

© Umweltbundesamt, Wien; download unter www.umweltbundesamt.at und www.biologiezentrum.at

umweltbundesamt[®]

HINTERGRUNDMESSNETZ UMWELTBUNDESAMT

Monatsbericht Juli 2009

REPORT REP-0208

Wien, 2009

Projektleitung Wolfgang Spangl
Umschlagfoto Luftmessstelle Klöch (© Gröger)
Weitere Informationen zu Publikationen des Umweltbundesamt unter: http://www.umweltbundesamt.at/

Impressum

Medieninhaber und Herausgeber: Umweltbundesamt GmbH Spittelauer Lände 5, 1090 Wien/Österreich

© Umweltbundesamt GmbH, Wien, 2009 Alle Rechte vorbehalten ISBN 978-3-99004-006-5

INHALT

1	EINLEITUNG	5
2	ABKÜRZUNGEN	6
3	DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMT	8
3.1	Ausstattung der Messstellen	8
3.2	Angaben zu den Messgeräten	10
4	GRENZWERTE	11
5	WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS	13
6	VERFÜGBARKEIT – JULI 2009	14
7	MONATSMITTELWERTE – JULI 2009	15
8	ÜBERSCHREITUNGEN	16
9	TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	17
	Enzenkirchen – Juli 2009	17
	Illmitz – Juli 2009	18
	Klöch – Juli 2009	19
	Pillersdorf – Juli 2009	20
	Ried im Zillertal – Juli 2009	21
	Sonnblick – Juli 2009	22
	Vorhegg – Juli 2009	23
	Zöbelboden – Juli 2009	24
10	GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	25

© Umweltbundesamt, Wien; download unter www.umweltbundesamt.at und www.biologiezentrum.at

1 EINLEITUNG

Das Umweltbundesamt betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBI. I 115/1997 idgF) und gemäß Ozongesetz (BGBI. 210/1992 idgF) in Österreich derzeit insgesamt 7 Luftgütemessstellen.

In der Messkonzept-Verordnung zum Immissionsschutzgesetz Luft (BGBI. II 500/2006) ist festgelegt, dass alle Messnetzbetreiber und somit auch das Umweltbundesamt längstens drei Monate nach Ende eines Monats einen Monatsbericht zu veröffentlichen haben. Dieser Bericht enthält für die kontinuierlich gemessenen Luftschadstoffe sowie für PM10 und PM2,5 Informationen über die Verfügbarkeit der Messdaten, die Monatsmittelwerte, die maximalen Mittelwerte und die Überschreitungen von Grenzwerten und Zielwerten.

Der Monatsbericht wird aus kontrollierten Daten (dritte von vier Kontrollstufen) erstellt.

Die Messdaten werden nach den mehrmals jährlich durchzuführenden Kalibrierungen der Messgeräte einer weiteren Prüfung und gegebenenfalls einer Korrektur unterzogen. Die endgültigen Messwerte (Kontrollstufe 4, nach internationalem Abgleich der Kalibrierstandards) werden ebenso wie die Messergebnisse von Blei, Benzol, der im Rahmen des EMEP-Messprogramms¹ zusätzlich erfassten Luftschadstoffe sowie der meteorologischen Messungen im Jahresbericht publiziert. Die Jahresberichte sowie die Monatsberichte ab 1999 sind von der Homepage des Umweltbundesamt (http://www.umweltbundesamt.at) abrufbar.

Die Messstellen des Umweltbundesamt bilden das österreichische Hintergrundmessnetz. Ziel der Messungen ist vor allem die Erhebung der großräumigen Hintergrundbelastung. Dadurch sollen Grundlagen geschaffen werden, um über

- die großflächige Hintergrundbelastung und deren Trend
- den Ferntransport von Luftschadstoffen

Aussagen treffen zu können. Die drei Hintergrundmessstellen Illmitz, Vorhegg und Zöbelboden sind zudem Teil eines europaweiten Schadstoffmessnetzes, welches innerhalb der Konvention über weiträumige, grenzüberschreitende Luftverunreinigung betrieben wird und der Ermittlung von großräumigem Schadstofftransport dient (EMEP Messprogramm).

Darüber hinaus dienen die Hintergrundmessstellen des Umweltbundesamt der Überwachung der Einhaltung von Grenzwerten und Zielwerten zum Schutz von Ökosystemen und der Vegetation.

Um diesen Aufgaben gerecht werden zu können, wurden die Messstellen so situiert, dass sie nicht im unmittelbaren Einflussbereich von Schadstoffemittenten liegen. Dies bedeutet, dass die auftretenden Schadstoffkonzentrationen im Normalfall unter der Belastung liegen, welche üblicherweise in städtischen Gebieten gemessen wird. Dies hat zur Folge, dass vor allem bei den Schadstoffen SO_2 , NO_x und CO an die Messtechnik besonders hohe Anforderungen gestellt werden. Mit Überschreitungen von Grenzwerten und Zielwerten ist in der Regel nur bei den Komponenten Ozon und PM10 zu rechnen.

-

¹ EMEP – European Monitoring and Evaluation Programme

2 ABKÜRZUNGEN

Luftschadstoffe

SO ₂	Schwefeldioxid
PM10	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 10 µm eine Abscheidewirksamkeit von 50 % aufweist
PM2,5	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 2,5 µm eine Abscheidewirksamkeit von 50 % aufweist
PM1	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 1 µm eine Abscheidewirksamkeit von 50 % aufweist
NO	Stickstoffmonoxid
NO ₂	Stickstoffdioxid
NOy	oxidierte Stickstoffverbindungen
СО	Kohlenstoffmonoxid
O ₃	Ozon
CO ₂	Kohlenstoffdioxid
CH ₄	Methan

Einheiten

mg/m ³	Milligramm pro Kubikmeter		
μg/m³	Mikrogramm pro Kubikmeter		
ppb	parts per billion		
ppm	parts per million		

 $^{1 \}text{ mg/m}^3 = 1000 \mu\text{g/m}^3$

Umrechnungsfaktoren zwischen Mischungsverhältnis, angegeben in ppb bzw. ppm, und Konzentration in $\mu g/m^3$ bzw. mg/m^3 bei 1013 hPa und 20 °C (Normbedingungen).

SO ₂	1 μg/m³ = 0,37528 ppb	1 ppb = 2,6647 μg/m³	
NO	$1 \mu g/m^3 = 0,80186 ppb$	1 ppb = 1,2471 μ g/m ³	
NO ₂	1 μ g/m ³ = 0,52293 ppb	1 ppb = 1,9123 μg/m ³	
СО	$1 \text{ mg/m}^3 = 0.85911 \text{ ppm}$	1 ppm = $1,1640 \text{ mg/m}^3$	
O ₃	1 μg/m³ = 0,50115 ppb	1 ppb =1,9954 μg/m³	

¹ ppm = 1000 ppb

Mittelwerte

Die entsprechende Zeitangabe bezieht sich stets auf das Ende des jeweiligen Mittelungszeitraumes. Alle Zeitangaben erfolgen in Mitteleuropäischer Zeit (MEZ).

	Definition	Mindestzahl der HMW, um einen gültigen Mittelwert zu bilden (gemäß ÖNORM M5866, April 2000)
HMW	Halbstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	
MW1	Einstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	2
MW3	gleitender Dreistundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	4
MW8g	halbstündlich gleitender Achtstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	12
MW8	Achtstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	12
TMW	Tagesmittelwert	40
MMW	Monatsmittelwert	75 %
JMW	Jahresmittelwert	75 % im Sommer und im Winter
WMW	Wintermittelwert	75 % in jeder Hälfte der Beurteilungsperiode

3 DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMT

3.1 Ausstattung der Messstellen

Messstelle	O ₃	SO ₂	NO ₂ , NO	СО	PM10	PM2,5	PM1
Enzenkirchen	APOA-360E	TEI 43CTL	TEI 42i		DHA80, Gravimetrie		
Illmitz	APOA-360E	TEI 43CTL	TEI 42i	APMA-360CE	DHA80, Gravimetrie	DHA80, Gravimetrie	DHA80, Gravimetrie
Klöch			TEI 42C		DHA80, Gravimetrie		
Pillersdorf	TEI 49	TEI 43CTL	TEI 42CTL		DHA80, Gravimetrie		
Ried im Zillertal	API 400E		API 200EU		DHA80, Gravimetrie		
Sonnblick	TEI 49C		TEI 42CTL	APMA-360CE ²			
Vorhegg	API 400E	TEI 43CTL	TEI 42CTL	APMA-360CE	DHA80, Gravimetrie		
Zöbelboden	APOA-360E	TEI 43CTL	TEI 42CTL		DHA80, Gravimetrie		

Die **CO₂-Messung** auf dem Sonnblick im Rahmen des Global Atmospheric Watch (GAW) Programms der WMO erfolgt mit einem Monitor des Typs URAS-14 (Hartmann & Braun).

Die Messung der Konzentration des Treibhausgases **CH**₄ (Methan) erfolgt mit einem Gerät der Type TEI 55C.

In Illmitz, auf dem Zöbelboden und in Vorhegg werden zudem die Konzentration von **Blei im PM10** (PM10-Tagesproben werden mittels GFAAS analysiert) und **Benzol**, Toluol und Xylole (passive Probenahme, Analyse mittels GC) gemessen.

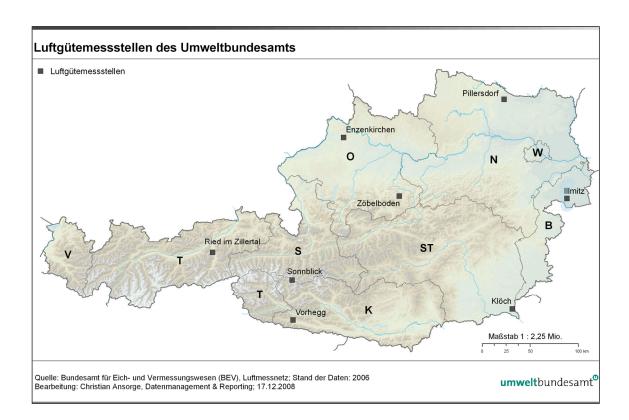
In Illmitz werden im Rahmen des **EMEP-Messprogramms** weiters partikuläres Sulfat, Nitrat und Ammonium sowie Salpetersäure und Ammoniak gemessen, in Illmitz, Vorhegg und Zöbelboden die nasse Deposition und deren Inhaltsstoffe. Die Ergebnisse dieser Messungen sowie den Messungen von Benzol und Blei im PM10 sind im Jahresbericht der Luftgütemessungen des Umweltbundesamt zu finden (http://www.umweltbundesamt.at/jahresberichte/).

In Enzenkirchen, Illmitz, Klöch und Pillersdorf, wird zusätzlich zur gravimetrischen PM10-Messung (gemäß EN 12341) die **PM10-Konzentration** mittels β -Absorption kontinuierlich gemessen, in Ried im Zillertal mittels TEOM-FDMS; diese Messung dient u. a. dem Methodenvergleich.

An der Messstelle Klöch bei Bad Radkersburg führt das Amt der Steiermärkischen Landesregierung Messungen der Konzentration von Schwefeldioxod und Ozon sowie der meteorologischen Größen Windrichtung und –geschwindigkeit, Lufttemperatur und Globalstrahlung durch.

-

² erfolgt im Rahmen des GAW-Messprogramms der WMO


Meteorologische Messungen

Am Sonnblick erfolgen die meteorologischen Messungen durch die Zentralanstalt für Meteorologie und Geodynamik.

In Enzenkirchen, Illmitz, Pillersdorf, Ried im Zillertal und Vorhegg werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck gemessen.

Auf dem Zöbelboden werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Strahlungsbilanz, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck bestimmt.

Die Lage der vom Umweltbundesamt betriebenen Messstellen ist in der folgenden Graphik ersichtlich. Eine genauere Beschreibung der Standorte findet sich unter http://www.umweltbundesamt.at/umweltschutz/luft/messnetz/

3.2 Angaben zu den Messgeräten

	Nachweisgrenze	Messprinzipien
SO ₂		
TEI 43CTL	0,13 μg/m³ (0,05 ppb)	UV-Fluoreszenz
PM10, PM2,5, PM1	1	
DHA80, Gravimetrie	< 0,1 µg/m³	Gravimetrie: Probenahme mittels Digitel High-Volume-Sampler DHA80 mit PM10-(bzw. PM2,5- und PM1-) Kopf (Tagesproben, Durchfluss 720 m³/d) und gravimetrische Massenbestimmung gemäß EN 12341
NO+NO ₂		
TEI 42CTL	NO: 0,06 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
TEI 42C	NO: 0,06 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
TEI 42i	NO: 0,06 μg/m ³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
API 200EU	NO: 0,05 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO _x : 0,1 μg/m³ (0,05 ppb)	Differenz von NO _x und NO bestimmt.
со		
APMA-360CE	0,05 mg/m ³ (0,05 ppm)	Nichtdispersive Infrarot-Absorption
O ₃		
APOA-360E	0,8 μg/m³ (0,4 ppb)	Ultraviolett-Absorption
TEI 49	4 μg/m³ (2 ppb)	Ultraviolett-Absorption
API 400E	1,2 μg/m³ (0,6 ppb)	Ultraviolett-Absorption
CO ₂		
URAS-14	3	Infrarot-Absorption
CH₄		
TEI 55C	0,1 ppm	Flammenionisationsdetektor

Die kleinste angegebene Konzentration ist für NO_2 (Horiba), O_3 , PM10, PM2,5 und PM1 1 μ g/m³, für SO_2 und NO_2 (TEI 42CTL) 0,1 μ g/m³, für CO 0,10 μ g/m³.

Liegt ein Messwert (HMW) unter der jeweiligen Nachweisgrenze oder ein Mittelwert, der aus HMW gebildet wird, unter der entsprechenden Genauigkeit, so ist dies z. B. bei Angabe in $\mu g/m^3$ mit <1 angegeben.

10

 $^{^{\}rm 3}$ Empfindlichkeit 0,1 ppm, Messbereich 340 bis 440 ppm.

4 GRENZWERTE

Im Folgenden sind Immissionsgrenzwerte und Immissionszielwerte Österreichischer Gesetze sowie von Richtlinien der Europäischen Union für die im Luftgütemessnetz des Umweltbundesamt kontinuierlich erfassten Schadstoffe angegeben.

Immissionsschutzgesetz Luft, BGBI. 115/97 i.d.F. BGBI. I 34/2006

Immissionsgrenzwerte gemäß Anlage 1 zum langfristigen Schutz der menschlichen Gesundheit.

SO ₂	120 μg/m ³	Tagesmittelwert
SO ₂	200 μg/m ³	Halbstundenmittelwert; bis zu drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte im Kalenderjahr bis zu 350 μg/m³ gelten nicht als Überschreitung
PM10	50 μg/m ³	Tagesmittelwert; pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: von 2005 bis 2009: 30, ab 2010: 25
PM10	40 μg/m ³	Jahresmittelwert
СО	10 mg/m ³	Gleitender Achtstundenmittelwert
NO ₂	200 μg/m ³	Halbstundenmittelwert
NO ₂	30 μg/m ³	Jahresmittelwert. Dieser Grenzwert ist ab 2012 einzuhalten. Die Toleranzmarge beträgt 30 μ g/m³ bei Inkrafttreten des Gesetzes und wird am 1.1. jedes Jahres bis 1.1. 2005 um 5 μ g/m³ verringert. Die Toleranzmarge von 10 μ g/m³ gilt gleich bleibend vom 1.1. 2005 bis 31.12.2009. Die Toleranzmarge von 5 μ g/m³ gilt gleich bleibend vom 1.1. 2010 bis 31.12.2011
Blei im PM10	0,5 μg/m ³	Jahresmittelwert
Benzol	5 μg/m³	Jahresmittelwert

Alarmwerte gemäß Anlage 4.

SO ₂	500 μg/m ³	Gleitender Dreistundenmittelwert
NO ₂	400 μg/m ³	Gleitender Dreistundenmittelwert

Zielwerte gemäß Anlage 5.

PM10	50 μg/m ³	TMW, sieben Überschreitungen im Kalenderjahr erlaubt		
PM10	20 μg/m ³	JMW		
NO ₂	80 μg/m ³	TMW		

Zielwerte gemäß Anlage 5b.

Benzo(a)pyren	1 ng/m³	JMW	
Arsen im PM10	6 ng/m ³	JMW	
Cadmium im PM10	5 ng/m³	JMW	
Nickel im PM10	20 ng/m³	JMW	

Ozongesetz i.d.g.F. (BGBI. I 34/2006, Art. II)

Mit der Novelle zum Ozongesetz (BGBI. I 2003/34) wurden die Informations- und Alarmschwellenwerte sowie die Zielwerte der EU-RL 2002/3/EG in nationales Recht übergeführt.

Informations- und Warnwerte gemäß Anlage 1.

Informationsschwelle	180 μg/m³	Nicht gleitender Einstundenmittelwert
Alarmschwelle	240 μg/m³	Nicht gleitender Einstundenmittelwert

Zielwert für den Schutz der menschlichen Gesundheit gemäß Anlage 2 (einzuhalten ab 2010).

120 μg/m³	Höchster (nicht gleitender) Achtstunden-	gemittelt über 3 Jahre sind Überschreitungen
	mittelwert des Tages	an maximal 25 Tagen pro Jahr zugelassen

Zielwert für den Schutz der Vegetation gemäß Anlage 2 (einzuhalten ab 2010).

18.000 μg/m³.h AOT40, berechnet aus den MW1 von Mittelwert über 5 Jahre Mai bis Juli	
--	--

Verordnung über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation (BGBI. II 298/2001)

Immissionsgrenzwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	20 μg/m ³	Jahresmittelwert und Wintermittelwert
$NO_x^{(4)}$	30 μg/m ³	Jahresmittelwert

Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	50 μg/m ³	Tagesmittelwert	
NO ₂	80 μg/m ³	Tagesmittelwert	

12

⁴ NO_x als Summe von NO und NO₂ in ppb gebildet und mit dem Faktor 1,9123 in μg/m³ umgerechnet

5 WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS

Der Juii 2009 zeichnete sich in großen Teilen Österreichs durch viel Regen und eine sehr wechselhafte Witterung aus. Zwar lag die Monatsmitteltemperatur im Westen Österreichs im Bereich des langjährigen Mittels der Klimaperiode 1961–1990 und im Osten um bis zu 1,5 °C darüber, doch traten im Verlauf des Monats mehrere markante Kaltlufteinbrüche auf. Auf überdurchschnittlich warme Perioden vom 13. bis 17.7. und von 21. bis 23.7. folgten Temperaturrückgänge um jeweils bis zu 10 °C. Beispielsweise wurden am 23.7. im Niederösterreichischen Alpenvorland Maximaltemperaturen um 37 °C registriert, am Tag darauf nur noch 27 °C.

Die Niederschlagsmengen lagen in fast ganz Österreich über dem langjährigen Durchschnitt; in Niederösterreich und Wien, im nördlichen Oberösterreich und in der östlichen Steiermark wurde etwa das Doppelte der üblichen Regenmenge registriert, die höchsten Niederschlagsmengen traten im zentralen Niederösterreich auf, in St. Pölten wurde mit 208 mm 244 % des Durchschnittswerts registriert. Hohe Regenmengen fielen im Nordosten Österreichs v.a. am 1. und 2.7., am 6.7., 18.7. und 23.7. Deutlich unterdurchschnittliche Regenmengen wurden nur im Seewinkel und in Südkärnten beobachtet.

Das wechselhafte und regenreiche Wetter hatte starke Auswirkungen auf die Immissionsbelastung. An allen Hintergrundmessstellen wurden Ozonkonzentrationen gemessen, die weit unter dem Durchschnitt der letzten Jahre lagen, auf dem Sonnblick wurde der niedrigste Monatsmittelwert im Juli seit 1993 registriert, in Pillersdorf seit 1997, in Enzenkirchen und auf dem Zöbelboden seit 1998. Die Informationsschwelle wurde an keiner Messstelle überschritten.

Die SO₂-Belastung lag an den außeralpinen Messstellen deutlich unter dem Durchschnitt, in Illmitz und Pillersdorf wurde der niedrigste Monatsmittelwert im Juli seit Beginn der Messung (1978 bzw. 1992) gemessen.

Die NO₂-Belastung lag an den meisten Messstellen auf einem mittleren Niveau, nur Pillersdorf und Zöbelboden registrierten unterdurchschnittliche Belastungen.

Die CO-Belastung lag weit unter dem Niveau der letzten Jahre, in Illmitz wurde der niedrigste Monatsmittelwert im Juli seit Beginn der Messung 2001 beobachtet.

Auch die PM10-Belastung war extrem niedrig; an den außeralpinen Messstellen wurde jeweils der niedrigste Monatsmittelwert im Juli seit Beginn der Messung erfasst. An keiner Messstelle trat ein Tagesmittelwert über 50 µg/m³ auf.

6 VERFÜGBARKEIT – JULI 2009

Verfügbarkeit der Halbstundenmittelwerte (bei PM10, PM2,5 und PM1 der Tagesmittelwerte) in Prozent der maximal möglichen Werte:

	O ₃	SO ₂	NO ₂	NO	СО	PM10	PM2,5	PM1	CO ₂	CH₄	NO _y
Enzenkirchen	98	98	98	98		100					_
Illmitz	97	97	97	97	97	97	97	97			
Klöch			97	97		100					
Pillersdorf	97	97	97	97		100					_
Ried im Zillertal	98		97	97		100					_
Sonnblick	97				97				84		97
Vorhegg	97	98	97	97	98	100					
Zöbelboden	97	97	97	97		100				76	

Die Verfügbarkeit soll gemäß § 4 (1) der Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft für die Messung mit kontinuierlich registrierenden Immissionsmessgeräten für die Komponenten SO_2 , CO, NO_2 und O_3 mindestens 90 % betragen.

Das CH₄-Gerät war auf dem Zöbelboden bis 8.7. defekt.

MONATSMITTELWERTE – JULI 2009

	O ₃ µg/m³	SO ₂ µg/m³	NO ₂ μg/m³	NO μg/m³	CO mg/m³	PM10 µg/m³	, -	PM1 μg/m³	CO ₂	CH₄ ppm	NO _y ppb
Enzenkirchen	65	0.7	6.0	0.9		12					
Illmitz	80	0.7	4.5	0.5	0.16	12	7	7			
Klöch			5.0	0.4		14					
Pillersdorf	77	0.7	4.1	0.4		14					
Ried im Zillertal	45		8.7	2.6		10					
Sonnblick	104				0.14				381		1.11
Vorhegg	80	0.3	2.6	0.3	0.16	9					
Zöbelboden	84	0.5	2.9	0.1		7				1.8	

v: Verfügbarkeit nicht ausreichend

8 ÜBERSCHREITUNGEN

Anzahl der Tage mit Überschreitungen im Juli 2009

μg/m³ PM10 TMW > 50 μg/m³
0
0
0
0
0
0
0
_

Anzahl der Tage mit Überschreitungen seit Jahresbeginn 2009

	O ₃ MW1 > 180 μg/m³	O ₃ MW8 > 120 μg/m³	PM10 TMW > 50 μg/m³
Enzenkirchen	0	19	8
Illmitz	0	29	20
Klöch			10
Pillersdorf	0	16	15
Ried im Zillertal	0	5	8
Sonnblick	0	53	
Vorhegg	0	29	0
Zöbelboden	0	33	0

9 TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

Enzenkirchen - Juli 2009

Datum	O₃ Max. MW1 µg/m³	O ₃ Max. MW8 μg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW μg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.07.	107	91	0.8	0.4	11.0	4.3	5.7	0.8	12
2.07.	110	103	1.5	0.7	8.3	3.9	2.3	0.5	17
3.07.	108	102	0.9	0.6	11.1	5.7	2.0	0.6	15
4.07.	117	105	0.9	0.6	9.6	6.0	1.8	0.6	16
5.07.	111	93	0.9	0.5	13.1	4.9	1.6	0.7	13
6.07.	79	66	1.0	0.5	14.3	7.5	2.7	0.9	12
7.07.	81	68	1.1	0.5	10.4	6.6	3.6	0.8	8
8.07.	67	59	0.6	0.4	10.9	5.4	7.0	1.0	6
9.07.	77	68	0.7	0.5	14.3	5.9	9.9	1.2	6
10.07.	88	79	0.7	0.5	8.3	6.1	5.6	0.8	8
11.07.	88	82	1.9	0.6	10.0	6.1	6.0	1.0	10
12.07.	89	83	0.8	0.5	8.8	4.8	1.9	0.6	7
13.07.	88	78	0.8	0.5	19.3	5.4	3.8	0.8	12
14.07.	118	110	3.2	1.0	19.3	5.8	2.3	0.7	17
15.07.	108	101	0.9	0.6	17.7	5.5	11.0	0.9	12
16.07.	109	101	1.8	0.7	16.6	5.8	11.3	1.3	14
17.07.	115	106	2.7	0.8	11.7	6.3	5.8	0.8	18
18.07.	79	77	0.5	0.3	10.8	6.3	2.0	0.4	2
19.07.	67	60	0.8	0.4	9.9	4.3	2.6	0.6	5
20.07.	84	78	1.1	0.5	12.5	5.3	14.6	1.1	8
21.07.	106	98	5.8	1.4	24.0	7.3	4.9	1.0	13
22.07.	126	112	6.4	2.3	19.1	8.5	2.0	0.7	19
23.07.	143	115	6.9	2.3	17.6	9.2	2.9	1.0	26
24.07.	65	71	0.8	0.5	24.2	5.8	5.3	1.0	9
25.07.	61	56	0.6	0.4	8.3	4.9	2.5	0.8	4
26.07.	70	65	0.8	0.5	16.8	6.4	9.6	1.7	7
27.07.	98	93	2.1	0.9	14.0	6.0	5.4	0.7	12
28.07.	83	90	3.8	0.7	14.9	6.8	13.2	1.6	11
29.07.	109	103	2.4	1.1	14.7	6.4	5.8	0.8	15
30.07.	117	103	1.6	0.9	16.1	7.1	3.2	0.6	18
31.07.	89	80	3.1	0.7	13.6	5.8	3.5	0.5	15
Max.	143	115	6.9	2.3	24.2	9.2	14.6	1.7	26

v: Verfügbarkeit nicht ausreichend

Illmitz - Juli 2009

Datum	O ₃ Max.	O ₃ Max.	SO ₂ Max.	SO ₂	NO ₂ Max.	NO ₂	NO Max.	NO	CO Max.	PM10	PM2,5	PM1
	MW1	MW8	HMW	TMW	HMW	TMW	HMW	TMW	MW8g	TMW	TMW	TMW
1.07.	μ g/m³ 122	μ g/m³ 115	μ g/m³ 3.9	μg/m³ 1.7	μ g/m³ 19.1	μ g/m³ 7.5	μ g/m³ 3.3	μ g/m³ 0.7	mg/m³	μg/m³		µg/m³
										V	V	V 40
2.07.	140	126	13.5	2.6	7.1	4.9	1.1	0.5	0.21	15	14	12
3.07.	138	121	2.8	0.8	10.6	6.8	1.8	0.6	0.21	18	11	10
4.07.	123	119	1.3	0.4	5.4	3.6	0.7	0.4	0.19	13	9	9
5.07.	125	120	3.5	0.7	7.7	3.8	0.6	0.4	0.19	13	9	8
6.07.	110	103	2.9	0.6	8.7	5.2	1.6	0.5	0.19	11	6	6
7.07.	114	101	1.2	0.4	6.3	4.3	4.0	0.6	0.17	9	4	5
8.07.	84	77	0.4	0.2	5.6	3.0	0.7	0.4	0.15	3	1	2
9.07.	83	79	0.9	0.3	6.8	3.5	1.1	0.4	0.14	4	<0.1	2
10.07.	97	88	0.8	0.3	11.3	4.1	1.0	0.4	0.15	7	3	4
11.07.	95	91	1.2	0.4	9.1	3.7	0.9	0.5	0.15	7	3	4
12.07.	111	107	0.7	0.4	11.2	4.5	1.3	0.4	0.17	9	6	6
13.07.	93	85	1.0	0.3	13.2	4.7	1.5	0.5	0.16	11	6	6
14.07.	131	125	0.9	0.5	11.5	4.7	8.0	0.4	0.19	22	13	11
15.07.	134	123	1.1	0.5	21.9	5.4	1.6	0.4	0.20	25	16	12
16.07.	125	120	2.6	0.9	10.2	5.3	2.5	0.5	0.17	15	7	8
17.07.	122	119	3.0	0.8	14.0	6.0	2.5	0.5	0.17	19	11	9
18.07.	77	88	0.9	0.2	6.3	3.2	0.7	0.2	0.18	7	2	5
19.07.	84	80	0.5	0.3	6.0	2.2	0.4	0.3	0.13	5	1	2
20.07.	76	67	6.4	1.2	11.8	4.5	0.9	0.4	0.14	6	3	5
21.07.	118	109	4.3	8.0	6.3	4.0	1.8	0.5	0.16	12	7	7
22.07.	130	125	1.4	0.6	7.5	4.6	1.1	0.4	0.19	21	12	11
23.07.	126	122	1.0	0.5	13.9	4.9	2.1	0.5	0.19	29	13	11
24.07.	104	102	2.6	0.8	13.6	3.9	6.7	0.5	0.15	10	4	6
25.07.	88	83	0.3	0.1	3.2	1.8	0.6	0.3	0.15	4	1	2
26.07.	87	85	1.1	0.4	5.9	2.7	0.6	0.3	0.14	6	2	4
27.07.	108	100	4.3	0.7	13.0	5.3	5.3	0.7	0.15	10	5	6
28.07.	117	112	2.5	0.9	7.8	4.6	1.3	0.5	0.16	10	5	7
29.07.	113	109	1.5	0.8	11.6	5.1	2.0	0.5	0.18	11	5	6
30.07.	138	130	0.9	0.5	10.6	5.1	1.2	0.4	0.18	17	9	9
31.07.	118	119	4.5	1.2	14.2	6.2	2.4	0.5	0.17	15	7	6
Max.	140	130	13.5	2.6	21.9	7.5	6.7	0.7	0.23	29	16	12

v: Verfügbarkeit nicht ausreichend

Klöch - Juli 2009

Datum	NO ₂ Max. HMW µg/m³	NO ₂ TMW μg/m³	NO Max. HMW µg/m³	NO TMW μg/m³	PM10 TMW µg/m³
1.07.	6.8	4.1	1.9	0.4	23
2.07.	12.4	4.5	2.4	0.5	26
3.07.	10.3	4.5	0.6	0.3	17
4.07.	6.1	3.7	0.7	0.3	15
5.07.	9.3	4.1	1.2	0.4	13
6.07.	10.0	5.7	2.4	0.5	14
7.07.	8.9	5.8	2.3	0.7	10
8.07.	8.2	4.6	0.8	0.4	5
9.07.	6.5	4.0	1.3	0.4	4
10.07.	9.4	4.7	0.9	0.4	7
11.07.	8.4	4.2	1.8	0.4	6
12.07.	5.5	3.8	0.5	0.3	9
13.07.	8.9	5.6	2.3	0.5	8
14.07.	14.1	7.1	4.0	0.6	23
15.07.	8.8	5.4	1.6	0.4	21
16.07.	19.9	4.5	4.7	0.7	16
17.07.	13.1	5.1	1.8	0.4	25
18.07.	7.1	4.3	0.5	0.3	6
19.07.	4.5	3.6	0.5	0.3	5
20.07.	7.6	5.5	1.4	0.5	5
21.07.	7.3	5.9	1.4	0.4	12
22.07.	19.3	7.8	1.5	0.5	27
23.07.	9.2	6.0	0.8	0.4	29
24.07.	13.7	5.7	1.0	0.4	8
25.07.	6.2	3.1	0.6	0.3	4
26.07.	6.2	4.4	0.9	0.3	8
27.07.	10.8	6.8	8.2	0.9	18
28.07.	27.6	7.3	8.0	0.8	9
29.07.	8.7	4.2	1.6	0.3	15
30.07.	13.2	5.9	6.4	0.6	20
31.07.	6.3	3.3	0.4	0.1	13
Max.	27.6	7.8	8.2	0.9	29

v: Verfügbarkeit nicht ausreichend

Pillersdorf - Juli 2009

Datum	O ₃ Max. MW1 μg/m³	O ₃ Max. MW8 μg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW μg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.07.	110	101	3.6	1.2	5.5	3.3	3.6	0.4	23
2.07.	119	112	3.4	1.2	6.9	3.5	1.5	0.4	26
3.07.	103	98	1.3	0.4	8.1	3.2	1.2	0.3	17
4.07.	112	106	1.8	0.5	3.4	2.6	0.6	0.3	15
5.07.	112	99	2.7	0.7	3.7	2.6	0.4	0.3	13
6.07.	89	80	0.7	0.3	5.8	3.1	1.0	0.3	14
7.07.	97	90	0.7	0.3	6.6	2.9	1.2	0.4	10
8.07.	71	72	0.2	0.1	3.1	2.1	0.8	0.3	5
9.07.	86	83	0.3	0.2	4.2	2.7	1.3	0.3	4
10.07.	95	89	0.8	0.3	6.6	3.4	2.0	0.4	7
11.07.	84	79	0.5	0.3	4.3	2.9	0.8	0.3	6
12.07.	95	92	0.8	0.5	6.0	3.0	1.5	0.3	9
13.07.	89	83	0.8	0.5	14.6	4.1	6.0	0.5	8
14.07.	157	143	6.5	2.0	12.8	6.9	2.0	0.5	23
15.07.	128	107	2.3	1.0	7.6	4.7	1.2	0.4	21
16.07.	106	100	2.7	0.9	8.6	3.4	0.7	0.3	16
17.07.	140	133	6.1	2.0	11.6	7.0	1.8	0.6	25
18.07.	94	99	0.8	0.2	7.8	3.0	0.4	0.2	6
19.07.	78	72	0.4	0.3	3.8	2.3	0.7	0.2	5
20.07.	87	82	0.9	0.5	6.3	3.5	1.3	0.4	5
21.07.	109	100	1.3	0.7	13.0	5.7	3.5	0.6	12
22.07.	179	157	2.3	1.3	16.4	8.7	2.9	0.7	27
23.07.	145	138	1.9	0.9	7.8	5.3	0.9	0.4	29
24.07.	84	91	0.6	0.2	9.7	3.1	0.7	0.3	8
25.07.	79	76	0.5	0.2	3.3	2.0	0.4	0.2	4
26.07.	85	80	1.2	0.5	10.1	3.3	0.6	0.3	8
27.07.	123	112	1.9	1.2	29.7	7.4	2.3	0.6	18
28.07.	101	99	1.2	0.4	7.5	3.8	0.9	0.3	9
29.07.	113	106	1.7	0.8	28.4	6.6	1.8	0.5	15
30.07.	129	119	5.5	2.0	12.4	7.0	1.8	0.5	20
31.07.	109	101	3.0	1.2	7.9	4.7	0.9	0.3	13
Max.	179	157	6.5	2.0	29.7	8.7	6.0	0.7	29

v: Verfügbarkeit nicht ausreichend

Ried im Zillertal - Juli 2009

Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.07.	116	92	17.3	7.3	11.8	1.7	12
2.07.	120	102	17.3	8.2	19.8	3.0	12
3.07.	61	70	27.3	13.4	17.8	2.7	9
4.07.	91	74	13.2	7.5	5.1	1.4	10
5.07.	79	60	10.6	5.8	4.8	1.2	7
6.07.	65	49	35.7	10.4	27.7	4.1	8
7.07.	64	60	20.4	8.6	23.7	5.0	8
8.07.	73	65	17.7	6.6	11.3	1.9	3
9.07.	75	68	17.0	6.9	22.2	3.7	5
10.07.	68	62	14.3	6.8	3.4	1.1	6
11.07.	83	73	19.6	9.2	7.1	1.6	6
12.07.	51	47	19.3	8.4	9.1	2.2	7
13.07.	85	65	16.5	9.2	15.4	2.9	14
14.07.	110	97	38.4	11.2	26.6	4.4	21
15.07.	76	66	29.0	13.5	17.8	2.5	18
16.07.	104	95	17.9	9.0	22.3	3.0	17
17.07.	102	86	21.8	9.3	13.2	1.8	13
18.07.	82	70	12.6	7.4	1.9	0.6	1
19.07.	69	58	11.4	4.9	14.5	1.7	3
20.07.	73	67	14.9	7.5	18.2	2.8	8
21.07.	90	78	18.3	8.5	41.6	4.8	11
22.07.	122	104	28.6	9.1	28.3	2.8	17
23.07.	119	102	34.7	11.0	42.3	4.3	27
24.07.	76	86	30.1	12.8	13.6	2.1	9
25.07.	68	61	17.7	4.6	6.5	8.0	3
26.07.	83	77	12.2	6.0	6.9	1.3	6
27.07.	103	84	23.3	10.4	56.5	4.8	12
28.07.	79	75	19.3	7.9	5.2	1.1	7
29.07.	102	83	13.9	8.8	31.2	3.2	11
30.07.	115	96	34.5	10.6	21.2	3.1	14
31.07.	76	72	16.6	8.8	8.5	2.2	15
Max.	122	104	38.4	13.5	56.5	5.0	27

v: Verfügbarkeit nicht ausreichend

Sonnblick - Juli 2009

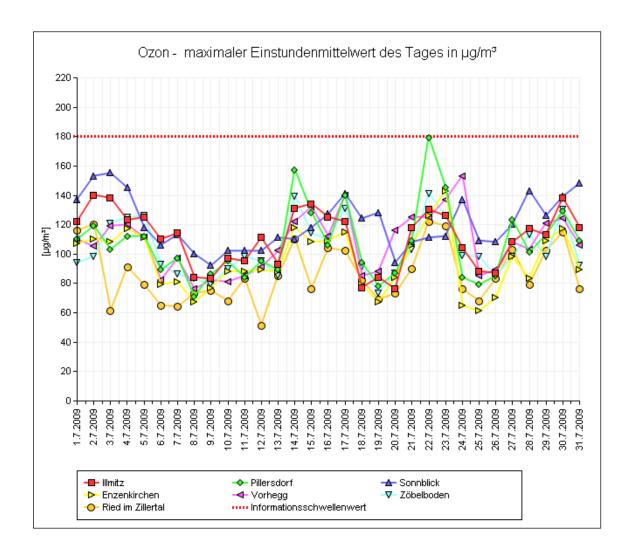
Datum	O ₃ Max. MW1	O ₃ Max. MW8	CO Max. MW8g	CO ₂ TMW	NO _y Max. HMW	NO _y TMW
	μg/m³	μg/m³	mg/m³	ppm	ppb	ppb
1.07.	137	128	0.15	381	1.33	1.13
2.07.	153	140	0.16	380	1.41	1.18
3.07.	155	151	0.15	382	1.44	1.27
4.07.	145	144	0.16	383	1.67	1.32
5.07.	118	115	0.15	383	1.54	1.20
6.07.	106	102	0.14	384	1.04	0.87
7.07.	113	107	0.14	384	1.11	0.92
8.07.	100	95	0.13	382	0.88	0.61
9.07.	92	82	0.13	381	0.95	0.80
10.07.	102	96	0.14	381	1.27	0.87
11.07.	102	98	0.14	380	1.25	0.95
12.07.	102	97	0.13	381	0.70	0.59
13.07.	111	100	0.15	378	1.51	0.99
14.07.	110	103	0.16	378	1.69	1.18
15.07.	118	115	0.16	383	1.85	1.04
16.07.	127	111	0.14	384	1.22	0.81
17.07.	141	124	0.14	384	1.42	0.84
18.07.	124	128	0.14	383	1.22	0.68
19.07.	128	102	0.13	379	0.65	0.47
20.07.	94	91	0.14	376	1.35	1.09
21.07.	108	96	0.14	378	1.36	0.96
22.07.	111	109	0.14	381	1.51	1.04
23.07.	112	107	0.15	383	2.10	1.17
24.07.	137	129	0.16	383	2.10	1.71
25.07.	109	111	0.15	380	2.75	1.59
26.07.	108	104	0.14	379	1.84	0.90
27.07.	120	113	0.14	378	3.10	1.47
28.07.	143	124	0.15	380	3.42	2.54
29.07.	126	120	0.15	377	2.10	1.39
30.07.	139	126	0.18	377	2.76	1.50
31.07.	148	132	0.17	376	1.79	1.53
Max.	155	151	0.18	384	3.42	2.54

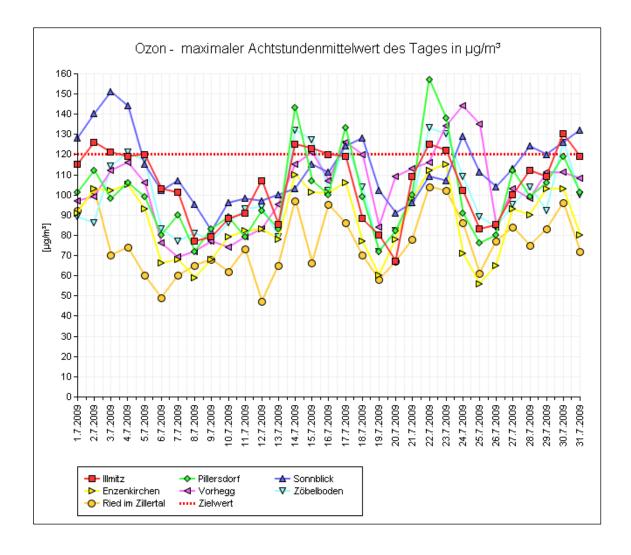
v: Verfügbarkeit nicht ausreichend

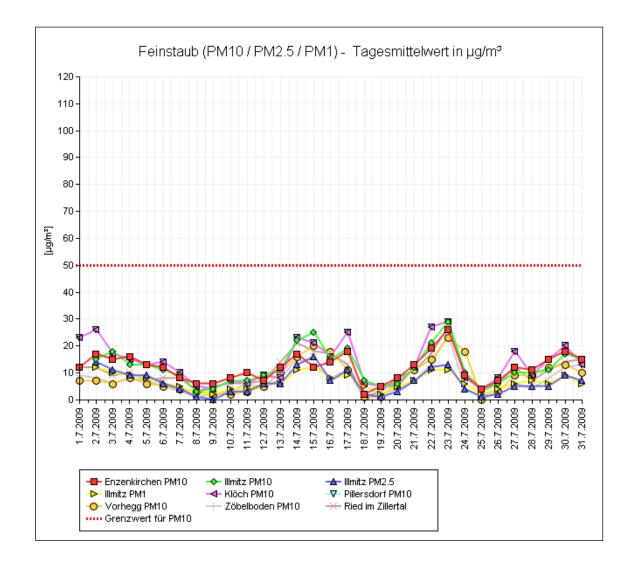
Vorhegg - Juli 2009

Datum	O ₃ Max. MW1 μg/m³	O ₃ Max. MW8 μg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	CO Max. MW8g mg/m³	PM10 TMW µg/m³
1.07.	110	97	0.3	0.2	4.8	2.3	0.6	0.2	0.17	7
2.07.	105	99	0.4	0.2	4.3	2.1	1.9	0.3	0.17	7
3.07.	119	112	0.8	0.2	6.0	2.6	1.4	0.2	0.18	6
4.07.	120	116	0.7	0.3	4.0	2.8	1.0	0.2	0.18	8
5.07.	111	106	0.4	0.2	2.9	2.0	0.4	0.2	0.18	6
6.07.	82	76	0.5	0.2	5.9	2.7	2.1	0.4	0.17	5
7.07.	97	69	0.3	0.2	5.6	3.0	1.6	0.4	0.17	4
8.07.	76	72	0.5	0.2	4.5	2.3	0.6	0.3	0.16	3
9.07.	82	77	0.3	0.2	3.7	2.1	1.1	0.3	0.15	2
10.07.	81	74	0.3	0.2	3.5	2.2	0.7	0.3	0.16	2
11.07.	85	79	0.3	0.2	2.8	1.7	2.4	0.3	0.15	3
12.07.	91	83	0.4	0.3	2.6	1.8	0.7	0.2	0.17	5
13.07.	102	95	0.7	0.3	5.1	2.5	1.1	0.3	0.19	10
14.07.	122	115	0.3	0.2	3.6	2.5	0.5	0.2	0.19	16
15.07.	132	121	0.6	0.3	4.9	2.7	1.0	0.2	0.20	20
16.07.	112	107	1.2	0.3	4.8	2.3	1.1	0.2	0.20	18
17.07.	140	126	1.1	0.4	4.3	2.3	0.7	0.2	0.17	11
18.07.	85	120	0.4	0.2	3.7	2.0	0.3	0.2	0.17	1
19.07.	88	84	0.5	0.2	5.8	1.7	3.2	0.2	0.14	1
20.07.	116	109	0.9	0.4	4.1	2.6	0.8	0.2	0.16	7
21.07.	125	113	0.9	0.4	4.5	2.8	0.9	0.2	0.17	11
22.07.	125	116	0.4	0.3	4.4	2.8	0.3	0.2	0.19	15
23.07.	137	134	1.1	0.5	15.7	4.8	10.5	1.2	0.19	23
24.07.	153	144	1.5	8.0	5.2	3.6	0.9	0.2	0.18	18
25.07.	85	135	0.4	0.2	3.0	2.2	0.8	0.3	0.17	<0.1
26.07.	89	84	1.0	0.3	3.5	2.1	0.6	0.2	0.15	3
27.07.	108	103	1.3	0.5	3.9	2.8	1.1	0.3	0.17	9
28.07.	103	98	0.9	0.4	5.7	3.4	0.5	0.3	0.18	9
29.07.	121	111	0.5	0.4	3.8	2.9	0.4	0.2	0.19	12
30.07.	124	111	1.0	0.4	4.6	2.9	0.8	0.3	0.18	13
31.07.	106	108	1.2	0.4	7.3	4.0	1.4	0.3	0.19	10
Max.	153	144	1.5	0.8	15.7	4.8	10.5	1.2	0.20	23

v: Verfügbarkeit nicht ausreichend




Zöbelboden – Juli 2009


Datum	O ₃ Max. MW1 μg/m³	O ₃ Max. MW8 μg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW μg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³	CH₄ TMW ppm
1.07.	94	89	0.9	0.4	3.3	2.3	0.4	0.1	9	V
2.07.	98	86	0.5	0.3	2.7	1.9	0.2	0.1	8	V
3.07.	121	114	0.7	0.4	5.4	3.0	0.3	0.1	6	V
4.07.	125	121	0.5	0.4	4.9	3.7	0.3	0.1	8	V
5.07.	126	117	0.5	0.3	3.8	2.7	0.2	0.1	7	V
6.07.	93	83	0.6	0.4	6.4	3.3	0.4	0.2	5	v
7.07.	86	77	0.4	0.3	3.6	2.3	0.2	0.1	3	v
8.07.	83	81	0.6	0.3	5.3	2.5	0.4	0.1	1	v
9.07.	79	77	0.5	0.3	4.8	2.6	0.7	0.2	2	1.8
10.07.	90	86	0.4	0.4	3.7	2.8	0.3	0.1	3	1.8
11.07.	98	93	1.1	0.6	4.5	3.3	0.4	0.1	6	1.8
12.07.	95	94	0.9	0.4	3.6	2.6	0.1	0.1	4	1.8
13.07.	85	79	0.9	0.5	4.3	2.5	0.4	0.1	8	1.8
14.07.	139	132	1.3	0.7	5.0	3.4	1.0	0.2	15	1.8
15.07.	114	127	1.5	0.5	9.2	4.4	1.1	0.2	13	1.8
16.07.	110	102	0.6	0.4	3.9	2.6	0.2	0.1	8	1.8
17.07.	131	125	2.2	0.7	7.7	3.4	1.6	0.2	11	1.8
18.07.	91	104	0.7	0.3	5.6	2.3	0.1	0.1	<0.1	1.8
19.07.	73	72	0.4	0.3	2.5	1.7	0.2	0.1	2	1.8
20.07.	87	82	0.9	0.4	4.5	2.4	0.2	0.1	4	1.8
21.07.	103	96	0.8	0.5	3.8	2.5	1.1	0.1	7	1.8
22.07.	141	133	1.3	0.6	6.0	3.4	0.2	0.1	13	1.8
23.07.	126	130	0.9	0.5	7.4	2.9	0.2	0.1	24	1.8
24.07.	99	109	1.0	0.5	4.3	2.8	1.5	0.2	4	1.8
25.07.	98	89	0.4	0.3	3.2	2.2	0.3	0.1	1	1.8
26.07.	85	84	1.1	0.6	4.4	2.6	0.3	0.1	4	1.8
27.07.	98	95	0.6	0.5	3.0	2.1	0.3	0.1	6	1.8
28.07.	113	104	0.7	0.4	8.4	3.3	0.3	0.1	4	1.8
29.07.	98	92	0.5	0.4	4.1	2.5	0.2	0.1	8	1.8
30.07.	130	126	1.5	0.6	8.6	4.7	0.4	0.1	12	1.8
31.07.	92	100	1.5	0.7	8.4	5.2	0.5	0.1	13	1.8
Max.	141	133	2.2	0.7	9.2	5.2	1.6	0.2	24	1.8

v: Verfügbarkeit nicht ausreichend

10 GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

© Umweltbundesamt, Wien; download unter www.umweltbundesamt.at und www.biologiezentrum.at

UMWELT & GESELLSCHAFT **umwelt**bundesamt

Umweltbundesamt GmbH

Spittelauer Lände 5 1090 Wien/Österreich

Tel.: +43-(o)1-313 04 Fax: +43-(o)1-313 04/4500

office@umweltbundesamt.at www.umweltbundesamt.at

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Publikationen des Umweltbundesamtes, Wien

Jahr/Year: 2009

Band/Volume: REP_208

Autor(en)/Author(s): Spangl Wolfgang

Artikel/Article: Hintergrundmessnetz Umweltbundesamt. Monatsbericht Juli 2009. 1-

<u>27</u>