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Synopsis

Since the early days of soil zoology, researchers have 
repeatedly discussed the importance of edaphic envi­
ronmental characteristics for the distribution and 
abundance of soil animals. An extensive soil-biologi­
cal survey at the experimental farm of the FAM 
Munich Research Association for Agricultural 
Ecosystems provided the opportunity of testing the 
predictive potential of soil habitat features for the 
density of microarthropods. In April 1991 cores were 
taken at 400 points distributed over a 50x50 m sam­
pling grid to measure the abundance of soil mi­
croarthropods, microbial biomass, microbial respira­
tion, soil moisture, pH, carbon content, nitrogen 
content and soil texture. The uniquely large sample 
size made the application of a novel approach in eco­
logical data analysis possible: this paper reports on 
an attempt to model the abundance of the dominant 
Collembolan species Folsomia quadrioculata by the 
use of artificial neural networks (NNs). NNs do not 
require an a priori assumption of the functional form 
of the relationship between independent and depen­
dent variables; governed by certain learning algo­
rithms they are able to let the data define the form 
by themselves.

NN models performed better than models based 
on multiple linear regression and were capable of 
identifying sampling points with the potential of 
housing large numbers of F. quadrioculata. This re­
flects the non-linear nature of the relationship be­
tween abundance and habitat characteristics. It was, 
however, not possible to obtain a finer resolution of 
the abundance than merely distinguishing between 
points with low density and points with the potential 
for high density. Thus, this study also sheds a light on 
the limits of predicting local abundance by a pure 
habitat quality model. The environmental conditions 
may well set the limits of where a species is able to 
exist or not, but its actual density is determined by 
various processes acting at different spatial and tem­
poral scales (e.g. aggregation behaviour, immigration 
from neighbouring habitats).

Collembola, Folsomia quadrioculata, soil 
microarthropods, abundance, habitat features, 
artificial neural networks, modelling, agroecosystem, 
microbial biomass, carbon content

1 Introduction

Soil microarthropods -  to the largest part Acarina 
and Collembola -  are exceedingly numerous in nat­
ural as well as in cultivated ecosystems (PETERSEN 
& LUXTON 1982; LARINK 1997); they are said to 
have the potential of influencing major soil-based 
ecosystem processes (VERHOEF & BRUSSAARD 
1990; LUSSENHOP 1992). For decades, soil ecolo­
gists have regarded habitat conditions to be of major 
importance for determining distribution and abun­
dance of soil microarthropods. Early workers meticu­
lously recorded information on soil type, litter char­
acteristics and other components at the sampling 
and collecting localities (e.g. FRANZ & BEIER 1948; 
FRANZ & SERTL-BUTSCHEK 1954), and modern 
textbooks on soil zoological methods still emphasize 
the importance of a thorough habitat description 
(DÜNGER & FIEDLER 1989). Since it is difficult to 
gain experimental access to the interactions of mi­
croarthropods with their habitat, the analyses of 
whether or not and to what extent habitat features 
influence the abundance and distribution of soil 
microarthropods, are exclusively based on a corre­
lative approach. Among the environmental variables 
that have been shown to exert a noticeable influence 
on abundance and distribution are temperature, soil 
type, soil moisture, soil acidity and microbial charac­
teristics (cf. reviews by EKSCHMITT 1993 and 
HOPKIN 1997 and references therein). Typically 
these variables only explain part of the total variance 
in the microarthropod data (e.g. 35% in KLIRONO- 
MOS & KENDRICK 1995). The remaining variance 
could either be put down to the fact that some vari­
ables have not yet been measured or to the fact that 
spatial distribution of soil microarthropods is highly 
aggregated. As far as we know, aggregations of 
Collembola typically appear to have a size of 5 to 
35 cm (EKSCHMITT 1993). Thus, when analysing 
habitat feature:density relationships the soil zoolo­
gist is always confronted with the difficulty of having 
to filter these relationships from the often overriding 
data on aggregation. The patchy distribution patterns 
of soil microarthropods and the difficulties imposed 
by assessing even their basic population parameters, 
explains the large amount of published material 
available on statistics of microarthropod sampling 
which have been accumulated from the beginning of



soil zoology as a science until now (e.g. HEALY 
1962; EKSCHMITT 1993). However, in many cases 
the choice of the sample size is a matter of feasibility 
(man-power, financial supply, etc.) and not one of 
statistical requirements. The fact that soil zoologists 
are forced to reduce the number of sampling units 
means that many of the assumptions about relation­
ships between habitat features and microarthropod 
abundance are based on weak statistical inference. 
Sometimes even the number of study sites is kept to 
a minimum, giving rise to pseudo-replicative study 
designs (i.e. each site is the only replication of a 
treatment and therefore the true sample size n = 1, 
regardless of how many »pseudoreplicated« cores are 
taken within a site (HURLBERT 1984; HEFFNER & 
al. 1996).

The following work is based on a large data-set 
from the experimental farm of the FAM Munich Re­
search Association for Agricultural Ecosystems. It 
consists of a sample of almost 400 soil cores taken 
across a landscape section of more than 100 ha with 
a large pedological variability. It thus yields a unique 
opportunity to answer the question as to whether 
the number of individuals at a point in space can be 
inferred from the habitat features prevailing at that 
point. The unusually large size of the data-set makes 
the application of a novel means of ecological model­
ling possible, namely artificial neural networks 
(NNs). NNs are universal approximators and, thus, 
act as a type of nonparametric statistic enabling us to 
model complex functional forms (WARNER & MISRA 
1996). When a regression analysis is applied some 
functional form has to be imposed on the data. This 
is, however, not necessary in the case of a NN. Its 
basic idea is to let the data define the functional 
form by themselves. A regression model may be used 
when either the functional relationships between in­
dependent and dependent variables are known or 
when there are at least plausible assumptions about 
these relationships. A NN, in contrast, is useful 
when the functional relationships are unknown. Re­
cently ecologists recognized NNs as a potential tool 
for data analysis and modelling and use them in vari­
ous contexts (LEK & al. 1996; PARUELO & 
TOMASEL 1997; RECKNAGEL & al. 1997). These 
studies have shown that NNs can fit the complexity 
and nonlinearity of ecological phenomena to a high 
degree.

Thus, the aim of this paper is (1) to create a NN 
model that explains local density of microarthropod 
in terms of habitat characteristics and (2) to test the 
model’s ability to predict microarthropod density on 
sites where the habitat characteristics are known. 
This report concentrates on an attempt to model 
numerical abundance of the dominant Collembolan 
species Folsomia quadrioculata (TULLBERG, 1871).

2 M ateria l and Methods

2.1 Study site and data origin

The FAM runs a 153 ha experimental farm in Schey- 
ern approx. 40 km N of Munich. It is situated at an 
elevation of 450 to 490 m above sea level; mean an­
nual temperature and mean annual precipitation 
amount to 7.5° C and 833 mm, respectively. The farm 
was conventionally managed until 1992 and was 
then divided into a part with integrated farming 
(46 ha), a part with organic farming (68 ha) and a 
part that is reserved for plot trials (39 ha). In April 
1991 the corner points of a 50x50 m grid were sam­
pled with one soil core (7.8 cm diameter, 5 cm depth) 
each and yielded a total of 396 cores. The majority of 
points were situated in arable fields (n = 302), the re­
mainder in pastures, meadows and arable fields on 
former hop fields. All arable land (except grassland) 
was uniformly grown with winter barley to create 
similar conditions before the change of management 
systems in 1993. Microarthropods were counted and 
Collembola identified by species (FROMM 1998). For 
the measurement of the following environmental fac­
tors cores were taken from the same grid points at a 
distance of approximately 25 cm: microbial biomass, 
microbial respiration, soil moisture, soil acidity, car­
bon content (Ct) and nitrogen content (Nt) (WINTER
1998). Soil texture at the grid points was determined 
by SINOWSKI (1994). Table 1 sums up methods 
and observed values for all variables. All data were 
drawn from the FAM data base at the GSF in Neu- 
herberg, Germany (URL: http://www.gsf.de/FAM/fam- 
daten.html).

F. quadrioculata exhibits moderate to low corre­
lation coefficients with single environmental factors 
(Table 1). Fig 1, for example, shows the relationship 
between density of F. quadrioculata and carbon con­
tent in soil. Clearly visible are (1) the skewed fre­
quency distribution of abundance of F. quadrioculata 
as well as of carbon content, and (2) the tendency of 
cores with a high abundance to appear more fre­
quently at a higher soil carbon content. Due to small 
scale aggregations of Collembola, even on sites with 
high levels of carbon content some cores contain few 
or no individuals of F. quadrioculata at all. The func­
tional form of the relationship is not clearly visible, 
which speaks in favour of a NN modelling approach.

2.2 Neural networks

A NN consists of a set of computational units, termed 
cells. These cells are joined by a set of one-way con­
nections. At certain times a cell examines its inputs, 
computes an output and passes it on along the con­
nections leading to other units. The most popular

http://www.gsf.de/FAM/fam-daten.html
http://www.gsf.de/FAM/fam-daten.html


Table 1
Analytical methods, data range and product moment correla- abundance of F. quadrioculata at Scheyern experim ental 
tion coeffic ient betw een environmental variables and farm (n = 195).

Variable Method Range r
M ic ro b ia l resp ira tio n au tom atic  IRGAa 0.76 -  10.03 pg C 02 g-1 soil d.m. h '1 0.36
M ic ro b ia l b iom ass au tom atic  IRGAa 4.97 -  80.98 pg C 02 g-1 soil d.m. h '1 0.43
Soil a c id ity CaCI2 4.72 -  7.04 - lo g  [ H i -0 .2 8
Soil m o is ture dried at 105° C 5.1 -  48.13 % w e ig h t of soil d.m. 0.48

C, elem enta l a n a lys e d 0.96 -  5.86 % w e ig h t of soil d.m. 0.43

N, elem enta l a n a ly s e d 0.079 -  0.833 % w e ig h t of soil d.m. 0.39
M edian pa rtic le  size s ie v in g 0, s e d im e n ta tio n ^  

lase r d iffra c tio n e 6.3 -  630 pmf -0 .0 4
F. q u ad riocu la ta soil core (7.82 x 5 cm 3) 0 -  95 ind iv id ua ls  c o re -1 -
a a fte r H e inem eyer & al. (1989)
b ox id iza tion  at 1020° C in a Carlo Erba NA 1500 and subsequen t d e te rm in a tio n  of gas c o n c e n tra tio n  of C 02 

and N 2 by gas ch rom a to g ra phy  and heat c o n d u c tiv im e try  
c a fte r H artge & Horn (1989) 
d a fte r Kohn (1928) 
e a fte r H euer & Leschonski (1985) 
f c lass lim its  at 12.5, 20, 28, 40, 50, 63,100 and 200 pm
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Fig. 1
Relationship betw een carbon content and abundance of 
F. quadrioculata at the Scheyern experim ental farm (n = 195 
points of a 50x50 m sample grid).

type of NN is the backpropagation network. In this 
type of network the cells are typically organized in 
three layers -  an input layer, an intermediate (or hid­
den) layer and an output layer -  with connections be­
tween all cells of one layer to all cells of the next 
higher layer. There are no connections within layers 
and no connections to pass back information to a 
lower layer (Fig. 2).

Each connection to a cell u* has a numerical 
weight Wy that specifies the influence of cell Uj on u 
The total input into a cell, thus, is a weighted sum S 
of the outputs from all cells Uj connected to it and 
can be expressed as

The output of a cell uf -  its activation -  is then calcu­
lated by a non-linear and differentiable activation 
function /(S/). Most commonly used is the logistic or 
sigmoid function

ui =
1

1 + e '5' ( 2 )

The process of passing on activations from the input 
to the output layer is called forward propagation.

Similar to coefficients in regression analysis, the 
connection weights are adjusted to solve the problem 
presented to the NN. This is achieved in a training 
(or learning) stage: the NN is provided with training 
patterns with known outputs for a given input. The 
NN first calculates its output based on a randomly 
chosen initial set of connection weights. It then com-



Topology of a backpropagation network.
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Fig. 3
Plot of component weights of the environmental variables on 
the first and second principal component (n= 195).

pares the computed output with the desired output. 
Governed by a gradient descent technique the error 
is propagated top-down through the NN (= backprop­
agation). By slightly altering the connection weights 
the NN in a small step approaches the desired out­
put. In an iterative process one training pattern after 
the other is presented to the NN and the weight ma­
trix successively adjusted.

GALLANT (1993) and WARNER & MISRA (1996) 
provide introductions to backpropagation learning; 
the former also presents a formal derivation of the 
calculations and a simple numerical example.

2.3 M odelling

Grid points with missing data for one or more of the 
environmental variables were omitted from the data 
set with leaving 195 points in the analysis (155 of 
which to be found in arable fields). (The set of values 
of environmental factors and of abundance of 
F. quadrioculata at one point will be called a pattern 
due to the usual nomenclature in NN modelling.) 
150 patterns were randomly chosen as training pat­
terns to train a NN with 7 cells in the input layer -  
one for each environmental variable -  , 7 cells in the 
intermediate layer and 1 cell in the output layer 
(abundance of F. quadrioculata). The data were trans­
formed to the interval [0 1] by

xi =  ixi ~ xmin) /  lxmax ~ xmin) (3 )

with xmin being the smallest and xmax being the 
largest value of a variable in the training patterns.

The frequency distribution of the abundance of 
F. quadrioculata is heavily skewed to the right with 
very few cores containing very high numbers of in­
dividuals. Thus, before applying (3) an upper thresh­
old value at the 95%-quantile was defined and all 
values larger than 16 individuals per core were de­
noted as 16.

The number of learning cycles amounted to 250; 
a larger number showed effects of overlearning. In 
that case the NN gradually loses its ability to model 
other patterns than the training patterns. Subsequent­
ly the 45 test patterns were transformed according to 
eq. (3) and the environmental variables were used as 
input to the trained NN. Its output is thus the predic­
tion of the NN model for the abundance of F. quadri­
oculata at a given constellation of environmental fac­
tors.

Assuming that for the estimation of a function at 
least 5 data points are necessary a NN with 7 input 
variables would thus require 75 = 16 807 patterns or 
more for training (R. Wieland, pers. comm.). It there­
fore needs a parsimonious approach to design the NN 
and to keep the number of input variables as small as 
possible. A principal component analysis demonstrat­
ed a high correlation between several of the environ­
mental variables (Fig. 3). Therefore, in addition to the 
NN design described above, I also trained a NN with 
only 4 input cells (carbon content, acidity, median 
size particle and a »management« variable distin­
guishing between arable field, pasture, meadow and 
former hop field), 4 intermediate cells and 1 output 
cell. The same training and test patterns as above



were used. The two networks will be named NN7 
and NN4, respectively, throughout the paper.

All designing, training and testing of NNs was 
performed with the SNNS Stuttgart Neural Network 
Simulator v4.0 and v4.1 (ZELL & al. 1995).

The predictive power of both NN models was 
compared to the power of a multiple regression 
analysis (MR) assuming the simplest possible func­
tional form, a linear relationship, between indepen­
dent and dependent variables. The same 150 training 
patterns as described above were used to calculate 
the regression equation; the same 45 test patterns 
were used to compare the computed output of the re­
gression model (= prediction of abundance of 
F. quadrioculata) with the observed values. In analo­
gy to NN modelling one MR was performed with 7 
independent variables (MR7), and an additional MR 
with only 4 independent variables (MR4).

3 Results

NN7 is as successful in predicting low abundance 
(0 -4  individuals per core) as it was in predicting 
high abundance (> 10 individuals per core) (Fig. 4). 
However, it misclassifies some points distinctly and 
predicts medium abundance where low abundance 
was observed and predicts low abundance where 
medium abundance was observed. MR7 performs 
worse in distinguishing between points with low and

high abundance. In a scatterplot of observation vs. 
prediction the data points of different observed abun­
dance are hardly separable along the axis designating 
predicted abundance (Fig. 4). This is reflected by the 
product-moment correlation coefficients between ob­
servation and prediction with r = 0.76 in NN7 and 
r = 0.64 in MR7. The mean error, i.e. the average of 
the difference between predicted and observed val­
ues, is 0.0 in NN7 and -0.3 in MR7; its standard devi­
ation is larger in MR7 due to some points where 
abundance is drastically underestimated by 8 to 10 
individuals (Fig. 5).

The predictions of NN4 are not as good as those 
of NN7: points of high observed abundance again 
have the highest predicted values but are less well 
set off against points with low observed abundance 
(Fig. 4). MR4 definitely fails in identifying points 
with high abundance predicting maximum values for 
points with low observed abundance (Fig. 4). Thus, 
the correlation coefficient between observation and 
prediction is distinctly higher in NN4 (r = 0.66) than 
in MR4 (r=  0.36). The mean error of NN4 is close to 
0 and equals -0.4 in MR4. Due to some points that 
are under- and overestimated, respectively, by 10 to 
12 individuals the standard deviation of the absolute 
error again is higher in MR4. In both NN4 and MR4 
the standard deviation is greater than in NN7 and 
MR7, respectively, reflecting the lower efficiency of 
the models with fewer independent variables 
(Fig. 5).
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Scatterplots of observed vs. 
predicted abundance of 
F quadrioculata [individuals 
per core] as ca lculated by the 
models NN7, MR7, NN4 and 
MR4 (n = 45). See M ateria l 
and Methods for description  
of models.



Fig. 5
Frequency distribution of 
the error of the predicted 
abundance of F. quadriocula- 
ta [individuals per core] by 
the models N N 7, M R7, NN 4 
and MR4 (n = 45). See M aterial 
and Methods for description  
of models.
S.D., standard deviation
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In all models, predictions of maximum abun­
dance are too low compared to the observed data 
(Fig. 4). This is particularly true for the MR models 
with maximum estimates of 8.0 in MR7 and 5.3 in 
MR4 -  11.4 and 9.0 are misclassified points -  com­
pared to 11.8 in NN7 and 9.2 in NN4.

4 Discussion

The NN models perform better than the models 
based on MR; this reflects non-linearities in the rela­
tionship between habitat features and abundance of 
F. quadrioculata. Similar results were found by 
KAMPICHLER (1997) who compared the efficiency 
of NNs and MRs in modelling the total number of in­
dividuals of endogeic and hemiedaphic Collembola at 
the Scheyern experimental farm. In his study correla­
tion coefficients between prediction and observation 
were significantly higher in NN models than in MR 
models. Their lack of transparency, however, partly 
outweighs the better performance of NN models. In a 
MR model a coefficient is applied to each indepen­
dent variable, explicitly reflecting its weight on the 
dependent variable. The analysis of the response of a 
trained NN to different values of the input variables, 
however, is a laborious and time-consuming task (cf. 
LEK 1996) and has not yet been carried out for the 
F. quadrioculata model. Such an analysis normally is 
postponed until the final model with optimum pre­

dictive power is developed. Until that stage a NN is 
used as a black box.

As can be seen in bivariate plots (cf. Fig. 1 ) we 
cannot expect a simple deterministic relationship be­
tween habitat features and abundance. The environ­
mental conditions set the limits of where a species is 
able to exist, and NN7 and NN4 are well able to char­
acterize the potential of a site to house individuals of 
that species. The actual density at a certain point in 
space and time, however, is dependent on a variety 
of processes at different spatial and temporal scales, 
e.g. on the aggregative behaviour of the species 
(EKSCHMITT 1993), on the immigration from adja­
cent habitats or on stochastic disturbances (RICKL- 
EFF 1987). EKSCHMITT (1993) points out that dif­
ferences in habitat quality are possibly only reflected 
in distribution patterns when animal density is high 
and the carrying capacity of the habitat is ap­
proached. Thus, the data points lined up along the y- 
axes of NN7 and NN4 in Fig. 4 characterize a number 
of micro-habitats where these models expect 
F quadrioculata to find suitable conditions for exis­
tence. Whether or not this potential of the habitat ac­
tually is utilized by the species, however, cannot be 
answered by a model based exclusively on habitat 
features. This illustrates the limits of environmental 
characteristics for the modelling of numerical abun­
dance: NN7 and NN4 cannot predict fine modulations 
of abundance, but can only roughly identify the con­
stellations of habitat factors where low, medium or



maximum abundance may be established. The ques­
tion arises as to whether we might achieve this much 
simpler goal by a modelling approach that (1) is able 
to represent the non-linearities of the relationships 
between habitat features and abundance and, at the 
same time, (2) exhibits more transparency than a 
NN. Possibly the large data set is suited for the appli­
cation of machine learning techniques that automati­
cally extract explicit rules for the relationship be­
tween variables. This approach has already been suc­
cessfully used in ecological modeling (DZEROSKI & 
al. 1997).

Consequently, NN models may be a tool to iden­
tify the potential of a site to house large numbers of 
individuals of F. quadrioculata. Since at any given 
constellation of habitat conditions at least some soil 
cores will contain only few or no individuals at all, 
the predicted maximum abundance attainable at 
those conditions is always lower than the observed 
maximum abundance. However, if the model is to 
characterize the potential of a site rather than esti­
mate a kind of average abundance at a given constel­
lation of habitat features, the output has to be cor­
rected so as to give realistic values. The most simple 
approach would be to add another transformation 
and to calculate

X{ =16 [Xi — /  [Xmax~ Xmin) K)

with xmin being the smallest and xmax being the 
largest predicted value. This transformation expands 
the predicted date to the interval [0 16] with the 
value 16 denoting >16 individuals (cf. section 
2.3. Modeling). This is Justified by the assumption, 
that the range of abundance of F. quadrioculata is 
sufficiently well characterized by the number of 150 
training patterns and that a similar range is to be ex­
pected in the test patterns. Thus, minimum and max­
imum of predicted abundance may be transformed in­
to minimum and maximum abundance of the train­
ing patterns. This transformation does not affect the 
efficiency of the NN models reflected by slightly 
higher mean errors and similar standard deviations 
(NN7: mean error = 0.2 [S.D. 3.1]; NN4: mean 
error = 0.8 [S.D. 3.8]. The mean error of MR7 predic­
tions, however, increases and deviates distinctly from 
0 (MR7: mean error = 2.2 [S.D. 3.7.]). (The transfor­
mation of course cannot bring about an improvement 
in the case of MR4 where the »wrong« points were 
predicted to have high abundance values in the first 
place.)

KAMPICHLER (1997) has shown, that repeated 
random-dividing of the data-set into 150 training and 
45 test patterns may yield extremely differing results 
in predicting total abundance of endogeic and 
hemiedaphic Collembola. Correlation coefficients be­
tween prediction and observation ranging from -0.06

to 0.70 with an average at 0.50 (/?= 10) demonstrate 
this observation. This is most possibly due to the 
skewed frequency distribution of abundance, with a 
large number of cores containing only few individuals 
and only few cores containing many individuals. A 
successful model output can only be expected when 
the cores with a large number of individuals are 
equally represented in the training and the test pat­
terns. If there are no (or too few) cores with a high 
abundance among the training patterns, a NN cannot 
identify any functional relationship between habitat 
features and abundance; if there are no cores with 
high abundance among the test patterns, the model 
output consists only of the data points with low to 
medium abundance -  the points that appear in the 
left lower corner of the prediction vs. observation 
plots in Fig. 4 -  and these points exhibit no internal 
structure. This critique also applies to modelling the 
abundance of F. quadrioculata. Preliminary analyses 
have shown, that the correlation coefficient between 
prediction and observation may be as low as 0.24 in 
NN7 and as low as 0.15 in NN4. Thus, even a data 
set based on 195 cores -  which is bigger in size than 
a typical soil zoological sample -  may not be suffi­
cient for unequivocally modeling relationships be­
tween habitat characteristics and abundance. Taking 
a number of cores at each sampling point and thus 
determining local average density would certainly 
help in reducing the skewness of the frequency distri­
bution. However, the resulting number of cores cer­
tainly surpasses any limit of feasibility. Possibly the 
application of local bulk samples could overcome this 
difficulty by minimizing the time for counting indi­
viduals in single cores (BRUCKNER & BARTH 1997).

Due to ecological processes that superimpose the 
pattern of habitat quality and due to difficulties aris­
ing by the skewed frequency distribution of abun­
dance even the large data-set from the Scheyern ex­
perimental farm could not convincingly show the 
predictive power of habitat features for the local 
abundance of a dominant Collembolan species. 
Therefore, soil zoologists should be even more cau­
tious in interpreting data from even smaller samples.
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