Ueber die Entwickelungsgeschichte und den anatomischen Bau der handförmigen Auswüchse an den Blättern und Stengeln von Gireoudia manicata Klotzsch.

Von Adolf Weiss.

Mit einer Tafel. (Tab. II.)

Vorgelegt in der Sitzung vom 13. Jänner 1858.

Eine der selbst dem Laien am meisten in die Augen fallenden Charactere an Begonia manicata Cels. oder Gireoudia manicata Klotzsch sind die prächtig roth gefärbten, handförmigen Auswüchse, welche Stengel, Blattnerven etc. dieser Pflanze in bedeutender Anzahl bedecken.

Diese "Squamae" kommen übrigens, freilich nicht so sehr entwickelt, auch bei Begonia strigillosa Dietrich vor, welche Warszewicz in Centralamerika auffand*), sowie bei Begonia nummulariaefolia Putzeys, einer Begoniacee, welche an den kältesten Partien der Cordillere von Pamplona in einer Höhe von über 10000 Fuss vorkommt**).

Es steht diese Erscheinung also keineswegs vereinzelt da und Klotzsch sagt von Begonia (Gireoudia) manicata in seiner bekannten Monographie dieser Familie ***) folgendes:

"Caule carnoso, decumbente subbrevi, foliis longe petiolatis oblique cordatis repando-dentatis breviter acuminatis ciliatis, supra laete viridibus glabris, subtus ad nervos squamis sparsissimis purpureis apice filamentosis adspersis, ad insertionem petioli squamis majoribus reflexis palmatifidis purpurascentibus verticillatis obsitis; petiolo laminam subaequante v. superante imprimis apicem versus squamis purpureis subverticillatis reflexis fimbriatis obsito etc. etc."

²) Allgemeine Gartenzeitung. XIX. S. 330.

^{**)} J. Linden, Catalogue des plantes exotiques, nouvelles et rares, cultivées dans les serres de J. Linden. Bruxelles 1853.

^{***)} Begoniaceen-Gattungen und Arten. Berlin 1855. (Aus den Abhandlungen der k. Academie zu Berlin. Seite 91.)

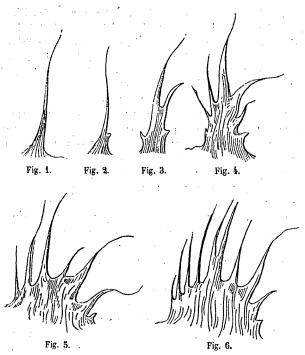
J. P. Tournefort, Institutiones rei herbariae. 3 Vol. cum 489 tab. aen. edit. sec. Par. 4700 beechrieb zuerst die Begoniaceen.

10

Adolf Weiss:

Die Pflanze selbst ist in Mexico einheimisch und wurde, wie ich glaube, zuerst von Prof. Lindheim aufgefunden.

Es ist wohl jedem Botaniker bekannt, dass selbst die Stellung der Begoniaceen im Systeme eine noch keineswegs festgesetzte ist, und man kann mit vollem Rechte behaupten, dass es viel leichter sei, den Nachweis zu liefern, dass alle diejenigen, welche sich mit der Unterbringung dieser Gruppe beschäftigten, sich getäuscht haben, als die ihnen zukommende eigentliche Stellung unter Nennung ihrer Verwandten nachzuweisen *).


Es ist indess nicht meine Absicht, in Hinsicht auf die Systematik dieser eben genannten Gruppe heute einige Mittheilungen zu machen, sondern ich will nur einige morphologisch-anatomische Untersuchungen vorlegen, welche ich an den Auswüchsen von Begonia manicata anstellte, und die, so geringfügig sie auch sind, doch über die Genesis und den Bau dieser Gebilde einige Aufschlüsse geben werden.

Das Materiale zu vorliegenden Beobachtungen lieferte der k. k. botanische Garten und ich fühle mich dem Director desselben, unserem allverehrten Vicepräsidenten Herrn Prof. Dr. Fenzl, zu dem wärmsten Danke verbunden, dass er mir schon seit langer Zeit erlaubte, ihn bei meinen Untersuchungen benützen zu dürfen.

Die Form der Auswüchse an Gireoudia manicata Klotzsch, welche entschieden epidermoidaler Natur sind, ist eine ungemein zierliche und verleiht der Pflanze einen ganz eigenthümlichen Character. An den Enden der Blattnerven erscheinen sie als feine Härchen, welche gegen den Blattstiel hin immer complicirtere Gestalten darstellen und dann eine entfernte Aehnlichkeit mit handartigen Formen zeigen, so dass der systematische Name der ganzen Pflanze als durchaus passend gewählt bezeichnet werden muss. Am Stiele bemerkt man besonders unterhalb der Anheftungsstelle des Blattes mehrere spiralig aufsteigende Kreise dieser Auswüchse von einer Grösse, welche weit beträchtlicher ist als an den Blattnerven oder den übrigen Theilen der Pflanze. Weiter unten am Stengel verlieren sie sich immer mehr und mehr, bis sie endlich nur unter der Gestalt von mehr oder weniger länglichen rothen Streifen sich bemerkbar machen. Ueberhaupt sind sie in voller Schönheit nur an jugendlichen Theilen wahrzunehmen.

Schon eine oberflächliche Betrachtung musste mich lehren, dass die Auswüchse mit den Haaren am Blattrande vollkommen identisch — also reine Epider moidalbildungen (im weitesten Sinne des Wortes) seien. In der That kann man besonders an den Blattnerven die schönsten Uebergänge vom einfachen Haare zu dem ausgebildeten Auswuchse sich zusammensuchen und die jenseits stehenden Figuren werden ein ziemlich deutliches Bild einer solchen Formenreihe zu geben im Stande sein.

^{*)} Klotzsch, Monographie a. a. O. S. 7.

Die Entwickelungsgeschichte gibt hierüber noch weitere Aufschlüsse, und ich will versuchen, dieselbe, so wie sie sich mir darstellte, zu entwickeln.

Die Epidermis des Stengels besteht aus ziemlich grossen poliedrischen Zellen, und zeigt an einzelnen Partien ein kleines drüsiges Härchen (Fig. 4 H und Fig. 1 A Taf. II). Ich glaube nun aus meinen Untersuchungen folgern zu können, dass nur an jenen Stellen Auswüchse entstehen, an denen schon früher ein solches Härchen sich zeigte. Der Vorgang ist folgender:

An den besagten Partien entsteht auf einmal um das primäre Härchen herum (Taf. II. Fig. 1 Å) eine starke Zellenvermehrung, welche sowohl die Epidermiszellen als auch die unten liegenden Parenchymzellen ergreift und deren Product Elementartheile sind, welche einen rothen Farbstoff führen.

Es entsteht nun die Frage, welche Reihenfolge bei diesen Vorgängen herrscht. – Ich glaube auch hierüber Aufschluss erhalten zu haben.

Man sieht nämlich oft eine einzelne oder mehrere, Farbstoff enthaltende, grössere Zellen von kleineren noch reich Protoplasma führenden umgeben, was wohl beweisen dürfte, dass die Bildung von Farbstoff bereits ein ziemlich weit vorgeschrittenes Stadium bezeichne, und dass ihr eine be-

12 Adolf Weiss:

deutende Streckung der neu gebildeten Zellen vorangehe. Diess wird noch durch den Umstand bestätigt, dass wahrscheinlich die Epidermiszellen zuerst anfangen sich zu vermehren, während sie auf der anderen Seite zuerst mit Farbstoff erfüllt erscheinen und dass bereits unter dem einfachen Microscope sich eine kleine Protuberanz bemerkbar macht, sobald die betreffende Zellpartie eine rothe Färbung zu zeigen beginnt.

Die Vermehrung und Streckung der Zellen nimmt nun beständig nach zwei Dimensionen hin zu und gar bald sieht man ein kleines Hügelchen sich über der Epidermis erheben. Der Hauptherd der Zellstreckung und Vermehrung hat indess nur in der Nähe der Mitte des nun eine bedeutende Flächenausdehnung einnehmenden rothen Fleckes seinen Sitz, und bildet eine schmale Zone oder Wulst, der mit seinem Längendiameter senkrecht auf der Längsrichtung des Stengels in die Epidermis desselben verläuft.

An den Blattnerven ist die Entstehung genau dieselbe, nur bildet sich gewöhnlich im Anfange keine Wulst, sondern eine conische Zellpartie, wodurch die ersten Stadien eine cylindrische Gestalt bekommen, während am Stengel schon vom Anfange an die Flächenrichtung vorwaltet.

Hierbei bemerke ich noch, dass die Auswüchse schon in ihren jungen Stadien an allen ihren Theilen eine deutliche Sonderung von Epidermis und darunter liegendem Parenchyme zeigen.

Der weitere Entwickelungsvorgang besteht in nichts Anderem, als dass diese Zellenhügel sich vergrössern und bald eine fingerförmige Gestalt annehmen, nach den Vorgängen, welche zu bekannt sind, als dass ich ihrer weiter zu gedenken brauchte. Ich will nur noch bemerken, dass das Wachsthum des ganzen Gebildes vom Grunde desselben aus stattfindet und dass die oberen Zellen- oder vielmehr Parenchymschichten nach und nach, und zwar die ersten schon sehr frühe, ihren Farbstoff verlieren und absterben. Daher kommt es auch, dass die Spitzen selbst junger Auswüchse schon farblos erscheinen.

Nachdem ich auf diese Weise eine kurze Entwickelungsgeschichte dieser abnormen Bildungen gegeben habe, will ich noch einiges über den Bau des fertigen Auswuchses beifügen. Passende Längen- und Querschnitte geben hierüber genügenden Aufschluss.

Es stellen sich uns diese Gebilde als Fortsetzungen des Parenchyms des Stengels dar und sind auf beiden Seiten von einer deutlichen Epidermis umkleidet, auf welche sich ihrer ganzen Ausdehnung nach eine zarte Cuticula abgelagert hat. Die Fig. 2 und 4 auf Taf. II. werden zur Erläuterung des Gesagten dienen.

Diese Epidermiszellen scheinen an den oberen Theilen des Auswuchses und zwar schon hart unter der Basis desselben die alleinigen Trägerinnen des Farbstoffes zu sein, während das darunter liegende Parenchym deutliche Chlorophyllkörner zeigt, reichlich Saft führt, und hin und wieder noch die Cytoblasten erkennen lässt. Der schön rothe Farbstoff färbt sich

durch Berührung mit der atmosphärischen Luft durch Oxydation sehr bald blau; gerinnt bei Behandlung mit etwas verdünnter Schwefelsäure zu Klumpen von dunkelrother Farbe, welche sich in den Zellen um Vacuolen lagern, wobei sich feine punctförmige Körnchen in den Zellen abscheiden.

Die Elementartheile des Parenchyms selbst sind durch nichts Besonderes ausgezeichnet, haben eine rundliche Gestalt und sind mit einem Worte dem übrigen Stengelparenchyme durchaus identisch.

Gefässbündel verlaufen nie bis in die Auswüchse hinein.

Die Zellen des Parenchymes unter der Oberhaut des Stengels führen zahlreiche, herrliche Krystalldrusen (Taf. II. Fig. 4 D, E, F), unter denen man nicht selten die prachtvollsten Octaëder vorfindet. Sie bestehen, wie ich mich überzeugte, aus oxalsaurem Kalke, dessen wie bekannt gewöhnliche Krystallgestalt sie bilden, nur dass man sie wohl nicht leicht in solcher Regelmässigkeit der Ausbildung vorfinden wird, wie hier*). Durch Zerreissen der sie einschliessenden Zellen kann man sie frei machen und auf diese Weise ungemein gut studiren. Ich habe (Taf. II. Fig. 5) eine Abbildung eines solchen ausgebildeten Krystalles gegeben.

Die Zellen unter der Oberhaut des Stengels zeigen eine ganz merkwürdige Erscheinung.

Man sieht nämlich kleine drei- oder viereckige Räume, welche an gewissen Stellen die einzelnen Zellen von einander trennen, nach Behandlung mit Jodlösung eine dunkelgelbe Färbung zeigen und durch verdünnte Schwefelsäure ungemein stark aufquellen. Ich habe diese Zellschichte (Taf. II. Fig. 3) abgebildet, bin aber durchaus nicht der Ansicht, dass diese Räume durch Absonderungsmasse der drei benachbarten Zellen erfüllt sind. Meyen hat in seiner Pflanzenphysiologie auf Taf. II. des I. Bandes, besonders in Fig. 11 von Pontederia cordata eine Abbildung gegeben, welche mit der von Begonia manicata, wie ich sie finde, beinahe ganz übereinstimmt **).

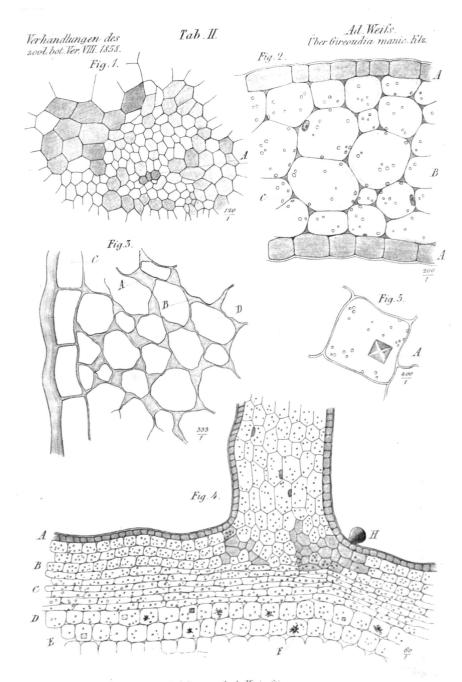
Zum Schlusse bemerke ich noch, dass Spaltöffnungen an den Auswüchsen niemals vorzukommen pflegen.

Erklärung der Tafel.

Fig. 1. Längenschnitt aus der Oberhaut von Gireoudia manicata Klotzsch. Bei A bemerkt man das drüsige Härchen, um welches eine starke Zellenvermehrung stattgefunden hat. Die dunkle Farbe in den Zellen soll den rothen Farbstoff andeuten. Vergröss. 120.

Fig. 2. Querschnitt durch einen fertigen Auswuchs dieser Pflanze. Vergröss. 200 Asieht man die Farbstoff führenden Zellen der Epi-

^{*)} J. Schmitz. Linnaea. 1843. S. 438. Taf. IV. Fig. 18, 19 bildet sehr schöne Octaëder von der Oberfläche des Hymeniums der Thelephora hirsuta ab.


^{**)} Neues System der Pflanzenphysiologie. I. Band, Berlin 1837, S. 170 ff. Taf. III. Fig. 21, 22, 23,

14

Adolf Weiss: Ueber handformige Auswilchse von Gircoudia manicata Kl.

- der mis, in B das darunter liegende Parenchym. Es enthält reichlich Saft und Chlorophyllkörner; in zwei Zellen bemerkt man die Cytoblasten. Die dreieckigen Räume, z.B. bei C, sind Interzellularräume.
- Fig. 3. Querschnitt durch den Blattstiel ebenderselben Pflanze. Vergröss. 333. Bei C die Oberhautzellen, auf welche die Zellreihen (D) folgen, welche theils dreieckige (B), theils viereckige (A) Anschwellungen zeigen, die nichts anderes als die secundären Zellschichten sein können.
- Fig. 4. Radialschnitt durch den Blattstiel an einer Stelle, wo sich ein Auswuchs befand. Bei A die Epidermis; in B cilindrische Parenchymzellen, welche Chlorophyll führen und sich in den Auswuchs fortsetzen. In C eine Schichte mehr in die Länge gestreckter Elementartheile, auf welche in D eine Region cilindrischer Parenchymzellen folgt, welche theils Zwillings- und Drillingskrystalle (F), theils sehr schön ausgebildete Octaëder (E) von oxalsaurem Kalke führen. In H bemerkt man das ursprüngliche Härchen. Die dunkelgefärbten Partien sind mit Farbstoff erfüllt.
- Fig. 5. Eine einzelne Zelle von Gireoudia manicata Klotzsch, welche bei A einen schönen Octaëder von oxalsaurem Kalke führt.

 Vergröss. 400. Man bemerkt in der Zelle ausser dem Krystalle noch Chlorophyllkörner zum Beweise, dass es unrichtig sei zu behaupten, es können in einer Zelle, welche einen Krystall führe, keine anderen Zellsaftkügelchen vorkommen.

Gedr. b. A. Feyering Stadt Maria Stiege

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien. Frueher: Verh.des Zoologisch-Botanischen Vereins in Wien. seit 2014 "Acta ZooBot Austria"

Jahr/Year: 1858

Band/Volume: 8

Autor(en)/Author(s): Weiss Gustav Adolf

Artikel/Article: <u>Ueber d. Entwicklungsgeschichte u. d. anatomischen</u>
Bau d. handförmigen Auswüchse an Blättern u. Stängelen von
Gireoudia manicata (Tab. II). 9-14