitat descriptions of the Estonian Flora (KUKK 1999), characteristic species lists of Estonian semi-natural communities (PÄRTEL et al. 2007), and expert opinions (M. Pärtel, A. Helm).

For each transect we calculated the mean species richness and soil depth over 100 plots. Since the soil pH, temperature, moisture, and relative light availability depend on local weather conditions and can also vary significantly throughout the year, we used the coefficient of variation (CV, i.e. standard deviation divided by the mean) for these parameters. Coefficient of variation is a measurement of environmental heterogeneity (ETTEMA & WARDLE 2002, TAMME et al. 2010); it provides information on the relative variation of the data, which can be compared for different sites and time-periods (PÄRTEL & HELM 2007). All variables were tested for normal distribution of residuals and, if deemed necessary, log-transformed, inverted, or square root transformed.

We used structural equation modelling (SEM) (GRACE 2006) to explore and quantify the direct and indirect effects of environmental variables and shrub cover on 1) total species richness, 2) characteristic species richness and 3) generalist species richness. In a field study it is impossible to separate between
direct effects and indirect effects via variables that are not measured during the study. For simplicity, we denote the shrub cover effect as 'direct' when the cover per se was significantly related to species number, not via another measured environmental factor. In a first step, we considered the influence of all measured environmental parameters, but only those showing an influence on species richness were included in the final models. Overall model fit was assessed using the chi-square statistic (χ^2), the root mean square error of approximation (RMSEA), and the comparative fit index (CFI). A model can be accepted when the P-value associated with a χ^2 and RMSEA is insignificant. A CFI-value > 0.95 indicates a good fit of the model (GRACE 2006). All statistical analyses were made using IBM SPSS Amos 19.0 (ARBUCKLE 2010).

3. Results

The shrub cover surrounding the 33 transects varied between 0 and 32% (see Appendix 1 for detailed information on all parameters). We found a total number of 113 vascular plant species: 32 grassland characteristic species and 81 generalists (see also Appendix 2). There was no significant correlation between the number of characteristic and generalist species ($r = 0.28, P = 0.10$). Models explained 32% of the variation in total, 18% of the variation in characteristic species richness, and 40% of the variation in generalist species richness (Fig. 4 and 5). An increase in shrub cover increased total and generalist species richness both directly and indirectly via light heterogeneity (Fig. 4 and 5B; Table 1). The richness of characteristic species depended positively on soil depth, but there was no relationship with shrub cover (Fig. 5A; Table 1). Soil pH and soil temperature were excluded from final models as they had no significant relationship with any of the other parameters. Also no relationship was found between shrub cover and soil depth in any of the models. A negative relationship was found between soil moisture heterogeneity and generalist species richness (Fig. 5B). Soil moisture heterogeneity was mainly determined by soil depth, but not by shrub cover (Fig. 4 and 5).

4. Discussion

Shrub encroachment causes much concern for dry calcareous grasslands in Estonia (PÄRTEL et al. 1999b) as it has been shown that total plant diversity starts to decline quickly once the shrubs have reached ~70% cover (REJMÁNEK & ROSÉN 1988). For this reason conservation targets are aimed at keeping the shrub cover at 30% or less (HELM 2011). We found that low shrub covers had no influence on the small-scale richness of grassland characteristic species. However, habitat generalist species richness and total species richness were positively related to increasing shrub cover. Our findings indicate that the increase of generalist species richness with increasing shrub cover should be taken into consideration when planning habitat conservation and restoration.

The structural equation models comprising shrub cover and environmental factors such as soil depth, soil moisture heterogeneity, and light heterogeneity described 40% of the variation in generalist species richness, but only 18% of the variation in characteristic species richness. This difference indicates that the local variables examined in our study have a stronger influence on the generalist species richness, whereas the characteristic species richness may depend more on large-scale processes. On the landscape scale, it has been shown previously that species richness in Estonian alvar grasslands is largely dependent on large-scale habitat configuration, historical land use, and human population density (GAZOL et al. 2012, HELM et al. 2006, PÄRTEL et al. 2007).
Shrub cover influenced the total and the generalist species richness both directly and indirectly by increasing the light heterogeneity. Trees and shrubs can have facilitative abilities by creating suitable microhabitats for germination; by changing nutrient quantity, availability, and variability; by transforming soil chemical composition, offering wind shelter, protecting from herbivores, or changing the composition of soil microorganisms (Callaway 2007, Franco & Nobel 1989). The indirect positive effect of shrub cover on generalist species richness via increasing the small-scale light heterogeneity can be partly explained with the classical niche theory: heterogeneous habitat conditions provide suitable habitat niches for different species (Clark et al. 1998, Rusina et al. 2013, Tilman 1982). Most likely, however, a decrease of full-light availability and a change in average light conditions with increasing light heterogeneity can make grasslands more suitable for species preferring shadier conditions (Tamme et al. 2010).
Fig. 5. Structural equation models of direct and indirect relationships between characteristic species richness (A) and generalist species richness (B), environmental parameters, and shrub cover within a 1 m radius of the plots. Numbers near the arrows indicate unstandardised/standardised estimates of the relationships and their statistical significance: *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.0001$; ′, $P < 0.10$; ns, non-significant. The width of the arrow is proportional to the effect of the variable. Solid lines indicate positive, dashed lines negative relationships. Double-headed arrows show unanalysed relationships, single-headed arrows direct causal relationships between parameters. Also shown are the r^2 values of the endogenous variables. Statistics of characteristic and generalist species models overall fit are: $CFI = 1$; $RMSEA = 0$; $P = 0.47$; $\chi^2 = 0.54$, $P = 0.46$.
Abb. 5. Strukturgleichungsmodell der direkten und indirekten Beziehungen zwischen Artenvielfalt der Habitatspezialisten und Habitatgeneralisten, Umweltparametern und Deckungsgrad von Sträuchern in einem 1m Radius. Die Zahlen an den Pfeilen zeigen die unstandardisierten/standardisierten Schätzungen der Beziehungen und ihre statistische Signifikanz: *, \(P < 0,05; **, P < 0,01; ***, P < 0,0001; \) \(\ast, P < 0,10; \) ns, nicht signifikant. Die Breite des Pfeils ist proportional zum Effekt der Variable. Durchgehende Linien zeigen positive Beziehungen und gepunktete Linien negative Beziehungen. Zweispitzige Pfeile zeigen nicht analysierte Beziehungen und einspitzige Pfeile direkte kausale Beziehungen zwischen Parametern. \(r^2 \) endogener Variablen ist ebenfalls dargestellt. Die Parameter des Gesamtmödels sind: CFI = 1; RMSEA = 0, \(P = 0,47; \chi^2 = 0,54, P = 0,46. \)

We also found a negative small-scale heterogeneity-diversity relationship between generalist species richness and soil moisture heterogeneity. A negative diversity-heterogeneity relationship has been found to occur mostly only at small scales, and novel explanations such as microfragmentation theory have been presented to explain this slightly counterintuitive relationship (TAMME et al. 2010). Microfragmentation can be seen as a too fragmented occurrence of suitable environmental conditions at small scale, making the conditions unsuitable for species that require a less heterogeneous environment (LAANISTO et al. 2012, TAMME et al. 2010).

Characteristic species richness showed no direct or indirect relationship with shrub cover, contrary to our initial expectations. Many species characteristic to alvar grasslands originate from steppe and tundra regions and are adapted to open habitats with good light availability (LAASIMER 1965). Previously, REJMÁNEK & ROSÉN (1992) have found that a juniper cover exceeding 10% already decreased the number of habitat-characteristic species in Swedish alvar grasslands, whereas the total species richness increased on account of ruderal and forest species. The maximum shrub cover value in our study was 32%, and although this low cover already showed to increase the richness of generalist species, it does not yet have a negative influence on light-demanding characteristic species. Of the tested parameters, the

<table>
<thead>
<tr>
<th>Effect</th>
<th>CV of light availability</th>
<th>CV of soil moisture</th>
<th>Mean soil depth</th>
<th>Shrub cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total species richness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5.45 / 0.36</td>
<td>-0.10 / -0.10</td>
<td>2.15 / 0.21</td>
<td>3.21 / 0.43</td>
</tr>
<tr>
<td>Direct</td>
<td>5.25 / 0.34</td>
<td>-0.10 / -0.10</td>
<td>1.41 / 0.14</td>
<td>2.20 / 0.29</td>
</tr>
<tr>
<td>Indirect</td>
<td>0.20 / 0.01</td>
<td>–</td>
<td>0.74 / 0.07</td>
<td>1.00 / 0.13</td>
</tr>
<tr>
<td>Characteristic species richness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.92 / 0.12</td>
<td>0.09 / 0.17</td>
<td>1.84 / 0.37</td>
<td>0.72 / 0.19</td>
</tr>
<tr>
<td>Direct</td>
<td>1.09 / 0.14</td>
<td>0.09 / 0.17</td>
<td>2.45 / 0.49</td>
<td>0.44 / 0.12</td>
</tr>
<tr>
<td>Indirect</td>
<td>-0.16 / -0.02</td>
<td>–</td>
<td>-0.61 / -0.12</td>
<td>0.28 / 0.07</td>
</tr>
<tr>
<td>Generalist species richness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5.36 / 0.43</td>
<td>-0.29 / -0.34</td>
<td>0.70 / 0.08</td>
<td>2.70 / 0.44</td>
</tr>
<tr>
<td>Direct</td>
<td>4.81 / 0.38</td>
<td>-0.29 / -0.34</td>
<td>-1.28 / -0.15</td>
<td>1.90 / 0.31</td>
</tr>
<tr>
<td>Indirect</td>
<td>0.54 / 0.04</td>
<td>–</td>
<td>1.99 / 0.24</td>
<td>0.80 / 0.13</td>
</tr>
</tbody>
</table>

| Table 1. Total, direct, and indirect effects of environmental parameters and shrub cover on total, characteristic, and generalist species richness according to structural equation modelling. The unstandardised and standardised effects are separated with a ‘/’. CV = coefficient of variation. The path diagrams are shown in Fig. 4 and 5. |
only factor influencing the characteristic species richness was the soil depth, which was positively related to species number. Alvar grasslands can have very shallow soils (Parrel et al. 1999a), and the small-scale richness of habitat characteristic species may be hindered in extreme environmental conditions (Laasimer 1965). Interestingly, soil depth had no influence on generalist species richness. This might be explained by the result that generalist species richness was to a large extent influenced by increasing shrub cover, which in turn was not related to soil depth.

Except for the significant effect of modifying the light conditions, shrub cover had no significant influence on other environmental factors such as soil moisture, pH, and temperature. It is likely that the shrub cover around the studied transects was too low to have a measurable effect on most of the environmental conditions. The effect of shrubs on environmental conditions might also be more pronounced during certain time periods or under certain climatic conditions, and although we used the heterogeneity instead of mean values, the snapshot sampling design has only a limited capacity to detect year-round effects. Similarly to a previous study on alvar grasslands (Parrel & Helm 2007), we found no relationship between soil depth and shrub cover, indicating that grassland overgrowth is probably more related to land use and time since abandonment than to initial environmental conditions (Rosén 2006).

Our results indicate that even a low shrub cover has an effect on the biodiversity and the light conditions of calcareous semi-natural grasslands. However, habitat characteristic and generalist species react differently to shrub encroachment. Shrub cover values of up to 30% increase the total vascular plant species richness on account of generalist species, but do not decrease the richness of habitat characteristic species. The results of the current study indicate that a shrub cover of less than 30% can be considered suitable for persistence of habitat characteristic species in alvar grasslands. However, the increase of generalist species can decrease the quality in alvar grasslands due to the relative decline of alvar characteristic species richness. Moreover, shrub colonisation in dry grasslands is connected with a high proportion of juvenile shrubs that have not yet reached their full size. These juvenile shrubs bear the danger of fast individual growth, which will cause negative consequences for dry grasslands within short time. Also the number of diaspores which may increase rapidly during shrub development may make stable stages of shrub encroachment difficult or even impossible. Finally, shrubs produce not only habitats for mesophilous (generalistic) plant species but also safe sites for own progeny (Haugo et al. 2013, Parrel & Helm 2007), or shrubs may spread quickly by polycormons. In general, the impact of a self-dynamical shrub encroachment on grassland richness is less studied so far but must not be neglected and therefore should further be investigated.

Erweiterte deutsche Zusammenfassung

Um den Artenreichtum der Gefäßpflanzenarten auf kleiner räumlicher Skala in Abhängigkeit von den Umweltbedingungen zu beschreiben, wurde in 30 Magerrasen jeweils ein Transsekt von 10 m Länge und 0,1 m Breite angelegt und in 100 10 cm × 10 cm-Probeflächen unterteilt. Im August 2010 wurden in jeder Probefläche alle Gefäßpflanzenarten aufgenommen sowie der pH-Wert, die Temperatur, Feuchtigkeit und Größe des Bodens sowie der relative Lichtgenuss der Vegetation gemessen. Um den Einfluss einer leichten Verbuschung auf den Artenreichtum und die Umweltbedingungen zu untersuchen, wurde mit Hilfe eines Maßbands die Position aller angrenzenden Gebüsche in Karopapier eingezeichnet und deren Deckung geschätzt. Anschließend wurden die Daten digitalisiert und der Deckungsgrad der Gebüsche innerhalb eines 1-Meter-Radius um die Transsekte mit Hilfe eines Geographischen Informationssystems (ArcGIS 9.2) berechnet. Wir nutzen Strukturlösungsmodelle (SEM) um direkte und indirekte Effekte der Umweltvariablen und dem Verbuschungsgrad auf den 1) Gesamtartenreichtum sowie den Reichtum an 2) Alvar-charakteristischen und 3) generalistischen Arten zu quantifizieren.

Ergebnisse – Der Deckungsgrad der Gebüsche in der Umgebung der 33 Transsekte varierte zwischen 0% und 32% (s. Anhang 1 für detaillierte Informationen). Insgesamt fanden wir 113 Gefäßpflanzenarten, davon 32 Alvar-charakteristische Arten und 81 generalistische Arten ohne Bindung an Alvar-Magerrasen (s. Anhang 2). Leichte Verbuschung steigerte sowohl direkt als auch indirekt (durch Erhöhung der Heterogenität des Lichtgenusses) den Artenreichtum an Generalisten und damit auch den Gesamtartenreichtum (Abb. 4 and 5B, Tab. 1). Der Reichtum an Alvar-charakteristischen Pflanzenarten wurde dagegen vom Verbuschungsgrad nicht beeinflusst (Abb. 5A, Tab. 1).
Diskussion – Unsere Ergebnisse zeigen, dass eine leichte Verbuschung einen positiven Einfluss auf die Diversität an Gefäßpflanzenarten von Kalkmagerrasen hat, indem die Heterogenität des Lichtgenusses gesteigert wird. Dadurch können sich halbschattenspendende Arten ansiedeln, ohne dass die charakteristischen Arten der Magerrasen darunter leiden. So reagierten in unserer Studie lediglich die generalistischen Arten der Magerrasen auf leichte Verbuschung. Verbuschung von bis zu 30% steigert also den Artenreichtum durch Zunahme der generalistischen Arten ohne den Artenreichtum der für Magerrasen charakteristischen Arten zu reduzieren. Eine Verbuschung von weniger als 30% könnte daher die Persistenz der charakteristischen Alvar-Magerrasen erlauben. Möglicherweise vermindert aber die Zunahme an generalistischen Arten die Qualität der Alvar-Magerrasen durch relative Abnahme der Alvar-charakteristischen Pflanzenarten. Wenn die Büsche noch nicht ihre volle Größe erreicht haben oder es sich um Buschjungwuchs handelt, birgt Verbuschung immer auch die Gefahr des Größerwerdens der Büsche, was sich dann schnell negativ auf die Magerrasen auswirken kann. Auch die mit dem Alter der Büsche zunehmende Menge an produzierten Diasporen kann eine stabile leichte Verbuschung erschweren oder gar unmöglich machen. Nicht zuletzt schaffen Gebüsche mit ihrem Schattenwurf nicht nur Wuchsorte für mesophile Generalisten sondern auch Safe sites für die eigenen Nachkommen, oder sie breiten sich mit Hilfe von Polykormonen aus. Solche Eigendynamiken einer Verbuschung von Kalkmagerrasen dürfen nicht unterschätzt werden. Sie sind bisher nicht gut untersucht – dies sollte geändert werden.

Acknowledgments
We thank Krista Takkis, Riin Tamme, Liina Saar, and Meelis Pärtel for their field assistance. Eszter Ruprecht (co-ordinating editor), Thomas Becker (chair of the guest editors of the Dry Grassland Special Feature) and two referees provided helpful comments on earlier drafts of this manuscript. Many thanks also to Thomas Becker and Lars Götzemberger for the translation into German and Aiko Huckauf for linguistic corrections. This study was funded by Estonian Science Foundation grant no. 9223, by the EU through the European Regional Development Fund (Centre of Excellence FIBIR) and by the ER-MOS programme grant 14 (co-funded by Marie Curie Actions).

Supplements and Appendices

Appendix 1. Minimum, maximum, and mean values with standard deviation (SD) of environmental parameters, shrub cover, and different components of species richness used in structural equation modelling.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrub cover (%)</td>
<td>33</td>
<td>0.00</td>
<td>32.20</td>
<td>8.31 ± 7.22</td>
</tr>
<tr>
<td>Soil depth (cm)</td>
<td>33</td>
<td>3.14</td>
<td>16.39</td>
<td>8.16 ± 3.29</td>
</tr>
<tr>
<td>CV of soil moisture</td>
<td>33</td>
<td>0.13</td>
<td>0.68</td>
<td>0.27 ± 0.12</td>
</tr>
<tr>
<td>CV of soil temperature</td>
<td>33</td>
<td>0.01</td>
<td>0.08</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>CV of light availability</td>
<td>33</td>
<td>0.15</td>
<td>0.65</td>
<td>0.35 ± 0.11</td>
</tr>
<tr>
<td>CV of soil pH</td>
<td>33</td>
<td>0.01</td>
<td>0.06</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>Total species richness</td>
<td>33</td>
<td>4.86</td>
<td>12.05</td>
<td>8.64 ± 1.85</td>
</tr>
<tr>
<td>Characteristic species richness</td>
<td>33</td>
<td>1.85</td>
<td>5.77</td>
<td>3.82 ± 0.85</td>
</tr>
<tr>
<td>Generalist species richness</td>
<td>33</td>
<td>1.81</td>
<td>7.27</td>
<td>4.82 ± 1.41</td>
</tr>
</tbody>
</table>

Anhang 1. Minimum, Maximum und Mittelwert mit Standardabweichung (SD) verschiedener Umweltparameter, dem Deckungsgrad holziger Arten und von verschiedenen Komponenten des Artenreichtums, die im Strukturgeleichungsmodell verwendet wurden.
<table>
<thead>
<tr>
<th>Characteristic species</th>
<th>Generalist species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinos arvensis (Lam.) Dandy</td>
<td>Achillea millefolium L.</td>
</tr>
<tr>
<td>Anemone sylvestris L.</td>
<td>Agrimonia eupatoria L.</td>
</tr>
<tr>
<td>Antennaria dioica (L.) Gaertn.</td>
<td>Alchemilla spp.</td>
</tr>
<tr>
<td>Anthyllis vulneraria L. s. l.</td>
<td>Arabis hirsuta (L.) Scop.</td>
</tr>
<tr>
<td>Artemisia rupestris L.</td>
<td>Artemisia campestris L.</td>
</tr>
<tr>
<td>Asperula tinctoria L.</td>
<td>Brachypodium pinnatum (L.) P. Beauv.</td>
</tr>
<tr>
<td>Astragalus danicus Retz.</td>
<td>Briza media L.</td>
</tr>
<tr>
<td>Carex ornithopoda Willd. s. str.</td>
<td>Bromus hordeaceus L.</td>
</tr>
<tr>
<td>Carlina vulgaris L. s. str.</td>
<td>Carex caryophyllea Latour.</td>
</tr>
<tr>
<td>Cirsiurn acule L.</td>
<td>Carex flacca Schreb.</td>
</tr>
<tr>
<td>Daucus carota L.</td>
<td>Carex tomentosa L.</td>
</tr>
<tr>
<td>Echium vulgare L.</td>
<td>Centaurea jacea L. s. l.</td>
</tr>
<tr>
<td>Festuca ovina L. s. str.</td>
<td>Cerastium fontanum Baumg. s. str.</td>
</tr>
<tr>
<td>Filipendula vulgaris Moench</td>
<td>Cirsiurn vulgare (Savi) Ten.</td>
</tr>
<tr>
<td>Helianthemum nummularium (L.) Mill. s. l.</td>
<td>Convallaria majalis L.</td>
</tr>
<tr>
<td>Helictotrichon pratense (L.) Besser</td>
<td>Convulvulus arvensis L.</td>
</tr>
<tr>
<td>Festuca pratensis Huds. s. l.</td>
<td>Daucytilis glomerata L.</td>
</tr>
<tr>
<td>Festuca rubra L.</td>
<td>Danthonia decumbens (L.) DC.</td>
</tr>
<tr>
<td>Fragaria ssp.</td>
<td>Erigeron acer L.</td>
</tr>
<tr>
<td>Galium album Mill.</td>
<td>Euphrasia ssp.</td>
</tr>
<tr>
<td>Galium boreale L.</td>
<td>Festuca pratensis Huds. s. l.</td>
</tr>
<tr>
<td>Galium verum L. s. str.</td>
<td>Festuca rubra L.</td>
</tr>
</tbody>
</table>

Leontodon autumnalis L.
Leontodon hispidus L.
Leucanthemum vulgare Lam. s. str.
Linum catharticum L.
Luzula spp.
Melampyrum arvense L.
Melampyrum pratense L.
Myosotis spp.
Origanum vulgare L.
Phleum pratense L. s. str.
Pilosella spp.
Plantago maritima L.
Plantago media L.
Poa angustifolia L.
Poa compressa L.
Polygala comosa Schkuhr
Polygonatum odoratum (Mill.) Druce
Potentilla reptans L.
Primula veris L.
Pulsatilla pratensis (L.) Mill.
Ranunculus acris L.
Ranunculus polyanthemos L. s. str.
Rumex acetosa L.
Sagina nodosa (L.) Fenzl
Senecio jacobaea L.
Sesleria caerulea (L.) Ard.
Silene nutans L.
Silene vulgaris (Moench) Garcke
Geranium sanguineum L.
Gymnadenia conopsea (L.) R. Br.
Helictotrichon pubescens (Huds.) Pilg.
Hepatica nobilis Schreb.
Hermiinium monorchis (L.) R. Br.
Hieracium spp.
Hieracium umbellatum L.
Hypericum perforatum L.
Inula salicina L.
Knautia arvensis (L.) Coult. s. str.
Lathyrus pratensis L.
Solidago virgaurea L.
Trifolium medium L.
Trifolium pratense L.
Trifolium repens L.
Veronica chamaedrys L. s. l.
Veronica officinalis L.
Vicia cracca L.
Viola collina Besser
Viola hirta L.
Viola spp.

References

