Temperatur- und CO₂-Abhängigkeit des Gaswechsels von *Fagus sylvatica* L. nach Wachstum unter erhöhter atmosphärischer CO₂-Konzentration

Jörn Strassemeyer, Manfred Forstreuter und Dieter Overdieck

Synopsis

Temperature and CO_2 dependent gas exchange of *Fagus sylvatica* L. after growth at elevated CO_2 concentration

In the second year of a long-term CO_2 experiment on young beech stands grown at ambient (371 \pm 46 µmol mol⁻¹) and elevated (701 \pm 10 µmol mol⁻¹) CO_2 concentrations and under unlimited nutrient supply, single leaf gas exchange measurements were obtained during three measurement periods. A_n/C_i curves were measured on sun and shade leaves with a mini-cuvette system (CMS 400, Walz) under constant environmental conditions (*PPFD* > 1000 µmol m⁻² s⁻¹, $T_{leaf} = 25 \,^{\circ}C$, $VPD = 1.4 \,$ kPa). During the second measurement period A_n/C_i curves were measured at four additional temperatures (17, 21, 29, 35 $^{\circ}C$).

At elevated CO_2 , sun and shade leaves showed a 66% increase in net photosynthesis. Adjustments of the photosynthesis apparatus to CO_2 elevation were not detected either for sun or shade leaves. $A_{n\nu} A_{max}$ and the initial slope of the A_n/C_i curves showed no significant change as a result of the increase in the CO_2 growth concentration. Saplings of *Fagus sylvatica* L. will therefore profit from the future rise in the atmospheric CO_2 concentration.

An increase in the temperature will modify the reponse of A_n under changing atmospheric CO₂ conditions. At 30 °C the CO₂ response was significantly higher than at 20 °C. Additionally, the temperature optimum of A_n will increase by 1-2 °C if the CO₂ concentration is doubled. Therefore the interaction of the rising atmospheric CO₂ concentration and the predicted warming of the earth's surface are likely to enhance the CO₂ response of young beech trees.

Fagus sylvatica L., elevated CO_2 concentration, net photosynthesis, acclimation, conductance, transpiration, intercellular CO_2 concentration, temperature optimum

Abkürzungen

 $\begin{array}{l} A_{max}: \mbox{Photosynthesekapazität;}\\ A_n: \mbox{Nettophotosyntheserate;}\\ & \Delta A_{350-700}: \mbox{Steigerung der Nettophotosyntheserate}\\ \mbox{nach Verdoppelug von } C_a;\\ & A_{opt}: \mbox{A}_n \mbox{ bei Optimum stemperatur;}\\ & C_a: \mbox{CO}_2\cdot \mbox{Konzentration in der Blattmeßküvette;}\\ & C_i: \mbox{interzellulare } \mbox{CO}_2\cdot \mbox{Konzentration;}\\ & dA_n/dC_i: \mbox{Anagesteigung der } A_n/C_i \mbox{Kurven;}\\ & T_{opt}: \mbox{Optimum stemperatur von } A_n;\\ & \Gamma: \mbox{CO}_2\cdot \mbox{Kompensationspunkt;}\\ & VPD: \mbox{Wasserdampfdruckdefizit;}\\ & PPFD: \mbox{Photonenflußdichte;} \end{array}$

1 Einleitung

Seit Beginn der Industrialisierung ist die atmosphärische CO₂-Konzentration von einem vorindustriellen Wert von ca. 280 µmol mol⁻¹ CO₂ um 27 % auf den heutigen Wert von ca. 360 µmol mol⁻¹ CO₂ gestiegen (NEFTEL & al. 1985, SARIMENTO & BENDER 1994). Aufgrund der anhaltenden anthropogenen CO₂-Emission (KEELING & WHORF 1994, FORSTREUTER & al. 1994) ist im kommenden Jahrhundert eine Verdoppelung der vorindustriellen CO₂-Konzentration und ein Anstieg der Temperatur um 3 °C zu erwarten (HOUGHTON & al. 1990).

Seit langem ist bekannt, daß C_3 -Pflanzen auf eine kurzfristige Erhöhung der atmosphärischen CO_2 -Konzentration mit einer Steigerung der Photosyntheserate reagieren (GODELEWSKY 1873, FARQUHAR & al. 1980, CURE & ACOCK 1986, EAMUS & JARVIS 1989, OVERDIECK 1993, SAGE 1994). Eine andauernde Erhöhung der CO_2 -Konzentration kann zu Akklimatisationen des Photosyntheseapparates wie z. B. der Reduktion des RuBisCO-Gehaltes und Veränderungen in der Thylakoidstruktur führen (von CAEM-MERER & FARQUHAR 1984, DE LUCIA & al. 1985, SAGE & al. 1989).

Die Antwort des Photosyntheseapparates auf eine Erhöhung der CO_2 -Konzentration kann durch Umweltbedingungen wie Verfügbarkeit von Wasser, Stickstoffgehalt und Temperatur modifiziert werden (von CAEMMERER & FAROUHAR 1981, TISSUE & OECHEL 1987, FAROUHAR & al. 1989, GRULKE & al. 1990, IDSO & al. 1993). Mit steigender Temperatur nimmt die Oxygenierungsrate im Verhältnis zur Carboxylierungsrate aus zwei Gründen zu: 1) Die Affinität der RuBisCO für CO2 nimmt unter hohen Temperaturen ab und 2) die Löslichkeit von CO2 in Wasser nimmt im Vergleich zur Löslichkeit von O2 stärker ab (JORDAN & OGREN, 1984). Somit nimmt auch der Anteil an Photorespiration mit steigender Temperatur zu. Unter hohen CO2-Bedingungen, bei denen Photorespiration kompetitiv durch CO2 gehemmt ist, hat der Temperatureffekt demnach stärkere Auswirkungen auf die Nettophotosyntheserate als unter niedrigen CO₂-Bedingungen (FARQUHAR & al. 1980, BERRY & RAISON 1982, LONG 1991). Die Reaktion der Nettophotosynthese auf Temperaturveränderungen ergibt sich aus der Summierung der Temperaturabhängigkeiten der daran beteiligten Prozesse. Mit steigender CO2-Konzentrationen ändert sich der Anteil der einzelnen Prozesse an der Nettophotosynthese und somit auch das Temperaturoptimum (FARQUHAR & al. 1980, BERRY & RAISON 1982, LONG 1991).

In der vorliegenden Arbeit wird die Akklimatisation des Photosyntheseapparates von jungen Buchen an langzeitig erhöhte CO_2 -Bedingungen untersucht. Außerdem soll untersucht werden, ob und inwieweit Jungpflanzen von *Fagus sylvatica* L. auf eine Temperaturerhöhung reagieren.

2 Material und Methoden

Eineinhalbjährige Sämlinge von Fagus sylvatica L. wachsen seit April 1994 unter atmosphärischer (370 \pm 46 µmol mol⁻¹) und erhöhter (701 \pm 10 µmol mol⁻¹) CO₂-Konzentration. Die Buchensämlinge (erstes Jahr: n = 49; zweites Jahr n = 36) werden dabei in Minigewächshäusern aus UV-durchlässigem Acrylglas nachgestellten Freilandbedingungen ausgesetzt (FORSTREUTER 1995). Im Herbst 1992 erfolgte die Aussaat der Samen (Herkunft 810 03, Nordwestdeutsches Tiefland) in einem Torfsandgemisch bei 5 °C im Gewächshaus. Ab Januar 1993 wuchsen die Keimlinge in Töpfen (13 x 13 x 13 cm) bei 10 °C und wurden im Juli 1993 balliert und im Freiland in Baumschulbeete gesetzt. Im März 1994 wurden aus etwa 1000 Sämlingen 49 Buchen pro Versuchsfläche ausgewählt und in die Minigewächshäuser bzw. Freilandflächen gepflanzt (FORSTREUTER 1996).

Das Mikroklima und die Windgeschwindigkeit in den Minigewächshäusern wurde entsprechend den Außenbedingungen geregelt (FORSTREUTER 1991, 1996). Das Bodenvolumen in den Kammern beträgt 385 dm⁻³ (7,4 dm⁻³ pro Pflanze). Als Substrat wurde ein lehmiger Sand (Raumgewicht: 1,1 g cm⁻³) mit mittlerer bis guter Nährstoffversorgung (P_{DL}: 19, K_{DL}: 16, Mg_{CaCl_2} : 10 mg/100mg Boden, NH_4^{+} -N: < 5, NO_3^{-} -N: 50 kg/ha) verwendet. Die Bodenwassergehalte wurden bei ca. 20% konstant gehalten.

Im zweiten Begasungsjahr wurden während drei Meßperioden (4.6-6.7.; 8.8.-27.8.; 27.8.-22.9.) an je sechs bis acht Sonnen- und Schattenblättern mit Hilfe eines Miniküvetten-Systems (CMS Blau 400, Walz) und einer Gasmischanlage (GMA-2, Walz) A_n/C_i -Kurven unter konstanten Bedingungen (*PPFD*) > 1000 μ mol m⁻² s⁻¹, $T_{blatt} = 25 \,^{\circ}\text{C}$, $VPD = 1,4 \,\text{kPa}$ erstellt. Dazu wurden den Blättern acht Meßkonzentrationen (C_a : 50, 100, 200, 350, 450, 550, 700 und 1000) angeboten. Die Empfindlichkeitsänderung des URAS (BINOS 100, Rosemont) für CO₂ und H₂O bei verschiedenen Grundpegeln wurde mit Hilfe der gerätespezifischen Empfindlichkeitsfunktion abgeglichen. Zusätzlich wurden während der zweiten Meßperiode an je sechs bis acht Sonnenblättern A_n/C_i Kurven bei vier weiteren Temperaturstufen (T_{blatt}= 17, 21, 29, 35 °C) ermittelt.

Die Berechnug von C_i wurde nach dem Modell von FARQUHAR & al. (1980) durchgeführt. Die Daten der Einzelblattmessungen wurden mittels U-Test auf Signifikanz getestet. Mit Hilfe nicht linearer Regressionen nach dem 'Marquart Least Square'-Verfahren (SAS Institute, 1988) wurden folgende Funktionen an die Meßdaten angepaßt:

I) Nettophotosyntheserate:

$$A_n = A_{\max} \cdot \left(1 - e^{-b \cdot (C_i - \Gamma)}\right)$$

wobei $A_{maxo} \Gamma$ und *b* (Krümmungsfaktor) die Parameter sind;

II) Temperaturabhängigkeit von A_n :

$$A_{n} = \frac{a \cdot (-1 \cdot (T_{blalt})^{4} + 2 \cdot (T_{blalt} - b)^{2} \cdot (c - b)^{2})}{(c - b)^{4}}$$

wobei a, b und c empirische Parameter sind.

3 Ergebnisse

CO2-Abhängigkeit des Gaswechsels

Mit zunehmender C_i läßt die Steigerung von A_n nach, bis ein Sättigungswert (A_{max}) erreicht wird (Abb. 1 und 2). Bei beiden Blattypen ist eine starke Streuung von A_n , A_{max} , $\Delta A_{350-700}$ und dA_n/dC_i zu erkennen (Tab. 1). Zwischen den beiden CO₂-Wachstumsbedingungen bestehen bezüglich $\Delta A_{350-700}$, A_{max} und dA_n/dC_i keine signifikanten Unterschiede (p>0,1, Tab.1). Dagegen liegen die CO₂-Kompensationspunkte (Γ) der Sonnen- und Schattenblätter unter erhöhter CO₂-Wachstumsbedingung bei signifikant höheren CO₂-Konzentrationen als unter normaler CO₂-Wachstumskonzentration (p<0,01). Unter CO₂-

Abb. 1: A_{μ}/C_{t} -Kurven (a–c) und Anfangssteigungen der A_{μ}/C_{t} -Kurven (e–f) von allen untersuchten Sonnenblättern. Einzelblattmessungen und Regressionsmodelle bei a, d) 350 µmol mol⁻¹ (— \bullet) und b, e) 700 µmol mol⁻¹ (— \circ) CO₂-Wachstumskonzentration. c, f) Mediane der Regressionsmodelle, +: kennzeichnet die den Wachstumsbedingungen (350 und 700 µmol mol⁻¹) entsprechende C_{t} -Konzentration.

Fig. 1: A_n/C_i curves (a-c) and initial slopes of A_n/C_i curves (e-f) of all measured sun leaves. Single leaf measurements and regression models at a, d) 350 µmol mol⁻¹ (-- \oplus) and b, e) 700 µmol mol⁻¹ (-- \bigcirc) CO₂ growth concentration. c, f) Median of the regression models, +: marks the C_i concentration corresponding to the CO₂ growth concentrations (350 µmd 700 µmol mol⁻¹).

Abb. 2: A_{ir}/C_i -Kurven (a–c) und Anfangssteigungen der A_{ir}/C_i -Kurven (e–f) von allen untersuchten Schattenblättern. Einzelblattmessungen und Regressionsmodelle bei a, d) 350 µmol mol⁻¹ (— •) und b, e) 700 µmol mol⁻¹ (— ·) CO₂-Wachstumskonzentration. c, f) Mediane der Regressionsmodelle, +: kennzeichnet die den Wachstumsbedingungen (350 und 700 µmol mol⁻¹) entsprechende C_i -Konzentration.

Fig. 2: A_{n}/C_i curves (a-c) and initial slopes of A_{n}/C_i curves (e-f) of all measured shade leaves. Single leaf measurements and regression models at a, d) 350 µmol mol⁻¹ (-- \oplus) and b, e) 700 µmol mol⁻¹ (-- O) CO₂ growth concentration. c, f) Median of the regression models, +: marks the C_i concentration corresponding to the CO₂ growth concentrations (350 und 700 µmol mol⁻¹). Tab. 1

Nettophotosyntheseraten (A_{350} , A_{700}), Steigerung der Nettophotosyntheserate ($\Delta A_{350-700}$), Photosynthesekapazität (A_{max}), CO₂-Kompensationspunkt (Γ) und Anfangssteigung (dA_n/dC_i) der A_n/C_Γ Kurven.

Table 1

Net photosynthesis (A_{350} , A_{700}), increase of net photosynthesis (ΔA_{350} , $_{-700}$), capacity of photosynthesis (A_{max}), CO₂ compensation point (I) and initial slope (dA_{n}/dC_{i}) of the A_{n}/C_{r} curves.

		Α ₃₅₀ [µmol m ⁻² s ⁻¹]		Α ₇₀₀ [μmol m ⁻² s ⁻¹]		⊿A ₃₅₀₋₇₀₀ [μmol m ⁻² s ⁻¹]		Α _{max} [μmol m ⁻² s ⁻¹]		Г [µmol mol ⁻¹]		dA _n /dC _i [μmol m ⁻² s ⁻¹ / μmol mol ⁻¹]	
CO ₂ -growth concentration [µmol mol ⁻¹]		350	700	350	700	350	700	350	700	350	700	350	700
	М	4.0	3.1	6.6	5.4	2.6 (65%)	2.3 (74%)	8.8	7.8	66	89	0.030	0.029
sun leaves	I ₅₀	1.9	1.2	3.0	2.2	1.5	0.9	4.5	3.6	16	21	0.008	0.008
· .4	р	0.11		0.22		0.73		0.64		0.001		0.15	
	M	2.2	1.8	3.4	3.0	1.2 (52%)	1.2 (66%)	4.1	5.2	67	99	0.021	0.020
shade leaves	I ₅₀	0.5	0.7	0.9	1.5	0.5	0.7	1.9	3.2	20	24	0.008	0.008
	р	0.06		0.36		0.18		0.92		0.002		0.98	
	р	0.06		0.36		0.18		0.92		0.002		0.98	

M: median of single leaf measurements, I_{50} : interquartil range, p: significance level for the U-Test.

Abb. 3

Temperaturabhängigkeit der Nettophotosynthese von Sonnenblättern bei verschiedenen CO₂-Meßkonzentrationen. a) 350 μmol mol⁻¹, (--Φ), b) 700 μmol mol⁻¹, (--- Φ) CO₂-Wachstumskonzentration, I: kennzeichnet die Optimumstemperatur.

Fig. 3

Wachstumsbedingungen von 350 µmol mol⁻¹ betrug Γ 66 bzw. 67 µmol mol⁻¹ bei Sonnen- bzw. Schattenblättern; unter CO₂-Wachstumsbedingungen von 700 µmol mol⁻¹ dagegen 89 bzw. 99 µmol mol⁻¹.

Temperaturabhängigkeit der Nettophotosynthese

Bei jeder C_a nimmt A_n mit steigender Temperatur zu, bis sie eine Optimumstemperatur (T_{opt}) erreicht hat. Abb. 3 zeigt, daß sich T_{opt} unter normaler atmosphärischer CO₂-Wachstumskonzentration um 1,8 °C und unter erhöhter um 0,9 °C verschiebt. T_{opt} beträgt bei einer C_a von 350 µmol mol⁻¹ CO₂ 27,8 °C unter normaler bzw. 29,2 °C unter erhöhter CO₂-Wachstumsbedingung. Unter erhöhter CO₂-Wachstumsbedingung wurde A_{opt} bei einer C_a von 500 µmol mol⁻¹ CO₂ und einer T_{opt} von 30,1 °C erreicht. Unter normaler CO₂-Wachstumsbedingung wurde A_{opt} bei einer C_a von 700 µmol mol⁻¹ CO₂ und einer T_{opt} von 29,6 °C erreicht. Höhere C_a verursachen keine weitere Verschiebung von T_{opt} .

Eine Temperaturerhöhung hat bei hoher C_a einen stärkeren Einfluß auf A_n als bei niedriger C_a . Bei einer

 C_a von 350 µmol mol⁻¹ CO₂ beträgt A_n unter T_{opt} 6,8 bzw. 5,7 µmol m⁻² s⁻¹ bei 700 µmol mol⁻¹ CO₂ dagegen 9,6 bzw. 8,5 µmol m⁻² s⁻¹. Die Steigerung von A_n nach einer Verdoppelung von C_a betrug bei 20 °C 26% bzw. 18% und bei 30 °C 43% bzw. 49%.

4 Diskussion

STITT (1991) berechnete nach dem Modell von FARQUHAR & al. (1980) ein $\Delta A_{350-700}$ von 25%, wenn die Regeneration von RuBP limitierend wirkt, und von 75%, wenn die RuBisCO limitierend wirkt. In GUNDERSON & WULLSCHLEGER (1994) wird für *Fagus sylvatica* L. eine Steigerung der Nettophotosyntheserate von 55% angegeben. In der vorliegenden Arbeit wurden je nach Blattyp und CO₂-Wachstumskonzentration ein $\Delta A_{350-700}$ zwischen 52% und 74% gemessen. Der Median der Nettophotosynthesesteigerungen aller Blätter betrug 66% und war etwas größer als der Wert im Vorjahr mit 56% (FORST-REUTER 1996).

EPRON & al. (1995) ermittelten an juvenilen Buchen Γ^* (entspricht Γ in Abwesenheit von der Dunkelatmung) von 81 µmol m⁻² s⁻¹. In der vorliegenden Arbeit liegt Γ bei erhöhter CO₂-Wachstumskonzentration (89 bzw. 99 µmol m⁻² s⁻¹) höher und bei normaler CO2-Wachstumskonzentration (66 bzw. 67 µmol m⁻² s⁻¹) niedriger als bei EPRON & al. (1995). Die signifikanten Unterschiede in Γ zwischen den beiden CO2-Wachstumskonzentration können auf eine erhöhte »Dunkelatmung« der Blätter beruhen. Für Fagus sylvatica wird in einem Übersichtsartikel von CEULEMANS & MOUSSEAU (1994) eine Steigerung der Respiration von 90% angegeben. Ein Abnahme der SLA unter erhöhter CO2-Wachstumskonzentration (MOUSSEAU & SAUGIER 1992, FORSTREU-TER 1995) kann erhöhte Atmungsraten erklären, wenn neben den Speicherkohlenstoffen (KÖLN & al. 1997) und Strukturkohlenstoffen auch die Menge an atmungsfähigem Gewebe zunimmt (THOMAS & HARVEY 1983).

Aufgrund der gesteigerten A_n bei erhöhter C_a könnten Pflanzen sinnvoll Ressourcen einsparen, wenn sie weniger RuBisCO produzieren und die dadurch frei werdenden Ressourcen, wie z.B. Stickstoff, in andere wachstumslimitierende Prozesse investieren würden. Eine Verringerung der RuBisCO-Aktivität zeigt sich in einer geringeren Anfangssteigung der A_n/C_r Kurven (Carboxylierungseffizienz), da diese direkt proportional zur RuBisCO-Aktivität ist (FAR-QUHAR & al. 1980). Bei beiden Blattypen waren die Anfangssteigungen (dA_n/dC_i) zwischen den beiden CO₂-Wachstumsbedingungen nicht signifikant verschieden. Dies stimmt mit Beobachtungen aus dem Vorjahr von FORSTREUTER (1996) und mit Ergebnissen von GUNDERSON & al. (1993) bei *Liriodendron* *tulipifera* und *Quercus alba* überein. Auch in $\Delta A_{350-700}$ und A_{max} traten keine signifikanten Unterschiede zwischen den beiden CO₂-Wachstumskonzentrationen auf. Bei den hohen CO₂-Konzentrationen, bei denen A_{max} erreicht wird, wirkt die Endproduktsyntheserate oder die RuBP-Regeneration limitierend auf die Nettophotosynthese (SAGE 1994). Die an diesen Prozessen beteiligten Enzyme unterliegen somit keiner Akklimatisation an eine erhöhte CO₂-Konzentration. *Fagus sylvatica* ist daher eine Baumart, die von der in Zukunft ansteigenden atmosphärischen CO₂-Konzentration erheblich profitieren kann.

Die gemessenen Temperaturoptima bei 350 µmol mol⁻¹ CO₂ (T_{opt} =27,7 bzw. 29,1°C) liegen im Vergleich zu Untersuchungen an adulten Bäumen mit T_{opt} von 18 °C bis 25,1 °C deutlich höher (SCHULZE 1970, SCHULTE 1992). Diese Abweichungen können unter anderem auf unterschiedlichen physiologischen Eigenschaften von adulten und juvenilen Bäumen beruhen. Aber auch die extremen Klimabedingungen in 1995, wie hoher Anteil an direkter Sonneneinstrahlung und hohe Temperaturen können zu einer Anpassung der juvenilen Bäume an höhere Temperaturen geführt haben.

Es konnte gezeigt werden, daß $\Delta A_{350-700}$ bei hoher Temperatur größer ist als bei niedriger. Dies stimmt mit Versuchen von IDSO & al. (1993) an Orangenbäumen überein, die bei niedrigen Außentemperaturen kein $\Delta A_{350-700}$ zeigten. Freilandversuche unter kalten Klimabedingungen, wie sie in der arktischen Tussoc-Tundra herrschen, zeigen ebenfalls keine oder nur geringe Reaktionen von A_n auf eine erhöhte/ CO2-Konzentration (TISSUE & OECHEL 1987, GRULKE & al. 1990). Bei hohen Temperaturen ist die CO2-Reaktion dagegen besonders stark ausgeprägt (CURTIS & al. 1989, HOGAN & al. 1991). LONG (1991) berechnete anhand von theoretischen Parametern ein $\Delta A_{350-700}$ von 20 % bei 10 °C und von 105 % bei 30 °C. In der vorliegenden Arbeit betrug $\Delta A_{350-700}$ bei 20 °C 26% unter normaler und 18% unter erhöhter CO2-Wachstumsbedingung. Bei 30 °C lag $\Delta A_{350-700}$ deutlich höher, mit 43% unter normaler und 49% unter erhöhter CO2-Wachstumsbedingung. Neben dieser Verstärkung der CO₂-Reaktion wurden eine Verschiebung von T_{opt} nach einer Verdoppelung der CO2-Meßkonzentration beobachtet. Unter normaler CO₂-Wachstumsbedingung wurde das Temperaturoptimum um 1,8 °C und unter erhöhter um 0,9 °C verschoben. LONG (1991) ermittelte dagegen eine theoretisch mögliche Verschiebung von T_{opt} um 5 °C.

Sowohl die temperaturabhängige Modifizierung der CO_2 -Reaktion der Nettophotosyntheserate als auch die Verschiebung von T_{opt} tragen dazu bei, daß der Anstieg der Nettophotosyntheserate aufgrund erhöhter atmosphärischer CO_2 -Konzentration bei einer möglicherweise zukünftig ansteigenden Temperatur größer ausfallen dürfte als bei der derzeitig herrschenden Temperatur. Eine Steigerung der Respiration bei erhöhter Temperatur in nicht photosynthetisch aktiven Organen könnte jedoch die Auswirkung des verstärkten CO_2 -Effekts der Nettophotosynthese auf die Kohlenstoffbilanz der Pflanze abschwächen.

Danksagung

Für die technische Hilfe bei der Betreuung und Wartung der Versuchsanlage gilt unser besonderer Dank Frau Elfriede West, Herrn Ralf Stark und Herrn Dirk Rathmann. Diese Arbeit wurde im Rahmen des DFG-Schwerpunktes 'Wachstum und Stoffwechsel der Pflanze unter erhöhter CO_2 -Konzentration (Ov2/1-1)' gefördert.

Literatur

- BERRY, J.A. & RAISON, J.K., 1982: Responses of macrophytes to temperature. In: LANGE, O.L., NOBEL, P.S., OSMOND, C.B., ZIEGLER, H. (eds.): Encyclopedia of Plant Physiology, N.S. 12A. Springer-Verlag, Berlin, pp. 550-587.
- CAEMMERER VON, S. & FARQUHAR, G.D., 1981: Some relationships between the biochemistry of photosynthesis and gas exchange in leaves. Planta 153: 376-387.
- CAEMMERER VON, S. & FARQUHAR, G.D., 1984: Effects of partial defoliation, changes in irradiance during growth, short-term water stress and growth at enhanced $p(CO_2)$ on the photosynthetic capacity of leaves of *Phaseolus vulgaris* L. Planta 160: 320-329.
- CEULEMANS, R. & MOUSSEAU, M., 1994: Tansley review No. 71. Effects of elevated atmospheric CO₂ on woody plants. New Phytol. 127: 425-446.
- CURE, J.D. & ACOCK, B., 1986: Crop responses to carbon dioxide doubling: A literature survey. Agricultural Forest Meteorology 38: 127-145.
- CURTIS, P.S., DRAKE, B.G., ARP, W.J. & WHIGHAM, D.F., 1989: Growth and senescence in plant communities exposed to elevated CO₂ concentrations on an estuarine marsh. Oecologia 78: 20-26.
- DE LUCIA, E.H., SASEK, T.W. & STRAIN, B.R., 1985: Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosyn. Res. 7: 175-184.
- EAMUS, D. & JARVIS, P.G., 1989: The direct effects of increase in the global atmospheric CO₂ concentration on natural and commercial temperate trees and forests. Adv. Ecol. Res. 19: 1–15.

EPRON, D., GODARD, D., CORNIC, G. & GENTY,

B. 1995: Limitation of net CO_2 assimilation rate by internal resistances to CO_2 transfer of two tree species (*Fagus sylvatica* L. and *Castanea sativa* Mill.). Plant Cell Environ. 18:43–51.

- FARQUHAR, G.D., VON CEAMMERER, S. & BERRY, J.A., 1980: A biochemical model of photosynthetic CO₂ fixation in C₃ species. Planta 149: 178–190.
- FARQUHAR, G.D., WONG, S.C., EVANS, J.R. & HUBRICK, K.T., 1989: Photosynthesis and gas exchange. In: JONES, H.G., FLOWERS, T.J., JONES, M.B (eds.): Plants under stress. Cambridge University Press, Cambridge: pp. 47-71.
- FORSTREUTER, M., 1991: Langzeitwirkungen der atmosphärischen CO₂-Anreicherung auf den Kohlenstoff- und Wasserhaushalt von Rotklee-Wiesenschwingelgemeinschaften. Verh. Ges. Ökol. 19: 265-279.
- FORSTREUTER, M., 1995: Bestandesstruktur und Netto-Photosynthese von jungen Buchen (*Fagus sylvatica* L.) unter erhöhter CO₂-Konzentration. Verh. Ges. Ökol. 24: 283–292.
- FORSTREUTER, M., 1996: CO₂-Abhängigkeit (CO₂/ H₂O) von jungen Buchenbeständen (*Fagus sylvatica L.*) nach Langzeitbegasung bei 350 und 700 µmol mol⁻¹. Verh. Ges. Ökol. 26: 629-636.
- FORSTREUTER, M., TSCHUSCHKE, A. & OVERDIECK, D., 1994: Atmospheric CO₂ record from Osnabrück. In: BODEN, T.A, KAISER, D.P., STEPANSKI, R.J & STOSS, F.W (eds.), Trends' 93: A compendium of data on global change. ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge, U.S.A.: 157–160.
- GODELEWSKI, E., 1873: Abhängigkeit der Sauerstoffausscheidung der Blätter von dem Kohlensäuregehalt der Luft. Arbeiten des Botanischen Instituts in Würzburg, Leipzig, Bd. I Heft 3: 343-370.
- GRULKE, N.E., RIECHERS, G.H., OECHEL, W.C., HELM, U. & JAEGER, C., 1990: Carbon balance in tussoc tundra under ambient and elevated atmospheric CO₂. Oecologia 83: 485-494.
- GUNDERSON, C.A. & WULLSCHLEGER, S.D., 1994: Photosynthetic acclimation in trees to rising atmospheric CO₂: A broader perspective. Photosyn. Res. 39(3): 369-388.
- GUNDERSON, C.A., NORBY, R.J. & WULLSCHLEGER, S.D., 1993: Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO₂: No loss of photosynthetic enhancement. Plant Cell Environ. 16(7): 797–807.
- HOGAN, K.P., SMITH, A.P & ZISKA, L.H., 1991: Potential effects of elevated CO₂ and changes in temperature on tropical plants. Plant Cell Environ. 14, 763-778.
- HOUGHTON, J.T., JENKINS, G.J. & EPHRAUNS, J.J., (eds.), 1990: Climate Change. The IPCC scientif-

ic assesment. Cambridge University Press, Cambridge 7(3): 611–617.

- IDSO, S.B., KIMBALL, B.A. & HENDRIX, D.L., 1993: Air temperature modifies the size-enhancing effects of atmospheric CO₂ enrichment on sour orange tree leaves. Environ. Exp. Bot. 33(2): 293-299.
- JORDAN, D.B. & OGREN, W.L., 1984: The CO₂/O₂ specifity of ribulose-1,5-bisphospate concentration, pH and temperature. Planta 161: 308-313.
- KEELING, C.D. & WHORF, T.P., 1994: Atmospheric CO₂ records from sites in the SIO air sampling network. In: BODEN, T.A, KAISER, D.P., STEPANSKI, R.J & STOSS, F.W (eds.), Trends' 93: A compendium of data on global change. ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge, U.S.A.: 16-26.
- KÖLN, T., FORSTREUTER, M. & OVERDIECK, D., 1995: Kohlenhydrat- und Stickstoffgehalte unter erhöhten CO₂-Konzentrationen. Verh. Ges. Ökol. im Druck.
- LONG, S.P., 1991: Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO_2 concentrations: Has its importance been underestimated? Plant Cell Environ. 14: 729-739.
- MOUSSEAU, M. & SAUGIER, B., 1992: The direct effect of increased CO_2 on gas exchange and growth of forest tree species. J. Exp. Bot. 43: 1121-1130.
- NEFTEL, A., MOORE, E., OESCHGER, H. & STAUF-FER, B., 1985: Evidence from polar ice cores for the increase in atmospheric CO_2 in the past two centuries. Nature 315: 45–47.
- OVERDIECK, D., 1993: Effects of atmospheric CO_2 enrichment on CO_2 exchange rates of beech stands in small model ecosystems. Water Air and Soil Pollution 70(1-4): 259-277.
- SCHULTE, M., 1992: Saisonale und interannuelle Variabilität des CO₂-Gaswechsels von Buchen (*Fagus sylvatica* L.) – Bestimmung von C-Bilanzen mit Hilfe eines empirischen Modells. Dissertation, Aachen Shaker: 164 pp.
- SCHULZE, E. D., 1970: Der CO₂-Gaswechsel der Buche (*Fagus sylvatica* L.) in Abhängigkeit von Klimafaktoren im Freiland. Flora 159: 177-232.
- SAGE, R.F., 1994: Acclimation of photosynthesis to increasing atmospheric CO₂: The gas exchange perspective. Photosynthesis Research 39: 351-368.
- SAGE, R.F., SHARKEY T.D. & SEEMANN J.R., 1989: Acclimation of photosynthesis to elevated CO_2 in five C_3 species. Plant Physiol. 89: 590–596.
- SARIMENTO, J.L. & BENDER, M., 1994: Carbon biogeochemistry and climate change. Photosyn. Res. 39: 209–234.
- SAS INSTITUTE, 1988: SAS/STAT User's Guide, Release 6.03 Edition. Cray NC: 675-712.

- STITT, M., 1991: Rising CO₂ levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 14: 741-762.
- THOMAS, D. T. & HARVEY, C., 1983: Leaf anatomy of four species grown under continuous CO_2 enrichment. Bot. Gaz. 144(3): 303-309.
- TISSUE, D. T. & OECHEL, W., 1987: Response of *Eriophorum vaginatum* to elevated CO_2 and temperature in the Alascan tundra. Ecology 68: 401-410.

Adresse

Dipl. Biol. Jörn Strassemeyer

- Dr. Manfred Forstreuter
- Prof. Dr. Dieter Overdieck
- Technische Universität Berlin, Institut für Ökologie

Fachgebiet: Ökologie der Gehölze

Königin-Luise-Str. 22

D-14195 Berlin

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Verhandlungen der Gesellschaft für Ökologie

Jahr/Year: 1996

Band/Volume: 27_1996

Autor(en)/Author(s): Forstreuter Manfred, Overdieck Dieter, Strassemeyer Jörn

Artikel/Article: <u>Temperatur- und C02-Abhängigkeit des Gaswechsels</u> von Fagus sylvatica L nach Wachstum unter erhöhter atmosphärischer <u>C02-Konzentration 303-309</u>