Moss-living nematodes from an Alpine summit (Dachstein, Austria)

Michael HOSCHITZ

A survey was undertaken of the nematode fauna associated with moss (Schistidium grande, Fam. Grimmiaceae) at the summit of the mountain Dachstein (2995 m), Austrian Alps. The objective of this study was to examine which nematodes are capable of living under most extreme alpine conditions.

The nematode community consisted of two genera: the omnivore/predator Eudorylaimus sp. (Fam. Qudsianematidae) and the microbial-feeding nematode Plectus sp. (Fam. Plectidae). Additionally, one detritivorous, one phytophagous, and one predatory tardigrade species completed the microfaunal components of the food chain of these very small, isolated moss habitats.

Introduction

Organisms living at the top of high mountains are subject to some of the most extreme environmental conditions on earth, including freezing, desiccation but also high solar radiation. Due to their continuous exposure to these extreme conditions, some animals and plants have developed well adapted but still sensitive live forms and community structures which respond in characteristic ways to environmental changes. Climate change has profound implications for the composition, functional ecology, taxonomic diversity and feeding habits of the soil fauna (YEATES 1987; HODKINSON 1998) and floral communities (GRABHERR ET AL. 2000) of these altitudes. Alpine moss ecosystems are simple, with faunas consisting almost entirely of soil invertebrates including rotifers, tardigrades and nematodes. Due to their simplicity, bounded and isolated position, these moss systems are useful objects to study implications of global warming “in small”.

Nematodes are key components of all soil food webs, playing a significant role in several ecosystem processes. In temperate systems for example, many nematode genera interact in the soil food web within four to five trophic groups: bacterial, fungal, and plant feeders, omnivores and predators. In temperate and tropical ecosystems nematodes are extremely diverse with up to several hundred species (ETTEMA 1998). Nematodes are also an important component of soil fauna in extreme ecosystems (FRECKMAN AND MANKAU 1986, WALL AND VIRGINIA 1999, LIANG ET AL. 2000) although often occurring as low-diversity communities. Studies of such naturally occurring low diversity nematode com-
munities could provide a link and insights into the basic principles of complex soil systems and their complex relationship among diversity, stability, productivity and to the factors determining the length of food chains (MOORE ET AL. 1996, FRECKMAN AND VIRGINIA 1997). The objective of this survey was to obtain information about (1) the nematodes which are able to live under extreme harsh conditions present at the top of high mountains and (2) their community structure. This paper is part of a first step to investigate nematode communities of extreme habitats of the Austrian Alps and their use as indicator organisms for global change studies.

**Materials and Methods**

Eleven moss samples (*Schistidium grande*, Fam. Grimmiaeeae) growing on the upper most rock at the summit of the mountain Dachstein, Austrian Limestone Alps (2995 m, 13°36'23.3" O; 47°28'32" N), were collected. Sampling date was 12. 7. 2002. The sampled mosses were small isolated habitats of approximately 3cm in diameter. They represented the upper most vegetation and no organic input from above or from the ground which was approximately 1.5 m beneath, was possible. The samples were weighed and the seven most similar mosses (between 3.0 cm–3.4 cm in diameter and 1.4–1.9 g weight) were chosen for nematode extraction, by placing them in a Baermann funnel (BAERMANN, 1917) for 48 h at 18°C. A sieve with mesh size of 2 mm covered by a single layer of a “clinex paper” was used. Animals were killed and fixed in 4% formaldehyde and studied in glycerin slides. Water content of the mosses was 53%–60% (drying at 104°C for 10h). Other microfauna (tardigrades, rotifers, protozoa) in the sample were recorded.

**Results**

Nematodes were present in all moss samples collected. In total only two nematode species were found. *Plectus* sp. (Fam. Plectidae) was the eudominant (93%) species with a mean abundance of 27±7 individuals per moss sample (Fig. 1). Most of the individuals were mature females with eggs (sex ratio female/juvenile was 1.8 : 1), males were not found. The nematode *Eudorylaimus* sp. (Fam. Qudsianematidae) was found with a mean abundance of 1±3 individuals per moss sample. Water content of the mosses was 53%–60% (drying at 104°C for 10h). Other microfauna (tardigrades, rotifers, protozoa) in the sample were recorded.

![Fig. 1: Mean values and standard deviation of nematodes and tardigrades* of rock-dwelling mosses.* Values of tardigrades are the individual numbers found in the nematode suspension and are not quantitative because the extraction method used for nematodes was not appropriate for the extraction of tardigrades. – Mittelwerte und Standardabweichungen von Nematoden und Tardigraden* in Felsen besiedelnden Moosen. *Die Tardigradenzahlen beziehen sich auf die in den Nematoden-Suspensionen gefundenen Individuen und sind nicht quantifizierbar, da Extraktionsmethoden für Nematoden auf Tardigraden nicht anwendbar sind.](image-url)
Moss-living nematodes from an Alpine summit (Dachstein, Austria)

abundance of 2±2 per moss sample. Sex ratio female/juvenile/male was 1.5:1:1. The numbers of nematodes per sample were relatively similar (Fig. 2).

![Bar chart showing individual numbers of two nematode species in moss samples](image)

**Fig 2:** Individual numbers of the two nematode species found in the single moss samples. – Individuenzahlen der beiden Nematodenarten in den einzelnen Moosproben.

The nematode community presented here is one of the simplest, and those with the lowest number of species, found in alpine mosses until now. Compared with other records of moss-living nematodes, the diversity of these nematode communities was most similar to those of polar regions (Tab. 1).

**Tab 1:** Species richness of the nematode fauna in mosses of different regions. – Artenvielfalt der Nematodenfauna aus Moosen verschiedener Regionen

<table>
<thead>
<tr>
<th>Number of species</th>
<th>Sample locality</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassland and other non-woody land type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Seeland, Denmark</td>
<td>MICOLETZKY, 1929</td>
</tr>
<tr>
<td>30</td>
<td>Signi Island, South Orkney Island</td>
<td>SPAULL, 1973</td>
</tr>
<tr>
<td>27</td>
<td>Mols, Denmark</td>
<td>NIELSEN, 1949</td>
</tr>
<tr>
<td>10</td>
<td>Pamir, Asia</td>
<td>MICOLETZKY, 1929</td>
</tr>
<tr>
<td>Polar land type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ross Island, Antarctica</td>
<td>WHARTON &amp; BROWN, 1989</td>
</tr>
<tr>
<td>4</td>
<td>Dry Valleys, Antarctica</td>
<td>FRECKMANN &amp; VIRGINIA, 1993</td>
</tr>
<tr>
<td>2</td>
<td>Ross Island, Antarctica</td>
<td>YEATES, 1970</td>
</tr>
<tr>
<td>Alpine summit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dachstein, Austria</td>
<td>this paper</td>
</tr>
</tbody>
</table>

Nematodes were found in association with tardigrades, and rotifers. The tardigrad Milnesium tardigradum (Fam. Milnesiidae), found in all investigated moss samples represents the top of the soil food web of this small habitat together with the nematode Eudorylaimus sp. (Fam Qudsianematidae). *M. tardigradum* is a carnivorous tardigrade, feeding on rotifers, nematodes and other tardigrades. Members of the genus *Eudorylaimus* are known to feed on a variety of foods including also other nematodes and are classified as omnivores/predators by YEATES ET AL. (1993). The trophic group of bacterial feeders was represented by the nematode Plectus sp. (Fam. Plectidae), the most abundant component of the microfauna dominated food web. The tardigrad Echiniscus sp. (Fam. Echiniscidae), a detritus and plant feeder, was also common, and in one sample the exu-
viae of *Hypsibius* sp. (Hypsibiidae) or *Macrobiotus* sp. (Fam. Macrobiotidae) was found. The food web documented here is very simple, with each trophic level occupied by more or less one microfaunal species.

**Discussion**

While moss-living nematode communities of temperate habitats were found to consist up to 48 different species (MICOLETZKY 1929), regions of extreme climatic conditions show only a fraction of these numbers. Low temperature and desiccation stress in alpine and arctic ecosystems have provided a selective filter. This filter has eliminated many organisms that might have dispersed to these regions (CHAPIN AND KÖRNER 1994). An interesting result of this study was that exactly the same genera of nematodes have been able to pass this filter in the Antarctic ecosystem on the one hand and in the Alps on the other hand. One main reason could be that the representatives of the genera *Plectus* and *Eudorylaimus* can use anhydrobiosis as a mean of coping with desiccating conditions or freezing conditions that occur when no water is present (PICKUP 1990). The tardigrades are also well adapted to these problems. They are tolerant to freezing conditions, surviving temperatures below freezing through the presence of cryptotectant compounds such as trehalose and ice nucleating compounds (WESTH AND KRISTENSEN 1992). Rotifers are able to survive both desiccation and freezing by entering anhydrobiotic state (RICCI 1987, SOMME 1995).

Based on the general feeding characteristics assigned to the genera, the nematode community of the mosses at the mountain Dachstein was found to be a bacterial feeder dominated food chain. This is similar to findings reported by FRECKMANN AND VIRGINIA (1990, 1991) at the Mc Murdo dry valleys, Antarctica and MOURATOV ET AL. (2001) at King George Island, Antarctica. In general, this alpine nematode community seems to be, beside the Antarctic nematode community of the Dry valley region and Ross Island (FRECKMANN &VIRGINIA 1997, FRECKMANN &VIRGINIA 1998, YEATES 1970), one of the simplest soil-living nematode assemblages on earth. Due to high diversity of soil living nematodes in most soils, usually more than one nematode species occupy a single trophic level in temperate soil systems. Especially the bacterial feeding nematodes are comprised of many species, with different metabolic requirements (SCHIEMER 1983, FERRIS ET AL. 1995) and habitat preferences (GRIFFITHS 1994). This complexity of nematode diversity and their connectivity to other phyla in the food web of most soils makes the identification of the control mechanisms on nematode diversity and their role in soil processes very difficult. Work with low diversity systems will allow a better understanding of the basic processes underlining this complexity.

The low invertebrate diversity of the investigated high mountain-mosses and their trophic groups, consisting of only one species each, suggest that this system will be highly disrupted by the loss or decline of even a single species that is sensitive to environmental change. Further studies of extreme habitats at high altitudes and/or high latitudes are necessary to understand their role and the potential of their organisms as bioindicators of a changing climate.

**References**

Moss-living nematodes from an Alpine summit (Dachstein, Austria)
SCHIEFER F., 1983: Comparative aspects of food dependence and energetics of free living nematodes. OIKOS 41, 32–42.


Received for publication: 2003 06 03

Adress:
Mag. Michael Hoschitz, Institute of Ecology and Conservation Biology, University of Vienna, Department of Terrestrial Ecology and Soil Zoology, Althanstrasse 14, A-1090 Vienna, Austria. michael.hoschitz@univie.ac.at.
Moss-living nematodes from an Alpine summit (Dachstein, Austria) 93-98