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Biodiversity decline in aquatic ecosystems –  
is groundwater fauna at particular risk?

Constanze Englisch, Carina Zittra, Christian Griebler

The terrestrial subsurface harbours the largest available freshwater reserves on our 
planet: In particular, shallow aquifers are home to a vast but insufficiently explored bio-
diversity. Whilst biodiversity research gained a strong momentum in the past decades, 
threats to groundwater ecosystems increased as well and we may lose species before 
their discovery and formal description. Negative impacts to groundwater fauna main-
ly encompass groundwater pollution, warming, and habitat loss. Given their peculiar 
adaptation to the usually dark and energy poor environment including a slow metabo-
lism and low reproduction rates, as well as further special characteristics of ground-
water fauna like their fragmented distribution, and high number of endemic species, 
groundwater invertebrates seem to be specifically at risk. We firmly propose to establish 
ecological measures in routine groundwater monitoring and to take action in the devel-
opment of biodiversity conservation strategies and groundwater ecosystem protection.

Englisch C, Zittra C, Griebler C (2024) Rückgang der biologischen Vielfalt in 
aquatischen Ökosystemen – ist die Grundwasserfauna besonders gefährdet?
Der terrestrische Untergrund beherbergt das weltweit größte Reservoir an verfügba-
rem Süßwasser. Zudem sind oberflächennahe Grundwasserökosysteme Lebensraum 
einer großen, bisher aber unzureichend erforschten Biodiversität an wirbellosen Tieren, 
der sogenannten Stygofauna. Während die Erforschung dieser verborgenen Vielfalt an 
Evertebraten in den letzten Jahrzehnten gehörig Fahrt aufnahm, stiegen gleichzeitig 
auch die negativen Einflüsse auf das Grundwasser, weshalb die Möglichkeit besteht, 
dass Grundwasserarten aussterben, noch bevor sie entdeckt und formal beschrieben 
werden. Negative Einflüsse auf die Lebensgemeinschaften umfassen chemische Ver-
unreinigungen, Erwärmung und Übernutzung der Grundwasservorkommen. Wegen 
der besonderen Anpassungen der Grundwassertiere an den lichtlosen und energiear-
men Lebensraum, wie etwa niedriger Stoffwechsel oder geringe Reproduktionsraten, 
sowie weiterer spezieller Merkmale wie sehr fragmentierte, räumliche Verteilung der 
Organismen, und einer großen Anzahl an endemischen Arten, scheint die Grundwas-
serfauna ganz besonders gefährdet. In diesem Überblicksartikel wird eingefordert ein 
ökologisches Monitoring für Grundwasserlebensräume zu etablieren und Strategien 
für die Ausweisung von Schutzgebieten und Maßnahmen zur Erhaltung der Biodiver-
sität zu entwickeln.
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Introduction
Groundwater ecosystems harbour hidden hotspots of biodiversity. Fauna in groundwa-
ter habitats are particularly adapted to the dark and generally energy-poor environment. 
In the following, we identify the most important threats to groundwater biodiversity and 
summarize its risk status. Moreover, we outline measures that could be adopted for a bet-
ter protection and conservation of groundwater ecosystems and important ecosystem ser-
vices they supply. Thereby, we hope to foster political and societal action and demand that 
groundwater ecosystems are considered in water legislation already today, for a prosper-
ous tomorrow.
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Groundwater fauna and its habitats – a brief Intro

Groundwater systems are extraordinary aquatic ecosystems that exceed all surface inland 
waters in their overall spatial dimension and volume. While lakes, rivers and wetlands con-
tain only about 3 % of the world’s available (unfrozen) freshwater, groundwater comprises 
97 % (Danielopol et al. 2003). Groundwater ecosystems are dark and typically limited in 
space, energy- and resource poor environments that select for very specific morphological, 
and physiological adaptations (Gibert & Deharveng 2002). Groundwater animals usually 
lack pigmentation, have reduced or no eyes, and their bodies are small and elongated for 
better mobility in the interstitial space (Botosaneanu 1986; Gibert et al. 1994; Culver et 
al. 2023). Compared to their surface water congeners, metabolic rates of groundwater taxa 
are low, which enables them to tolerate oxygen- and nutrient-deficiencies over extended 
periods of time. Furthermore, groundwater fauna, which is also called stygofauna, has a 
longer life expectancy than their epigean relatives. To give one example, surface water iso-
pods rarely live longer than two years, but groundwater isopods may live up to >20 years 
(Carpenter 2021). For the cave olm (Proteus anguinus), specimens with an age of more than 
60 years have been recorded, and it is even estimated that they may live longer than 100 
years (Voituron et al. 2010). Comparably little is known about dispersal and migration, re-
production rates, food web interactions and feeding behavior of stygofauna, a consequence 
of their secluded habitats (Mammola et al. 2020). For a long time, groundwater systems 
were erroneously considered a “biological desert”, thought to harbor little to no life. Con-
trary, groundwater ecosystems are places of surprisingly high biodiversity. For instance, in 
Austrian groundwater, amphipods comprise at least 2–3 times more species than known 
from surface waters – a picture that is mirrored in many regions of the world. The high 
proportion of endemic species and the high cryptic diversity point at groundwaters as hot-
spots of a very specialized biodiversity that also consists to a considerable degree of relic 
forms whose present distribution reflects old river basins (e.g. of the Danube), the extent 
of primordial seas (e.g. the ancient Mediterranean Sea Tethys), or the glaciation during 
the ice ages (e.g. Würm ice age) (Galassi et al. 2009; Stoch & Galassi 2010; Robertson et 
al. 2023). While living in groundwater ecosystems seems to be quite challenging, the fact 
that environmental conditions are comparably constant is advantageous as it allows to op-
timize adaptation. According to the ecological K-strategy, Gibert et al. (1994) discusses 
the A-strategy to be realized with animals in groundwater habitats, a strategy that usually 
occurs in physically predictable, but ecologically unfavorable, environments. Naturally, 
extreme hydrological events and/or fast changes in temperature are the exception. It is as-
sumed that the high stability of conditions in groundwater systems is one reason why epi-
gean organisms regularly enter subterranean aquatic habitats, possibly to seek refuge from 
adverse conditions at the surface, and in many cases lastingly colonize it (Zagmajster et al. 
2014; Robertson et al. 2023).

Stygofauna living permanently and throughout their life cycle in groundwater habitats are 
termed stygobionts, while those that only spend parts of their life cycle in these environ-
ments are considered stygophiles. Stygoxenes are surface water species accidentally and 
usually fatally trapped in groundwater ecosystems (Gibert et al. 1994; Culver et al. 2023). 
First observations of stygobionts and stygophiles were made in caves and springs, com-
prising mainly invertebrates, with few, very regional species of cave fish and amphibians. 
The most common taxonomic groups of stygofauna are crustaceans. These are Ostracoda, 
Copepoda, Amphipoda, and Isopoda that can be typical stygobionts and stygophiles. The 
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group of Syncarida, that includes the order Bathynellacea, are stygobionts exclusively. Be-
sides, groundwater habitats are populated by Cnidaria, Rotifera, Gastrotricha, Platyhel-
minthes, Annelida (Oligochaeta and Polychaeta), Gastropoda, Bivalvia, Nematoda, Tar-
digrada, Acari and Insecta (e.g. Coleoptera, Plecoptera, Trichoptera) (Fig. 1). The majority 
of these forms are meiofauna (< 1 mm), but body sizes range from ≤ 100 µm (e.g. Rotifera 
or small nematodes) to ≥ 1 cm (e.g. large amphipods or insect larvae) with only a few very 
large forms (i.e., several centimeters to decimeters in large oligochaetes or cave fish and 
salamander) (Marmonier et al. 2023).

Fig. 1: Examples of some of the most common fauna groups in groundwater ecosystems. Sizes are 
not true to scale. Photos: Gastropoda & Amphipoda – Constanze Englisch; Isopoda, Oligochaeta 
& Platyhelminthes – Günther Teichmann; Cyclopoida – Günther Teichmann & Maria Avramov; 
Bathynellacea – Erhard Christian; Ostracoda & Harpacticoida – Santiago Gaviria; Acari – Peter 
Pospisil & Dan L. Danielopol; Nematoda – Florian Scharhauser. – Abb. 1: Beispiele für einige der 
häufigsten Tiergruppen in Grundwasserökosystemen. Die Größenangaben sind nicht maßstabsge-
treu. Fotos: Gastropoda & Amphipoda – Constanze Englisch; Isopoda, Oligochaeta & Platyhel-
minthes – Günther Teichmann; Cyclopoida – Günther Teichmann & Maria Avramov; Bathynel-
lacea – Erhard Christian; Ostracoda & Harpacticoida – Santiago Gaviria; Acari – Peter Pospisil & 
Dan L. Danielopol; Nematoda – Florian Scharhauser.
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So far, about 2,000 groundwater animals have been described at species level from Europe 
(Mösslacher & Hahn 2003), but new taxa are continuously being discovered. In fact, the 
global maximum estimate for subterranean metazoan richness is about 100,000 species, 
of which about a third is assumed to be aquatic (Culver & Holsinger 1992; Malard et al. 
2023a). Knowledge on the distribution of groundwater metazoans is limited and indicates 
the existence of patchy biodiversity hotspots (Iannella et al. 2020), but lacks clear-cut spa-
tial patterns. This is likely related to the very heterogenous groundwater environments that 
enforce highly variable biodiversity patterns at regional scales by modulating local species 
pools. At larger scales, biogeographical patterns crystallize. In Europe, a latitudinal cave 
and groundwater fauna “biodiversity ridge” has been observed between approx. 42° N and 
47° N, where both metazoan biodiversity and the number of known biodiversity hotspots 
is comparatively high (Culver & Sket 2000; Culver et al. 2006; Deharveng et al. 2009; 
Eme et al. 2017; Pipan et al. 2021; Zagmajster et al. 2023). This pattern reflects the maxi-
mum extent of glaciations during the last ice ages (Riss/Würm ice age), during which most 
aquatic species living in glaciated areas either became extinct, sought refuge in ground-
water habitats or migrated southwards (Thienemann 1950; Culver et al. 2006). Regions 
that were fully glaciated during the ice ages therefore hold little groundwater biodiversity 
at low abundances, even after re-colonisation, but harbour relic species (Deharveng et al. 
2009; Martin et al. 2009). This pattern is partly also related to the structure of ground-
water habitats. While glacier activities in low altitudes grinded coarse rock and sediment 
material into fine sediments with little pore space and slow water flow velocities as well as 
typically hypoxic to anoxic conditions, in the high biodiversity belt we find extended karst 
systems such as the Dinaric karst, the Alps and the Pyrenees. Austriá s groundwater fau-
na reflects these general patterns of European subterranean biodiversity, as the maximum 
extent of the Würm/Riss glaciations was partially located here, making it a border region 
to the high biodiversity ridge (Fig. 2). The exact position in the northern slope of the bio-
diversity ridge, however, is so far not well defined since large areas of Austria’s subsurface 
have not yet been explored in detail.

Large scale biogeographic patterns are also present in the eastern United States with higher 
taxonomic richness of stygobionts between the borders of Pleistocene glaciation and the 
coastal plain, than within/along the respective limits (Strayer et al. 1995; Marmonier et 
al. 2023). For most continents we currently lack the data basis to extract such clear large-
scale groundwater biodiversity patterns.

Differences in spatial patterns of species richness at varying spatial scales suggest that 
they are influenced, besides historic climate events and structural properties (habitat 
availability, opportunity for dispersal) by current climate conditions (precipitation and 
groundwater recharge) and surface productivity (Zagmajster et al. 2023), among others. 
Groundwater fauna depends on a minimum supply of dissolved oxygen. In consequence, 
fauna in groundwater is found in large quantities close to the groundwater table and in 
the vicinity of surface waters. Where oxygen penetrates deeply, e.g. in karstified rock 
and highly permeable and energy poor alluvial aquifers, fauna may occasionally con-
quer deeper zones with a lower boundary in distribution of approximately 2,000–4,000 
meters, mainly controlled by oxygen, temperature, and pressure (Borgonie et al. 2011; 
Sendra & Reboleira 2012; Fišer et al. 2014).

Several additional environmental factors driving groundwater biodiversity, usually acting 
together, were identified (by e.g. Deharveng et al. 2009; Malard et al. 2009). The size of 
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void space in the aquifer appears an important property as well as connectivity of inter-
stitial space and the degree of hydrological connectivity to the surface. Co-acting, these 
habitat properties steer the availability of dissolved oxygen and organic matter as key re-
sources for stygofauna (Dole-Olivier et al. 2009; Johns et al. 2015; Korbel & Hose 2015). 
Other properties known to modulate stygofauna biodiversity and community composi-
tion are the altitude and the depth of the groundwater table, i.e. stygofauna abundances 
generally decrease with an increasing distance between land surface and groundwater ta-
ble, and highest taxonomic richness in Europe was found at mid altitudes between 200 
and 500 m.a.s.l. (Dole-Olivier et al. 2009). With respect to temperature, a vast portion of 
stygobionts is sensitive to a rapid and pronounced temperature increase (Brielmann et al. 
2011; Griebler et al. 2016; Spengler & Hahn 2018; Di Lorenzo & Reboleira 2022; Di Lor-
enzo et al. 2023), yet, with individual species being more resilient to temperature changes 
than previously thought (Di Cicco et al. 2023). On the other hand, no clear patterns with 
respect to groundwater composition and hydrochemistry have yet been observed, but long-
term exposure to, e.g. high salinity may increase stygofauna mortality (Castaño-Sánchez 
et al. 2020; Becher et al. 2022).

Fig. 2: The latitudinal groundwater fauna biodiversity ridge in Europe (red area within the dashed 
line). Left figure was modified from Eme et al. (2017); right upper map is from https://de.wikipedia.
org/wiki/Datei:Austria_topographic _map.png; © User: Reinim19; right lower map is from https://
en.m.wikipedia.org/wiki/File:Western%20_Europe_DEMIS_topographic_map.svg; © User: Pe-
thrus. – Abb. 2: Das latitudinale Biodiversitätsband der europäischen Grundwasserfauna (roter Be-
reich innerhalb der gestrichelten Linie). Die linke Abbildung wurde verändert aus Eme et al. (2017), 
übernommen; die rechte obere Karte stammt von https://de.wikipedia.org/wiki/Datei:Austria_topo-
graphic _map.png; © User: Reinim19; die rechte untere Karte stammt aus https://en.m.wikipedia.
org/wiki/File:Western%20_Europe_DEMIS_topographic_map.svg; © User: Pethrus.
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Major threats to groundwater ecosystems and fauna biodiversity
Groundwater and as such all subterranean aquatic ecosystems experience serious pres-
sures. On a global scale, there are three major critical threats to groundwater resources and 
consequently to groundwater biodiversity and ecosystem functioning. These are (1) con-
tamination with priority pollutants (e.g. petroleum hydrocarbons, chlorinated solvents), 
anthropogenic chemicals (e.g. pesticides, pharmaceuticals), and nutrients (e.g. nitrate), (2) 
overuse of groundwater, as well as (3) heat and climate change effects (Griebler et al. 2019; 
Mammola et al. 2019). Increasing land use change for urbanization and agricultural ac-
tivities are pressures integrating more than one of the threats mentioned above (Burri et 
al. 2019; Kretschmer et al. 2023).

Intense agriculture is a key driver of negative impacts to groundwater ecosystems through 
the import of nutrients, organic and inorganic contaminants into aquifers, changes in 
groundwater recharge due to deforestation, monocultures and soil compaction, and 
groundwater abstraction for irrigation (Marmonier et al. 2018; Tweed et al. 2018; Rohde 
et al. 2021). Urbanization comes along with groundwater contamination from leaking 
sewage pipelines, surface run-off and a reduced groundwater recharge through extensive 
surface sealing. Additionally, urbanization favors groundwater warming, the evolution of 
subsurface heat islands and reducing conditions in the aquifer(s) (McDonough et al. 2020; 
Becher et al. 2022). New pressures to urban groundwater ecosystems include active heat 
discharge, i.e. from the use of groundwater as cooling agent in industry and for air condi-
tioning of buildings (Menberg et al. 2013; Blum et al. 2021). Sources of contamination are 
landfills and infiltration of contaminated surface waters (Uhl et al. 2022). Intervention in 
the morphology and hydrology of surface waters via bank stabilization and the construc-
tion of dams disconnect the vital surface water-groundwater interface (Piégay et al. 2009). 
Threats from industry include, besides the improper storage of waste and direct release of 
contaminants, underground and surface mining activities (Mammola et al. 2019; Li et al. 
2021). Increasing demands for drinking water supply may additionally drive overexploi-
tation of groundwater resources. Climate change with its increase in air temperature, in 
evapotranspiration, and extreme weather events such as long-lasting droughts, accelerates 
water needs for irrigation and promotes groundwater overexploitation (Scanlon et al. 2012; 
Kretschmer et al. 2023; Benz et al. 2024).

In conclusion, there are many factors caused by human activities that directly or indirectly 
impact groundwater quantity and quality with a potential negative effect to groundwa-
ter fauna biodiversity (Castaño-Sánchez et al. 2020; Becher et al. 2022; Kretschmer et al. 
2023). Intensification of these activities and threats is expected in the near future.

Is groundwater fauna currently at risk?
A solid assessment of the risk status of groundwater fauna, e.g. species richness and size of 
populations, is extremely difficult since only a fraction of the subsurface habitats has been 
explored and long-term monitoring data are almost completely absent. There are serious 
knowledge gaps regarding overall taxonomic richness, species-specific biogeographic rang-
es, vertical extent and live-limiting conditions, autecology, and ecological niches, as well as 
food web interactions and the ecological roles of fauna (Mammola et al. 2020; Griebler et al. 
2023a; Marmonier et al. 2023). While groundwater is by far the largest freshwater biome, 
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it is not easily accessible, which is one reason why exploration of groundwater fauna pro-
duces rather patchy patterns. Moreover, stygofauna comprises high proportions of cryptic, 
rare, and endemic species as well as relic species, which makes generalisations with respect 
to ecological prerequisites and risk assessment of stygofauna difficult to achieve (Malard et 
al. 2023b). At present, it is estimated that about 50 % of the global groundwater biodiversity 
is not known yet, therefore if we consider a biodiversity loss occurring in groundwater habi-
tats similar to what is observed for surface aquatic and terrestrial ecosystems (Dudgeon et al. 
2006; Newbold et al. 2015; Leclère et al. 2020; Albert et al. 2021), extinction rates among still 
unknown groundwater species may be suspected to be high (Niemiller et al. 2013; Griebler et 
al. 2023a). To put it in a nutshell, it’s possible that we try to ‘count the books while the library 
burns’, as stated by Lindenmayer et al. (2013).

While risk assessment of groundwater fauna and biodiversity is difficult, there is clear evi-
dence for the high sensitivity of groundwater organisms and high vulnerability of ground-
water ecosystems to disturbance once it occurs. First, stygofauna has adapted to its spe-
cific habitat over thousands of years to successfully thrive in these comparably stable and 
energy-deprived environments (Fišer et al. 2023), providing it with a limited potential to 
tolerate and adapt to short- and mid-term changes in key living conditions. Due to highly 
fragmented populations, low dispersal capacities, and low reproduction rates, the integrity 
and resilience of groundwater fauna communities is furthermore susceptible to rapid dis-
turbances (Di Lorenzo et al. 2023). Second, the resistance of an ecosystem to disturbance 
is to some extent related to its energetical status and productivity. Groundwater ecosys-
tems, typically being energy-poor and oligotrophic (low productivity) environments, are 
as such particularly vulnerable to disturbance (Kovarik 2015; Hose et al. 2022). Two ex-
amples are briefly highlighted in the following.

(1) Groundwater ecosystems do have a natural capacity to purify incoming water from or-
ganic matter and nutrients, including organic and inorganic contaminants. This ecosys-
tem service is based on a sensitive balance between the low microbial biomass and activ-
ity in aquifers, the flux of matter to the aquifer, the comparatively long residence time of 
compounds introduced, as well as the large dimensions of aquifers (Griebler et al. 2019). 
Groundwater ecosystems can buffer inputs of dissolved organic carbon and nutrients to a 
certain degree by increasing microbial biomass and activity (Fillinger et al. 2023). This is 
particularly the case at the boundary of the saturated and unsaturated zones, as well as in 
the hyporheic zones. However, an overload with organic carbon, nutrients and contami-
nants can readily exceed the ecosystem’s capacity for “natural attenuation”. Frequent conse-
quences are the accumulation of contaminants (as occasionally seen for nitrate, pesticides, 
heavy metals, and heat) as well as the shift to reducing conditions (Stenger et al. 2008; Stu-
art et al. 2012; Benz et al. 2018b; Vesper 2019). Both constitute a serious threat to ground-
water fauna richness and abundance (Castaño-Sánchez et al. 2020; Di Lorenzo et al. 2023).

(2) The sealing of surfaces, the construction of urban subsurface infrastructure like under-
ground parking lots, sewage pipelines, district heating networks, subway tunnels, as well 
as the use of geothermal energy, lead to excessive warming of groundwater below cities 
(Huang et al. 2009; Menberg et al. 2013; Benz et al. 2018b; Hemmerle et al. 2019). How-
ever, groundwater temperature is not only rising steadily in urban aquifers. With some 
delay, climate warming is reaching down into the subsurface (Benz et al. 2016, 2018a; 
Epting et al. 2021; Noethen et al. 2023; Benz et al. 2024). Since an increase in tempera-
ture stimulates metabolic activities, groundwater warming accelerates the energy require-
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ments of stygofauna (as well as microbes) in a typically energy-poor environment. Higher 
metabolism is linked to faster consumption of available oxygen. Additionally, solubility 
of oxygen is negatively correlated to groundwater temperature. Moreover, many ground-
water invertebrates are cold-stenothermic with low tolerance to chronically elevated water 
temperatures (Brielmann et al. 2011; Becher et al. 2022; Di Lorenzo et al. 2023). Conse-
quently, in oligotrophic groundwater ecosystems warming can lead to a loss of biodiversity 
via starvation, heat stress, and oxygen deficiency.

A wide range of environmental factors and habitat properties shape groundwater fau-
na. The significance of individual factors for a condition should however be interpreted 
critically, as several influencing factors typically overlap. Indeed, experience from labo-
ratory experiments testing the toxicity of selected chemicals and tolerance of individual 
taxa must be interpreted with caution (Di Lorenzo et al. 2023) for the following reasons: 
In their natural environment, organisms are typically exposed to a multitude of limita-
tions, mixtures of contaminants, and combinations of stressors that amplify each other, 
i.e. increased groundwater temperature, eutrophication, and the presence of toxic con-
taminants. Under laboratory conditions, however, only a small selection of species that 
are abundant and resilient enough for laboratory testing can be tested for a limited num-
ber of stressors at a time. Testing biases like excluded or added negative as well as posi-
tive cumulating effects (e.g. food supply under laboratory conditions: more regular/higher 
availability could benefit productivity and increase resilience, or starvation could falsify 
sensitivity thresholds and decrease resilience) can hardly be prevented. Therefore, it is 
challenging to gain a realistic, holistic impression of impacting factors on groundwater 
ecosystems or fauna populations.

Various studies have addressed the negative effects of intensive agricultural land use on 
groundwater fauna biodiversity and density (Korbel et al. 2013a, 2013b; Marmonier et al. 
2018). Also, the locally fast warming of groundwater and the overall ongoing contami-
nation of aquifers in cities clearly put groundwater fauna diversity at risk (Becher et al. 
2022). A fact that seriously impacts groundwater fauna biodiversity is the overexploitation 
of groundwater. Abstraction of groundwater from many aquifers worldwide by far exceeds 
the natural renewal rate (Gleeson et al. 2012). Regional declines of groundwater levels by 
several meters over the past years to decades are very common in many regions of the world 
(Mammola et al. 2019). At many sites, groundwater drawdown exceeds dozens of meters 
(Konikow & Kendy 2005). In comparison to other pressures, the ecological consequences 
of groundwater abstraction for fauna have received little attention. Lowering of ground-
water levels first and foremost is habitat loss to groundwater fauna (Di Lorenzo & Galassi 
2013; Stumpp & Hose 2013), which in consequence also means a loss of populations, spe-
cies, and ecosystem functions and services (Larned 2012). In fact, an increasing distance 
between land surface and groundwater table correlates negatively with the abundance and 
richness of groundwater fauna, which can be explained by a progressive scarcity of food 
and oxygen (Danielopol et al. 2000; Datry et al. 2005; Hancock et al. 2008; Stumpp 
& Hose 2013). Groundwater overuse in karstic areas may lead to disappearance of cave 
drip-pools, larger standing water bodies and subterranean rivers with its related inverte-
brate communities (Brancelj & Stoch 2022; Pipan & Culver 2022). In addition, lowering 
of groundwater levels can lead to salt water intrusion in coastal areas and the disconnec-
tion between (freshwater) surface waters and aquifers, with detrimental consequences for 
groundwater quality (Uhl et al. 2022).
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Measures for the protection of groundwater ecosystems  
and conservation of groundwater fauna

Existing laws and directives for the protection of groundwater are mostly resource-fo-
cused with no intentional consideration of biotic communities and their importance for 
the maintenance of essential ecosystem functions (Tomlinson et al. 2007; Griebler et al. 
2010; Mammola et al. 2022b; Griebler et al. 2023a). This is in contrast to current regula-
tions dedicated to surface waters, such as the European Water Framework Directive (EU-
WFD 2000). Groundwater ecosystems and fauna are highly vulnerable to environmental 
changes and disturbance and therefore require similar consideration and protection (Hose 
et al. 2022; Griebler et al. 2023a). Fortunately, there are some positive developments. There 
are good examples of the protection of cave habitats and subterranean fauna at interna-
tional and national level. Several European countries located at the subterranean biodi-
versity ridge (i.e. Slovenia, France or Croatia) already protect selected cave systems and 
established Red Lists including stygobionts (Baillie et al. 1996; Allanic 2012). A particu-
lar good-practice example is the Croatian Red Book of Cave Fauna which is the first Red 
List dealing with nearly 200 subterranean species. Here, about one third of all listed spe-
cies are considered “Critically Endangered” (Ozimec 2011). The long Austrian tradition 
in speleology has led to the implementation of the Natural Caves Law (Naturhöhlengesetz 
2013) that protects groundwater habitats in natural caves and therefore plays an indirect 
role (by not protecting species themselves, but rather their habitats) in the conservation of 
cave fauna, including stygobionts. Apart from caves, other groundwater ecosystems receive 

Tab. 1: Cause-Effect matrix for key groundwater ecosystem pressures, environmental condi-
tions, and biodiversity/density of groundwater fauna. GW = groundwater; SW = surface water. –  
Tab. 1: Ursache-Wirkungs-Matrix für die wichtigsten Belastungen des Grundwasser-Ökosystems, 
Umweltbedingungen und Artenvielfalt/Dichte der Grundwasserfauna. GW = Grundwasser; SW = 
Oberflächenwasser.

Habitat avai-
lability/loss

Deterioration of 
GW quality

Warming 
of GW

Reduction in 
GW fauna 
abundance

Loss in GW fauna 
biodiversity

GW Contamination

GW Overuse

Urbanization

Conventional agriculture

Mining activities

Climate change

SW contamination

Invasive species

strong

moderate

minor

no

No studies available
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protection only indirectly, via protection of drinking water resources and the protection of 
surface terrestrial and aquatic ecosystems, i.e., in National Parks. In Austria, only a hand-
ful of groundwater species are covered by existing legislation (e.g., through the Habitats 
Directive or the Species Protection Ordinance). The Austrian Red List contains only a few 
groundwater/spring snails (Reischütz & Reischütz 2007).

Similar to surface ecosystems, groundwater habitats face increasing pressures and ground-
water fauna is, globally as well as on the Austrian scale, at risk. One may argue that 
groundwater fauna, due to the protective features of soils and sediments covering aquifers, 
is less exposed to negative threats when compared to surface aquatic communities. As al-
ready mentioned above, because of the scarcity of available autecological and ecotoxico-
logical information of groundwater fauna and associated difficulties in systematic risk as-
sessment, we are unable to provide a final clue. Worth highlighting, the achievement of 
protection statuses for groundwater species, e.g. to be listed on IUCN Red Lists (IUCN 
1948), is extremely challenging. In this context, the Red List criteria and thresholds for the 
admission of invertebrate species has been repeatedly criticized to be inappropriate (Car-
doso et al. 2011, 2012) and so far, no major changes in the Red List assessment system were 
implemented to specifically target groundwater fauna.

Effective steps towards the protection of groundwater ecosystems and conservation of 
(aquatic) subterranean fauna require equal treatment by law of all kinds of aquatic and 
terrestrial ecosystems (Hahn et al. 2018). Groundwater ecosystems provide essential ser-
vices (Griebler and Avramov 2015) and deserve targeted protection. Protection and con-
servation of groundwater fauna must be implemented by water directives and regulations 
that define clear targets as well as sustainable management strategies for groundwater use. 
Such legal actions need to be accompanied by monitoring programs as well as measures to 
build awareness regarding the role of groundwaters in supplying vital ecosystem services 
but also as hotspots for biodiversity. In the best case, groundwater ecosystem protection 
targets large, interconnected areas. Furthermore, ideally landscape and surface waters are 
encompassed as well, since these habitats are primary links to the groundwater systems. 
Besides, international, national and regional regulations for the protection on bigger spa-
tial scales such as the Convention on Biological Diversity (CBD 1993), the Convention 
on Wetlands of International Importance (Ramsar 1975), the World Heritage Convention 
(WHC 1975), the Convention on International Trade in Endangered Species of Wild Fau-
na and Flora (CITES 1975), or the currently being developed IUCN Red List of Ecosys-
tems (RLE) (Keith et al. 2015) are or may become dedicated tools to tackle conservation 
of groundwater biodiversity (Niemiller et al. 2018). Indeed, nature conservation areas have 
already proven to be effective in sustaining biodiversity, ecosystem functioning and eco-
system services in several surface areas as well as a few subterranean cases (Ozimec 2011; 
Tanalgo et al. 2022; Griebler et al. 2023b).

A key motivation for groundwater protection and conservation is that groundwaters pro-
vide vital ecosystem services like water purification that depend on healthy groundwater 
communities (Griebler & Avramov 2015), and any negative feedback on groundwater qual-
ity and availability through groundwater biodiversity loss will have direct and dramatic 
consequences for human well-being (e.g. provision of drinking water). To build a strong 
foundation for the establishment of effective conservation measures and policies, further 
research is necessary that should focus on closing knowledge gaps in stygofauna species 
identification, distribution and limiting conditions (e.g. through a combination of exper-
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imental and explorative in-situ research). Use should be made of modern methods (e.g. 
eDNA, species distribution modelling) to characterize stygofauna biodiversity patterns 
and their susceptibility to human impact (Mammola et al. 2021; Griebler et al. 2023a). In 
parallel, species extinction risk should be assessed and threshold values for anthropogenic 
stressors defined to provide guidelines for the sustainable use of groundwater. Finally, an 
integrative groundwater management strategy should be implemented based on biologi-
cal and ecological criteria and anchored in national and international legal frameworks 
(Wynne et al. 2021; Griebler et al. 2023a). This should specifically include standardized 
monitoring and sampling methods and guidelines for sustainable groundwater use (Fer-
reira et al. 2022).

As stated by Griebler et al. (2023a), “a direct dialogue with policymakers and stakehold-
ers aiming to achieve legal protection and recognition for the biological component of 
groundwater ecosystems is necessary. Concretely, it would be important to obtain: (i) le-
gal equality for groundwater and surface water ecosystems; (ii) explicit implementation of 
the terms ‘groundwater ecosystems’ and ‘groundwater ecological status’ in the laws per-
taining to water and to conservation inclusive impact regulation; (iii) definition and legal 
consideration of biological references, indicator parameters and threshold values for the 
monitoring of groundwater ecosystems, (iv) implementation of these ecological criteria and 
thresholds into groundwater management plans”. Recommendations and tools for the ap-
plication of such integrative groundwater management strategies that incorporate biologi-
cal properties into groundwater assessments have already been formulated and await broad 
application and testing (Hahn 2006; Korbel & Hose 2017; Fillinger et al. 2019; Hose et 
al. 2023). But not only policy-makers and stakeholders need to be aware of the societal rel-
evance of groundwaters. Generally, the public awareness about groundwater habitats and 
species should be increased through popular science events, the involvement of the pub-
lic through citizen science, art projects to visualize groundwater organisms, guided cave 
tours, or workshops targeted at the general public, starting with children’s school education 
(Danielopol 1998; North & van Beynen 2016; Alther et al. 2021; Mammola et al. 2022a).

Summary and Conclusion
Groundwater ecosystems are fascinating hidden habitats for a large variety of organisms. 
Groundwater fauna has adapted to the demanding, energy-poor but usually stable environ-
ment for thousands of years and has in this process developed highly diverse communities 
that largely consist of cryptic, endemic, and relic species (Deharveng et al. 2009; Fišer et 
al. 2023). Our current knowledge about distribution patterns and drivers of groundwater 
fauna biodiversity as well as community structures, living conditions or vulnerability to 
stressors/changes is steadily increasing (Di Lorenzo et al. 2023; Zagmajster et al. 2023). 
Still there are serious knowledge gaps that need to be filled (Mammola et al. 2020). Lim-
ited access to the groundwater environment and difficulties of studying stygofauna under 
laboratory conditions result in a fragmented picture, leading to challenges in defining con-
servation measures. These challenges are presumably also a reason that groundwater fauna 
biodiversity on the large scale appears to be very heterogenous, showing rather patchy bio-
diversity hotspots than clear patterns (Deharveng et al. 2009; Malard et al. 2009).

Factors that have shown to play a role in groundwater fauna biodiversity distribution, be-
sides historic events (e.g. former extent of glaciation during last ice age or former extent of 
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surface water like the Tethys), are sediment void size, the interconnectedness, the hydro-
logical exchange with surface water, the availability of dissolved oxygen and organic mat-
ter, and the thermal stability (Thienemann 1950; Marmonier et al. 2023). Regularly, alti-
tude as well as the depth of the groundwater table have appeared to be drivers of richness 
and density (Dole-Olivier et al. 2009). The majority of the mentioned factors are strongly 
impacted by anthropogenic actions that pose a potential threat to groundwater biodiver-
sity. The exploitation of groundwater as a resource with disregard to its biological proper-
ties and ecological health of the ecosystem as well as the numerous negative aspects that 
accompany consistently advancing land use changes including urbanization, deforesta-
tion, agriculture, and industrialization put groundwater fauna biodiversity at serious risk 
(Castaño-Sánchez et al. 2020; Rohde et al. 2021; Becher et al. 2022).

Protection and conservation measures of groundwater fauna and habitats are mostly lack-
ing (e.g. severe underrepresentation of groundwater species on Red Lists like the IUCN, 
absence of actions for the protection of groundwater ecosystems in legal frameworks, etc.), 
even though they are urgently needed. Therefore, it is vital that actions are taken to close 
knowledge gaps, spread awareness of the importance of the biological groundwater prop-
erties not only with stakeholder and policy makers but including the general public, with 
the aim to create guidelines for the sustainable use of groundwater resources and imple-
ment the use of integrative groundwater management strategies as a standard practice. Ul-
timately, we all depend on a healthy groundwater ecosystem and should therefore protect 
it not less than we already protect surface waters (Griebler et al. 2023a).
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